
Timed Regular Expressions

EUGENE ASARIN, PAUL CASPI, AND ODED MALER

VERIMAG, Gières, France

Abstract. In this article, we definetimed regular expressions, a formalism for specifying discrete
behaviors augmented with timing information, and prove that its expressive power is equivalent to
the timed automataof Alur and Dill. This result is the timed analogue of Kleene Theorem and,
similarly to that result, the hard part in the proof is the translation from automata to expressions.
This result is extended from finite to infinite (in the sense of B¨uchi) behaviors. In addition to these
fundamental results, we give a clean algebraic framework for two commonly accepted formalisms
for timed behaviors, time-event sequences and piecewise-constant signals.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]:
real-time and embedded systems; F.4.3 [Mathematical Logic and Formal Languages]: Formal
Languages—algebraic language theory; classes defined by grammars or automata

General Terms: Languages, Theory

Additional Key Words and Phrases: Kleene theorem, timed automata, timed languages

1. Introduction

The theory of automata, by now about half a century old, constitutes the foundation
for many branches in Computer Science. In essence, it is a theory aboutsequences
of discrete events occurring oneafter the other and about formalisms for describing
sets of such sequences, most notably by finite-state transition systems (automata)
that generate or accept them. Since automata can model computer programs, digital
circuits and many other discrete-event dynamical systems, they can be used for
simulation, verification and synthesis of such systems.

Classical automata theory deals only with aqualitativenotion of time: a sequence
of events specifies theordering of their occurrence times, but not thedistance
between them in terms of “real” time. While this level of abstraction has proven to
be very useful for the analysis of certain systems, many application domains require
more detailed models that include timing information. For example, we might want
to refine a specification of the form “everya is followed byb” into “every a is
followed byb within 5 seconds.” Likewise, we might want to augment automaton

Authors’ address: VERIMAG, Centre Equation, 2 av. de Vignate 38610, Gi`eres, France, e-mail:
{Eugene.Asarin;Paul.Caspi;Oded.Maler}@imag.fr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this worked owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New York,
NY 10036 USA, fax+1 (212) 869-0481, or permissions@acm.org.
C© 2002 ACM 0004-5411/02/0300–0172 $5.00

Journal of the ACM, Vol. 49, No. 2, March 2002, pp. 172–206.

Timed Regular Expressions 173

models of systems with information concerning the time it takes to complete a
transition. To this end a timed theory of automata and sequential behaviors needs to
be developed, in which timed extensions of the ingredients of the classical theory
can be investigated.

Timed automata [Alur and Dill 1994], automata equipped with clocks, have
been studied extensively in recent years as they provide a rigorous model for
reasoning about quantitative time. Together with other formalisms such as real-
time logics, real-time process algebras and timed Petri nets, they constitute an
underlying theoretical basis for the specification and verification of real-time
systems. The main attraction of timed automata is due to their suitability for
modeling certain time-dependent phenomena, and the decidability of their reach-
ability (or empty language) problem, a fact that has been exploited in sev-
eral verification tools, for example, Kronos [Yovine 1997] and Uppaal [Larsen
et al. 1997].

On the theoretical front, however, the results are somewhat less satisfactory. The
classical theory of automata is extremely simple and elegant. It establishes, for
example, that the expressive power of finite automata is equivalent to that of a
plethora of other formalisms such asregular expressions, monadic second-order
logic, linear language equations, rational formal series, finite monoidsas well
assequential digital circuits. Almost none of these facts has been proven for the
general class of timed automata.1

In this article, we try to follow the spirit of Trakhtenbrot [1995], where a call
was formulated to “lift” the classical results of automata theory to deal with timed
automata. We investigate a timed version of one of the cornerstones of the classi-
cal theory, namely Kleene Theorem, which states that therecognizablesets (those
accepted by finite nondeterministic automata) are exactly theregular (or rational)
sets (those definable by regular expressions). An infinitary version of this theorem
shows that regular sets of infinite sequences are exactly those recognized by B¨uchi
ω-automata [B¨uchi 1960; McNaughton 1966]. To prove the timed analogues of
these results we definetimed regularand timedω-regular expressions and show
that they denote exactly what timed automata can recognize. As in the classical
theorem one direction, the construction of automata from expressions, is rather
straightforward, while the proof of the other direction, from automata to expres-
sions, is much more involved. In order to match the expressive power of timed
automata we use expressions that employ, in addition to the standard operators
and a time-specific operator, two additional constructs, namely,intersectionand
renaming. In the preliminary version of this article, [Asarin et al. 1997] we have
proved the necessity of intersection and conjectured the necessity of renaming—
a fact proved later by Herrmann [1999]. The idea of using regular expressions to
represent the behavior of hybrid systems (for which timed automata are a special
case) was developed independently by Li et al. [1998] who proposed a formalism
calledhybrid regular expressions, to which some very restricted classes of hybrid
automata can be translated. Other related formalisms and results by Bouyer and

1 In fact, already in Alur and Dill [1994] it was proved that the class of languages accepted by timed
automata is not closed under complementation and hence no simplelogical characterization of this
class exists.

174 E. ASARIN ET AL.

Petit [1999, 2002] are discussed in Section 8. The rest of the article is organized
as follows:

Section2. We discuss two commonly-used models for timed behaviors, namely
time-event sequences and piecewise-constant signals, and show how they can be
obtained by combining the free monoid (6∗, ·, ε) of event sequences with the
commutative monoid (R+,+, 0) of time passage. This short algebraic excursion
can be skipped by those who can live without it.

Section3. We introduce the syntax of timed regular expressions. The main
novelty with respect to classical expressions is in the use of the time restriction
operator〈ϕ〉[l ,u] that restricts the time-event sequences inϕ to be of metric length in
the interval [l , u]. Several classes of these expressions are introduced and relations
between them are explored. In particular, the proof that the special◦and~ operators,
which correspond to nonresetting automaton transitions, can be eliminated from
expressions is an important contribution to the understanding of timed behaviors.

Section4. Timed automata as acceptors of sets of finite time-event sequences
are defined.

Section5. The easy part of the timed Kleene Theorem, the transformation of
expressions into timed automata is proved.

Section6. In this section, we prove the harder direction of the main result,
the translation of timed automata into expressions. We first remind the readers
of the language equations used to prove the classical Kleene Theorem, and explain
the difficulty in applying them to timed automata. Then we prove a useful lemma,
stating that any language accepted by a timed automaton can be written as amorphic
imageof a finite intersectionof languages accepted byone-clocktimed automata.
This allows us to do the rest of the proof using one-clock automata, which are
relatively simpler. The one-clock automaton is transformed into a system ofquasi-
linear language equationswhich is solved using a variant of Gaussian elimination
(these equations were first defined in Asarin [1998]). Collecting everything together
we obtain our main result—Kleene Theorem for timed automata.

Section7. We move on to infinite time-event sequence, define timedω-regular
expressions and timedω-automata, and prove the correspondence between them
(Büchi–McNaughton Theorem).

Section8. We summarize the results and compare them with related work.

2. Monoids, Event Sequences and Signals

2.1. THE MONOIDS6∗ AND R+. There are two basic approaches for enriching
sequential discrete behaviors with metric timing information, one is, so to speak,
event-based and the other is state-based.

—Time-event sequences. These are sequences where nonnegative time dura-
tions are inserted between events. Time-event sequences allow two events to
happen at thesamemetric time instant (without any time passage between them)
but still oneafter the other in the discrete sense. Time-event sequences are equiv-
alent to the commonly usedtimed tracesin which a nondecreasing sequence of
time stampsis attached to an event sequence.

Timed Regular Expressions 175

—Signals. Similarly to sequences that can be viewed as functions from an initial
segment ofN to an alphabet6, signals are functions from an initial segment
[0, r) of the non-negative real lineR+ to 6 satisfying some additional san-
ity condition, for example, [0, r) can be decomposed into a finite number of
left-closed right-open intervals such that the value of the signal is constant on
each interval. Such piecewise-constant signals are used extensively in modeling
the behavior of digital circuits and in the presentation of solutions to scheduling
problems.

In order to cast these objects in an algebraic framework, we need to consider
the algebraic characterization of their two components,discrete eventsand time
passage, and then mix them together.

A monoid is a triple (M, ¦, e) where M is a set,¦ is an associative binary
operation onM ande is the identity element ofM satisfyinge¦m = m ¦ e= m
for everym ∈ M . The set of all finite sequences of elements taken from a set6 is
a monoid under the concatenation operation· and the empty wordε is its identity
element. Such a monoid is called thefree monoid generated by6 and is denoted
by (6∗, ·, ε), or6∗ for short. Note that6 need not be finite nor countable: we can
define, for example,R∗ as the monoid of all finite sequences of real numbers. The
free monoid is the primary object for describing behaviors of discrete-event systems
and its subsets are the subject matter of formal language theory. We sometimes write
m1m2 instead ofm1 ¦m2 or m1 ·m2.

If we express the passage of time usingnumbers, then the significant operation
is addition: if r1 seconds pass and then additionalr2 seconds pass, the total elapsed
time isr1+ r2 seconds. Sets such asN,Q+ orR+ are monoids under addition, with
0 serving as the identity element. It is worth mentioning that they are commutative,
that is, they satisfym1+m2 = m2+m1. We concentrate on the more general
monoid (R+,+, 0) for whichN andQ+ are submonoids.

2.2. MIXING MONOIDS. We want to create a monoid, whose elements consist
of an interleavingof time passages and events (or of time passages of different
sorts, when we consider signals). We use the following construction which allows
to put elements of two monoids in a sequence:

The free shuffleof two monoids (A, ¦a, ea) and (B, ¦b, eb) is the monoidM =
(A] B)∗, namely the free monoid generated by the disjoint union of bothA and
B. An element ofM may look like this:

a1 · a2 · b1 · ea · b2 · a3 · eb · b3 (1)

In order to obtain acanonical form,in which there is always analternation of
elements of the two monoids, we define a congruence relation2 generated by the
following equalities:

ai · aj = ai ¦a aj

bi · bj = bi ¦b bj (2)
ea = eb = ε.

2 A congruence is an equivalence relation∼, which is closed under the monoid operation, that is
m∼ m′ impliesm1 ·m ·m2 ∼ m1 ·m′ ·m2 for everym1,m2 ∈ M .

176 E. ASARIN ET AL.

These rules allow to replace two adjacent elements in the sequence, which come
from the same monoid, by one element, and to get rid of “dummy” identity elements.
Applying these rules, we can reduce any element of an equivalence class into a
canonical form which is an alternating sequence of elements ofA and B. For
example, the sequence in (1) can be reduced to

(a1 ¦a a2) · (b1 ¦b b2) · a3 · b3

We call∼ the reduction congruence on (A] B)∗. The set of congruence classes
of ∼, also known as the quotientM/∼, is a monoid as well. This is a well-known
construction on monoids (see Howie [1995]) and on algebraic structures in general:

Definition2.1 (Free Products of Monoids). Let (A, ¦a, ea) and (B, ¦b, eb) be
two monoids. Their free product isA¢ B = (A] B)∗/∼ where∼ is the reduction
congruence.

The properties ofA¢ B can be described in a category-theoretic setting, where
it is termed theco-productof A and B. There are two canonical morphismsia :
A→ A¢ B andi b : B→ A¢ B which insert elements ofA andB respectively
into A¢ B. Any pair of morphismsθa : A→ C, andθb : B→ C to a third monoid
C, induces a morphismθ = θa ¢ θb from A¢ B to C (the co-product ofθa and
θb), as can be visualized by the following commutative diagram:

A A¢ B B

C

-ia

@
@
@
@@R

θa

?

θ

� i b

�
�

�
��	

θb

In particular, to projectA¢ B onto A, let θa be the identityIda : A→ A and
let θb be the constant functionea : B→ A which mapsB to the identity element
of A. This way we obtain the canonical projectionπa : A¢ B→ A:

A A¢ B B

A

-ia

@
@
@
@@R

I da

?

πa

� i b

�
�

�
��	

ea

2.3. TIME-EVENT SEQUENCES

Definition2.2 (The Time-Event Monoid). The time-event monoid over a set6
of events is the free productT (6) = 6∗ ¢ R+ of the free monoid over6 and the
monoid of nonnegative real numbers under addition.

When the alphabet6 is clear from the context we will useT instead ofT (6).
A typical element of the free shuffle will look like:

0.7 · a · b · 3 · 5.4 · ab · c · 0 · a · ε · 5.4 · a · 0.2

Timed Regular Expressions 177

and after reduction into canonical form as:

0.7 · ab · 8.4 · abca· 5.4 · a · 0.2.
For completeness sake, we mention that as a timed trace, this sequence (without
the last term 0.2) will be written as:

(a, 0.7), (b, 0.7), (a, 9.1), (b, 9.1), (c, 9.1), (a, 9.1), (a, 14.5).

Time-event sequences seem to be conceptually clearer than timed traces as the
same type of concatenation applies to events and time durations. The philosophy
behind time-event sequences is the one employed in the timed automata literature:
a behavior is an alternating sequence of time passages and of events, which occur
at certain time points and consume no time. There are two natural projections on
T , one that ignores the events and one that ignores the metric information:

Definition2.3 (Untime and Length). Let T = 6∗ ¢ R+
—The length morphismλ : T → R+ is the projection onR+ obtained by mapping

elements of6∗ to 0.
—The untime morphismµ : T → 6∗ is the projection on6∗ obtained by mapping

elements ofR+ to ε.

Clearly, λ(u) is the duration of the time-event sequenceu, while µ(u) is the
sequence of all the discrete events inu without timing information. For example:

λ(0.7 · ab · 8.4 · abca· 5.4 · a · 0.2)= 14.7

and

µ(0.7 · ab · 8.4 · abca· 5.4 · a · 0.2)= ababcaa.

In this article, we useT as the underlying set for timed languages on which
we prove Kleene theorem. For the sake of completeness we will formalize below
the equally important and intuitive concept of continuous-time, piecewise-constant
signals. The appropriate timed automata for accepting signals were described in
Asarin et al. [1997] along with a proof of their corresponding Kleene theorem.

2.4. SIGNALS. The main difference between signals and time-event sequences
is that in signals discrete values are associated directly with time durations: a signal
may have one value inside a time interval of lengthr1, then another value for
a duration ofr2, etc. This motivates the idea ofmulti-sorted timeformalized as
follows.

Definition2.4 (The Signal Monoid). Let6 be anm-element set, and let{aR+ :
a∈6} be m distinct copies of the monoidR+. The signal monoid over6 is the
free productS(6) = ¢

a∈6 aR+.

It is convenient to use exponential notation for elements ofaR+. For example,
3.2 ∈ bR+ can be written asb3.2 and read as “b during 3.2 time units.” Using this
notation, a typical element of the free shuffle for6 = {a, b, c} would be

a5 · b2 · b4.2 · a2.5 · b0 · c7

whose normal form after reduction is

a5 · b6.2 · a2.5 · c7.

178 E. ASARIN ET AL.

Two features distinguish signals from time-event sequences:

(1) Filtering of Zero-Duration Events. With signals, it is impossible to express
a phenomenon such as “the signal value wasa for some time, then switched tob
and thenimmediatelyto c” because of the elimination ofb0. This conforms to the
usual semantic interpretation of signals asfunctionsfrom R+ to 6, which have a
unique value at every time instant.3

(2) Stuttering. Two consecutive elementsar andas are reduced in the normal
form to ar+s. Hence, the untiming of a signal should be anonstutteringsequence
(a sequence without two consecutive occurrences of the same letter) or, equivalently,
the stuttering closure of such a sequence.

In order to define the untiming of signals we need to introduce thestuttering-
closed monoidgenerated by6, which is6♥ =6∗/≈, where≈ is the congruence
generated by the equalities of the form

aa= a

for everya ∈ 6. Hence, a sequence such asabacstands for the equivalence class
a+b+a+c+.

Definition2.5 (Untime and Length for Signals). LetS(6) = ¢
a∈6 aR+

—The length morphismλ : S → R+ is obtained as a co-product ofm morphisms
of the formθa : aR+ → R+.

—The untime morphismµ : S → 6♥ is obtained as a co-product ofm morphisms
of the formθa : aR+ → 6♥, which mapa0 to ε andar (with r > 0) toa.

The reader can verify that these are the intuitive meanings of length and qualitative
behavior associated with signals. For example,

λ(a5 · b6.2 · a2.5 · c7) = 20.7

and

µ(a5 · b6.2 · a2.5 · c7) = abac.

The framework of mixing monoids allows to define easily an algebraic structure
for the most general situation where both piecewise-constant behaviors and discrete
events can occur in the same system. For completeness, we give a definition:

Definition2.6 (Signal-Event Monoid). Let61 and62 be finite sets (signal al-
phabet and events alphabet). LetaR+,a ∈ 61 be distinct copies of the monoid
R+. The signal-events monoid over61, 62 is the free productST (61, 62) =
¢

a∈61
aR+ ¢6∗2.

For example, for61 = {a, b, c} and62 = {x, y, z}, a typical element of the
signal-event monoid would be

a5 · xy · b6.2 · a2.5 · z · c7 · y.

3 If zero durations are not eliminated one has to resort to constructs such as “super-dense” lexico-
graphically ordered time in order to maintain the notion of a behavior as a function from time to states,
see, for example Maler et al. [1992].

Timed Regular Expressions 179

FIG. 1. Two concatenation operations.

2.5. TIMED LANGUAGES ANDOPERATIONS. From now on, we restrict ourselves
to the monoidT of time-event sequences and its subsets which we calltimed
languages. We denote the concatenation operation by·, and define an additional
concatenation operation, specific to timed languages. Before introducing the syntax
we need some preliminary definitions.

Definition2.7 (Left Derivative). For every two sequencesu and v, the left
derivative ofu by v is a partial function defined as:

v\u =
{
w if ∃w u = vw
⊥ otherwise.

In other words,v\u is defined ifv is a prefix ofu, and in that casev is removed.

Definition2.8 (Absorbing Concatenation). The partial operator◦ on T is
defined as:

u ◦ v = u · (λ(u)\v)

that is,u ◦ v is defined only ifv starts with a time duration of at leastλ(u), and in
that caseλ(u) time is removed from the front ofv before concatenation.

For example, (a · 5 · b) ◦ (3 · c) = ⊥ and (a · 5 · b) ◦ (7 · c) = a · 5 · b · 2 · c.
Note thatλ(u ◦ v) = λ(v) wheneveru ◦ v is defined. The◦ operation is motivated,
as we shall see later, by timed automaton transitions thatdo not reset a clock. This
operation, similarly to concatenation, can be extended to an operation on timed
languages by lettingL1 ◦ L2 = {u ◦ v : u∈ L1 ∧ v ∈ L2}. Figure 1 illustrates
absorbing concatenation in comparison with the standard one.

In order to prove that languages accepted by timed automata can be expressed
using timed regular expressions, we will need sometimes to split the alphabet of
the automaton, define the expression on the extended alphabet and than map it back
to the original alphabet using the following operation.

Definition2.9 (Renaming). Let61 and62 be two alphabets. A renaming from
61 to 62 is a functionθ : 61 → 62 ∪ {ε}. We use the same symbol for the
natural extensions ofθ to sequences,θ : 6∗1 → 6∗2, and time-event sequences,
θ : (6∗1 ¢ R+)→ (6∗2 ¢ R+).

180 E. ASARIN ET AL.

3. Timed Regular Expressions

An integer-bounded intervalis either [l , u], (l , u], [l , u), or (l , u) wherel ∈N and
u ∈ N ∪ {∞} such thatl ≤ u. We exclude∞] and usel for [l , l]. In the following
definition, we introduce several classes of regular expressions, each using another
subset of the expression formation rules.

Definition3.1 (Timed Regular Expressions). Timed regular expressions over
an alphabet6 (also referred to as6-expressions) are defined using the following
families of rules.

(1) a for every lettera ∈ 6 and the special symbolε are expressions.
(2) If ϕ, ϕ1 andϕ2 are6-expressions andI is an integer-bounded interval, then
〈ϕ〉I , ϕ1 · ϕ2, ϕ1 ∨ ϕ2 andϕ∗ are6-expressions.

(3) If ϕ, ϕ1 andϕ2 are6-expressions, thenϕ1 ◦ ϕ2 andϕ~ are6-expressions.
(4) If ϕ1 andϕ2 are6-expressions,ϕ0 is a60-expression for some alphabet60,

andθ : 60→ 6∪{ε} is a renaming, thenϕ1∧ϕ2 andθ (ϕ0) are6-expressions.

Expressions formed using rules (1) and (2) are called timed regular expressions
and denoted byE(6). If, in addition, rule (3) is applied we call them extended
timed regular expression and denote them byEE(6). Rules (1), (2), and (4) yield
generalized timed regular expressions denoted byGE(6). Finally, the generalized
extended expressions (GEE) are obtained using all the four rules.

The semantics of (generalized extended) timed regular expressions, [[]] :
GEE(6)→ 2T , is given by:

[[ε]] = {ε}
[[a]] = {r · a : r ∈ R+}
[[〈ϕ〉I]] = [[ϕ]] ∩ {u : λ(u) ∈ I }
[[ϕ1 ∨ ϕ2]] = [[ϕ1]] ∪ [[ϕ2]]
[[ϕ1 · ϕ2]] = [[ϕ1]] · [[ϕ2]]
[[ϕ∗]] = ⋃∞

i=0([[ϕ · . . . · ϕ︸ ︷︷ ︸
i times

]])

[[ϕ1 ◦ ϕ2]] = [[ϕ1]] ◦ [[ϕ2]]
[[ϕ~]] = ⋃∞

i=0([[ϕ ◦ . . . ◦ ϕ︸ ︷︷ ︸
i times

]])

[[ϕ1 ∧ ϕ2]] = [[ϕ1]] ∩ [[ϕ2]]
[[θ (ϕ)]] = {θ (u) : u ∈ [[ϕ]]}

The novel features here with respect to untimed regular expressions are the
meaning of the atoma that represents an arbitrary passage of time followed by
an eventa and the〈ϕ〉I operator that restricts the metric length of the time-event
sequences in [[ϕ]] to be in the intervalI . We show in the next section that the
absorbing concatenation◦ and the absorbing iteration~ can always be eliminated

Timed Regular Expressions 181

and hence timed regular expressions and extended timed regular expressions have
the same expressive power. We call the corresponding class of languagestimed
regular languages. Unfortunately this class does not match the expressive power
of timed automata, which requires both renaming and intersection.

We use the following shorthands:

a = 〈a〉0; ϕ+ = ϕ · ϕ∗; ϕ⊕ = ϕ ◦ ϕ~; ϕ◦i = ϕ ◦ . . . ◦ ϕ︸ ︷︷ ︸
i times

.

Operations∨, · and∗ satisfy well-known properties of Kleene algebra (see Conway
[1971]). We state some simple additional algebraic properties involving absorbing
concatenation.

PROPOSITION3.2 (ALGEBRAIC PROPERTIES OFABSORBING CONCATENATION).
The◦ operation satisfies the following equalities:

—∨-Distributivity. (α ∨ β) ◦ γ = α ◦ γ ∨ β ◦ γ andα ◦ (β ∨ γ) = α ◦ β ∨ α ◦ γ
—Associativity.(α ◦ β) ◦ γ = α ◦ (β ◦ γ)
—Mixed Associativity.α ◦ (β · γ) = (α ◦ β) · γ if β ∩ R+ = ∅.4

The situation with mixed associativity is not as good as it could be: typically
α · (β ◦ γ) 6= (α · β) ◦ γ.

We illustrate the semantics of the expressions and some obvious properties via
examples. The first examples demonstrate the interaction between time restriction
and standard concatenation. Let

ϕ1 = 〈a〉[1,2]
ϕ2 = 〈a〉[1,2] · 〈b〉[2,4]
ϕ3 = 〈a · b〉[3,6]

The semantics of these expressions is the following:

[[ϕ1]] = {r · a : r ∈ [1, 2]}
[[ϕ2]] = {r1 · a · r2 · b : r1 ∈ [1, 2] ∧ r2 ∈ [2, 4]}
[[ϕ3]] = {r1 · a · r2 · b : r1+ r2 ∈ [3, 6]}

Expressionϕ1 allows a to occur anywhere in the [1, 2] interval. Similarlyϕ2
allowsb to occur between 2 and 4 time units after the occurrence ofa, while ϕ3
constrainsb to occur in the interval [3, 6] and after the occurrence ofa. Clearly,
[[ϕ2]] ⊆ [[ϕ3]].

Putting time restriction outside the Kleene star, we can express constraints in-
volving anunboundednumber of time durations. The expression

〈a∗〉[1,2]

denotes the set{
r1 · a · r2 · a · · · rk · a : k ∈ N ∧

k∑
i=1

ri ∈ [1, 2]

}
.

4 The meaning of this restriction is that everyu ∈ β contains at least one discrete eventa ∈ 6. It can
be also written asε 6∈ µ(β). Without this restriction, we have, for example, 5◦ (3 · 7) = 10 while
(5 ◦ 3) · 7= ∅.

182 E. ASARIN ET AL.

The role of intersection is to express “unbalanced parentheses” like in the
expression

(〈a · b〉3 · c) ∧ (a · 〈b · c〉3)
denoting the set

{r1 · a · r2 · b · r3 · c : (r1+ r2 = 3)∧ (r2+ r3 = 3)}.
In Asarin et al. [1997], we showed that this language, recognizable by a simple
timed automaton with two clocks, cannot be expressed without intersection (see
also Herrmann [1999] for another proof).

The role of renaming in the translation from automata to expressions will be elab-
orated in Section 6.2. Using the syntax we have chosen for time-event sequences, it
is impossible to express without renaming sets containing any time-event sequence
that does not terminate with an event, that is, sequence of the formw · r such that
r > 0. Using renaming, it can be expressed as the image ofw · 〈a〉r wherea is
mapped toε. Such time-event sequences can be expressed using a richer syntax
which allows to specify arbitrary timed durations without events (we do not use
them because they complicate other proofs). However, renaming remains necessary
even for such a richer syntax (and for signals). The language{

r1 · a · · · rk · a : 1< j < k and
j∑

i=1

ri =
k∑

i= j

r i = 1

}
,

over the alphabet{a} can be expressed as the image of the{a, b}-language given
by the expression

〈a+ · b〉1 · a+ ∧ a+ · 〈b · a+〉1
via the morphismθ : a 7→ a, b 7→ a. It was proved in Herrmann [1999] that this
language cannot be expressed without renaming, although it can be recognized by
a timed automaton.

The rest of this section is devoted to the nonstandard◦ and~ operations which
facilitate the translation from automata to expressions but, as we show in the sequel,
do not contribute to the expressive power of timed regular expressions. We start
with some examples.

The◦ operation acts like standard concatenation whenever the second operand
denotes a languagewithout a restriction on the duration of timebeforethe first
event. For example

a ◦ b = a · b.
On the other hand, consider the expression

〈a〉[1,4] ◦ 〈b〉[2,3].

Using◦means that the time spent in〈a〉[1,4] is taken into account in〈b〉[2,3], which
is equivalent to pushing the first subexpression inside the parentheses of the second
to get the expression 〈〈a〉[1,4] · b

〉
[2,3]

whose semantics is the set

{r · a · s · b : r ∈ [1, 4] ∧ r + s ∈ [2, 3]}.

Timed Regular Expressions 183

Sincer + s ≤ 3 impliesr ≤ 3, this is equivalent to the expression〈〈a〉[1,3] · b
〉
[2,3].

In general, occurrences of the◦ operation can be transformed into· by moving
parentheses; however, thefirst time restriction of the second operand should be
isolated and made explicit. In case that the second operand starts with an iteration,
the first occurrence should be pulled out from the scope of∗, for example:

a ◦ (〈b〉5)∗ = a ◦ (ε ∨ 〈b〉5 · (〈b〉5)∗) = a ◦ ε ∨ a ◦ (〈b〉5 · (〈b〉5)∗)
= 〈a〉0 ∨ (a ◦ 〈b〉5) · (〈b〉5)∗ = 〈a〉0 ∨ 〈a · b〉5 · (〈b〉5)∗.

The case of~ is more complicated. Consider the expression(〈a〉[1,3]
)~ = ∞∨

i=0

(〈a〉[1,3]
)◦i

and take one of the components of the infinite union(〈a〉[1,3]
)◦4 = 〈a〉[1,3] ◦ 〈a〉[1,3] ◦ 〈a〉[1,3] ◦ 〈a〉[1,3],

which, by pushing parentheses, can be rewritten as〈〈〈〈a〉[1,3] · a
〉
[1,3] · a

〉
[1,3] · a

〉
[1,3].

The corresponding semantics is

{r1 · a · r2 · a · r3 · a · r4 · a : r1 ∈ [1, 3]∧
r1+ r2 ∈ [1, 3]∧
r1+ r2+ r3 ∈ [1, 3]∧
r1+ r2+ r3+ r4 ∈ [1, 3]}.

As one can see, the first and last inequalities imply, due to convexity, the other
“internal” inequalities and thus(〈a〉[1,3]

)◦4 = 〈〈a〉[1,3] · a · a · a
〉
[1,3]

and, more generally (〈a〉[1,3]
)~ = ε ∨ 〈〈a〉[1,3] · a∗

〉
[1,3].

The convexity argument is the main idea behind the elimination of~. Due to the
additivity of time it is sufficient to test the length after the first occurrence (for the
lower-bound) and the last occurrence (for the upper-bound). For the occurrences
in between, we can apply∗ to an “untimed” version of the expression without
worrying. The next two examples demonstrate the special role of timing bounds
appearing at thebeginningof the expression under~.

Consider first the expression

(〈a〉I · 〈b〉J)~

for some intervalsI andJ. In this case,

(〈a〉I · 〈b〉J)◦3 = (〈a〉I · 〈b〉J) ◦ (〈a〉I · 〈b〉J) ◦ (〈a〉I · 〈b〉J)

184 E. ASARIN ET AL.

and by pushing parentheses we get the expression

〈〈〈a〉I · 〈b〉J · a〉I · 〈b〉J · a〉I · 〈b〉J
whose semantics is:

{r1 · a · s1 · b · r2 · a · s2 · b · r3 · a · s3 · b : r1 ∈ I∧
s1 ∈ J∧
r1+ s1+ r2 ∈ I∧
s2 ∈ J∧
r1+ s1+ r2+ s2+ r3 ∈ I∧
s3 ∈ J}.

Here the convexity argument applies only to〈a〉I and the length of each and every
b should be inJ:

(〈a〉I · 〈b〉J)~ = ε ∨ 〈〈a〉I · (〈b〉J · a)∗〉I · 〈b〉J .
On the other hand, in the expression

(〈a〉I ◦ 〈b〉J)~ = (〈〈a〉I · b〉J)~

botha andb are in the scope of timing restrictions that appear at the beginning of
the expression. Taking

(〈〈a〉I · b〉J)◦3 = (〈〈a〉I · b〉J) ◦ (〈〈a〉I · b〉J) ◦ (〈〈a〉I · b〉J)

and pushing all the parentheses forward, we obtain

〈〈〈〈〈〈a〉I · b〉J · a〉I · b〉J · a〉I · b〉J .
The semantics of this expression is:

{r1 · a · s1 · b · r2 · a · s2 · b · r3 · a · s3 · b : r1 ∈ I∧
r1+ s1 ∈ J∧
r1+ s1+ r2 ∈ I∧
r1+ s1+ r2+ s2 ∈ J∧
r1+ s1+ r2+ s2+ r3 ∈ I∧
r1+ s1+ r2+ s2+ r3+ s3 ∈ J}.

As before, only the first two and the last two inequalities are informative and the
rest are redundant:

(〈〈a〉I · b〉J)~ = ε ∨ 〈〈a〉I · b〉J ∨ 〈〈〈〈a〉I · b〉J(ab)∗ · a〉I · b〉J .
This is the intuition underlying the fact that◦ and~ can be eliminated altogether.

The proof of this fact will use induction on theweightof the regular expression,
which, informally speaking, denotes the number of〈·〉I operations appearing at the
“front” of the expression, i.e. in the sub-expressions that denote the beginning of
the time-event sequences in the corresponding language.

Definition3.3 (Weight of a Regular Expression). The weight is a function
ζ : EE → N defined inductively as:

ζ (a) = 0

ζ (ε) = 0
ζ (δ1 ∨ δ2) = ζ (δ1)+ ζ (δ2)

Timed Regular Expressions 185

ζ (δ1 · δ2) =
{
ζ (δ1)+ ζ (δ2) if ε ∈ [[δ1]]

ζ (δ1) if ε 6∈ [[δ1]]

ζ (δ∗) = ζ (δ)
ζ (〈δ〉I) = ζ (δ)+ 1.

The rule forδ1 ∨ δ2 is due to the fact that its front consists of the fronts ofδ1 and
δ2. If δ1 containsε thenδ2 is part of the front ofδ1 · δ2. The rule forδ∗ (for δ 63 ε)
follows from the identityδ∗ = δ · δ∗ ∨ ε. It should be noted that the weight is a
measure on the syntax and not on the semantics:〈δ1 ∨ δ2〉I has a smaller weight
than〈δ1〉I ∨ 〈δ2〉I although they are equivalent.

As usual in the theory of formal languages, special attention should be paid to the
membership ofε in a given language (e.g., testing this membership is needed in order
to compute the weight function). The next lemma allows to test this membership
and to removeε when necessary without changing the weight.

LEMMA 3.4 (TESTING AND REMOVING ε). For a timed regular expressionγ ,
it can be effectively tested whether or notε ∈ [[γ]] . An expressionν(γ) such that
[[ν(γ)]] = [[γ]] − {ε} can be effectively constructed. The operationν preserves
the weight.

Both a Boolean-valued functionτ testing whetherε ∈ γ and the operatorν (re-
movingε) can be defined recursively as follows.

τ (a) = 0 ν(a) = a
τ (ε) = 1 ν(ε) = ∅

τ (δ1 ∨ δ2) = τ (δ1) ∨ τ (δ2) ν(δ1 ∨ δ2) = ν(δ1) ∨ ν(δ2)

τ (δ1 · δ2) = τ (δ1) ∧ τ (δ2) ν(δ1 · δ2) =
{
ν(δ1) · δ2 ∨ ν(δ2) if τ (δ1) = 1

δ1 · δ2 if τ (δ1) = 0
τ (δ∗1) = 1 ν(δ∗1) = ν(δ1) · δ∗1

τ (〈δ1〉I) = τ (δ1) ∧ (0 ∈ I) ν(〈δ1〉I) = 〈ν(δ1)〉I
PROOF. We leave the proof of weight-preservation to the reader.

The next result gives a characterization of expressions of weight 0 and a single
weight-increasing rule allowing to obtain any regular language. We call expressions
of the form

∨
i ai ·ϕi slow expressions—in these expressions (whose weight is zero)

there is no upper-bound on the occurrence time of the first event. An expression is
ε-free if its semantics does not containε.

LEMMA 3.5 (SPECIAL FORM OFEXPRESSIONS)

(1) Any expression of weight0 is equivalent either toγ or to γ + ε whereγ is a
slow expression.

(2) Any expressionγ of a nonzero weight can be rewritten as

γ = 〈α〉I · ϕ ∨ β, (3)

whereα, β, ϕ ∈ E (or β is empty), α is ε-free, andζ (γ) = ζ (α)+ ζ (β)+ 1.

In other words, this lemma says that starting from slow expressions and using
only the inductive rule (3), we can build expressions for all regular languages. The
proofs of the two statements are similar and we prove here only the second, more
complicated one.

186 E. ASARIN ET AL.

PROOF. The idea of the proof is simple: sinceζ (γ)> 0, γ is not atomic and
there is at least one〈〉I operator in its front. Making this operator explicit gives the
required representation. Formally, we proceed by induction over the structure ofγ ,
considering the following cases:

γ = δ1∨ δ2. Then at least one ofδ1, δ2 should have a positive weight. Suppose
without loss of generality that it isδ1. By inductive hypothesisδ1 = 〈α1〉I ·ϕ1∨β1.
Hence,γ = 〈α1〉I · ϕ1 ∨ (β1 ∨ δ2) and we obtain the required decomposition (3)
with α = α1, ϕ = ϕ1 andβ = β1 ∨ δ2.

γ = δ1 · δ2. If ζ (δ1) > 0, then by inductive hypothesisδ1 = 〈α1〉I · ϕ1 ∨ β1.
Then the representation

γ = 〈α1〉I · (ϕ1 · δ2) ∨ (β1 · δ2)

has the required form (3) withα = α1, ϕ = ϕ1 · δ2 andβ = β1 · δ2.
Otherwise, ifζ (δ1) = 0, then, according to the definition ofζ (δ1 · δ2), ε ∈ δ1

andζ (δ2) = ζ (γ) is positive. By inductive hypothesis,δ2 = 〈α2〉I · ϕ2∨ β2. In this
case, the required representation is

γ = (ε ∨ ν(δ1)) · δ2 = δ2 ∨ ν(δ1) · δ2 = 〈α2〉I · ϕ2 ∨ (β2 ∨ ν(δ1) · δ2)

γ = δ∗1. In this case,ζ (δ1) = ζ (γ) is positive and by the inductive hypothesis
δ1 = 〈α1〉I · ϕ1 ∨ β1 with α1 ε-free. We can representγ as follows:

γ = ν(δ1) · δ∗1 ∨ ε = 〈α1〉I · (ϕ1 · δ∗1) ∨ (ν(β1) · δ∗1 ∨ ε),
which is in the required form.

γ = 〈δ〉I . If δ is ε-free, thenγ is already in the required form withα = δ and
ϕ = ε. Otherwise, ifε ∈ δ, then eitherγ = 〈ν(δ)〉I · ε ∨ ε or γ = 〈ν(δ)〉I · ε ∨ ∅
depending on whether or not 0∈ I .

The reader can verify that in all the cases the equalityζ (γ) = ζ (α)+ ζ (β)+ 1
is preserved.

The proof of elimination of absorbing concatenation and iteration proceeds by
induction on the weight of the expression. The following two lemmata establish
the base case (slow expressions of weight 0) and the inductive step.

LEMMA 3.6 (ELIMINATION FOR SLOW EXPRESSIONS). If γ is slow, then

δ ◦ γ = δ · γ ; δ ◦ (ε ∨ γ) = δ ◦ ε ∨ δ ◦ γ = 〈δ〉0 ∨ δ · γ (4)

and

γ~ = γ ∗; (ε ∨ γ)~ = γ ∗ (5)

The inductive step is based on the following identities:

LEMMA 3.7 (ELIMINATION BY WEIGHT REDUCTION). For any three languages
α, ϕ, β, such thatα is ε-free, and any interval I, the following equalities hold:

δ ◦ (〈α〉I · ϕ ∨ β) = 〈δ ◦ α〉I · ϕ ∨ δ ◦ β (6)

and

(〈α〉I · ϕ ∨ β)~ = β~ ∨ 〈β~ ◦ α〉I · ϕ ◦ β~ ∨
〈〈β~ ◦ α〉I · ϕ ◦ (α · ϕ ∨ β)~ ◦ α〉I · ϕ ◦ β~. (7)

Timed Regular Expressions 187

PROOF. Equation (6) follows immediately from the definition of absorbing
concatenation and from Proposition 3.2. The first line of Eq. (7) corresponds to
the case whenα · ϕ never occurs in the sequence, the second line—to the case
when it occurs only once. The last line corresponds to the case when it occurs
twice or more. For this case, it is sufficient to restrict to the intervalI only the
termination times of the first and the last occurrences ofα. By virtue of the con-
vexity of I , this guarantees that all other occurrences ofα between them also fit in
this interval.

PROPOSITION3.8 (ELIMINATION OF ABSORBINGOPERATIONS). Let M and L
be regular timed languages, that is, defined by expressions inE . Then:

(1) The language L◦ M is regular.

(2) The language L~ is regular.

The regular expressions for these languages can be obtained algorithmically.

PROOF. The proof of both facts is by induction on the weight, where the base
case is covered by Lemma 3.6. The inductive step for◦ can be made as follows.
Given an expressionγ of a nonzero weight, we convert it in accordance with
Lemma 3.5 to the formγ = 〈α〉I · ϕ ∨ β with ζ (α), ζ (β)<ζ (γ) andε 6∈ α. Now
we use the identity (6) of Lemma 3.7. The regularity of the right hand follows from
the inductive hypothesis since bothδ ◦α andδ ◦β have smaller weight. This proves
the first statement of Proposition 3.8.

Using this proposition and Lemma 3.7, the inductive step for~ is immedi-
ate: given an expressionγ of a nonzero weight we take its representationγ =
〈α〉I ·ϕ ∨β. Then we apply the identity (7). Its right-hand side is regular by induc-
tive hypothesis, since~ is applied there only to expressions of weight smaller
than γ . Hence,L is regular and this concludes the proof of Proposition 3.8.
Clearly, recursive algorithms for elimination of◦ and ~ can be derived from
this proof.

The following result is now immediate.

THEOREM 3.9. EE(6) has the same expressive power asE(6).

As an example, let us eliminate◦ from

δ = 〈d〉3 ◦
(〈〈a〉[1,6] · b

〉
8 · c

)∗
First, transform the second term to the form:(〈〈a〉[1,6] · b

〉
8 · c

)∗ = 〈〈a〉[1,6] · b
〉
8 · c ·

(〈〈a〉[1,6] · b
〉
8 · c

)∗ ∨ ε
and then compute

δ = 〈〈d〉3 ◦ (〈a〉[1,6] · b
)〉

8 · c ·
(〈〈a〉[1,6] · b

〉
8 · c

)∗ ∨ 〈〈d〉3〉0
= 〈〈〈d〉3 · a〉[1,6] · b

〉
8 · c ·

(〈〈a〉[1,6] · b
〉
8 · c

)∗
.

An example of elimination of absorbing iteration (applied to the language of a timed
automaton) can be found at the end of Section 6.6.

188 E. ASARIN ET AL.

FIG. 2. A timed automaton.

4. Timed Automata and Their Languages

This section introduces timed automata as recognizers of timed languages, starting
with an informal illustration of the structure and the behavior of timed automata.
Consider the timed automaton of Figure 2. It has two states and two clocksx1 and
x2. Suppose it starts operating in the configuration (q1, 0, 0) where the last two
coordinates denote the values of the clocks. When the automaton stays atq1, the
values of the clocks grow at a uniform rate. After one second, the conditionx1 ≥ 1
(the guard of the transition fromq1 to q2) is satisfied and the automatoncanmove
to q2 while resettingx2 to 0. Having enteredq2 at a configuration (q2, t, 0) for some
t , the automaton can either stay there or can unconditionally move toq1 and reset
the two clocks. By fixing some initial and final states, and by assigning letters from
6 to some transitions, we can turn timed automata into generators or acceptors of
timed languages, that is, sets of time-event sequences. The definition below is a
minor modification of the original definition in Alur and Dill [1994].

Definition 4.1. ATimed Automatonis a tupleA = (Q,C,1,6, s, F) whereQ
is a finite set of states,C is a finite set of clocks,6 is an input (or event) alphabet,1
is a transition relation (see below),s∈ Q an initial state andF ⊂ Q a set of accepting
states. The transition relation consists of tuples of the form (q, φ, ρ,a,q′) where
q andq′ are states,a ∈ 6 ∪ {ε} is a letter,ρ ⊆ C andφ (the transition guard) is a
Boolean combination of formulas of the form (x ∈ I) for some clockx and some
integer-bounded intervalI .

A clock valuationis a functionv : C→ R+, or equivalently a|C|-dimensional
vector overR+. We denote the set of all clock valuations byH. A configuration of the
automaton is hence a pair (q, v)∈ Q×H consisting of a discrete state (sometimes
called “location”) and a clock valuation. Every subsetρ ⊆ C induces a reset
function Resetρ : H → H defined for every clock valuationv and every clock
variablex ∈C as

Resetρ v(x) =
{

0 if x ∈ ρ
v(x) if x 6∈ ρ.

That is, Resetρ resets to zero all the clocks inρ and leaves the other clocks un-
changed. We use1 to denote the unit vector (1, . . . ,1) and0 for the zero vector.

Definition4.2 (Steps, Runs and Acceptance). A step of the automaton is one
of the following:

—A discrete step:

(q, v)
a→ (q′, v′),

wherea ∈ 6∪{ε} and there existsδ = (q, φ, ρ,a,q′) ∈ 1, such thatv satisfies
φ andv′ = Resetρ(v).

Timed Regular Expressions 189

—A time step:

(q, v)
t→ (q, v+ t1),

wheret ∈ R+.

A finite run of a timed automaton is a finite sequence of steps

(q0, v0)
z1→ (q1, v1)

z2→ · · · zn→ (qn, vn).

Thetraceof a run is the time-event sequencez1 · z2 · · · zn. A trivial run is just a
configuration (q, v), and its trace isε.

An acceptingrun is a run starting from the initial configuration (s, 0) and
terminating by a discrete step to a final state, that is,qn⊂ F and zn is a dis-
crete step.

The language of a timed automaton,L(A), consists of all the traces of its accept-
ing runs.

A slight modification of this definition is needed in order to accept signals (or
signal-event sequences), namely to associate an element of the signal alphabet to
eachstateof the automaton [Asarin et al. 1997]. Note also that we insist on a single
initial configuration, because otherwise we can have a non-countable number of
initial states and the language equations developed in Section 6 should be parame-
terized by clock values, resulting in a much more complicated construction.

5. From Expressions to Timed Automata

Here we prove the easy part of the timed version of Kleene Theorem, namely,
every timed regular language can be recognized by a timed automaton. Similarly to
the untimed construction in McNaughton and Yamada [1960], automata are built
from expressions by induction on the structure of the expression. We make this
construction in the most general settings, namely, for the classGEE , and show
that an accepting timed automaton can be built for every language defined by a
(generalized extended) timed regular expression.

Before giving the formal definition let us explain the construction intuitively
(see also Figure 3). The automaton fora can make, at any nonnegative time, an
a-transition from the initial state to the final state. For the union of two languages,
we choose nondeterministically between the two automata. To concatenate two
languages, we add transitions to the initial state of the second automaton for
every accepting transition of the first automaton. For standard concatenation, such
transitions reset the clocks, while for absorbing concatenation the clocks are not
reset. Likewise for the∗ operations, we add transitions to the initial state and reset
all the clocks.

The construction of the automaton forϕ~ is better understood using an extension
of timed automata where upon a transition a clock can be assigned the value of
another clock. The basic idea is that for every new iteration ofϕ we need the values
of all clocks to represent the total time elapsed in the previous iterations. We achieve
this by adding a new clockx that is never reset to zero and transitions to the initial
state in which all clocks get the value ofx (see Figure 3). Our construction below
“simulates” these automata using ordinary timed automata that keep track of the
clocks that have been reset. References in the guards to those clocks which have
not been reset are replaced by references tox. For the〈ϕ〉I operator we introduce a

190 E. ASARIN ET AL.

FIG. 3. Constructing automata from expressions.

new clockx and add a test (x ∈ I) to the guard of every transition leading tof . For
intersection, we do the usual Cartesian product (taking special care ofε-transitions).
Finally, for renaming, we just rename the transition labels.

Definition5.1 (Automata from Expressions). Let A1 = (Q1,C1,11, 6, s1,
F1) andA2= (Q2,C2,12, 6, s2, F2) be the timed automata accepting the lan-
guages [[ϕ1]] and [[ϕ2]] respectively. We assume thatQ1 andQ2 as well asC1 and
C2 are disjoint.

—The automaton for [[ε]] is ({s, f }, {x},1,6, s, { f }), where the transition relation
is1 = {(s, x = 0, ∅, ε, f)}.

Timed Regular Expressions 191

—The automaton for [[a]], a ∈ 6 is ({s, f }, ∅,1,6, s, { f }), where the transition
relation is1 = {(s, true, ∅,a, f)}.

—The automaton for [[ϕ1∨ϕ2]] is (Q1∪Q2∪{s},C1∪C2,1,6, s, F1∪F2), where
1 is constructed by adding to11∪12 two newε-transitions (s, x = 0, ∅, ε, si),
wherex is any clock andi ∈ {1, 2} (if there is no clock in the automata we
should add one).

—The automaton for [[ϕ1 ∧ ϕ2]] is (Q1× Q2 ∪ { f },C1 ∪C2,1,6, 〈s1, s2〉, { f }),
where1 contains

—a transition{(〈q1,q2〉, φ1∧φ2, ρ1 ∪ ρ2,a, 〈q′1,q′2〉) for any (q1, φ1, ρ1,a,
q′1) ∈ 11 and any (q2, φ2, ρ2,a,q′2) ∈ 12};

—a transition{(〈q1,q2〉, φ1∧ φ2, ρ1∪ ρ2,a, f) for any (q1, φ1, ρ1,a, f1) ∈ 11
and any (q2, φ2, ρ2,a, f2) ∈ 12} where f1 ∈ F1 and f2 ∈ F2;

—a transition{(〈q1,q2〉, φ1, ρ1, ε, 〈q′1,q2〉) for any (q1, φ1, ρ1, ε,q′1) ∈ 11};
—a transition{(〈q1,q2〉, φ2, ρ2, ε, 〈q1,q′2〉) for any (q2, φ2, ρ2, ε,q′2) ∈ 12}

—The automaton for [[ϕ1 · ϕ2]] is (Q1 ∪ Q2,C1 ∪ C2,1,6, s1, F2) where1
is constructed from11∪12 by inserting for every transition of the form
(q1, φ, ρ,a, f1) in 11 with f1 ∈ F1 a new transition (q1, φ,C2,a, s2). The
automaton for [[ϕ1 ◦ ϕ2]] is the same except for the fact that the new transition is
of the form (q1, φ,∅,a, s2).

—The automaton for [[ϕ+1]] is A = (Q1,C1, 6,1, s1, F1) where1 is constructed
from 11 by adding for every transition of the form (q, φ, ρ,a, f1) in 11 with
f1 ∈ F1 a transition of the form (q, φ,C1,a, s1).

—The automaton for [[ϕ⊕1]] is A = (Q1× 2C1,C1 ∪ {x}, 6,1, (s1, ∅), F1× 2C1).
The second component of the state records which clocks have been reset during
the current iteration of [[ϕ1]]. There are two types of transitions in1:
—Transitions Simulating Those ofA1. For every transition of the form (q, φ, ρ,

a,q′) in 11 and everyD⊂C1 the relation1 contains ((q, D), φD, ρ,a,
(q′, D ∪ ρ));

—Looping Transitions. For every transition of the form (q1, φ, ρ,a, f1) in 11
with f1 ∈ F1 and everyD⊂C1, the relation1 contains ((q1, D), φD, ρ,a,
(s1, ∅)).

HereφD is obtained by replacing inφ all occurrences of clocks not belonging to
D by x.

—The automaton for [[ϕ∗1]] (respectively, [[ϕ~1]]) is obtained by the union construc-
tion from the automaton for{ε} and the automaton for [[ϕ+1]] (respectively, for
[[ϕ⊕1]]).

—The automaton for [[〈ϕ1〉I]] isA = (Q1∪{ f },C1∪{x},1,6, s1, { f }) where1 is
obtained from11 by introducing for every transition of the form (q, φ, ρ,a, f1)
in 11 with f1∈ F1 a new transition (q, φ ∧ (x ∈ I), ρ,a, f).

—The automaton for [[θ (ϕ1)]] and θ : 6 → 6′ is A = (Q1,C1,1,6
′, s1, F1)

where 1 is obtained from11 by replacing every transition of the form
(q, φ, ρ,a,q′) in 11 by (q, φ, ρ, θ(a),q′).

This concludes the construction that gives one side of Kleene theorem:

192 E. ASARIN ET AL.

FIG. 4. A timed and an untimed automaton.

THEOREM5.2 (EXPRESSIONS⇒ AUTOMATA). Every timed language defined
by a (generalized extended) regular expression is accepted by a timed automaton.

6. From Timed Automata to Expressions

6.1. THEAPPROACH. Our proof of the other (and harder) side of Kleene theorem
is modeled after the proof of the classical theorem given in McNaughton and
Yamada [1960], which constructs from an automaton a system of linear language
equations of the form:

Xi = αi ∨
n∨

j=1

βi j · X j i = 1, . . . ,n, (8)

where theXi stand for unknown languages andαi , βi j —for given regular coeffi-
cients. Each unknownXi of the system corresponds to the language accepted by
the automaton starting from stateqi . As an example consider the first (untimed) au-
tomaton on Figure 4. The languages associated with its states satisfy the following
self-explanatory system of equations:

X3 = a ∨ b · X3
X2 = b∨ a · X3
X1 = a · X2 ∨ b · X3.

(9)

Using the well-known fact [Arden 1960] that any equation of the form

X = α ∨ β · X
admits a minimal solution

X = β∗ · α,
it can be proved that any system of equations such as (8) has a regular minimal
solution and a corresponding regular expression can be found effectively from the
coefficients. If, in addition,ε 6∈ βi j then the solution is unique. For example, the
solution for (9) is:

X3 = b∗ · a
X2 = b∨ a · b∗ · a
X1 = a · (b∨ a · b∗ · a) ∨ b+ · a.

Adapting this proof to timed automata is problematic as the timed automaton
of Figure 4 shows. In this automaton, the transition fromq1 to q2 resets the clock

Timed Regular Expressions 193

and hence a fragment of the equation forq1 will be X1=〈a〉5 · X2 ∨ · · ·; however,
we cannot do the same and use〈b〉2 · X3 for that part of X1 accepted viaq3,
because after completing actionb the automaton enters stateq3 with a clock value
other than zero. To tackle this problem we could associate a language with every
configuration of the timed automaton, that is, letXi,v denote the language accepted
starting from stateqi and clock valuationv. This would lead to an infinite number
of variables and equations. We use an alternative solution, namely associateXi
with the language accepted from (qi , 0) and use the absorbing concatenation for
non-resetting transitions. The system of equations for the automaton is thus

X3 = 〈a〉8 ∨ 〈b〉5 · X3
X2 = 〈b〉(7,∞) ∨ 〈a〉[0,10) ◦ X3
X1 = 〈a〉5 · X2 ∨ 〈b〉2 ◦ X3.

Such “quasi-linear” equations, which use both kinds of concatenation, can be writ-
ten for anyone-clockautomaton. However, when an automatonA has several
clocks, the set of transitions cannot be partitioned into resetting and nonresetting
ones, and we need first to split the automaton into several one-clock automata, the
intersection of their languages gives the language ofA. For each such automaton,
we define the corresponding equations and by showing how such equations can be
solved the proof of Kleene theorem will be completed.

6.2. FROM TIMED AUTOMATA TO ONE-CLOCK AUTOMATA. The reduction into
one-clock automata starts with a language-preserving transformation on the au-
tomaton, which eliminates undesirable features as a preparation for the translation
into expressions. Then we “determinize” the automaton by assigning a distinct
letter to every transition outgoing from any state. Having done that we can split
the automaton into several one-clock automata from which language equations
are constructed.

An automaton isdisjunction-freeif for every transition (q, φ, ρ,a,q′), the for-
mulaφ is a conjunction of simple tests (x ∈ I) and their negations. An automaton is
strongly deterministicif it contains noε-transitions and for any stateq and any letter
a the transition relation contains at most one outgoing transition fromq labeled
by a. Note that strong determinism is a syntactic property which is sufficient but
not necessary for determinism—the latter can be implied by empty intersections of
guards for two transitions labeled by the same letter.

LEMMA 6.1 (DISJUNCTION-FREE AND STRONGLY-DETERMINISTIC AUTOMATA).
From any timed automatonA over6 one can construct a disjunction-free and
strongly deterministic automatonA′ over6′, and a renamingθ : 6 → 6′ such
that L(A) = θ (L(A′)).

PROOF. To get rid of disjunctions we first convert every transition guard
into a disjunctive normal form (DNF)φ=φ1∨φ2∨ · · · ∨φk where everyφi
is a conjunction. We then replace every transitionδ= (q, φ, ρ,a,q′), where
φ=φ1∨φ2∨ · · · ∨φk by k transitions of the form (q, φi , ρ,a,q′), i = 1, . . . , k.
Clearly, this automaton acceptsL(A). Any disjunction-free automatonA =
(Q,C,1,6, s, F) can be converted into a strongly deterministic automaton
A′ = (Q,C,1′, 6 × {1..M}, s, F), where M is the maximal number of tran-
sitions with the same label outgoing from the same state,1′ is obtained from
1 by replacing any transition (q, φ, ρ,a,q′) by (q, φ, ρ, (a, i),q′), choosing a

194 E. ASARIN ET AL.

different i component for each transitiona going from stateq. For the renaming
θ : (6 ∪ {ε})× {1..M} → 6 ∪ {ε} defined by the formulaθ (a, i) = a we have the
language equalityθ (L(A′)) = L(A).

THEOREM6.2 (REDUCTION TOONE-CLOCK AUTOMATA). Let A be a timed
automaton with k clocks. One can build k one-clock automataA1, . . . ,Ak and
a renamingθ such that

L(A) = θ
(

k⋂
i=1

L(Ai)

)
.

PROOF. First, we transformA into a disjunction-free and strongly deterministic
formA′ = (Q′,C,1′, 6′, s′, F ′) and find a renamingθ such thatL(A)= θ (L(A′)).
LetC={x1, . . . , xk}. We separateA′ intok automataAi = (Q′, {xi },1′i , 6′, s′, F ′)
such that for every (q, φ, ρ,a,q′) ∈ 1′ there is (q, φi , ρi ,a,q′) ∈ 1i such that
ρi = ρ ∩ {xi } andφi is obtained fromφ by substitutingtrue in every occurrence
of xj ∈ I or of xj 6∈ I for every j 6= i . In other words, everyAi respects only the
constraints imposed by the clockxi and ignores the rest of the clocks. Since the
automatonA′ is strongly-deterministic, every accepted sequence is a trace of exactly
onerun, and this isthe samerun in everyAi . A run is possible in everyAi iff it is
possible inA′.

An example of the translation appears in Section 6.6.

6.3. EQUATIONS FORTIMED AUTOMATA. From one-clock automata, we derive
timed language equations involving the◦ operation and whose solutions involve
also the~ operation. Both can later be eliminated using the procedure described in
Section 3.

Definition6.3 (Quasilinear Equations). A system of quasilinear timed lan-
guage equations has the following form:

Xi = αi ∨
n∨

j=1

βi j · X j ∨
n∨

j=1

γi j ◦ X j , i = 1, . . . ,n, (10)

where theXi stands for unknown timed languages and the coefficientsαi , βi j , γi j —
for given timed languages.

To avoid some complication with non-unique solutions (and non-associative multi-
plication), we consider onlynormal systems of equationswhere all coefficients
satisfy

βi j ∩ R+ = ∅; γi j ∩R+ = ∅; (11)

that is, any sequence in any coefficient language except theαi ’s should contain at
least one discrete event from6.

Definition6.4 (From One-Clock Automata to Equations). Let A = (Q, {x},
1,6, s, F) be a one-clock automaton. The system of equations associated withA
is (10) with an unknownXi for everyqi ∈ Q. The coefficientαi is the disjunction
of expressions〈a〉I for all the transitions (qi , x ∈ I , ρ,a, f)∈1 with f ∈ F . The

Timed Regular Expressions 195

coefficientsβi j , γi j are constructed from the transitions in1 as follows:

Transition Coefficient

(qi , x ∈ I , {x},a,qj) βi j = 〈a〉I
(qi , x ∈ I , ∅,a,qj) γi j = 〈a〉I

Note that if the transition guard of the transition istrue, then the corresponding
coefficient is justa.

The following self-evident lemma specifies the connection between the language
of a timed automaton and the constructed equations.

LEMMA 6.5. Let Li be the language accepted by the automaton from configu-
ration (qi , 0). Then X1 = L1, . . . , Xn = Ln is a solution of Eq.(10).

6.4. SOLVING QUASILINEAR EQUATIONS. The rest of this section is devoted to
the description of the solution algorithm, which is an adaptation of the standard
Gaussian elimination procedure used for linear equations.

The following lemma gives a solution to a single equation with only one
operation.

LEMMA 6.6. Letα, β, γ be timed languages.

(1) The smallest solution to X= α ∨ γ ◦ X is X0 = γ~ ◦ α;
(2) The smallest solution to Y= α ∨ β · Y is Y0 = β∗ · α;
(3) If β andγ satisfy the normality condition(11) then these solutions are unique.

PROOF. The proof is similar to the proof of the same result for untimed equa-
tions; we give a sketch only for the absorbing concatenation.

First, we verify thatX0 is a solution by substituting it into the right-hand side of
the equation:

α ∨ γ ◦ X0 = α ∨ γ ◦ γ~ ◦ α = (ε ∨ γ⊕) ◦ α = X0.

The minimality proof proceeds as follows: LetX1 be a solution, that is,X1=α ∨
γ ◦ X1. The inclusionX0 = γ~ ◦ α ⊂ X1 follows from the following statement,
which can be proved by straightforward induction overn:

∀n (γ ◦n ◦ α ⊂ X1).

In order to prove uniqueness (under normality hypothesis) we introduce the
discrete lengthη of time-event sequences. The morphismη : T → N is defined by
η(r) = 0 for allr ∈ R+ andη(a) = 1 for alla ∈ 6. Note thatη(u◦v) = η(u)+η(v)
wheneveru ◦ v is defined.

The proof of the inclusionX1 ⊂ X0 uses the normality condition onγ and
proceeds by contradiction. Suppose the inclusion does not hold and letw be a
sequence inX1 − X0 with the minimal possible discrete lengthη(w). SinceX1 is
a solution,w ∈ α ∨ γ ◦ X1. The sequencew cannot belong toα ⊂ X0. Hence,w
admits a decompositionv= u ◦ v with u ∈ γ andv ∈ X1. The normality condition
guarantees thatη(u) > 0, henceη(v)= η(w)− η(u) < η(w). Sinceη(w) is minimal
in X1− X0, this implies thatv ∈ X0; hence,

w = u ◦ v ∈ γ ◦ X0 = γ ◦ γ~ ◦ α = γ⊕ ◦ α ⊆ X0,

which contradicts the hypothesis onw and concludes the proof.

196 E. ASARIN ET AL.

In the sequel, we use this lemma in a specific situation whenα can depend on
X. To justify such a usage we prove the following statement.

COROLLARY 6.7. Suppose thatβ andγ satisfy the normality condition(11),
and h(X) is any language-valued expression depending on X. Then

—the equation X= h(X) ∨ γ ◦ X is equivalent to X= γ~ ◦ h(X);
—the equation Y= h(X) ∨ β · Y is equivalent to Y= β∗ · h(X).

PROOF. The proofs of the two statements are similar and we give only the first
one. LetX0 be a timed language. It is a solution of the first equation whenever
it satisfiesX0= h(X0) ∨ γ ◦ X0, or, equivalently, whenever it is a solution of
the equationX= h(X0) ∨ γ ◦ X. The languageX0 is a solution of this equation
if and only if it is equal to its unique solution provided by Lemma 6.6, that is,
X0= γ~◦h(X0). The last equality holds if and only ifX0 is a solution to the equation
X = γ~ ◦ h(X). This concludes the proof of equivalence of the two equations.

THEOREM 6.8. A normal system of quasilinear equations has one and only one
solution. This solution is regular. Its regular expression can be obtained algorith-
mically from expressions for the coefficients.

PROOF. The algorithm for solving the system (10) consists in iterated applica-
tions of Corollary 6.7. It has four stages, the first two treat the◦ operation and the
next two—the standard concatenation.

At the first stage, we use the first equation and Corollary 6.7 to expressX1 as

X1 = γ~11 ◦
(
α1 ∨

n∨
j=1

β1 j · X j ∨
n∨

j=2

γ1 j ◦ X j

)
.

Notice that only the occurrence of◦X1 is eliminated, while those of·X1 remain in the
equation. By opening the parentheses (using Proposition 3.2, whose assumptions
are satisfied because the system is normal), this equation is transformed to the form

X1 = α′1 ∨
n∨

j=1

β ′1 j · X j ∨
n∨

j=2

γ ′1 j ◦ X j .

We substitute this expression into the◦X1 occurrence ofX1 in the second equation,
solve it forX2 and so on untilXn for which we find an expression that contains only
occurrences of unknowns of the form·X and not◦X. Then the second stage starts
by going backwards, putting the expression forXn into equation numbern − 1.
This allows to find forXn−1 an expression free from occurrences of◦Xn, until we
reachX1 once again. Now the system has a standard◦-free form

Xi = α′′i ∨
n∨

j=1

β ′′i j · X j , (12)

which is the starting point of the standard solution procedure for equations over
Kleene algebra. We repeat the same procedure by expressingX1 as

X1 = β ′′∗11 ·
(
α′′1 ∨

n∨
j=2

β ′′1 j · X j

)
,

Timed Regular Expressions 197

put the result into the second equation, findX2 and so on. The fourth (and last)
stage consists in going backwards putting the expression forXn into equationn−1
and so on. This ends up with finding an extended regular expression for everyXi
and concludes the algorithm and the proof of Theorem 6.8.

COROLLARY 6.9. From a one-clock automaton, one can construct an extended
timed regular expression that denotes its language.

6.5. MAIN RESULTS. SinceEE are equivalent toE (and hence languages defined
by extended timed regular expression are regular), Corollary 6.9 concludes the new
proof of the following important result.

THEOREM 6.10. The language accepted by any one-clock automaton is regular.

Together with the reduction of Theorem 6.2, this gives:

THEOREM6.11 (AUTOMATA ⇒ EXPRESSIONS). Every language accepted by a
timed automaton can be represented by the expression

θ

(
k∧

i=1

ϕi

)
,

whereθ is a renaming andϕi are timed regular expressions.

We have proved the main result of this paper:

THEOREM6.12 (KLEENETHEOREM FORTIMED AUTOMATA). Timed automata
and generalized timed regular expressions have the same expressive power.

6.6. FROM AUTOMATA TO EXPRESSIONS: AN EXAMPLE. Consider the automa-
tonA in Figure 5. Getting rid of disjunctions, we obtainA′. By splittinga intod and
e, and labeling theε-transition byc, we get the strongly deterministic automaton
A′′ which is separated into two one-clock automataA1 andA2. Hence,

L(A) = L(A′) = θ (L(A′′)) = θ (L(A1) ∩ L(A2)). (13)

To find the expression forL(A1), we write the language equations

U = (〈d〉[3,∞) ∨ e
) ◦ V ∨ c ◦W ∨ c

V = b ·U
W = ∅.

After substitutingb ·U instead ofV and∅ instead ofW, we obtain:

U = ((〈d〉[3,∞) ∨ e
) ◦ b

) ·U ∨ c,

which can be immediately solved using Lemma 6.6:

L(A1) = U = ((〈d〉[3,∞) ∨ e
) ◦ b

)∗ · c.
ForA2, the equations are

X = (
d ∨ 〈e〉(1,9)

) ◦ Y ∨ c ◦ Z ∨ c
Y = b ◦ X
Z = ∅

198 E. ASARIN ET AL.

FIG. 5. Constructing an expression from an automaton.

and after substitution we get

X = ((d ∨ 〈e〉(1,9)
) ◦ b

) ◦ X ∨ c,

whose solution is

L(A2) = X = ((d ∨ 〈e〉(1,9)
) ◦ b

)~ ◦ c.

Together with Eq. (13), it gives aGEE-class expression forL(A):

L(A) = θ((((〈d〉[3,∞) ∨ e
) ◦ b

)∗ · c) ∧ (((d ∨ 〈e〉(1,9)
) ◦ b

)~ ◦ c
))
.

If we want to avoid◦ and~ operations, elimination algorithms from Section 3
should be applied. It is easy for the first language:

L(A1) =
((〈d〉[3,∞) ∨ e

) · b)∗ · c

Timed Regular Expressions 199

but less so for the second:

L(A2) =
(
db∨ 〈e〉(1,9)b

)~
c

= (db)~c∨
〈(db)~ ◦ e〉(1,9)b) ◦ (db)~c∨〈〈(db)~ ◦ e〉(1,9)b) ◦ (db∨ eb)~ ◦ e

〉
(1,9)b ◦ (db)~c

= (db)∗c∨
〈(db)∗e〉(1,9)b)(db)∗c∨〈〈(db)∗e〉(1,9)b)(db∨ eb)∗e

〉
(1,9)b(db)∗c.

7. Infinitary Timed Languages

7.1. INFINITE SEQUENCES, ω-LANGUAGES AND ω-AUTOMATA. For untimed
sequences and automata, the theory ofω-languages (languages whose elements are
infinite sequences) is not as nicely algebraic as the theory of finitary languages.
The situation is aggravated when we move to time-event sequences where we have
two notions of infinitude, metric and logical, which do not coincide.

In the finitary case an element ofT (6) can be viewed as an alternating finite
sequenceu1 · u2 · · ·un of elements inR+∪6∗. The logical length of such a sequence
is the sum of finitely many integers and its metric length is a sum of finitely many
real numbers. One possibility to move to infinitary language is to define anω-time-
event sequence over6 as an infinite alternating sequenceu1 · u2 · · · of elements
fromR+ ∪6∗. Ideally, we would like both logical and metric length to be infinite
but this is not easy to guarantee in a simple way.

Concerning logical length, note that already in the untimed case, if a language
L containsε, then Lω, the language consisting of all infinite concatenations of
elements fromL, might contain finite strings. Moreover, an infinite sequence might
become finite under a length-reducing renaming that maps some letters toε. Simi-
larly, the image of an infinite time-event sequence such as

1 · a · (1 · b)ω = 1 · a · 1 · b · 1 · b · 1 · b · · ·

under a renaming which mapsb to ε is the logically-finite time-event sequence
1 · a · ∞. So to keep our languages closed under renaming, and to account for
runs of timed automata with infinitely manyε-transitions, we allow time-event
sequences with infinite metric length but with finitely many events.

Infinite metric length cannot be guaranteed locally due to the existence of con-
verging sequences of reals. For example, the infamous infinite sequence

a · 1 · a · 1
2
· a · 1

4
· · ·

due toZenoof Elea has a finite metric length. Consequently, ifL is a language
in which there is no positive lower-bound on the metric length of its elements, for
example,L = 〈a〉(0,r] , the setLω contains Zeno behaviors. Our design choice is to
exclude explicitly such Zeno behaviors from the languages that we consider.

200 E. ASARIN ET AL.

Definition7.1 (ω-Time-Event Sequences and Timedω-Languages). An ω-
time-event sequence is an alternating (finite or infinite) sequence

ξ = u1 · u2 · · ·
of elements inR+ − {0} ∪ 6+, such thatλ(ξ) (the sum of the real elements) is
infinite. When the sequence is finite, the last element must be∞. The set of all such
sequences is denoted byTω(6) and its subsets are called (timed)ω-languages.

The concatenationv · ξ wherev ∈ T (6) andξ ∈ Tω(6) is defined almost as
before, resulting in anω-time-event sequence. For an infinite sequencev1, v2, . . .
of time-event sequences such that

∑∞
i=1 λ(vi) = ∞, their infinite concatenation

·∞i=1 is defined in the natural way. When extending this definition toω-languages,
by letting

∞·
i=1

Li =
{
∞·

i=1
vi : vi ∈ Li

}
we do not allow an arbitrary choice ofvi ’s but only those, whosesum of lengths
diverges.

Definition7.2 (Timedω-Regular Expressions). Timedω-regular expressions
over an alphabet6 (also referred to asω-6-expressions) are constructed from
(finitary) regular expressions using the following families of rules.

(1) If ϕ is a6-expression, thenϕω is anω-6-expression.
(2) If ϕ is a6-expression andψ,ψ1, ψ2 areω-6-expressions, thenϕ · ψ and

ψ1 ∨ ψ2 areω-6-expressions.
(3) If ψ1, ψ2 areω-6-expressions andψ0 is anω-60 expression for some alphabet

60, andθ : 60→6 is a renaming, thenψ1∧ψ2 andθ (ψ0) areω-6-expressions.

Expressions formed using rules (1) and (2) are called timedω-regular expressions
and denoted byEω(6). If, in addition, rule (3) is applied we call them generalized
timedω-regular expression and denote them byGEω(6).

The semantics of these expressions is defined via the function [[]]ω : GEω(6)→
2Tω(6) as:

[[ϕω]]ω = ∞·
i=1

[[ϕ]]

[[ϕ · ψ]]ω = [[ϕ]] · [[ψ]]ω
[[ψ1 ∨ ψ2]]ω = [[ψ1]]ω ∪ [[ψ2]]ω
[[ψ1 ∧ ψ2]]ω = [[ψ1]]ω ∩ [[ψ2]]ω
[[θ (ψ)]]ω = θ ([[ψ]]ω).

A timed ω-automaton is a tupleA= (Q,C,1,6, s, F) where all the compo-
nents are as in finitary timed automata. An infinite run of the automaton is an infinite
sequence of steps

(q0, v0)
z1−→ (q1, v1)

z2−→ · · ·
such that the sum of the durations of the steps diverges. Thetraceof a run is the
ω-time-event sequencez1 · z2 · · ·. An accepting run is a run starting from the initial
configuration (s, 0) and visitingF infinitely many times, that is,qi ∈ F for infinitely
many discrete steps. Theω-language of a timed automaton,Lω(A), consists of all

Timed Regular Expressions 201

the traces of its accepting runs. Note that due toε-transitions the trace can be a
finite sequence.

7.2. FROM ω-EXPRESSIONS TOω-AUTOMATA. As in the finitary case, the in-
ductive construction is rather straightforward. As a basis, we take the automaton
for any finitary-timed regular expression. From the proof of Theorem 2, we can
assume that timed regular languages are accepted by automata without transitions
outgoing from accepting states. The automaton forϕω is similar to that forϕ+.
The accepting state is visited infinitely often in theω-automaton iff infinitely many
finite prefixes of the time-event sequence lead froms to f in the finitary automa-
ton. The concatenation of a language and anω-language, as well as the union of
two ω-languages and the renaming are almost identical to the finitary case. In-
tersection requires some more details, because, unlike finite words which have to
reach accepting states of both automatasimultaneouslyat the end of the run, the
visits of anω-time-event sequence in such accepting states need not be synchro-
nized. All the constructions are minor adaptations of their untimed analogues (see
Thomas [1990]).

Definition7.3 (ω-Automata from Expressions). Let A = (Q,C,1,6, s, F)
be the timed automaton accepting the language [[ϕ]], and letA1 = (Q1,C1,11,
6, s1, F1) andA2 = (Q2,C2,12, 6, s2, F2) be the timedω-automata accepting
theω-languages [[ψ1]]ω and [[ψ2]]ω respectively.

—The automaton for [[ϕω]]ω is (Q ∪ { f ′},C, 6,1′, s, { f ′}) where1′ is obtained
from 1 by adding for each transition (q, φ, ρ,a, f) ∈ 1 with f ∈ F , a new
transition (q, φ,C,a, f ′). Another transition (f ′, (x = 0), ∅, ε, s), wherex is
any clock, is also added (if there is no clock in the automaton we should add
one).

—The automaton for [[ϕ · ψ2]] is (Q ∪ Q2,C ∪ C2,1
′, 6, s, F2) where1′ is1 ∪

12 augmented with transitions of the form (q, φ,C2,a, s2) for every transition
(q, φ, ρ,a, f) in 1 with f ∈ F .

—The automaton for [[ψ1∨ψ2]]ω is (Q1∪Q2∪{s},C1∪C2,1,6, s, F1∪F2), where
1 is constructed from11 ∪12 by adding twoε-transitions (s, x = 0, ∅, ε, si),
wherex is any clock andi ∈ {1, 2} (if there is no clock in the automata we should
add one).

—The automaton for [[ϕ1 ∧ ϕ2]]ω is (Q1 × Q2 × {1, 2, 3},C1 ∪ C2,1,
6, 〈s1, s2, 1〉, F) where1 is constructed from11 and12 in the following
way:
—for every (q1, φ1, ρ1,a,q′1)∈11 and (q2, φ2, ρ2,a,q′2)∈12 the relation1

contains the transitions (〈q1,q2, i 〉, φ1∧ φ2, ρ1∪ ρ2,a, 〈q′1,q′2, j 〉) whenever
i = 3 and j = 1, or i ∈ {1, 2} and j = i , or i = 1, q′1∈ F1 and j = 2, or i = 2,
q′2∈ F2 and j = 3.

—for every (q1, φ1, ρ1, ε,q′1)∈11 the relation1 contains the transitions
(〈q1,q2, i 〉, φ1, ρ1, ε, 〈q′1,q2, j 〉) wheneveri = 3 and j = 1, or i ∈ {1, 2} and
j = i , or i = 1, q′1∈ F1 and j = 2;

—for every (q2, φ2, ρ2, ε,q′2)∈12 the relation1 contains the transitions
(〈q1,q2, i 〉, φ2, ρ2, ε, 〈q1,q′2, j 〉) i = 3 and j = 1, or i ∈ {1, 2} and j = i , or
i = 2, q′2∈ F2 and j = 3.

The accepting set isF = Q1× Q2×{3}.

202 E. ASARIN ET AL.

—The automaton for [[θ (ψ1)]]ω, whereθ : 6→ 6′, is (Q1,C1,1,6
′, s1, F1) with

1 obtained from11 by replacing every transition of the form (q, φ, ρ,a,q′) in
11 by (q, φ, ρ, θ(a),q′).

With this construction, we have the first part of B¨uchi–McNaughton theorem.

THEOREM7.4 (ω-EXPRESSIONS⇒ ω-AUTOMATA). Every (generalized) timed
ω-regular language can be accepted by a timedω-automaton.

7.3. FROM ω-AUTOMATA TO ω-EXPRESSIONS. This construction is based on
Theorem 6.11 and on the proof of the untimed theorem (see B¨uchi [1960] and
McNaughton [1966]). We assume that the automaton has gone through all the
transformation described in Section 6.2 and also converted in a state-reset form, as
described below.

A one-clock timed automaton isstate-resetif the transitions entering a given
state either all reset the clock, or all do not reset it. In order to make a one-clock
automaton state-reset, we split every state not satisfying this property into two copies
and redirect the resetting incoming transitions to the first state and nonresetting to
the second. This transformation can double the number of states and does not affect
the language accepted.

LetA = (Q, {x},1,6, s, F) be a one-clockω-automaton. Clearly,

Lω(A) =
⋃
f ∈F

Lω(A f),

whereA f = (Q, {x},1,6, {s}, { f }). Hence, it is sufficient to prove regularity for
automata with one accepting stateF = { f }. If f is a resetting state, we can use the
same expression as in untimed automata:

Lω(A f) = Ls f · (L f f)
ω

whereLs f is the regular language consisting of all time-event sequences leading
from s to f andL f f is the regular language consisting of the time-event sequences
inducing a cycle fromf to f . However, whenf is not resetting, this will not work
directly becausef can be entered with different clock valuations. The following
technical lemma introduces several languages related to one-clock automata and
states their regularity.

LEMMA 7.5. LetA = (Q, {x},1,6, s, { f }) be a one-clock automaton with
m ∈ N being the largest constant appearing in the guards, and let p,q ∈ Q be two
states. The following timed languages are regular:

—The language R◦pq consisting of traces of all the runs ofA starting in(p, 0) and
terminating by a transition to q and including only non-resetting transitions.

—The language R→m
pq consisting of traces of all the runs ofA starting in(p, 0) and

terminating by a transition to(q, x) with some x> m.
—The language Rm→pq consisting of traces of all the runs ofA starting in (p, x),

x > m, never resetting x and terminating by a transition to q.

PROOF. The regularity proof for the first two is by a straightforward construc-
tion of one-clock sub-automata ofA accepting these languages and by application
of Theorem 6.10. For the third, we just erase resetting transitions and substitute
m+ 1 instead ofx in all the guards and hence transform each of them into either

Timed Regular Expressions 203

true or false. Note that the expression obtained for this language contains no
timing restrictions.

Suppose now thatf is nonresetting. All the accepting runs split into two cat-
egories: those with finitely many resets (whose traces form the languageLfin)
and those with infinitely many resets (languageL∞). We prove regularity of both
these languages.

Finitely Many Resets. Let m denote the maximal constant occurring in the
guards ofA. Any accepting runξ with finitely many resets eventually stops resetting
the clock and hence the clock value crossesmand remains greater thanmever after.
Hence, such a run can be decomposed into a prefix containing all the resets and
leading for the first time after that tof with x > m, and an infinite suffix making
cycles from f to f with x always greater thanm. Because timing does not play a
role afterx>m, the languages accepted from (f, x) and from (f, x′) for x, x′>m
are identical and hence we can write:

Lfin = R→m
s f ·

(
Rm→

f f

)ω
,

which concludes the proof of regularity ofLfin.

Infinitely Many Resets.Since f is not a resetting state, such an infinite run
should visit infinitely many times a resetting stateq. Moreover, there is always a
resettingq such that for infinitely many occurrences, there are no resets betweenq
and the next occurrence off :

(s, 0)→ · · · → (q, 0)
no resets→ · · · →

(f, x1)→ · · · → (q, 0)
no resets→ · · · → (f, x2)→ · · · → (q, 0) · · ·

Conversely, any run admitting such a decomposition is an accepting run ofA.
This immediately gives the following expression forL∞:

L∞ =
⋃

q resetting

Rsq · (R◦q f ◦ Rf q)ω

which concludes the proof.

Consequently

CLAIM 7.6. Theω-language accepted by any one-clock automaton isω-regular.

This implies:

THEOREM7.7 (ω-AUTOMATA ⇒ ω-EXPRESSIONS). Everyω-language accep-
ted by a timedω-automaton can be represented as

θ

(
k∧

i=1

ψi

)
,

whereθ is a renaming andψi are timedω-regular expressions.

And we can conclude:

THEOREM7.8 (BÜCHI–MCNAUGHTON THEOREM FOR TIMED AUTOMATA).
Timedω-automata and generalized timedω-regular expressions have the same
expressive power.

204 E. ASARIN ET AL.

8. Discussion

In this section, we summarize the results of this article and compare our approach to
other relevant works. In our view, there are three major contributions in this article:

(1) Clean algebraic definitions of timed behaviors as elements of the monoids of
time-event sequences or of signals.

(2) The definition of timed regular expressions as a formalism for specifying timed
languages.

(3) The main results and their proof techniques that shed some light on the structure
of timed automata and timed languages, in particular the separation of clocks
and the elimination of◦ and~.

The algebraic definitions, we feel, are simple and intuitive as they treat the
succession of events and the accumulation of time-passage in a uniform manner
using the same monoid operation. In contrast, timed traces consisting of sequences
of time-stamped events do not have this nice monoidal intuition. Compare our
concatenation ofr · a ands · b into r · a · s · b with the concatenation of the timed
traces (a, r) and (b, s) into (a, r), (b, r + s).

Our design choices for the expressions are, perhaps, the closest one can get to the
spirit of the untimed theory in the sense that the expressions do not refer tointernal
mechanismsor hidden variablesof an accepting automaton (states and clocks) but
only to externally observableproperties of the languages. The only (unavoidable)
deviation from this spirit is the renaming operator. An alternative formalism that
does mention clocks explicitly was proposed in Bouyer and Petit [2002] where
the authors define regular expressions over an alphabet consisting of tuples of the
form (φ,a, ρ) corresponding to the transitions of the timed automaton, whereφ
is a condition on clocks andρ is a reset. For example, the language defined by
our expression

(〈a · b〉3 · c) ∧ (a · 〈b · c〉3)
will be written in their syntax as

(a, x2 := 0) · (x1 = 3, b) · (x2 = 3, c).

The formulation and solution of language equations over this alphabet of transitions
is as simple as for untimed automata. A similar idea was phrased in Bouyer and
Petit [1999] in terms of expressions constructed using a variety of concatenation
operators, each corresponding to a subset of clocks being reset (in the case of one-
clock automata this boils down to the· and◦ operations). Using these formalisms,
intersection and renaming are avoided at the high price of being very close to the
timed automata themselves.

An alternative way to get rid of intersection is to usemany-sortedparentheses,
each corresponding to another clock. For example, the above language could be
written as

〈a · bb〉3 · cc3.
The drawback of this formalism is that its syntax does not admit a simple inductive
definition and, likewise, its semantics cannot be inductively defined. Hence, it can
be seen as a syntactic sugar for separation of clocks and intersection.

Timed Regular Expressions 205

Our result provides a “Computer Science” version of Kleene Theorem: matching
the expressive power of the most commonly-accepted automaton-based formalism
for real time by a class of regular expressions. Within the algebraic theory of
automata, Kleene Theorem is viewed as a (rare) instance of a coincidence between
two different notions,recognizabilityandrationality. Recognizability of a subset
L of a monoidM can be defined in automaton-free terms. Let∼ be the syntactic
right congruence associated withL, namely

u ∼ v iff ∀w ∈ M(u · w ∈ L ⇔ v · w ∈ L).

The languageL is said to be recognizable if∼ has finitely many congruence classes
(and, according to Myhill–Nerode Theorem, this is true if and only ifL is accepted
by a finite automaton). The class of rational subsets of a monoidM is the rational
closure of the finite sets, that is, the smallest class containing finite sets and closed
under∪, · and∗. Kleene Theorem states that for the free monoid6∗ recognizability
and rationality are equivalent (and this is not true for most other monoids of interest).

This work is concerned with the monoidT (6) = 6∗¢R+, for which, due to the
density ofR+, these two notions are not very useful. InR+ the only recognizable
subsets are∅, {0},R+ and (0,∞). A language such as〈a〉1 ·b has uncountably many
right-congruence classes becauser 6∼ s for everyr 6= s ∈ [0, 1]. These observation
were made already in Rabinovich and Trakhtenbrot [1997] and the conclusion is
that only “speed-independent” language, i.e. those invariant under “stretching” are
recognizable. Such languages can be written using expressions that do not use〈.〉
at all or use it only with intervals [0,∞) or (0,∞). Hence, recognizability in this
sense is not a useful concept for quantitative time.

Similarly, rationality forR+ andT (6) does not coincide with the expressive
needs of timing analysis. On one hand, the class of rational subsets ofR+ contains
sets consisting of isolated irrational (and even uncomputable) numbers which can-
not be expressed nor accepted by timed automata or any other reasonable device.
In addition they may contain arithmetical progressions. On the other hand, a very
natural subset ofR+ such as [0, 1] is not rational since it cannot be generated from
finite sets by a finite number of applications of the algebraic operations.

These two problems can be resolved by considering the rational closure of6 and
the set of all integer bounded variables. This solution eliminates isolated irrational
points and allows to express intervals but the expressive power is still very weak: the
set〈a〉[1,2] · 〈b〉[2,4] is in the rational closure but the set denoted by〈a · b〉[3,6] is not.
Such sets correspond to one-clock timed automata that reset the clock after each
transition (see Dima [2001]). An interesting option for overcoming this limitation
is to introduce a newshuffleoperator, but this is beyond the scope of this article.
We may conclude that a Kleene theorem (in the strict algebraic sense) for timed
monoids is impossible.

REFERENCES

ALUR, R.,AND DILL , D. L. 1994. A Theory of timed automata.Theor. Comput. Sci. 126, 183–235.
ARDEN, D. 1960. Delayed-logic and finite-state machines. InTheory of Computing Machine Design.

Univ. of Michigan Press, pp. 1–35.
ASARIN, E. 1998. Equations on timed languages. InHybrid Systems: Computation and Control,

T. A. Hezinger and S. Sastry, Eds. Lecture Notes in Computer Science, vol. 1386. Springer-Verlag,
New York, pp. 1–12,

206 E. ASARIN ET AL.

ASARIN, E., CASPI, P., AND MALER, O. 1997. A Kleene theorem for timed automata, InProceedings
of the 12th Annual IEEE Symposium on Logic in Computer Science(LICS’97) (Warsaw, Poland, June).
IEEE Computer Society Press, Los Alamitos, Calif., pp. 160–171.

BOUYER, P.,AND PETIT, A. 1999. Decomposition and composition of timed automata. InProceedings of
the 26th International Colloquium Automata, Languages, and Programming(ICALP’99), J. Wiedermann,
P. van Emde Boas, and M. Nielsen, Eds. Lecture Notes in Computer Science, vol. 1644. Springer-Verlag,
New York, pp. 210–219.

BOUYER, P.,AND PETIT, A. 1999. A Kleene/B¨uchi-like theorem for clock languages.J. Autom. Lang.
Combin., to appear.

BÜCHI, J. 1960. A decision method in restricted second order arithmetic. InProceedings of the Interna-
tional Congress on Logic, Methodology and Philosophy of Science, E. Nagel, Ed. Stanford University
Press, Stanford, Calif.

CONWAY, J. H. 1971. Regular Algebra and Finite Machines, Chapman & Hall, London, England.
DIMA , C. 2001. Real-time automata.J. Autom. Lang. Combin. 6, 1, pp. 3–24.
HERRMANN, P. 1999. Renaming is necessary in timed regular expressions. InProceedings of the 19th

Conference on Foundations of Software Technology and Theoretical Computer Science(FSTTCS ’1999)
(Chennai, India, Dec. 13–15). Lecture Notes in Computer Science, vol. 1738. Springer-Verlag, New
York, pp. 47–59.

HOWIE, J. M. 1995. Fundamentals of Semigroup Theory. Clarendon Press, Oxford, England.
LARSEN, K. G., PETTERSSON, P.,AND YI, W. 1997. UPPAAL in a nutshell.Int. J. Softw. Tools Tech. Trans.

1, 1–2 (Oct.), 134–152.
LI, X., TAO, Z., JIANMIN , H., JIANHUA , Z., AND GUOLIANG, Z. 1998. Hybrid regular expressions. In

Hybrid Systems: Computation and Control, T. A. Hezinger and S. Sastry, Eds. Lecture Notes in Computer
Science, vol. 1386. Springer-Verlag, New York, pp. 384–399.

MALER, O., MANNA, Z., AND PNUELI, A. 1992. From timed to hybrid systems. InReal Time: Theory in
Practice, J. de Bakker, K. Huizing, W.-P. de Roever, and G. Rozenberg, Eds. Lecture Notes in Computer
Science, vol. 600. Springer-Verlag, New York, pp. 447–484.

MCNAUGHTON, R. 1966. Testing and generating infinite sequences by a finite automaton.Inf. Contr. 9,
521–530.

MCNAUGHTON, R., AND YAMADA , H. 1960. Regular expressions and state graphs for automata.IRE
Trans. Elect. Comput. EC-9, 39–47.

RABINOVICH, A., AND TRAKHTENBROT, B. 1997. From finite automata toward hybrid systems
(extended abstract). InFundamentals of Computation Theory, 11th International Symposium, FCT ’97,
B. S. Chlebus and L. Czaja, Eds. Lecture Notes in Computer Science, vol. 1279. Springer-Verlag,
New York, pp. 411–422.

THOMAS, W. 1990. Automata on infinite objects. InHandbook of Theoretical Computer Science,
J. V. Leeuwen, Ed. Vol. B. Elsevier, Amsterdam, 133–191.

TRAKHTENBROT, B. 1995. Origins and metamorphoses of the trinity: Logics, nets, automata. In
Proceedings of the 10th Annual IEEE Symposium on Logic in Computer Science(LICS’95). IEEE
Computer Society Press, Los Alamitos, Calif., pp. 506–507.

YOVINE, S. 1997. Kronos: A verification tool for real-time systems.Int. J. Softw. Tools Tech. Trans. 1,
1–2 (Oct.), 123–133.

RECEIVED JUNE2001;REVISED DECEMBER2001;ACCEPTED DECEMBER2001

Journal of the ACM, Vol. 49, No. 2, March 2002.

