Timed Regular Expressions

EUGENE ASARIN, PAUL CASPI, AND ODED MALER

VERIMAG, Gieres, France

Abstract. In this article, we definémed regular expressions formalism for specifying discrete
behaviors augmented with timing information, and prove that its expressive power is equivalent to
the timed automateof Alur and Dill. This result is the timed analogue of Kleene Theorem and,
similarly to that result, the hard part in the proof is the translation from automata to expressions.
This result is extended from finite to infinite (in the sense atB) behaviors. In addition to these
fundamental results, we give a clean algebraic framework for two commonly accepted formalisms
for timed behaviors, time-event sequences and piecewise-constant signals.

Categories and Subject Descriptors: CSpécial-Purpose and Application-Based Systerhs
real-time and embedded systerfis.3 Mathematical Logic and Formal Language$: Formal
Languages-algebraic language theorylasses defined by grammars or automata

General Terms: Languages, Theory
Additional Key Words and Phrases: Kleene theorem, timed automata, timed languages

1. Introduction

The theory of automata, by now about half a century old, constitutes the foundation
for many branches in Computer Science. In essence, it is a theorysdzuences
of discrete events occurring oaéterthe other and about formalisms for describing
sets of such sequences, most notably by finite-state transition systems (automata)
that generate or accept them. Since automata can model computer programs, digital
circuits and many other discrete-event dynamical systems, they can be used for
simulation, verification and synthesis of such systems.

Classical automata theory deals only witlualitativenotion of time: a sequence
of events specifies therdering of their occurrence times, but not tlistance
between them in terms of “real” time. While this level of abstraction has proven to
be very useful for the analysis of certain systems, many application domains require
more detailed models that include timing information. For example, we might want
to refine a specification of the form “evesyis followed byb” into “every a is
followed byb within 5 seconds Likewise, we might want to augment automaton

Authors’ address: BRIMAG, Centre Equation, 2 av. de Vignate 38610gf@E, France, e-mail:
{Eugene.Asarin;Paul.Caspi;Oded.Ma@imag.fr.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this worked owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
afee. Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New York,
NY 10036 USA, fax+1 (212) 869-0481, or permissions@acm.org.

© 2002 ACM 0004-5411/02/0300-0172 $5.00

Journal of the ACM, Vol. 49, No. 2, March 2002, pp. 172-206.

Timed Regular Expressions 173

models of systems with information concerning the time it takes to complete a
transition. To this end a timed theory of automata and sequential behaviors needs to
be developed, in which timed extensions of the ingredients of the classical theory
can be investigated.

Timed automata [Alur and Dill 1994], automata equipped with clocks, have
been studied extensively in recent years as they provide a rigorous model for
reasoning about quantitative time. Together with other formalisms such as real-
time logics, real-time process algebras and timed Petri nets, they constitute an
underlying theoretical basis for the specification and verification of real-time
systems. The main attraction of timed automata is due to their suitability for
modeling certain time-dependent phenomena, and the decidability of their reach-
ability (or empty language) problem, a fact that has been exploited in sev-
eral verification tools, for example, Kronos [Yovine 1997] and Uppaal [Larsen
et al. 1997].

On the theoretical front, however, the results are somewhat less satisfactory. The
classical theory of automata is extremely simple and elegant. It establishes, for
example, that the expressive power of finite automata is equivalent to that of a
plethora of other formalisms such eegular expressions, monadic second-order
logic, linear language equations, rational formal series, finite moneaisisvell
assequential digital circuitsAlmost none of these facts has been proven for the
general class of timed automata.

In this article, we try to follow the spirit of Trakhtenbrot [1995], where a call
was formulated to “lift” the classical results of automata theory to deal with timed
automata. We investigate a timed version of one of the cornerstones of the classi-
cal theory, namely Kleene Theorem, which states that¢begnizablesets (those
accepted by finite nondeterministic automata) are exactlyetngdar (or rational)
sets (those definable by regular expressions). An infinitary version of this theorem
shows that regular sets of infinite sequences are exactly those recognizedhiy B~
w-automata [Bichi 1960; McNaughton 1966]. To prove the timed analogues of
these results we defirtamed regularandtimed w-regular expressions and show
that they denote exactly what timed automata can recognize. As in the classical
theorem one direction, the construction of automata from expressions, is rather
straightforward, while the proof of the other direction, from automata to expres-
sions, is much more involved. In order to match the expressive power of timed
automata we use expressions that employ, in addition to the standard operators
and a time-specific operator, two additional constructs, nanmhsectionand
renaming In the preliminary version of this article, [Asarin et al. 1997] we have
proved the necessity of intersection and conjectured the necessity of renaming—
a fact proved later by Herrmann [1999]. The idea of using regular expressions to
represent the behavior of hybrid systems (for which timed automata are a special
case) was developed independently by Li et al. [1998] who proposed a formalism
calledhybrid regular expressionso which some very restricted classes of hybrid
automata can be translated. Other related formalisms and results by Bouyer and

L n fact, already in Alur and Dill [1994] it was proved that the class of languages accepted by timed
automata is not closed under complementation and hence no dogjdel characterization of this
class exists.

174 E. ASARIN ET AL.

Petit [1999, 2002] are discussed in Section 8. The rest of the article is organized
as follows:

Sectior2. We discuss two commonly-used models for timed behaviors, namely
time-event sequences and piecewise-constant signals, and show how they can be
obtained by combining the free monoid, -, ¢) of event sequences with the
commutative monoidK,, +, 0) of time passage. This short algebraic excursion
can be skipped by those who can live without it.

Section3. We introduce the syntax of timed regular expressions. The main
novelty with respect to classical expressions is in the use of the time restriction
operator{g)y) that restricts the time-event sequenceg to be of metric length in
the interval [, u]. Several classes of these expressions are introduced and relations
between them are explored. In particular, the proofthat the spemia® operators,
which correspond to nonresetting automaton transitions, can be eliminated from
expressions is an important contribution to the understanding of timed behaviors.

Sectiond. Timed automata as acceptors of sets of finite time-event sequences
are defined.

Section5. The easy part of the timed Kleene Theorem, the transformation of
expressions into timed automata is proved.

Section6. In this section, we prove the harder direction of the main result,
the translation of timed automata into expressions. We first remind the readers
of the language equations used to prove the classical Kleene Theorem, and explain
the difficulty in applying them to timed automata. Then we prove a useful lemma,
stating that any language accepted by a timed automaton can be writtelogshéc
imageof afinite intersectiorof languages accepted lbye-clocktimed automata.

This allows us to do the rest of the proof using one-clock automata, which are
relatively simpler. The one-clock automaton is transformed into a systejumasi-
linear language equationshich is solved using a variant of Gaussian elimination
(these equations were first defined in Asarin [1998]). Collecting everything together
we obtain our main result—Kleene Theorem for timed automata.

Section/. We move on to infinite time-event sequence, define timedgular
expressions and timed-automata, and prove the correspondence between them
(Buchi-McNaughton Theorem).

Section8. We summarize the results and compare them with related work.

2. Monoids, Event Sequences and Signals

2.1. THEMoNoIDSX* AND R,. There are two basic approaches for enriching
sequential discrete behaviors with metric timing information, one is, so to speak,
event-based and the other is state-based.

—Time-event sequencesThese are sequences where nonnegative time dura-
tions are inserted between events. Time-event sequences allow two events to
happen at theameametric time instant (without any time passage between them)
but still oneafterthe other in the discrete sense. Time-event sequences are equiv-
alent to the commonly usdidned tracesn which a nondecreasing sequence of
time stampss attached to an event sequence.

Timed Regular Expressions 175

—Signals Similarly to sequences that can be viewed as functions from an initial
segment ofN to an alphabek, signals are functions from an initial segment
[0,r) of the non-negative real lin®, to ¥ satisfying some additional san-
ity condition, for example, [r) can be decomposed into a finite number of
left-closed right-open intervals such that the value of the signal is constant on
each interval. Such piecewise-constant signals are used extensively in modeling
the behavior of digital circuits and in the presentation of solutions to scheduling
problems.

In order to cast these objects in an algebraic framework, we need to consider
the algebraic characterization of their two componedis;rete eventandtime
passageand then mix them together.

A monoidis a triple (M, ¢, €) where M is a set,o is an associative binary
operation oM ande is the identity element oM satisfyingeecm=moe=m
for everym € M. The set of all finite sequences of elements taken from & sst
a monoid under the concatenation operatiand the empty word is its identity
element. Such a monoid is called thhee monoid generated by and is denoted
by (£*, -, €), or X* for short. Note thak need not be finite nor countable: we can
define, for exampleR* as the monoid of all finite sequences of real numbers. The
free monoid is the primary object for describing behaviors of discrete-event systems
and its subsets are the subject matter of formal language theory. We sometimes write
mym, instead ofm; ¢ my ormy - my.

If we express the passage of time usmgnbersthen the significant operation
is additiort if r; seconds pass and then additionadeconds pass, the total elapsed
time isry + r, seconds. Sets suchEsQ, orR, are monoids under addition, with
0 serving as the identity element. It is worth mentioning that they are commutative,
that is, they satisfyn; +m, = m, +m;. We concentrate on the more general
monoid R, +, 0) for whichN andQ_. are submonoids.

2.2. MIXING MoNoIDs. We want to create a monoid, whose elements consist
of aninterleavingof time passages and events (or of time passages of different
sorts, when we consider signals). We use the following construction which allows
to put elements of two monoids in a sequence:

Thefree shuffleof two monoids @, ¢4, €5) and B, ¢p, &) is the monoidM =
(AW B)*, namely the free monoid generated by the disjoint union of Fo#dnd
B. An element ofM may look like this:

ap-ap-bi-e-by-az-e-bs (1)

In order to obtain aanonical form,in which there is always aalternation of
elements of the two monoids, we define a congruence refagienerated by the
following equalities:

g -aj = @ ¢34,
bi -bj = bi <p bj (2)
€ = & =¢.

2 A congruence is an equivalence relatisn which is closed under the monoid operation, that is
m ~ m’ impliesmy - m-m, ~ mg - m' - m, for everymg, m, € M.

176 E. ASARIN ET AL.

These rules allow to replace two adjacent elements in the sequence, which come
from the same monoid, by one element, and to get rid of “dummy” identity elements.
Applying these rules, we can reduce any element of an equivalence class into a
canonical form which is an alternating sequence of element& ahd B. For
example, the sequence in (1) can be reduced to

(a1 0a @) - (b1 opby) - ag-bs

We call ~ the reduction congruence oA B)*. The set of congruence classes
of ~, also known as the quotieM/~, is a monoid as well. This is a well-known
construction on monoids (see Howie [1995]) and on algebraic structures in general:

Definition2.1 (Free Products of Monoids Let (A, ¢4, €5) and B, ¢op, &) be
two monoids. Their free product KEH B = (AW B)*/~ where~ is the reduction
congruence.

The properties oA H B can be described in a category-theoretic setting, where
it is termed theco-productof A and B. There are two canonical morphisms:
A — AH B andip : B — A B which insert elements oA and B respectively
into AE B. Any pair of morphismé, : A — C, andd, : B — C to a third monoid
C, induces a morphism = 6, B 6, from AH B to C (the co-product o6, and
), as can be visualized by the following commutative diagram:

AL,AEBB.“’_B

In particular, to projectA B B onto A, let 8, be the identityld, : A — A and
let 6, be the constant functios, : B — A which mapsB to the identity element
of A. This way we obtain the canonical projectiop: AH B — A:

o

A—>+ AEB

B

2.3. TIME-EVENT SEQUENCES

Definition2.2 (The Time-Event Monojd The time-event monoid over a Set
of events is the free produ@i(X) = ¥* H R, of the free monoid oveE and the
monoid of nonnegative real numbers under addition.

When the alphabeX is clear from the context we will usg instead of7 (X).
A typical element of the free shuffle will look like:

07-a-b-3.-54.-ab-c-0-a-¢-54-a-0.2

Timed Regular Expressions 177

and after reduction into canonical form as:
0.7-ab-84.abca-54-a-0.2.

For completeness sake, we mention that as a timed trace, this sequence (without
the last term 0.2) will be written as:

(a,0.7), (b, 0.7), (a, 9.1), (b, 9.1), (c, 9.1), (a, 9.1), (a, 14.5).

Time-event sequences seem to be conceptually clearer than timed traces as the
same type of concatenation applies to events and time durations. The philosophy
behind time-event sequences is the one employed in the timed automata literature:
a behavior is an alternating sequence of time passages and of events, which occur
at certain time points and consume no time. There are two natural projections on
T, one that ignores the events and one that ignores the metric information:

Definition2.3 Untime and Length Let7 = X*HR,

—The length morphism : 7 — R, is the projection oiR ;. obtained by mapping
elements ofz* to 0.

—The untime morphism : 7 — X*is the projection ort* obtained by mapping
elements oRR, to ¢.

Clearly, A(u) is the duration of the time-event sequenag while n(u) is the
sequence of all the discrete eventsiiwithout timing information. For example:

A(0.7-ab-84-.abca-54-a-02)=147
and
u(0.7-ab-8.4-abca-5.4-a-0.2) = ababcaa

In this article, we us€¢Z” as the underlying set for timed languages on which
we prove Kleene theorem. For the sake of completeness we will formalize below
the equally important and intuitive concept of continuous-time, piecewise-constant
signals. The appropriate timed automata for accepting signals were described in
Asarin et al. [1997] along with a proof of their corresponding Kleene theorem.

2.4. SGNALS. The main difference between signals and time-event sequences
is that in signals discrete values are associated directly with time durations: a signal
may have one value inside a time interval of lengththen another value for
a duration ofr,, etc. This motivates the idea afulti-sorted timeformalized as
follows.

Definition2.4 (The Signal Monoiyl LetX be amtm-elementset, and I§{R , :
ac X} bem distinct copies of the monoi®, . The signal monoid oveE is the
free productS(X) = EHE aRy.

ae

It is convenient to use exponential notation for elementgiof. For example,
3.2 € pR, can be written a2 and read asl§ during 32 time units.” Using this
notation, a typical element of the free shuffle for= {a, b, ¢} would be

a®.p2.b*2.a25.p0. o7
whose normal form after reduction is

a5.bb2.a25. ¢

178 E. ASARIN ET AL.

Two features distinguish signals from time-event sequences:

(1) Filtering of Zero-Duration Events With signals, it is impossible to express
a phenomenon such as “the signal value w#&sr some time, then switched to
and therimmediatelyto ¢” because of the elimination d&i°. This conforms to the
usual semantic interpretation of signalsfasctionsfrom R, to X, which have a
unique value at every time instaht.

(2) Stuttering Two consecutive elemen#$ anda® are reduced in the normal
form toa" *S. Hence, the untiming of a signal should baa@nstutteringsequence
(asequence withouttwo consecutive occurrences of the same letter) or, equivalently,
the stuttering closure of such a sequence.

In order to define the untiming of signals we need to introducestatering-
closed monoidjenerated by, which is =¥ = £*/~, where~ is the congruence
generated by the equalities of the form

aa=a

for everya € X. Hence, a sequence suchadsacstands for the equivalence class
atbtafct.

Definition2.5 (Untime and Length for Signgls LetS(X) = EHE aRy
ae

—The length morphism : S — R, is obtained as a co-product @f morphisms
of the form6, : sR; — R,.

—The untime morphism : S — % is obtained as a co-product@fmorphisms
of the formé, : ;R; — X, which mapa® to ¢ anda’ (with r > 0) toa.

Thereader can verify thatthese are the intuitive meanings of length and qualitative
behavior associated with signals. For example,

r@®-b8?%.a%°. ¢’y =207
and
n(@® - b%?.a%%. ¢’y = abac

The framework of mixing monoids allows to define easily an algebraic structure
for the most general situation where both piecewise-constant behaviors and discrete
events can occur in the same system. For completeness, we give a definition:

Definition2.6 (Signal-Event Monoifl LetX; andX; be finite sets (signal al-
phabet and events alphabet). L&, ,a € X; be distinct copies of the monoid
R, . The signal-events monoid ové;, X, is the free productS7 (X, o) =

H Ry B
aexy

For example, forx; = {a, b, c} and X, = {x,y, z}, a typical element of the
signal-event monoid would be

2.5 7

a®-xy-b%2.a%%.z.¢c".y.

3 If zero durations are not eliminated one has to resort to constructs such as “super-dense” lexico-
graphically ordered time in order to maintain the notion of a behavior as a function from time to states,
see, for example Maler et al. [1992].

Timed Regular Expressions 179

w1 - Wo

g
S
\
.
cee--t-----@-----®
\

w1 © Wo

l

Fic. 1. Two concatenation operations.

2.5. TIMED LANGUAGES ANDOPERATIONS From now on, we restrict ourselves
to the monoid7 of time-event sequences and its subsets which weticadd
languagesWe denote the concatenation operation- bgnd define an additional
concatenation operation, specific to timed languages. Before introducing the syntax
we need some preliminary definitions.

Definition2.7 (Left Derivativg. For every two sequencas and v, the left
derivative ofu by v is a partial function defined as:

w if Jwu=ovw
1 otherwise

v\u={

In other wordsp\u is defined ifv is a prefix ofu, and in that case is removed.

Definition2.8 (Absorbing Concatenation The partial operatob on 7 is
defined as:

Uov=u-(A(U\v)

that is,u o v is defined only ifv starts with a time duration of at leasfu), and in
that case.(u) time is removed from the front af before concatenation.

For example,d-5-b)o(3-c)=lLand@-5-b)o(7-c)=a-5-b-2.c.
Note thati(u o v) = A(v) wheneveu o v is defined. The operation is motivated,
as we shall see later, by timed automaton transitionstibaiot reset a clockThis
operation, similarly to concatenation, can be extended to an operation on timed
languages by lettind.; o L, = {uo v : uelL; A vely}. Figure 1 illustrates
absorbing concatenation in comparison with the standard one.

In order to prove that languages accepted by timed automata can be expressed
using timed regular expressions, we will need sometimes to split the alphabet of
the automaton, define the expression on the extended alphabet and than map it back
to the original alphabet using the following operation.

Definition2.9 (Renaminy LetX; andX; be two alphabets. A renaming from
31 to ¥, is a functiond : 31 — ¥, U {e}. We use the same symbol for the
natural extensions &f to sequences) : £; — X3, and time-event sequences,
0: (X7 HR)) — (23 HRY).

180 E. ASARIN ET AL.

3. Timed Regular Expressions

An integer-bounded intervas either [, u], (I, u], [I, u), or (, u) wherel e N and

u € N U {oo} such that < u. We excludexo] and usd for [I, I]. In the following
definition, we introduce several classes of regular expressions, each using another
subset of the expression formation rules.

Definition3.1 (Timed Regular Expressions Timed regular expressions over
an alphabek (also referred to aZ-expressions) are defined using the following
families of rules.

(1) afor every lettera € ¥ and the special symbelare expressions.

(2) If ¢, 1 andg, are Z-expressions antl is an integer-bounded interval, then
(@)1, 1+ @2, 1 V @2 ande* are X-expressions.

(3) If ¢, p1 andy, are Z-expressions, thep, o g, ande® are -expressions.

(4) If p1 andg, are T-expressionsyg is a Xg-expression for some alphabgg,
andd : o — X U{e}is arenaming, theg; A ¢, andd(¢o) areX-expressions.

Expressions formed using rules (1) and (2) are called timed regular expressions
and denoted by (X). If, in addition, rule (3) is applied we call them extended
timed regular expression and denote thenf£byX). Rules (1), (2), and (4) yield
generalized timed regular expressions denoted®{x). Finally, the generalized
extended expression§{£) are obtained using all the four rules.

The semantics of (generalized extended) timed regular expressions, []:
GEE(E) — 27, is given by:

L] = {¢e}

[al ={r-a:r eRy}

[ien] = [el N{u:i(u)el}

[o1V @] = [e1] Ul

[o1-92] = [edd - [e2]

[¢*] = Uole---.- oD
N

i times

[p1092] = [¢1] ole2l
[+°1 = UZolge..-o¢D

i times

[o1 A @2l = [o1] N2l
[0(] = {6(u):uelel}

The novel features here with respect to untimed regular expressions are the
meaning of the atona that represents an arbitrary passage of time followed by
an eventa and the{y), operator that restricts the metric length of the time-event
sequences ind] to be in the intervall . We show in the next section that the
absorbing concatenatienand the absorbing iteratioh can always be eliminated

Timed Regular Expressions 181

and hence timed regular expressions and extended timed regular expressions have
the same expressive power. We call the corresponding class of landiragds
regular languagesUnfortunately this class does not match the expressive power
of timed automata, which requires both renaming and intersection.
We use the following shorthands:
a=(@o ¢ =995 ¢¥=9009% 9" =¢o...00.
5f——/
itimes

Operations/, - and* satisfy well-known properties of Kleene algebra (see Conway
[1971]). We state some simple additional algebraic properties involving absorbing
concatenation.

PROPOSITION3.2 (ALGEBRAIC PROPERTIES OFABSORBING CONCATENATION).
Theo operation satisfies the following equalities

—V-Distributivity. (¢« V) oy =aoy VBoyandao(BVy)=aoBVaoy
—Associativity(w o B)oy =a o (Boy)
—Mixed Associativityr o (8- y) = (@ o B) -y if BNR, = 0.4

The situation with mixed associativity is not as good as it could be: typically
a-(Boy)#(a-p)oy.

We illustrate the semantics of the expressions and some obvious properties via
examples. The first examples demonstrate the interaction between time restriction
and standard concatenation. Let

Y1 = (A2
@2 = (@21 - (B)[2.4
3 = (a-b)z g

The semantics of these expressions is the following:

[pa] = {r-a:refl,2]}
[p2] = {ri-a-ro-b:irie[l,2]Arz€[2,4]}
[esl = {ri-a-r2-b:ri4r2€[3,6]}

Expressiony; allows a to occur anywhere in the [P] interval. Similarly ¢,
allowsb to occur between 2 and 4 time units after the occurrence wfhile @3
constraind to occur in the interval [36] and after the occurrence af Clearly,

[e2] < [esl.

Putting time restriction outside the Kleene star, we can express constraints in-

volving anunboundedchumber of time durations. The expression

(@),21
denotes the set

K
rp-a-rp-a---re-atkeNAY rell, 2]t

i=1

4 The meaning of this restriction is that every: g contains at least one discrete evant . It can
be also written as ¢ (8). Without this restriction, we have, for examplep 3 - 7) = 10 while
(503)-7=4.

182 E. ASARIN ET AL.

The role of intersection is to express “unbalanced parentheses” like in the
expression

((@a-biz-)A(@-(b-ch)
denoting the set
{ri-a-ra-b-rzg-c:(ri+r2=3)A(r2+r3=23).

In Asarin et al. [1997], we showed that this language, recognizable by a simple
timed automaton with two clocks, cannot be expressed without intersection (see
also Herrmann [1999] for another proof).

The role of renaming in the translation from automata to expressions will be elab-
orated in Section 6.2. Using the syntax we have chosen for time-event sequences, it
is impossible to express without renaming sets containing any time-event sequence
that does not terminate with an event, that is, sequence of thesformsuch that
r > 0. Using renaming, it can be expressed as the image ofa); wherea is
mapped tee. Such time-event sequences can be expressed using a richer syntax
which allows to specify arbitrary timed durations without events (we do not use
them because they complicate other proofs). However, renaming remains necessary
even for such a richer syntax (and for signals). The language

j k
rp-a--nea:l<j<k and Y ri=>r=1t,
i1 =]

over the alphabefa} can be expressed as the image of {taeb}-language given
by the expression

(@ -bi-atAa"-(b-a");

via the morphisn® : a — a, b — a. It was proved in Herrmann [1999] that this
language cannot be expressed without renaming, although it can be recognized by
a timed automaton.

The rest of this section is devoted to the nonstandaadd® operations which
facilitate the translation from automata to expressions but, as we show in the sequel,
do not contribute to the expressive power of timed regular expressions. We start
with some examples.

The o operation acts like standard concatenation whenever the second operand
denotes a languageithout a restriction on the duration of timeeforethe first
event. For example

aob=a-b.
On the other hand, consider the expression
(@141 0 (B)2.3)-

Usingo means that the time spent{a)1 4 is taken into account ifb)2 3, which
is equivalent to pushing the first subexpression inside the parentheses of the second
to get the expression

(<§>[1,4] : Q)[zg]
whose semantics is the set
{fr-a-s-b:re[l,4Ar+se[2 3]}

Timed Regular Expressions 183

Sincer + s < 3 impliesr < 3, this is equivalent to the expression
<<§>[1,3] : Q)[2’3]'

In general, occurrences of theoperation can be transformed infoy moving
parentheses; however, tfiest time restriction of the second operand should be
isolated and made explicit. In case that the second operand starts with an iteration,
the first occurrence should be pulled out from the scope fafr example:

ao((b)s)* = ao(e Vv bs-((b)s)) =aocevao((b)s-((b)s))
= (@oV (@o (b)s) - ((b)s)* = (@)o Vv (@~ b)s - ((b)s)".
The case of is more complicated. Consider the expression

o0

(@)[1,3])® = \/ ((5;1)[1,3])0i

i=0
and take one of the components of the infinite union

(@pa)™ = @pa o @y o @ o @wa.
which, by pushing parentheses, can be rewritten as

(@3 '§>[1,3] '§>[1,3] '§>[1,3]'
The corresponding semantics is

{frr-a-rp-a-rz-a-rg-a:rpefl,3]A
I’1+I‘2€[1,3]/\
r+ro+rzell,3]A
ri+ra+rs+raefl, 3]

As one can see, the first and last inequalities imply, due to convexity, the other
“internal” inequalities and thus
o4
(@wa)” = {@ps-a-a-a) 4

and, more generally
(@na)® =V {@ng-a),

The convexity argument is the main idea behind the eliminatioh.ddue to the
additivity of time it is sufficient to test the length after the first occurrence (for the
lower-bound) and the last occurrence (for the upper-bound). For the occurrences
in between, we can applyto an “untimed” version of the expression without
worrying. The next two examples demonstrate the special role of timing bounds
appearing at thbeginningof the expression undét.

Consider first the expression

(@) - (b)5)®
for some intervald andJ. In this case,

(@1 - (8)3)°* = ((@)r - (b)3) o (@) - (0)3) o (@) - (0)3)

184 E. ASARIN ET AL.

and by pushing parentheses we get the expression
(@ - (dy-a)-(b)s-a) - (b,
whose semantics is:
{frrra-s-b-ry-a-s-b-rz-a-s5s-b:riela

S € JA
r+si+r2ela
S e Jn
n+si+r+s+rzela
s3 € J}.

Here the convexity argument applies only&, and the length of each and every

b should be inJ:

(@1 - (0)2)® =&V (@ - ((b)s-a)") - (D).
On the other hand, in the expression
(@1 o (0)2)® = (@ - b))®

botha andb are in the scope of timing restrictions that appear at the beginning of
the expression. Taking

(((@)r - 0)3)* = ({{a)r - bys) o (((@) - b)) o (@)1 - b)y)
and pushing all the parentheses forward, we obtain
((((((@) -b)y-a) -b)s-a) -b)s.
The semantics of this expression is:
frrra-s;-b-rp-a-s-b-rzg-a-s3-b:ryela
r+s e€Jna
rn+si+r2elna
Mn+ss+r+seJa
M+ss+r+s+rzela
Mn+ss+rn+S+r3+se Jh

As before, only the first two and the last two inequalities are informative and the
rest are redundant:
(@1 -b))® =e Vv (@ -b)y V(@) -b)@)*-a)-h),.

This is the intuition underlying the fact thand® can be eliminated altogether.
The proof of this fact will use induction on theeightof the regular expression,
which, informally speaking, denotes the numbet-pf operations appearing at the
“front” of the expression, i.e. in the sub-expressions that denote the beginning of
the time-event sequences in the corresponding language.

Definition3.3 (Weight of a Regular Expressipn The weight is a function
¢ : £€ — N defined inductively as:
t@ =0
t(e) =0
¢(81V 82) = ¢(61) +¢(82)

Timed Regular Expressions 185

£(81) +¢(82) if & €[]
oo = oy e
() = £0)

c((0)) = ¢+ 1.

The rule foré, v 85 is due to the fact that its front consists of the front$pand
82. If 81 containse thens, is part of the front 081 - §,. The rule foré* (for § # ¢)
follows from the identitys* = § - §* v . It should be noted that the weight is a
measure on the syntax and not on the semantdgsv §,), has a smaller weight
than(81), Vv (8,), although they are equivalent.

As usual in the theory of formal languages, special attention should be paid to the
membership of in agiven language (e.g., testing this membership is neededin order
to compute the weight function). The next lemma allows to test this membership
and to remove when necessary without changing the weight.

LEMMA 3.4 (TESTING AND REMOVING ¢). For a timed regular expressiop,
it can be effectively tested whether or mot [y]. An expressiom(y) such that
[v(¥)] = [v] — {e} can be effectively constructed. The operatiopreserves
the weight.

Both a Boolean-valued functiontesting whethee € y and the operator (re-
movinge) can be defined recursively as follows.

@ =0 v(@) = a
() =1 vie) = 0
T(61Vv &) = t(6) VT(62) w01V) = V(518)V1;(52)) i (s — 1
T(81-82) = T(61) A 7(82) v(81-82) = ;1(‘132' 2V V(o) :f ZE(SB;O
t(6]) =1 v(87) = v(é1) - &7
t((8h) = @) AOel) v((d1)1) = (W@

PrROOF We leave the proof of weight-preservation to the readetr.

The next result gives a characterization of expressions of weight 0 and a single
weight-increasing rule allowing to obtain any regular language. We call expressions
ofthe form\/; & - ¢; slow expressions-in these expressions (whose weightis zero)
there is no upper-bound on the occurrence time of the first event. An expression is
e-freeif its semantics does not contain

LEMMA 3.5 (SPECIAL FORM OF EXPRESSIONS

(1) Any expression of weiglitis equivalent either to» or to y + ¢ wherey is a
slow expression.

(2) Any expressiorr of a nonzero weight can be rewritten as
y ={a) -oVp, (3)
wherea, B, ¢ € £ (or B is empty, « is e-free, ands (y) = ¢(«) + ¢(B) + 1.
In other words, this lemma says that starting from slow expressions and using
only the inductive rule (3), we can build expressions for all regular languages. The

proofs of the two statements are similar and we prove here only the second, more
complicated one.

186 E. ASARIN ET AL.

ProOOF. The idea of the proof is simple: sin¢éy) > 0, y is not atomic and
there is at least ong, operator in its front. Making this operator explicit gives the
required representation. Formally, we proceed by induction over the structure of
considering the following cases:

y = 81V d,. Then at least one @f, §, should have a positive weight. Suppose
without loss of generality that it i& . By inductive hypothesi&, = (a1); - ¢1 V B1.
Hence,y = (a1)) - 1 Vv (B1 V 82) and we obtain the required decomposition (3)
with o = a1, ¢ = p1andg = By Vv 82.

y = 8185, If £(81) > 0, then by inductive hypothesds = (1), - ¢1 V B1.
Then the representation

y = (g1 82) V (B1- 82)

has the required form (3) wittha = a1, ¢ = @1 - 6, andg = B1 - 5.

Otherwise, if¢(81) = 0, then, according to the definition ¢{51 - 82), ¢ € 81
and¢ (62) = ¢(y) is positive. By inductive hypothesi&; = (a2) - ¢2 v B2. In this
case, the required representation is

Yy = (e VvV v(d1)) - 82 =382V v(81) - 82 = (a2)1 - @2 V (B2 V v(81) - 62)

y = 8;. Inthis case;(81) = ¢(y) is positive and by the inductive hypothesis
81 = (a1)) - @1 V B1 with a1 e-free. We can represeptas follows:

y = (1) - 81 Ve = (arh - (p1-87) vV (v(B1) - 81 V),
which is in the required form.

y = (8),. If §ise-free, theny is already in the required form witla = § and
¢ = ¢. Otherwise, ife € §, then eithery = (v(8)); e veory = (v(8)) eV
depending on whether or notd]1 .

The reader can verify that in all the cases the equalipy) = ¢(«) + ¢(B) + 1
is preserved. []

The proof of elimination of absorbing concatenation and iteration proceeds by
induction on the weight of the expression. The following two lemmata establish
the base case (slow expressions of weight 0) and the inductive step.

LEMMA 3.6 (ELIMINATION FOR SLOW EXPRESSIONS. If y is slow, then
oy =8-y;, do(evy)=8oeVvdoy={8oVs y 4)
and
ye=v% (evy)®=y* (5)
The inductive step is based on the following identities:

LEMMA 3.7 (ELIMINATION BY WEIGHT REDUCTION). Foranythree languages
a, ¢, B, such thatr is e-free, and any interval |the following equalities hotd

So({a)) oV B)=(8oa) -pVEop (6)
and
() o VB)® = BEV(B®oa) -poB®V
((B®oa) -go(a-9Vvp)Poa)-gop® (7)

Timed Regular Expressions 187

ProOOF. Equation (6) follows immediately from the definition of absorbing
concatenation and from Proposition 3.2. The first line of Eq. (7) corresponds to
the case whew - ¢ never occurs in the sequence, the second line—to the case
when it occurs only once. The last line corresponds to the case when it occurs
twice or more. For this case, it is sufficient to restrict to the intetvahly the
termination times of the first and the last occurrences.d@y virtue of the con-
vexity of |, this guarantees that all other occurrences bétween them also fit in
this interval. [

PROPOSITION3.8 (ELIMINATION OF ABSORBINGOPERATIONS. Let M and L
be regular timed languages, that is, defined by expressioéisTinen

(1) The language lo M is regular.
(2) The language E is regular.

The regular expressions for these languages can be obtained algorithmically.

PrROOFE. The proof of both facts is by induction on the weight, where the base
case is covered by Lemma 3.6. The inductive step>foan be made as follows.
Given an expressiog of a nonzero weight, we convert it in accordance with
Lemma 3.5 to the forny = (), - ¢ v B with ¢ (@), ¢(B8) < ¢(y) ande &€ a. Now
we use the identity (6) of Lemma 3.7. The regularity of the right hand follows from
the inductive hypothesis since bdtha ands o 8 have smaller weight. This proves
the first statement of Proposition 3.8.

Using this proposition and Lemma 3.7, the inductive step®ais immedi-
ate: given an expression of a nonzero weight we take its representatjoa:

(@) - @ Vv B. Then we apply the identity (7). Its right-hand side is regular by induc-
tive hypothesis, sinc® is applied there only to expressions of weight smaller
than y. Hence,L is regular and this concludes the proof of Proposition 3.8.
Clearly, recursive algorithms for elimination of and ® can be derived from
this proof. [

The following result is now immediate.
THEOREM 3.9. ££(X) has the same expressive powekEdx).
As an example, let us eliminatefrom
§ = (d)zo (@6 blg-C)°
First, transform the second term to the form:
(@6 b)g- €)= (@6 b)g-c- (@6 b)g-c) Ve
and then compute
= ((d)so (@6 b))g- c- (((A)rer - b)g - €)" V ((d)s)a
= (((d)3- @)z.61 - D)g - €+ (((A)jr.61 - D)g -)"

An example of elimination of absorbing iteration (applied to the language of atimed
automaton) can be found at the end of Section 6.6.

188 E. ASARIN ET AL.

x1>1/29:=0

true/zi,z2 :=0

FiG. 2. Atimed automaton.

4. Timed Automata and Their Languages

This section introduces timed automata as recognizers of timed languages, starting
with an informal illustration of the structure and the behavior of timed automata.
Consider the timed automaton of Figure 2. It has two states and two ctpeksl

X2. Suppose it starts operating in the configuratign @, 0) where the last two
coordinates denote the values of the clocks. When the automaton staydhet
values of the clocks grow at a uniform rate. After one second, the conditionl

(the guard of the transition fromp, to gp) is satisfied and the automatoanmove

to gz while resettingk, to 0. Having entered, at a configurationd, t, 0) for some

t, the automaton can either stay there or can unconditionally moyednd reset

the two clocks. By fixing some initial and final states, and by assigning letters from
3 to some transitions, we can turn timed automata into generators or acceptors of
timed languages, that is, sets of time-event sequences. The definition below is a
minor modification of the original definition in Alur and Dill [1994].

Definition 4.1. ATimed Automatoisatupled = (Q, C, A, X, s, F)whereQ
is a finite set of state§; is a finite set of clocksy is an input (or event) alphabet,
is atransition relation (see below): Q an initial state an@ C Q a setofaccepting
states. The transition relation consists of tuples of the fa(p, a, q’) where
g andq’ are statesa € T U {¢} is a letter,o C C and¢ (the transition guard) is a
Boolean combination of formulas of the form € 1) for some clockx and some
integer-bounded interval.

A clock valuationis a functionv : C — R, or equivalently dC|-dimensional
vector ovelR ;. We denote the set of all clock valuationsiyA configuration of the
automaton is hence a paq, () € Q x H consisting of a discrete state (sometimes
called “location”) and a clock valuation. Every subgetC C induces a reset
function Reset : H — H defined for every clock valuatiom and every clock
variablex € C as

0 if xep
v(x) if x¢p.

That is, Resetresets to zero all the clocks jmand leaves the other clocks un-
changed. We uskto denote the unit vector (1. ., 1) andO for the zero vector.

Resef v(x) = {

Definition4.2 (Steps, Runs and AcceptafceA step of the automaton is one
of the following:

—A discrete step:

@, v) > (@, V),

wherea € X U{e} and there exist& = (q, ¢, p, &, qQ’) € A, such thav satisfies
¢ andv’ = Resej(v).

Timed Regular Expressions 189

—A time step:

(A, V) > (@, v +11),
wheret € R,.
A finite run of a timed automaton is a finite sequence of steps

(QO, VO) E) (QL Vl) E) T E) (qn, Vn)-

Thetraceof a run is the time-event sequerme z; - - - z,. A trivial runis just a
configuration ¢, v), and its trace is.

An acceptingrun is a run starting from the initial configuratios, 0) and
terminating by a discrete step to a final state, thatjis: F and z, is a dis-
crete step.

The language of a timed automatar{,A), consists of all the traces of its accept-
ing runs.

A slight modification of this definition is needed in order to accept signals (or
signal-event sequences), namely to associate an element of the signal alphabet to
eachstateof the automaton [Asarin et al. 1997]. Note also that we insist on a single
initial configuration, because otherwise we can have a non-countable number of
initial states and the language equations developed in Section 6 should be parame-
terized by clock values, resulting in a much more complicated construction.

5. From Expressions to Timed Automata

Here we prove the easy part of the timed version of Kleene Theorem, namely,
every timed regular language can be recognized by a timed automaton. Similarly to
the untimed construction in McNaughton and Yamada [1960], automata are built
from expressions by induction on the structure of the expression. We make this
construction in the most general settings, namely, for the ¢d&s and show

that an accepting timed automaton can be built for every language defined by a
(generalized extended) timed regular expression.

Before giving the formal definition let us explain the construction intuitively
(see also Figure 3). The automaton focan make, at any nonnegative time, an
a-transition from the initial state to the final state. For the union of two languages,
we choose nondeterministically between the two automata. To concatenate two
languages, we add transitions to the initial state of the second automaton for
every accepting transition of the first automaton. For standard concatenation, such
transitions reset the clocks, while for absorbing concatenation the clocks are not
reset. Likewise for thé operations, we add transitions to the initial state and reset
all the clocks.

The construction of the automaton fg¥ is better understood using an extension
of timed automata where upon a transition a clock can be assigned the value of
another clock. The basic idea is that for every new iteratignwé need the values
of all clocks to represent the total time elapsed in the previous iterations. We achieve
this by adding a new clock that is never reset to zero and transitions to the initial
state in which all clocks get the value »f{see Figure 3). Our construction below
“simulates” these automata using ordinary timed automata that keep track of the
clocks that have been reset. References in the guards to those clocks which have
not been reset are replaced by references Eor the(p), operator we introduce a

190 E. ASARIN ET AL.

p1V2

O —0
(X 2
O —0

g,x=0

IS}
z
™y

o 1O 0| FOn O

v 1O 0| FO- O

a,$,C1:=0 a,9,Cy =z

of O \b—-(a’¢1) O \b—'(a'¢:) o
¥1

Fic. 3. Constructing automata from expressions.

new clockx and add a tesi(e |) to the guard of every transition leading toFor
intersection, we do the usual Cartesian product (taking special cewteanfsitions).
Finally, for renaming, we just rename the transition labels.

Definition5.1 (Automata from Expressiops Let A; = (Q1,Cy, A1, 2, 5,
F1) and A, =(Q2, Co, Ay, X, S, F2) be the timed automata accepting the lan-
guages fi1] and [¢-] respectively. We assume th@y and Q, as well asC; and
C, are disjoint.

—The automaton ford] is ({s, f}, {x}, A, X, s, { f}), where the transition relation
isA={(s,x=0,0,¢,)}

Timed Regular Expressions 191

—The automaton ford], a € X is ({s, f}, 9, A, X, s, { f}), where the transition
relation isA = {(s, true, ¢, a, f)}.

—The automaton forg; v 2] is (Q1UQoU{s}, C1UC,, A, 2, s, FLUF,), where
A is constructed by adding th; U A, two newe-transitions §, x = 0,0, ¢, §),
wherex is any clock and € {1, 2} (if there is no clock in the automata we
should add one).

—The automaton ford; A o] is (Q1 x QU {f},CLUC,, A, X, (s1,), { T}),
whereA contains

—a transition{((ds, d2), 1 A ¢2, p1 U p2, 8, (0, 0y)) for any @i, ¢1, p1. a,
g;) € Az and any @, ¢2, p2, a, 0) € Az},

—a transition{((g1, 02), ¢1 A @2, p1U p2, @, f) forany @, ¢1, p1. @, f1) € Az
and any @2, ¢2, p2, &, f2) € Ay} wheref; € Fpandf; € Fy;

—a transition{((q1, 02), ¢1. p1. €, (01, 02)) for any @i, ¢1, p1. €, A7) € Az}
—a transition{({t, 02), ¢2, p2, &, (G, 05)) for any @z, P2, p2, &, 05) € Az}

—The automaton for ¢1 - ¢2] is (Q1 U Q2,C1 U Cy, A, T, 51, F2) where A
is constructed fromA; U A, by inserting for every transition of the form
(a1, ¢, p, @, f1) in Ay with f; € F; a new transitiondy, ¢, C,, a,s). The
automaton for |, o ¢5] is the same except for the fact that the new transition is
of the form @, ¢, 9, a,).

—The automaton for@f]l is A=(Q1,Cyq, 2, A, 51, F1) whereA is constructed
from A; by adding for every transition of the forng (¢, p, a, f1) in A; with
f; € F1 atransition of the formd, ¢, Cy1, a,).

—The automaton forgP]is A = (Q1 x 2%, C1 U {x}, T, A, (s1, ¥), F1 x 2©1).
The second component of the state records which clocks have been reset during
the current iteration of§;]. There are two types of transitions i
—Transitions Simulating Those df;. For every transition of the forng(¢, p,

a,q) in A; and everyD c C; the relationA contains ({, D), ¢p, p, a,
(@', DUp));

—Looping TransitionsFor every transition of the forng(, ¢, p, a, f1) in Ay
with f; € F; and everyD c Cq, the relationA contains (., D), ¢p, p, a,
(s1, 9)).

Heregp is obtained by replacing ig all occurrences of clocks not belonging to

D by x.

—The automaton for§;] (respectively, |[af9]|) is obtained by the union construc-
tion from the automaton fofe} and the automaton forg] (respectively, for
[o7D).

—The automaton forfip;), Jis A = (Q1U{ f}, CLU{x}, A, X, 5, { f}) whereA is

obtained fromA; by introducing for every transition of the forrg,(¢, p, a, f1)
in Ay with f; € F; a new transitiond, ¢ A (xe 1), p, a, f).

—The automaton forf(¢)] andd : ¥ — ¥ is A = (Q1,Cy1, A, X', 51, F1)
where A is obtained fromA; by replacing every transition of the form

(q’ ¢’ P, a, q/) in Al by (q? ¢’ 0, Q(a)s q/)

This concludes the construction that gives one side of Kleene theorem:

192 E. ASARIN ET AL.

FiG. 4. Atimed and an untimed automaton.

THEOREMb.2 (EXPRESSIONS= AUTOMATA). Every timed language defined
by a (generalized extended) regular expression is accepted by a timed automaton.

6. From Timed Automata to Expressions

6.1. THEAPPROACH Ourproofofthe other (and harder) side of Kleene theorem
is modeled after the proof of the classical theorem given in McNaughton and
Yamada [1960], which constructs from an automaton a system of linear language
equations of the form:

n
Xi:aiv\/lgij‘xj i:l,...,n, (8)
j=1

where theX; stand for unknown languages aad gjj—for given regular coeffi-
cients. Each unknowiX; of the system corresponds to the language accepted by
the automaton starting from stage As an example consider the first (untimed) au-
tomaton on Figure 4. The languages associated with its states satisfy the following
self-explanatory system of equations:

X3 = av b- X3
Xo =bva-Xj (9)
X1 =a-Xavb- Xs.
Using the well-known fact [Arden 1960] that any equation of the form
X=avp-X
admits a minimal solution
X=p"a,

it can be proved that any system of equations such as (8) has a regular minimal
solution and a corresponding regular expression can be found effectively from the
coefficients. If, in additiong ¢ ;; then the solution is unique. For example, the
solution for (9) is:

X3 =Db*.a
Xo =bva-b*-a
Xy =a-(bva-b*-a)vb.a

Adapting this proof to timed automata is problematic as the timed automaton
of Figure 4 shows. In this automaton, the transition frgnto g, resets the clock

Timed Regular Expressions 193

and hence a fragment of the equationdpwill be X; =(a)s- X5 Vv - - -; however,

we cannot do the same and u8®, - X3 for that part of X; accepted viays,
because after completing actibrthe automaton enters stajgwith a clock value

other than zero. To tackle this problem we could associate a language with every
configuration of the timed automaton, that is, ¥gt, denote the language accepted
starting from state; and clock valuation. This would lead to an infinite number

of variables and equations. We use an alternative solution, namely ass¥ciate
with the language accepted from (0) and use the absorbing concatenation for
non-resetting transitions. The system of equations for the automaton is thus

X3z = (@)gV (b)s - X3
X2 = (D)7.00) V (@)[0,10)© X3
X1 = (@)s- X2V (b)2 0 Xa.

Such “quasi-linear” equations, which use both kinds of concatenation, can be writ-
ten for anyone-clockautomaton. However, when an automatdnhas several
clocks, the set of transitions cannot be partitioned into resetting and nonresetting
ones, and we need first to split the automaton into several one-clock automata, the
intersection of their languages gives the languagd.dfor each such automaton,

we define the corresponding equations and by showing how such equations can be
solved the proof of Kleene theorem will be completed.

6.2. ROM TIMED AUTOMATA TO ONE-CLOCK AUTOMATA. The reduction into
one-clock automata starts with a language-preserving transformation on the au-
tomaton, which eliminates undesirable features as a preparation for the translation
into expressions. Then we “determinize” the automaton by assigning a distinct
letter to every transition outgoing from any state. Having done that we can split
the automaton into several one-clock automata from which language equations
are constructed.

An automaton iglisjunction-fredf for every transition ¢, ¢, p, a, q'), the for-
mulag is a conjunction of simple tests € |) and their negations. An automaton is
strongly deterministi it contains nce-transitions and for any staggand any letter
a the transition relation contains at most one outgoing transition fydabeled
by a. Note that strong determinism is a syntactic property which is sufficient but
not necessary for determinism—the latter can be implied by empty intersections of
guards for two transitions labeled by the same letter.

LEMMA 6.1 (DISJUNCTION-FREE AND STRONGLY-DETERMINISTIC AUTOMATA).
From any timed automatosl over ¥ one can construct a disjunction-free and
strongly deterministic automatad’ over X', and a renaming : ¥ — X’ such
that L(A) = 6(L(A")).

PrROOF To get rid of disjunctions we first convert every transition guard
into a disjunctive normal form (DNF$ =¢1V ¢oV --- V ¢ Where everyg,
is a conjunction. We then replace every transitida (q, ¢, p, a,q’), where
d=¢1V PV -+ V¢ by Kk transitions of the formd, ¢i, p,a,q),i =1,...,k
Clearly, this automaton accepts(A). Any disjunction-free automatod =
(Q,C,A,X,s, F) can be converted into a strongly deterministic automaton
A = (Q,C, A", X x {1..M}, s, F), whereM is the maximal number of tran-
sitions with the same label outgoing from the same stAteis obtained from
A by replacing any transitiong(¢, p, a,q’) by (@, ¢, o, (a,i), q"), choosing a

194 E. ASARIN ET AL.

differenti component for each transitiangoing from statey. For the renaming
0 :(ZU{e}) x {1L..M} - X U {e} defined by the formulé(a, i) = a we have the
language equality(L(A")) = L(A). O

THEOREM®6.2 (REDUCTION TOONE-CLOCK AUTOMATA). Let A be a timed
automaton with k clocks. One can build k one-clock autorséta. .., Ax and
a renaming) such that

k
L(A) =6 (ﬂ L(Ai)> .
i=1

PROOF. First, we transformd into a disjunction-free and strongly deterministic
formA'=(Q’, C, A’, ¥', 8, F’) and find arenaming such that. (4) = 6(L(A")).
LetC ={xy, ..., X}. We separatel’ intok automata4; = (Q’, {x}, A{, X', s, F)
such that for everyq, ¢, p,a,q’) € A’ thereis §, ¢i, pi,a,q’) € A;j such that
pi =p N{X} andg¢; is obtained fromp by substitutingirue in every occurrence
of x; el orof x; ¢ 1 for everyj #i. In other words, every; respects only the
constraints imposed by the cloek and ignores the rest of the clocks. Since the
automatond’ is strongly-deterministic, every accepted sequence is atrace of exactly
onerun, and this ishe sameun in everyA;. A run is possible in every; iff it is
possible ind’. [

An example of the translation appears in Section 6.6.

6.3. FQUATIONS FORTIMED AUTOMATA. From one-clock automata, we derive
timed language equations involving theoperation and whose solutions involve
also the® operation. Both can later be eliminated using the procedure described in
Section 3.

Definition6.3 (Quasilinear Equations A system of quasilinear timed lan-
guage equations has the following form:

n n
Xi:aiv\/lgij‘xj\/\/)ﬁjoxj, i:l,...,l’l, (10)
j=1 j=1

where theX; stands for unknown timed languages and the coefficigni;, yij—
for given timed languages.

To avoid some complication with non-unigque solutions (and non-associative multi-
plication), we consider onlyormal systems of equatiomghere all coefficients
satisfy

Bij "Ry =0; yj "Ry =0, (11)

that is, any sequence in any coefficient language except; thehould contain at
least one discrete event from

Definition6.4 (From One-Clock Automata to Equatigns Let A = (Q, {x},
A, X, s, F) be a one-clock automaton. The system of equations associated with
is (10) with an unknowr¥; for everyq, € Q. The coefficienty; is the disjunction
of expressionga), for all the transitionsdi,x € I, p,a, f)e Awith f e F. The

Timed Regular Expressions 195

coefficientsp;;, y; are constructed from the transitionsAnas follows:

Transition Coefficient

(QNX € Is{X}sa’ qJ) IBIJ = <§>|
(qi7xelv®’a’qj) Vlj :(§>|

Note that if the transition guard of the transitiontige, then the corresponding
coefficient is just.

The following self-evident lemma specifies the connection between the language
of a timed automaton and the constructed equations.

LEMMA 6.5. Let L be the language accepted by the automaton from configu-
ration (g, 0). Then X = L4, ..., X, = L, is a solution of Eq(10).

6.4. DLVING QUASILINEAR EQUATIONS. The rest of this section is devoted to
the description of the solution algorithm, which is an adaptation of the standard
Gaussian elimination procedure used for linear equations.

The following lemma gives a solution to a single equation with only one
operation.

LEMMA 6.6. Lete, 8, y be timed languages.

(1) The smallest solutionto X a vy o Xis X° = y® o a;
(2) The smallest solutionto ¥ a v B-Y is Y = g* . «;
(3) If B andy satisfy the normality conditiofiL1) then these solutions are unique.

PROOF. The proof is similar to the proof of the same result for untimed equa-
tions; we give a sketch only for the absorbing concatenation.

First, we verify thatX is a solution by substituting it into the right-hand side of
the equation:

avyoXP=avyoy®Poa=(vy®oa=X"

The minimality proof proceeds as follows: L&t be a solution, that isX! =« v
y o XL, The inclusionX® = y® o « C X* follows from the following statement,
which can be proved by straightforward induction omer

vn(yMoa c Xb.

In order to prove unigueness (under normality hypothesis) we introduce the
discrete lengthy of time-event sequences. The morphism7 — Nis defined by
n(r) = Oforallr € R, andn(a) = 1foralla € . Note thaty(uov) = n(u)+n(v)
wheneveu o v is defined.

The proof of the inclusionrX! ¢ X° uses the normality condition op and
proceeds by contradiction. Suppose the inclusion does not hold andbeta
sequence X! — X% with the minimal possible discrete lengtkw). SinceX? is
a solutionw € a Vv y o X1. The sequence cannot belong tae ¢ X°. Hencew
admits a decomposition= u o v with u € y andv € X*. The normality condition
guaranteesthgi(u) > 0, hence;(v) = n(w) — n(u) < n(w). Sincen(w) is minimal
in X! — X0, this implies thav € X°; hence,

w=uoveyoX®=yoy®oa=y®oac X

which contradicts the hypothesis anand concludes the proof[]

196 E. ASARIN ET AL.

In the sequel, we use this lemma in a specific situation whean depend on
X. To justify such a usage we prove the following statement.

COROLLARY 6.7. Suppose thag and y satisfy the normality conditiofiL1),
and h(X) is any language-valued expression depending on X. Then

—the equation X= h(X) v y o X is equivalent to X= y® o h(X);
—the equation ¥= h(X) v 8 - Y is equivalent to Y= g* - h(X).

ProOF The proofs of the two statements are similar and we give only the first
one. LetX? be a timed language. It is a solution of the first equation whenever
it satisfiesX®=h(X% v y o XO, or, equivalently, whenever it is a solution of
the equationX =h(X%) v y o X. The languageX? is a solution of this equation
if and only if it is equal to its unique solution provided by Lemma 6.6, that is,
X9 =y ®oh(X0). The last equality holds if and onlyX? s a solution to the equation
X = y® o h(X). This concludes the proof of equivalence of the two equations.

THEOREM 6.8. A normal system of quasilinear equations has one and only one
solution. This solution is regular. Its regular expression can be obtained algorith-
mically from expressions for the coefficients.

PrROOF The algorithm for solving the system (10) consists in iterated applica-
tions of Corollary 6.7. It has four stages, the first two treatdtloperation and the
next two—the standard concatenation.

At the first stage, we use the first equation and Corollary 6.7 to expreas

n n
X1=y1®10(061\/\/ﬂ1j-Xj\/\/)/”OXj).

j=1 j=2

Notice thatonly the occurrence©X is eliminated, while those oK, remaininthe
equation. By opening the parentheses (using Proposition 3.2, whose assumptions
are satisfied because the system is normal), this equation is transformed to the form

n n
/ / /
Xp=o1 v \/B1j - X; v \/ v 0 Xj.
j=1 j=2

We substitute this expression into th¥; occurrence oKX in the second equation,
solve it for X, and so on untiX, for which we find an expression that contains only
occurrences of unknowns of the fordd and noto X. Then the second stage starts
by going backwards, putting the expression ¥y into equation numben — 1.
This allows to find forX,,_; an expression free from occurrences&f,, until we
reachX; once again. Now the system has a standafirete form

n
X =a v \/ Bl - Xj, (12)
j=1

which is the starting point of the standard solution procedure for equations over
Kleene algebra. We repeat the same procedure by expressiag

n
X1= By} (ai’v\/ﬁfj -X,-) :
j=2

Timed Regular Expressions 197

put the result into the second equation, fidg and so on. The fourth (and last)
stage consists in going backwards putting the expressiokforo equatiom — 1
and so on. This ends up with finding an extended regular expression for X¥yvery
and concludes the algorithm and the proof of Theorem &6.8.

COROLLARY 6.9. From a one-clock automaton, one can construct an extended
timed regular expression that denotes its language.

6.5. MaIN RESULTS Sincef€ are equivalentté (and hence languages defined
by extended timed regular expression are regular), Corollary 6.9 concludes the new
proof of the following important result.

THEOREM 6.10. The language accepted by any one-clock automaton is regular.
Together with the reduction of Theorem 6.2, this gives:

THEOREM6.11 (AUTOMATA = EXPRESSIONS. Everylanguage accepted by a
timed automaton can be represented by the expression

()

wheref is a renaming ang; are timed regular expressions.
We have proved the main result of this paper:

THEOREM6.12 (KLEENE THEOREM FORTIMED AUTOMATA). Timed automata
and generalized timed regular expressions have the same expressive power.

6.6. FROM AUTOMATA TO EXPRESSIONSAN ExAMPLE. Consider the automa-
ton A in Figure 5. Getting rid of disjunctions, we obtaiti. By splittinga intod and
e, and labeling the-transition byc, we get the strongly deterministic automaton
A” which is separated into two one-clock automdtaand.A,. Hence,

L(A) = L(A) = 0(L(A") = 8(L(A1) N L(A)). (13)
To find the expression fdr(.A;), we write the language equations

U
V=>b
W = ¢

After substitutingb - U instead ofV and¢ instead ofW, we obtain:
U = (((d)z.00) V€ 0b)-U v,
which can be immediately solved using Lemma 6.6:
L(A1) =U = (((d)a.0) V€) 0 b)" - C.

For A,, the equations are

(Do) VE) oV VECOWVE
b-U

X = (dVv(&wg)oYVcoZve
Y =boX
Z =10

198 E. ASARIN ET AL.

b/z:=0
Fic. 5. Constructing an expression from an automaton.

and after substitution we get
X =((dV(e)wg)ob)oXvec,
whose solution is
L(A2) = X = ((dV (®a9) ob)® oc.
Together with Eq. (13), it gives @£E-class expression fdr(A):
L) = 0((({Dz.oy V&) o)~ 0) A (((d V (Blwe)) 0 D)7 o).

If we want to avoido and ® operations, elimination algorithms from Section 3
should be applied. It is easy for the first language:

L(A1) = (({d)z.00) VE) -b)" - C

Timed Regular Expressions 199

but less so for the second:

L(A2) = (dbVv (&)a9b)c
= (db)®cv
((db)® o €)(1,9)b) o (db)®c v
((dD)® o e)w.gb) o (db v eD)® o €}, o b o (db)®C
= (db)'cv
((db)*€)(1,9)b)(db)*c v
(

(db)*e)w.ob)(db v en)*e),, ¢ b(db)*c.

7. Infinitary Timed Languages

7.1. INFINITE SEQUENCES w-LANGUAGES AND w-AUTOMATA. For untimed
sequences and automata, the theowy-tdnguages (languages whose elements are
infinite sequences) is not as nicely algebraic as the theory of finitary languages.
The situation is aggravated when we move to time-event sequences where we have
two notions of infinitude, metric and logical, which do not coincide.

In the finitary case an element @f(X) can be viewed as an alternating finite
sequence; - Uz - - - Uy Of elements iR , UX*. The logical length of such a sequence
is the sum of finitely many integers and its metric length is a sum of finitely many
real numbers. One possibility to move to infinitary language is to definet@me-
event sequence ov&l as an infinite alternating sequengg- u, - - - of elements
fromR, U X*. Ideally, we would like both logical and metric length to be infinite
but this is not easy to guarantee in a simple way.

Concerning logical length, note that already in the untimed case, if a language
L containse, thenL®, the language consisting of all infinite concatenations of
elements fronk, might contain finite strings. Moreover, an infinite sequence might
become finite under a length-reducing renaming that maps some letteiSitoi-
larly, the image of an infinite time-event sequence such as

l1-a-(1-b)*=1-a-1-b-1-b-1-b---

under a renaming which mapsto ¢ is the logically-finite time-event sequence
1.-a- oco0. So to keep our languages closed under renaming, and to account for
runs of timed automata with infinitely manytransitions, we allow time-event
sequences with infinite metric length but with finitely many events.

Infinite metric length cannot be guaranteed locally due to the existence of con-
verging sequences of reals. For example, the infamous infinite sequence

due toZenoof Elea has a finite metric length. Consequently. ifs a language

in which there is no positive lower-bound on the metric length of its elements, for
exampleL = (a)(o,], the setL” contains Zeno behaviors. Our design choice is to
exclude explicitly such Zeno behaviors from the languages that we consider.

200 E. ASARIN ET AL.

Definition7.1 (@-Time-Event Sequences and Timed.anguages An o-
time-event sequence is an alternating (finite or infinite) sequence

%‘:ul.uz...

of elements inR, — {0} U =%, such that,(¢) (the sum of the real elements) is
infinite. When the sequence is finite, the last element musbt bEhe set of all such
sequences is denoted By(X) and its subsets are called (timeejanguages.

The concatenation - £ wherev € 7(X) and¢ € 7,(X) is defined almost as
before, resulting in am-time-event sequence. For an infinite sequence-, . ..
of time-event sequences such thaf”, A(vi) = oo, their infinite concatenation
-2, is defined in the natural way. When extending this definitiomt#anguages,
by letting

Oo L; z{oo Vi 1V € Li}

i=1 =1
we do not allow an arbitrary choice of's but only those, whossum of lengths
diverges

Definition7.2 (Timedw-Regular Expressions Timed w-regular expressions
over an alphabe® (also referred to as-X-expressionsare constructed from
(finitary) regular expressions using the following families of rules.

(1) If ¢ is aX-expression, thep® is anw-X-expression.

(2) If ¢ is a Z-expression andr, y1, ¥, are w-x-expressions, thep - ¢ and
Y1 V Y arew-X-expressions.

(3) If Y1, ¥rp arew-X-expressions angg is anw- o expression for some alphabet
Yo, andd : Yo — X isarenaming, their; Ay, andd (o) arew-X-expressions.

Expressions formed using rules (1) and (2) are called timeegular expressions
and denoted by, (X). If, in addition, rule (3) is applied we call them generalized
timedw-regular expression and denote themdsy, (2).

'[h)e semantics of these expressions is defined via the functipn{f. (=) —
27.(¥) as:

oo

I[(/)w]lw = i=.1|[§0]l
[o-v]e =1l¢l- [¥]o
[viVvvele = [¥1]lo Ul¥2le
[V1Av2le = [Vilo N[¥e2ls
|[9(w)]|w = 9(|[¢]|w)

A timed w-automaton is a tuplel = (Q, C, A, ¥, s, F) where all the compo-
nents are as in finitary timed automata. An infinite run of the automaton is an infinite
sequence of steps

(o> Vo) = (0, V1) —=> - --

such that the sum of the durations of the steps divergestrabeof a run is the
w-time-event sequena - 2 - - -. An accepting run is a run starting from the initial
configuration ¢, 0) and visitingF infinitely many times, thatis} € F for infinitely
many discrete steps. Thelanguage of a timed automatdn, (A), consists of all

Timed Regular Expressions 201

the traces of its accepting runs. Note that due-teansitions the trace can be a
finite sequence.

7.2. FROM w-EXPRESSIONS TQw-AUTOMATA. As in the finitary case, the in-
ductive construction is rather straightforward. As a basis, we take the automaton
for any finitary-timed regular expression. From the proof of Theorem 2, we can
assume that timed regular languages are accepted by automata without transitions
outgoing from accepting states. The automatongdris similar to that forp™.

The accepting state is visited infinitely often in theautomaton iff infinitely many

finite prefixes of the time-event sequence lead fot f in the finitary automa-

ton. The concatenation of a language andvalanguage, as well as the union of
two w-languages and the renaming are almost identical to the finitary case. In-
tersection requires some more details, because, unlike finite words which have to
reach accepting states of both autonsitaultaneoushat the end of the run, the
visits of anw-time-event sequence in such accepting states need not be synchro-
nized. All the constructions are minor adaptations of their untimed analogues (see
Thomas [1990]).

Definition7.3 (w-Automata from Expressions Let A = (Q,C, A, Z,s, F)
be the timed automaton accepting the languagk find let.A; = (Q1, Cq, Ay,
2,8, F1) and A, = (Qa, Cy, Ao, X, 5, F2) be the timedw-automata accepting
thew-languages {/1] ., and [y,] ., respectively.

—The automaton for§“], is (QU {f’},C, =, A’, s, {f’}) whereA’ is obtained
from A by adding for each transitiom(¢, p,a, f) € A with f € F, a new
transition €, ¢, C, a, f’). Another transition {’, (x = 0), 4, ¢, s), wherex is
any clock, is also added (if there is no clock in the automaton we should add
one).

—The automaton ford - ¥»] is (QU Q,, CUCy, A’, X, s, ;) whereA’ is A U
A, augmented with transitions of the form, (@, C,, a, ;) for every transition
(9,9, p,a, f)in Awith f € F.

—The automaton forf; v ir,] ., is (Q1UQoU{s}, CLUC,, A, X, s, FUF,), where
A is constructed from\; U A, by adding twoe-transitions §, x = 0, @, ¢, §),
wherex is any clock and € {1, 2} (if there is no clock in the automata we should
add one).

—The automaton for ¢; A @], is (Q1 x Q2 x {1,2,3},Cy U Cy, A,
3, (s1, &, 1), F) where A is constructed fromA; and A, in the following
way:

—for every @, ¢1. p1, @, Q7)) € Ap and @, ¢2, p2, @, g5) € A, the relationA
contains the transitiongdy, dp, i), 1 A @2, p1 U p2, &, (dy, 0y, j)) Whenever
i=3andj=1,o0rie{l,2}andj=i,ori=1,q;€ Fyandj =2, ori =2,
g, € Fandj =3.

—for every @u, ¢1, p1, €, 07) € A1 the relation A contains the transitions
((q, O, 1), ¢1, p1, €, (47, G, J)) Whenever =3 andj =1, ori € {1, 2} and
j=i,ori=1,qeFandj=2;

—for every @@, ¢2. p2, €, 05) € A, the relation A contains the transitions
((qls QZ, I)s ¢2’ 02, &, <qlv qé’ J>) I =3 andj :1’ Ori € {1’ 2} and J :i! or
i=2,0peFandj=3.

The accepting setiB = Q1 x Q2 x {3}.

202 E. ASARIN ET AL.

—The automaton forf(v1)] ., whered : & — ¥’,is(Q1, C1, A, ¥/, 51, Fp) with
A obtained fromA, by replacing every transition of the form,(¢, o, a, @) in

A1 by (@. ¢.p.6(a).q).
With this construction, we have the first part ai&@ii—-McNaughton theorem.

THEOREM 7.4 (w-EXPRESSIONS= w-AUTOMATA). Every (generalized) timed
w-regular language can be accepted by a tinagdutomaton.

7.3. FROM w-AUTOMATA TO w-EXPRESSIONS This construction is based on
Theorem 6.11 and on the proof of the untimed theorem (3ezhi1960] and
McNaughton [1966]). We assume that the automaton has gone through all the
transformation described in Section 6.2 and also converted in a state-reset form, as
described below.

A one-clock timed automaton ®tate-reseif the transitions entering a given
state either all reset the clock, or all do not reset it. In order to make a one-clock
automaton state-reset, we split every state not satisfying this property into two copies
and redirect the resetting incoming transitions to the first state and nonresetting to
the second. This transformation can double the number of states and does not affect
the language accepted.

Let A =(Q, {x}, A, 2, s, F) be a one-clock»-automaton. Clearly,

Lo(A) = [Lu(Ar),

feF

whereAd: = (Q, {x}, A, Z, {s}, {f}). Hence, it is sufficient to prove regularity for
automata with one accepting stéte= { f}. If f is a resetting state, we can use the
same expression as in untimed automata:

Lo(Af) = Lst - (Lts)”

whereL g is the regular language consisting of all time-event sequences leading
fromsto f andL ¢¢ is the regular language consisting of the time-event sequences
inducing a cycle fromf to f. However, whenf is not resetting, this will not work
directly becausd can be entered with different clock valuations. The following
technical lemma introduces several languages related to one-clock automata and
states their regularity.

LEMMA 7.5. LetA = (Q, {x}, A, X, s, {f}) be a one-clock automaton with
m € N being the largest constant appearing in the guards, and Jet ¢ Q be two
states. The following timed languages are regular:

—The language R consisting of traces of all the runs gf starting in(p, 0) and
terminating by a transition to g and including only non-resetting transitions.

—The language R™ consisting of traces of all the runs gf starting in(p, 0) and
terminating by a transition t¢qg, x) with some x> m.

—The language R~ consisting of traces of all the runs of starting in(p, x),
X > m, never resetting x and terminating by a transition to q.

PROOF The regularity proof for the first two is by a straightforward construc-
tion of one-clock sub-automata gf accepting these languages and by application
of Theorem 6.10. For the third, we just erase resetting transitions and substitute
m + 1 instead ofx in all the guards and hence transform each of them into either

Timed Regular Expressions 203

true or false Note that the expression obtained for this language contains no
timing restrictions. [

Suppose now thaf is nonresetting. All the accepting runs split into two cat-
egories: those with finitely many resets (whose traces form the landugge
and those with infinitely many resets (langudgg). We prove regularity of both
these languages.

Finitely Many Resets. Let m denote the maximal constant occurring in the
guards of4. Any accepting rug with finitely many resets eventually stops resetting
the clock and hence the clock value crogsesd remains greater thamever after.
Hence, such a run can be decomposed into a prefix containing all the resets and
leading for the first time after that tb with x > m, and an infinite suffix making
cycles fromf to f with x always greater tham. Because timing does not play a
role afterx > m, the languages accepted from k) and from (f, x") for x, X’ > m
are identical and hence we can write:

Lin = R;;™ (RTY7)”,
which concludes the proof of regularity bfi,.

Infinitely Many Resets. Since f is not a resetting state, such an infinite run
should visit infinitely many times a resetting stateMoreover, there is always a
resettingg such that for infinitely many occurrences, there are no resets betyveen
and the next occurrence 6¢f

t
(5,0) > --- = (q,0) >
no resets

(f,X))—> -+ —>(@,0— - -~-=>(f,x)) > ---—>(q,0)---

Conversely, any run admitting such a decomposition is an accepting tdn of
This immediately gives the following expression tox,:

Loo = U Rsq - (Raf o Riq)®

g resetting

which concludes the proof.[]
Consequently
CLAam 7.6. Thew-language accepted by any one-clock automatanrsgular.
This implies:

THEOREM 7.7 (w-AUTOMATA = w-EXPRESSIONS. Everyw-language accep-
ted by a timedv-automaton can be represented as

/(Av)

wheref is a renaming andj; are timedw-regular expressions.
And we can conclude:

THEOREM 7.8 (BUCHI-MCNAUGHTON THEOREM FOR TIMED AUTOMATA).
Timedw-automata and generalized timegiregular expressions have the same
expressive power.

204 E. ASARIN ET AL.

8. Discussion

In this section, we summarize the results of this article and compare our approach to
other relevant works. In our view, there are three major contributions in this article:

(1) Clean algebraic definitions of timed behaviors as elements of the monoids of
time-event sequences or of signals.

(2) The definition of timed regular expressions as a formalism for specifying timed
languages.

(3) The mainresults and their proof techniques that shed some light on the structure
of timed automata and timed languages, in particular the separation of clocks
and the elimination of and®.

The algebraic definitions, we feel, are simple and intuitive as they treat the
succession of events and the accumulation of time-passage in a uniform manner
using the same monoid operation. In contrast, timed traces consisting of sequences
of time-stamped events do not have this nice monoidal intuition. Compare our
concatenation af - aands- b intor - a - s- b with the concatenation of the timed
traces §,r) and p, s) into (a,r), (b,r +s).

Our design choices for the expressions are, perhaps, the closest one can getto the
spirit of the untimed theory in the sense that the expressions do not réfézrnoal
mechanismsr hidden variable®f an accepting automaton (states and clocks) but
only to externally observablproperties of the languages. The only (unavoidable)
deviation from this spirit is the renaming operator. An alternative formalism that
does mention clocks explicitly was proposed in Bouyer and Petit [2002] where
the authors define regular expressions over an alphabet consisting of tuples of the
form (¢, a, p) corresponding to the transitions of the timed automaton, wiere
is a condition on clocks and is a reset. For example, the language defined by
our expression

((@a-bs-gn(@-(b-c)s)
will be written in their syntax as
(@ x2:=0)-(x1=3,b)- (x2 =3,¢).

The formulation and solution of language equations over this alphabet of transitions
is as simple as for untimed automata. A similar idea was phrased in Bouyer and
Petit [1999] in terms of expressions constructed using a variety of concatenation
operators, each corresponding to a subset of clocks being reset (in the case of one-
clock automata this boils down to theando operations). Using these formalisms,
intersection and renaming are avoided at the high price of being very close to the
timed automata themselves.

An alternative way to get rid of intersection is to usany-sortecparentheses,
each corresponding to another clock. For example, the above language could be
written as

(@-|b)s-cls.

The drawback of this formalism is that its syntax does not admit a simple inductive
definition and, likewise, its semantics cannot be inductively defined. Hence, it can
be seen as a syntactic sugar for separation of clocks and intersection.

Timed Regular Expressions 205

Ourresult provides a “Computer Science” version of Kleene Theorem: matching
the expressive power of the most commonly-accepted automaton-based formalism
for real time by a class of regular expressions. Within the algebraic theory of
automata, Kleene Theorem is viewed as a (rare) instance of a coincidence between
two different notionsrecognizabilityandrationality. Recognizability of a subset
L of a monoidM can be defined in automaton-free terms. tetbe the syntactic
right congruence associated with namely

u~v iff VvweMUu-wel & v-wel).

The languagé is said to be recognizableif has finitely many congruence classes
(and, according to Myhill-Nerode Theorem, this is true if and onlyi§ accepted
by a finite automaton). The class of rational subsets of a madwloislthe rational
closure of the finite sets, that is, the smallest class containing finite sets and closed
undery, - and*. Kleene Theorem states that for the free mor®idecognizability
and rationality are equivalent (and this is not true for most other monoids of interest).

This work is concerned with the mondild X)) = X*HR ., for which, due to the
density ofR, , these two notions are not very useful.Rn the only recognizable
subsets ar@, {0}, R, and (Q co). Alanguage such ag); -b has uncountably many
right-congruence classes becausé sfor everyr # s € [0, 1]. These observation
were made already in Rabinovich and Trakhtenbrot [1997] and the conclusion is
that only “speed-independent” language, i.e. those invariant under “stretching” are
recognizable. Such languages can be written using expressions that do apt use
at all or use it only with intervals [00) or (0, o). Hence, recognizability in this
sense is not a useful concept for quantitative time.

Similarly, rationality forR, and7 (X) does not coincide with the expressive
needs of timing analysis. On one hand, the class of rational subsRtsaiintains
sets consisting of isolated irrational (and even uncomputable) numbers which can-
not be expressed nor accepted by timed automata or any other reasonable device.
In addition they may contain arithmetical progressions. On the other hand, a very
natural subset dR, such as [01] is not rational since it cannot be generated from
finite sets by a finite number of applications of the algebraic operations.

These two problems can be resolved by considering the rational clostraraf
the set of all integer bounded variables. This solution eliminates isolated irrational
points and allows to express intervals but the expressive power is still very weak: the
set(a),21 - (b)[2.41 is in the rational closure but the set denoteddyb)(s ¢ is not.
Such sets correspond to one-clock timed automata that reset the clock after each
transition (see Dima [2001]). An interesting option for overcoming this limitation
is to introduce a newhuffleoperator, but this is beyond the scope of this article.
We may conclude that a Kleene theorem (in the strict algebraic sense) for timed
monoids is impossible.

REFERENCES

ALUR, R.,,AND DiLL, D. L. 1994. A Theory of timed automataheor. Comput. Sci. 12683-235.

ARDEN, D. 1960. Delayed-logic and finite-state machinesTheory of Computing Machine Design
Univ. of Michigan Press, pp. 1-35.

AsARIN, E. 1998. Equations on timed languages.Hgbrid Systems: Computation and Conjrol
T. A. Hezinger and S. Sastry, Eds. Lecture Notes in Computer Science, vol. 1386. Springer-Verlag,
New York, pp. 1-12,

206 E. ASARIN ET AL.

ASARIN, E., Caspl, P.,,AND MALER, O. 1997. A Kleene theorem for timed automataPimceedings
of the 12th Annual IEEE Symposium on Logic in Computer Sci@i€s'97) (Warsaw, Poland, June).
IEEE Computer Society Press, Los Alamitos, Calif., pp. 160-171.

BOUYER, P.,AND PETIT, A. 1999. Decomposition and composition of timed automatRréteedings of
the 26th International Colloquium Automata, Languages, and Program(f@#g_P’99), J. Wiedermann,

P. van Emde Boas, and M. Nielsen, Eds. Lecture Notes in Computer Science, vol. 1644. Springer-Verlag,
New York, pp. 210-219.

BOUYER, P.,AND PETIT, A. 1999. A Kleene/Bichi-like theorem for clock languages. Autom. Lang.
Combin, to appear.

BUcHI, J. 1960. A decision method in restricted second order arithmetRraceedings of the Interna-
tional Congress on Logic, Methodology and Philosophy of Scigicblagel, Ed. Stanford University
Press, Stanford, Calif.

ConwAy, J. H. 1971. Regular Algebra and Finite Maching€hapman & Hall, London, England.

DiMA, C. 2001. Real-time automati.Autom. Lang. Combin, @, pp. 3-24.

HERRMANN, P. 1999. Renaming is necessary in timed regular expressioRsoteedings of the 19th
Conference on Foundations of Software Technology and Theoretical Computer SEBMEES '199p
(Chennai, India, Dec. 13-15). Lecture Notes in Computer Science, vol. 1738. Springer-Verlag, New
York, pp. 47-59.

Howig, J. M. 1995. Fundamentals of Semigroup TheoBlarendon Press, Oxford, England.

LARSEN, K. G., FETTERSSON P.,AND Y1, W. 1997. WPAAL in a nutshelllnt. J. Softw. Tools Tech. Trans.
1,1-2 (Oct.), 134-152.

Li, X., TAO, Z., JANMIN, H., JANHUA, Z., AND GUOLIANG, Z. 1998. Hybrid regular expressions. In
Hybrid Systems: Computation and ContIA. Hezinger and S. Sastry, Eds. Lecture Notes in Computer
Science, vol. 1386. Springer-Verlag, New York, pp. 384—399.

MALER, O., MANNA, Z., AND PNUELI, A. 1992. From timed to hybrid systems.Real Time: Theory in
Practice J. de Bakker, K. Huizing, W.-P. de Roever, and G. Rozenberg, Eds. Lecture Notes in Computer
Science, vol. 600. Springer-Verlag, New York, pp. 447-484.

MCNAUGHTON, R. 1966. Testing and generating infinite sequences by a finite autorhatd@ontr. 9
521-530.

MCNAUGHTON, R., AND YAMADA, H. 1960. Regular expressions and state graphs for autoiR&a.
Trans. Elect. Comput. EC;39-47.

RABINOVICH, A., AND TRAKHTENBROT, B. 1997. From finite automata toward hybrid systems
(extended abstract). lFundamentals of Computation Theory, 11th International Symposium, FCT '97
B. S. Chlebus and L. Czaja, Eds. Lecture Notes in Computer Science, vol. 1279. Springer-Verlag,
New York, pp. 411-422.

THomMmAS, W. 1990. Automata on infinite objects. IHandbook of Theoretical Computer Science
J. V. Leeuwen, Ed. Vol. B. Elsevier, Amsterdam, 133-191.

TRAKHTENBROT, B. 1995. Origins and metamorphoses of the trinity: Logics, nets, automata. In
Proceedings of the 10th Annual IEEE Symposium on Logic in Computer Sciei@®'95). IEEE
Computer Society Press, Los Alamitos, Calif., pp. 506-507.

YOVINE, S. 1997. Kronos: A verification tool for real-time systerm. J. Softw. Tools Tech. Trans, 1
1-2 (Oct.), 123-133.

RECEIVED JUNE2001;REVISED DECEMBER2001;ACCEPTED DECEMBER2001

Journal of the ACM, Vol. 49, No. 2, March 2002.

