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Abstract—Real-time systems interact with their environment using time constrained input/output signals. Examples of real-time

systems include patient monitoring systems, air traffic control systems, and telecommunication systems. For such systems, a

functional misbehavior or a deviation from the specified time constraints may have catastrophic consequences [27]. Therefore,

ensuring the correctness of real-time systems becomes necessary. Two different techniques are usually used to cope with the

correctness of a software system prior to its deployment, namely, verification and testing. In this paper, we address the issue of testing

real-time software systems specified as a Timed Input Output Automaton (TIOA). TIOA is a variant of timed automaton [1], [2], [22],

[29]. We introduce the syntax and semantics of TIOA. We present the potential faults that can be encountered in a timed system

implementation. We study these different faults based on TIOA model and look at their effects on the execution of the system using the

region graph. We present a method for generating timed test cases. This method is based on a state characterization technique and

consists of the following three steps: First, we sample the region graph using a suitable granularity, in order to construct a

subautomaton easily testable, called Grid Automaton. Then, we transform the Grid Automaton into a Nondeterministic Timed Finite

State Machine (NTFSM). Finally, we adapt the Generalized Wp-method [23] to generate timed test cases from NTFSM. We assess the

fault coverage of our test cases generation method and prove its ability to detect all the possible faults. Throughout the paper, we use

examples to illustrate the various concepts and techniques used in our approach.

Index Terms—Testing, specification, implementation, timed automaton, real-time systems, fault coverage.
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1 INTRODUCTION

NOWADAYS, software is used to control safety critical
systems such as patient monitoring, air traffic control,

plant control, and telecommunication equipments. More-
over, we witness the rapid development and deployment of
new time dependent applications such as multimedia
applications. Contrary to nontimed systems, the functions
of real-time systems are time constrained and dependent.
Indeed, the behavior of a real-time system does not depend
only on the values of input and output signals, but also on
their time of occurrence. Ensuring the correctness of such
systems before the deployment, i.e., ensuring that it
functions correctly within the specified time constaints, is
a difficult and complex task.

Formal methods are often used as means to cope with
complexity. Many formal models have been proposed for
real-time systems [2], [26]. They are mainly real-time
enrichments of well-known models, such as Finite State
Machines, Petri Nets, etc. It has been reported in [27] that
misbehaviors of time dependent systems are often due to
nonrespect of time constraints. Verification and testing are
two different techniques that are usually used to cope with
the correctness of a system. Verification deals with the
specification of the system under consideration and aims to
ensure that the designed specification satisfies predefined
functional and timing requirements (see [2] for instance).
The correctness of the system specification does not

guarantee the correctness of its implementation (the end

product). Testing is an important activity, which aims to

ensure the quality of the implementation. Testing procedure

consists of generating test suites and applying them to the

implementation which is referred to as an Implementation

Under Test (IUT). There exist mainly three testing strategies:

white-box testing, black-box testing, and gray-box testing. In

white-box testing, the structure of the implementation is

known and the test suite is generated from the implemented

structures. In black-box testing, however, the structure of

the implementation is not known; we use the specification

of the required functionality at defined interfaces for test

generation, execution, and evaluation. Finally, in gray-box

testing, we assume that the modular structure of the

implementation is known but not the details of the

programs within each component. In this paper, we focus

on gray-box testing and we refer to it as testing.
An important aspect in the testing of an implementation of

a system is the fault model. It refers to all the potential basic

faults that can exist in an implementation. The test cases we

generate, with a test cases generation technique, are intended

to detect these faults. Actually, some techniques may be able

to detect all the potential faults, while other techniques may

fail in detecting some faults. The power of a test cases

generation technique to detect faults in an implementation is

referred to as fault coverage [36], [39], [38], [6], [8].
Test cases generation methods can be compared based

on their respective fault coverage. We can say that a method

A is more powerful than a method B, if A has a better fault

coverage than B. In other words, a method A is more

powerful than a method B, if A detects more faults than B.

However, for a more accurate comparison between test

cases generation techniques, other parameters such as the

length of test suites should be taken into account.
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In this paper, we first present a fault model for timed
systems. Then, we present the algorithm for test cases
generation, and assess its fault coverage. The model we use
to specify timed systems is the Timed Input Output
Automaton (TIOA), a variant of timed automaton [2], [29],
[22], in which clocks are real-valued variables, increase
synchronously at the same speed and measure the amount
of time elapsed since last initialization or reset. In addition,
this model consists of all clocks having bounded domains
[31] to indicate that clock values are relevant only under a
certain integer constant. In order to generate timed test
cases, we proceed as follows: First, as in [2], we use the
region graph as semantics for the TIOA to explicit the
elapsing of time and the relationship between clocks.
Secondly, we sample the region graph for a defined
granularity in a way that each state has an outgoing
transition labeled with the same delay (i.e., the granularity
of sampling). This leads to a reduction of the region graph
into a Grid Automaton, which is then transformed into a
Nondeterministic Timed Finite State Machine (NTFSM). Final-
ly, we adapt a well-known method [18], [23] for the
generation of test cases. As a result of these transformations,
our test method, Timed Wp-method, has a good fault
coverage and certainly a practical value.

The remainder of this paper is structured as follows:
Section 2 is devoted to the notations and definitions we
use in addition to the syntax and the semantics of TIOA.
Section 3 presents the test hypotheses used to generate
timed test cases and to assess to fault coverage of our
method. Section 4 introduces our test architecture. Section
5 discusses the conformance relation that should hold
between the IUT and its specification. Section 6 presents
our fault model for timed systems based on TIOA model.
Section 7 is devoted to the timed test cases generation
method, Timed Wp-method. In Section 8, we assess the
fault coverage of Timed Wp-method. In Section 9, we
discuss the other timed test cases generation techniques
and compare them to our method. We conclude in
Section 10.

2 NOTATIONS AND DEFINITIONS

In the subsequent sections of the paper, R denotes the set of
reals, R�0 the set of nonnegative reals, Rþ1 ¼ R�0 [ fþ1g,
N the set of nonnegative integers, N>0 ¼ Nnf0g and
Nþ1 ¼ N [ fþ1g. For t 2 R�0, btc denotes the largest
number in N that is not greater than t, i.e.,

btc ¼ maxfm 2 Njm  tg;

and fractðtÞ denotes the fractional part of t, i.e.,
fractðtÞ ¼ t� btc. An interval I is a convex subset of
Rþ1. An integer interval is an interval I with its both
bounds (InfðIÞ and SupðIÞ) in Nþ1.

The concatenation of two finite sets V1 and V2 is denoted
by “.” and defined as follows:

V1:V2 ¼ fv1:v2 j v1 2 V1 ^ v2 2 V2g;

where v1:v2 stands also for the concatenation of the
sequences v1 and v2. Let V n denotes n-times concatenation
of V (V n ¼ V :V n�1) and V 0 ¼ ", where " is the empty
sequence.

Definition 2.1: Timed Input Output Automaton. A Timed

Input Output Automaton (TIOA) A is a tuple ðIA;OA; LA;
l0A; CA; TAÞ, where:

. IA is a finite set of input actions that the TIOA receives
from the environment. Each input begins with “?,”

. OA is a finite set of output actions that the TIOA sends
to the environment. Each output begins with “!,”

. LA is a finite set of locations,

. l0A 2 LA is the initial location,

. CA is a finite set of clocks all initialized to zero in l0A,
and

. TA is the set of transitions.

A tuple ðl; l0; f?; !ga;R;GÞ 2 TA, denoted in the rest of the

paper with l �!f?;!ga;R;G
Al

0, represents a transition from location

l to location l0 on input or output action a (denoted by

f?; !ga). The subset R � CA specifies the clocks to be reset in

this transition and G 2 �ðCAÞ is a clock guard (time

constraint) for the execution of the transition. We assume

that transitions are instantaneous in TIOA. The term �ðCAÞ
denotes the set of all guards over CA built using Boolean

conjunction over atomic formulas of the form x < m, x  m,

x ¼ m, x > m, and x � m, where x 2 CA and m 2 N . The

operators  , ¼ , � , and > are particularly used in output

action constraints. The choice of naturals as bounds in

constraints will help us, later, in the discretization of the set

of reals into integer intervals, reducing thereby the state

space of timed systems. In this definition, we assume that

each clock x 2 CA has a domain ½0; Cx� [ f1g, where Cx is

the largest integer appearing in a constraint over x in the

automaton, i.e., Cx ¼ maxfc j ððx < cÞ _ ðx  cÞ _ ðx ¼ cÞ _
ðx > cÞ _ ðx � cÞÞ is a constraint over x}. This means that the

value of each clock x is relevant only under the integer

constant Cx. So, we will represent each clock value greater

than this constant by þ1 or simply 1, and we write:

8" > 0; 8x 2 CA;Cx þ " ¼ 1. Moreover, we define the in-

clusion between clock domains as follows: A clock domain

½0; Cx� [ f1g is included into another clock domain ½0; C0
x� [

f1g if and only if Cx  C0
x.

Fig. 1 shows a TIOA with an input action ?In, an output

action !Out, two locations l0 (the initial location) and l1, two

clocks x and y, and three transitions. For example, the

transition l1 �!?In;fx;yg;x<1^y<2
l0 is executed on input action ?In

only when the values of x and y are, respectively, less than 1

and 2. In that case, it resets clocks x and y and brings the

machine back to its initial location l0.
Informally, the semantics of TIOA are as follows: The

TIOA starts at initial location with all clocks initialized to

zero. Then, the values of clocks increase synchronously and

measure the amount of time elapsed since they have been

last initialized or reset. At any time, the machine whose

current location is l can make a transition l �!f?;!ga;R;G
l0

provided the current values of clocks satisfy the time

constraint G. In this case, all the clocks in R are reset and the

machine goes to location l0. To formally describe these

1024 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 11, NOVEMBER 2002



semantics, we need to define first the clock valuation and

the state of a TIOA.

Definition 2.2: Clock valuation. A clock valuation over a set of

clocks C is a map v that assigns to each clock x 2 C a value in

Rþ1. We denote the set of clock valuations by V ðCÞ.
A clock valuation v satisfies a clock guard G, denoted

v � G, if and only if G holds under v.

For d 2 R�0, vþ d denotes the clock valuation that

assigns a value vðxÞ þ d to each clock x. For X � C, ½X :¼
d�v denotes the clock valuation for C that assigns the value d

to each x 2 X, and agrees with v over the remaining clocks.

Definition 2.3: States of TIOA. The state of a TIOA A ¼
ðIA;OA; LA; l0A; CA; TAÞ is a pair ðl; vÞ, where l is a location

(l 2 LA), and v is a clock valuation (v 2 V ðCAÞ). The initial

state of A is represented by ðl0A; v0Þ, where v0ðxÞ ¼ 0 for each

clock x 2 CA.
The set of all states is denoted by SA.

The semantic model of a TIOA A is given by a timed

labeled transition system SðAÞ that consists of the state set

SA, the label set R�0 [ ðIA [OAÞ (input/output actions and

time increments), and the transition relation �!a , for

a 2 R�0 [ ðIA [OAÞ. The timed labeled transition system

SðAÞ is infinite (because the delay transitions are infinite).

So, it cannot be used for test generation. The solution is

therefore to cluster equivalent states of SðAÞ into equivalent

classes (clock regions) by using the equivalence relation �
[2] on the set of clock valuations V ðCAÞ. The resulting

automata is called region graph or region automata.

Definition 2.4: Clock region. Let A ¼ ðIA;OA; LA;
l0A; CA; TAÞ be a timed input output automaton, v and v0

2 V ðCAÞ; we say v � v0 iff :

1. 8xi 2 CA; bvðxiÞc ¼ bv0ðxiÞc,
2. 8xi; xj 2 CA j ððvðxiÞ 6¼ 1Þ ^ ðvðxjÞ 6¼ 1ÞÞ;

ðfractðvðxiÞÞ  fractðvðxjÞÞ , fractðv0ðxiÞÞ 
fractðv0ðxjÞÞÞ, and

3. 8xi 2 CA j vðxiÞ 6¼ 1; ðfractðvðxiÞÞ ¼ 0
, fractðv0ðxiÞÞ ¼ 0Þ.

A clock region for A is an equivalence class of clock valuations

induced by � . Let ½v� denotes the clock region to which v

belongs.

The clock regions corresponding to the TIOA in Fig. 1 are

shown in Fig. 2. Here, we have 44 clock regions, each of them

is identified by a number and characterized by a set of linear

inequations. Moreover, we distinguish between three kinds

of clock regions: the corner points (e.g., region R1: x ¼ y ¼ 0),

the open line segments (e.g., region R10: 0 < x < 1 and
y ¼ 0), and the open regions (e.g., region R32: 0 < y < x < 1).

Definition 2.5: Region Graph. Let A ¼ ðIA;OA; LA;
l0A; CA; TAÞ be a timed input output automaton. A region
graph (or a region automaton) of A is an automaton RG ¼
ð	RG; SRG; s0RG; TRGÞ where:

. 	RG ¼ ðIA [OAÞ [R>0,

. SRG ¼ fðl; ½v�Þ j l 2 LA ^ v 2 V ðCAÞg,

. s0RG ¼ ðl0A; ½v0�Þ, where v0ðxÞ ¼ 0 for all x 2 CA,

. RG has a transition s �!f?;!ga
s0, from s ¼ ðl; ½v�Þ to s0 ¼

ðl0; ½v0�Þ on action f?; !ga 2 ðIA [OAÞ iff there is a

transition l �!f?;!ga;R;G
Al

0 such that v � G and v0 ¼
½R :¼ 0�v, and

. RG has a delay transition s �!d s0, from s ¼ ðl; ½v�Þ to
s0 ¼ ðl; ½v0�Þ on time increment d > 0, iff ½v0� ¼ ½vþ d�.

Fig. 3 shows the region graph for the TIOA given in
Fig. 1. The symbol d ð0 < d < 1Þ is a real number
representing the progression of time. The terms l0 and l1
are the locations of TIOA, and the symbols Ri; i 2 N>0 are
clock regions of Fig. 2. Contrary to Fig. 2, Fig. 3 shows only
the clock regions reachable from the initial state
ðl0; R0Þ ¼ ðl0; x ¼ y ¼ 0Þ. The system starts at its initial state
with all its clocks set to 0 (the clock region R1 : x ¼ y ¼ 0).
Then, with the progression of time, the system reaches the
region R16 : 0< x¼ y < 1, R5 : x ¼ y ¼ 1, R22 : 1 < x ¼ y < 2,
R7 : x ¼ y ¼ 2, and R42 : x ¼ y > 2. At any of these states,
the system can make a transition on input ?In and enters a
new state defined by location l1 with clock x set to 0 and
clock y being unchanged. From this new state, the system
evolves by letting time elapsing as before and/or making
explicit transitions on actions ?In and !Out.

The region graph corresponds to the reachability
analysis graph. It is at the heart of any formal technique
for timed systems (see, for example, [2], [29], [32], [13], [14]).
Here, we use it as basis for testing real-time systems. In the
definition of the region graph, we explicitly represent the
delay transitions of the system because they are necessary
for the generation of timed test cases.

Prior to the introduction of our timed test cases
generation method, we introduce our testing hypotheses,
our test architecture, the conformance relation that should
hold between the implementation and the specification, and
the timed fault model.

3 TEST HYPOTHESES

The potential number of implementations for a given
system specification, even a very simple one, is infinite.
We use test hypotheses to reduce the number of possible
implementations to consider in testing. We study fault
coverage and other properties of testing techniques under
these hypotheses. In this paper, as in [7], [18], [32], [23], we
make few assumptions about the specification (a TIOA A)
and the implementation under test. Some of these assump-
tions are necessary for the existence of the characterization
set (see Definition 7.6) for the generation of test cases. Other
assumptions are necessary for the testing of the implemen-
tation. We assume the following:
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1. The IUT is modeled as a TIOA: In testing, we usually
assume that the implementation and the specifica-
tion are given in the same formal model (e.g., FSM,
EFSM, LTS, TIOA, ...) in order to define the meaning
of conformance of the implementation to its speci-
fication (i.e., what does it mean the implementation
conforms to the specification ?). The specification is
given as a TIOA, the implementation can also be
seen as a TIOA.

2. The IUT is deterministic: For each location, there are
no two (or more) outgoing transitions where time
constraints may be simultaneously satisfied.

3. The IUT is minimal on the number of clocks [12].
This assumption is necessary to reduce the number
of clock regions in the implementation.

4. The time domain of each clock in the IUT is included
in the time domain of its corresponding clock in the
specification (see Definition 2.1). This hypothesis
ensures that the number of clock regions of the IUT
is not greater than that of the specification.

5. The IUT has the same alphabet as the specification.

6. The IUT has the same number of locations as the
specification. Used with hypotheses 4 and 3, this
assumption guarantees that the number of states in
the region graph of a correct IUT is not greater than
that of the region graph of the specification. So, if we
do not use hypothesis 6, the region graph of the IUT
may be larger than that of the specification. Conse-
quently, it become very difficult to determine the
suitable granularity for the sampling algorithm (see
Section 7.1). Indeed, the difference between the
number of states in the implementation and the
specification influences the granularity of sampling.

For example, if the implementation has more states
than the specification the granularity should be
reduced in order to reach the extra states.

7. The IUT is completely specified: at any state, the
implementation either accepts all inputs or accepts
none.

8. For testing the implementation, we have to bring it
back to its initial state after each single test case in
order to apply the next test case. Therefore, we
assume the existence of a reset action, which always
brings the implementation to its initial state.

9. The complete-testing assumption: It is possible, by
applying a given input sequence to a given
implementation a finite number of time, to cover
all execution paths that can be traversed by this
sequence. This is due to the outputs which are
unpredictable. So, the hypothesis 9 is needed to
cover their time domains by verifying successively
all possible intervals.

4 TEST ARCHITECTURE

The region graph defines the semantics of the TIOA model.

However, it is very difficult to test since it is not explicit

how to handle the clock variables. For this reason, we

propose a testable model [13], [20], [21] which consists of

two parts (see Fig. 4): the control part and the clock part.
The control part represents the communication of the

timed system with its environment by receiving inputs and

responding with outputs. The clock part handles the clock

variables used in the specification of the timed system. Each

clock variable gives rise to a process to perform the

operations on the variable. The communication between
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the two parts is achieved with the exchange of the

predefined internal signals PleaseValue, SendValue, and

ResetClock. When the control part receives an input from

the environment, it checks whether or not the input

constraint is satisfied. It sends the PleaseValue signal to the

involved clock processes asking for the clock values. After

the reception of this signal, each process computes the

current value of its clock and passes it to the control part

using the signal SendValue. To reset a clock to zero, the

control part sends the signal ResetClock to the corresponding

clock process. In this architecture, we explicitly distinguish

the ResetClock channel from the other signals channel (it is

made in bold in Fig. 4) because ResetClock is the only

internal signal we want to observe. We are assuming a

synchronous communication.
The model of Fig. 4 represents an efficient and simple

manner to implement and test real-time systems. It

corresponds to the gray-box testing where we assume that

some parts of the IUT are known and reachable by the

tester. Moreover, our model is well-known in hardware

where the clock component is separated from the other

components. The primary advantage of this architecture is

that it makes explicit the reset to zero of clocks and allows

the tester to observe it. So, it helps enough to ensure a

complete fault coverage of our method. Without it, some

faults can not be detected by the test cases generated by our

approach.

5 CONFORMANCE RELATION

The starting point for conformance testing is the definition

of the conformance relation between an IUT and the
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specification. A conformance relation defines the meaning
of “an implementation is conform to its specification.”
Many conformance relations have been introduced and
used to generate test cases from FSM and LTS models [18],
[23], [4]. They assume the environment behaves accordingly
to the reference specification and the verdict for whether or
not the IUT conforms to the specification is given by
observing the implementation reactions (i.e., outputs) to the
applied inputs. To test an implementation of a real-time
system, we have to check whether or not the IUT when
stimulated with inputs responds with expected outputs
within the allowed time intervals.

In this paper, we define the conformance relation
between an IUT and its specification as a trace-equivalence
for observable nondeterministic FSM [23]. The trace-
equivalence relation is based on the notion of traces of a
state. By definition, a sequence of input/output actions $ is
a trace of a state s if the automaton can evolve from s to
another state s0 on $ (s0 can be equal to s). We denote the set
of traces of a state s by tracesðsÞ and we say that two states s
and s0 are trace-equivalent, notation s ¼trace s0, if and only if
tracesðsÞ ¼ tracesðs0Þ. Furthermore, two FSMs S and I with
their respective initial states s0 and i0, are trace-equivalent,
notation S ¼trace I, if and only if s0 ¼trace i0. The trace-
equivalence is an equivalence relation.

6 FAULT MODEL

A fault model specifies the faults we can encounter in an
implementation of a system. The fault model is always
dependent on the specification model. In this section, we
study the timed fault model based on TIOA.

6.1 TIOA Based Fault Model

The TIOA based fault model introduced in [15], [16]
consists of two types of faults:

. Timing faults (see Section 6.2), and

. Action and Transfer faults (see Section 6.3).

Moreover, we distinguish between two types of timing
faults: effective and noneffective timing faults. A timing fault
is said to be effective if it has an effect on the execution of
the system; otherwise, it is noneffective. In other words, a
timing fault is effective if it changes the region graph of
the system except for transitions on output actions (see
Section 6.2.2). So, an implementation containing none-
ffective faults has the same region graph as the specifica-
tion. Fig. 5 illustrates the effective and noneffective faults
relative to the TIOA in Fig. 1. The first TIOA restricts the

time constraint of the transition such that the implementa-
tion does not accept the input ?In when the value of clock
x is greater than 2. This restriction affects the execution of
the implementation in the sense that the region graph may
have a small number of states and/or transitions. How-
ever, the second TIOA shows a modification of the time
constraint of the transition from l1 to l1. This modification
has no effect on the execution of the implementation since
the region graph remains unchanged. Indeed, in location l1
clock y is no less than clock x. Therefore, if the constraint
x � 1 holds then the constraint y � 1 holds too. Conse-
quently, the time constraint x � 1&x  2&y � 1 is equiva-
lent to x � 1&x  2. The following subsections describe in
details the effective timing faults (referred to, in the rest of
this paper, as timing faults), and action and transfer faults.

6.2 Timing Faults

Timing faults are due to the violation of transition time
constraints. A timing fault is either related to the reset of a
clock, the restriction of a transition constraint, or the
widening of a transition constraint.

6.2.1 Reset of a Clock Fault

An implementation is said to have a reset of clock fault if it
does not reset a clock as stated in the specification, or it
resets a clock that is not reset in the specification. As an
example, we consider again the TIOA in Fig. 1. Fig. 6 and
Fig. 7 show the two types of faults. The implementation in
Fig. 6 does not reset clock x with the transition from l0 to l1.
However, the implementation in Fig. 7 resets clock y with
the transition from l1 to l1.

The faults related to a reset of a clock change the
ordering between clocks in the implementation. In the
example above, the implementation in Fig. 6 changes the
ordering between clocks from ðx  yÞ to ðx ¼ yÞ since the
specification requires that clock x must be no greater than
clock y in location l1. However, the implementation in Fig. 7
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changes the ordering between clocks from ðx < yÞ to

ðx � yÞ. Concerning the number of states in the system,
notice that:

. When an implementation does not implement a reset
of a clock, the number of states in its region graph will
decrease. This means that some states of the system
will be unreachable (e.g., ðl0; 1 < x < y < 2Þ). As an
example, the region graph of the faulty implementa-
tion in Fig. 6 contains 12 states while the regions
graph of its specification has 31 states (Fig. 3).

. When an implementation resets a clock that remains
unchanged in the specification, it is considered
faulty and the number of states in its region graph
will increase (some extra states will be reachable
(e.g., ðl1; x ¼ 1&y ¼ 0Þ)). As an example, the number
of states in the region graph of the faulty imple-
mentation in Fig. 7 is 42 instead of 31 as stated in the
specification (Fig. 3).

6.2.2 Time Constraint Restriction Faults

We distinguish between the restriction of a time constraint

for inputs and outputs. The environment controls the
system inputs. Therefore, an implementation that rejects

inputs satisfying the time constraint given by the specifica-
tion is considered faulty. However, an implementation that

restricts the time constraint of an output is seen as a valid

reduction of the specification. Obviously, this is acceptable
since outputs cannot be controlled by the environment. To

further clarify the restriction of a time constraint, let us

consider again the specification in Fig. 1. Fig. 8 and Fig. 9
show, respectively, restrictions of time constraint for inputs

and outputs.
The implementation of Fig. 8 narrows the time constraint

of the transition from l1 to l0 on input ?In. This
implementation does not accept the input ?In when the

value of clock x is less than 1 and the value of clock y is
between 1 and 2, exclusively. This reduces the number of

states and transitions in its region graph compared with the

specification region graph. In our example, the number of

states in the region graph of the implementation is 23 while

the number of states in the specification region graph is 31.

On the other hand, the implementation of Fig. 9 modifies

the time constraint of the transition from l1 to l1 on output

!Out. This implementation always responds with output

!Out before the value of clock x reaches 2. But, since output

actions are controlled by the implementation, the constraint

of the transition in the specification is always satisfied.

Therefore, the implementation is not faulty but considered

as a valid reduction of the specification.

6.2.3 Time Constraint Widening Faults

These faults occur when the implementation either in-

creases the upper bound or decreases the lower bound of a

constraint but satisfies hypothesis 4. More precisely, there

are four types of this fault:

. the replacement of a constraint x < m1 by x < m0
1

such that m0
1 > m1 and m0

1 2 ½0; Cx�.
. the replacement of a constraint x ¼ m2 by x > m0

2

such that m0
2 < m2.

. the replacement of a constraint x ¼ m3 by x < m0
3

such that m0
3 > m3 and m0

3 2 ½0; Cx�.
. the replacement of a constraint x > m4 by x > m0

4

with m0
4 < m4.

Unlike constraint restriction, the constraint widening is

considered as a fault for both inputs and outputs. Fig. 10

and Fig. 11 show two faulty implementations of the

specification given in Fig. 1. The implementation in Fig. 10

enlarges the time constraint of the transition from l1 to l0 on

input ?In. Contrary to the specification, this implementa-

tion accepts the input ?In even when the value of clock x is

between 1 and 2 and the value of clock y is less than 2.

However, the implementation in Fig. 11 enlarges the time

constraint of the transition from l1 to l1 on output !Out. This

implementation can respond with the output !Out even

when the value of clock x is greater than 2.
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Fig. 7. “Reset of a clock” fault.

Fig. 8. Restriction of constraints for inputs.

Fig. 9. Restriction of constraints for outputs.

Fig. 10. Widening of constraints for inputs.



The widening of a time constraint increases the number

of states and/or transitions in the region graph of the

implementation compared with the region graph of the

specification. In our example (Fig. 10 and Fig. 11), the

number of states in the region graph remains unchanged

but some extra transitions are added (e.g., the transition

ðl1; 1 < x ¼ y < 2Þ �!?In ðl0; x ¼ y ¼ 0Þ in the region graph of

the implementation in Fig. 10).

6.3 Action and Transfer Faults

These faults are similar to the output and transfer faults in

the Finite State Machine (FSM) Model [3], [7]. An

implementation is said to have an output fault if in a state,

it does not respond by an expected output. An implementa-

tion is said to have a transfer fault if in a state and on an

input or output the implementation enters a state different

from the expected one. Fig. 12 and Fig. 13 show two faulty

implementations. The implementation in Fig. 12 has an

output fault in location l1. It does not respond with output

!Out after the application of the input sequences(
1

4
:?In:

1

4
:
1

4
:
1

4
:
1

4
;
1

4
:?In:

1

4
:
1

4
:
1

4
:
1

4
:
1

4
;
1

4
:

?In:
1

4
:
1

4
:
1

4
:
1

4
:
1

4
:
1

4
;
1

4
:?In:

1

4
:
1

4
:
1

4
:
1

4
:
1

4
:
1

4
:
1

4
;
1

4
:

?In:
1

4
:
1

4
:
1

4
:
1

4
:
1

4
:
1

4
:
1

4
:
1

4

)
:

However, the implementation in Fig. 13 has a transfer fault

in state ðl1; x ¼ 1&y ¼ 5=4Þ. Indeed, after the sequence
1
4 :?In:

1
4 :

1
4 :

1
4 :

1
4 :!Out the implementation enters the state

ðl0; x ¼ 1&y ¼ 5=4Þ instead of the state ðl1; x ¼ 1&y ¼ 5=4Þ.
Once the possible faults in an implementation of a TIOA

are presented and discussed, we present now a method to

generate timed test cases able to detect all these faults.

7 TIMED TEST CASES GENERATION

Our approach for generating timed test cases introduced in
[14] consists of three main steps:

. the sampling of region graph,

. the transformation of the resulting subautomaton
into a nondeterministic FSM, and

. the adaptation of the generalized Wp-method [23].

7.1 Sampling Region Graph

Sampling has been introduced in [25] for the verification of
real-time systems. Here, we use sampling to generate test
cases for real-time systems. By sampling the region graph,
we aim at deriving a subautomaton easily testable, called
Grid Automaton (GA). This automaton is then transformed
into a finite state machine in order to reuse the existing test
case generation methods. The idea behind the construction
of the grid automaton is to represent each clock region with
a finite set of clock valuations, referred to as the
representatives of the clock region. The coordinates of each
representative are defined from the grid points with
granularity 1

k [25].

Definition 7.1: Set of Grids. Let k 2 N>0, we define the set of
grids with granularity 1

k to be the set Nk ¼ fmk jm 2 Ng. We
extend this notion in the usual way to any vector of n elements
to define the grid points with granularity 1

k as the set
Nnk ¼ fðr1; r2; :::; rnÞj1  i  n; ri 2 Nkg.

The set of representatives of each clock region is
determined from the set of grid points. The properties of
sampling are studied in [25]. In particular, it is proven that
for each clock region of a n-clock TIOA, there exists a set of
its representatives in the grid points with granularity at
most 1

nþ1 . But, in order to represent all clock regions
reachable by delay transitions, we have to use grid points
with granularity at most 1

nþ2 if the number of clocks is
greater than 2 and 1

2 otherwise. In other words, the use of
1
nþ2 instead of 1

nþ1 is justified by the fact that we want to
match every delay transition in the region graph by a
transition on 1

nþ2 in the grid automaton so that the
relationship between clocks be kept. When the number of
clocks is 1, there will be no relationship between clocks to
keep. So, the granularity 1

2 is sufficient to sample the region
graph and to match every delay transition in it by a
transition on 1

2 in the grid automata.
Notice that the granularity of grid points constitutes the

steps by which the clocks are authorized to pass from one
clock region to another one, thereby allowing the auto-
maton to make transitions from one location to another. The
construction of the grid automaton leads to the explicit
extension of the alphabet of the automaton with delay
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actions of value 1
nþ2 (or 1

2 if n ¼ 1). In the rest of the text, we
will use the symbol g to refer to the granularity of sampling.
However in the examples, we instantiate g according to the
number of clocks.

Since the construction of the region graph and our
sampling algorithm (see later) are exponential, we will use
the simple automaton of Fig. 14, instead of Fig. 1, to
illustrate the different steps of our approach. The auto-
maton has one clock, x. Therefore, the grid points we
calculate are of granularity 1

2 . So, the set of representatives is
fð0Þ; ð12Þ; ð1Þ; ð1Þg. If we consider the TIOA of Fig. 1, the
granularity will be 1

4 and the set of representatives will be
large. This does not mean that we can not apply our
approach but it becomes difficult to draw the corresponding
grid automaton.

To derive the grid automaton of Fig. 15, we proceed in
many steps. Given an n-clock TIOA, we first derive the
maximal granularity we can use (if n ¼ 1 then the
granularity is 1

2 else the granularity is 1
nþ2 ). In a second

step, we create the initial state formed with the initial
location of the TIOA and a valuation that sets all clocks to
zero. In a third step, we create all states reachable from
the initial state with repetitive 1

nþ2 (or 1
2 if n ¼ 1) delay

transitions. Then, for each state ðl; vÞ, we create a
transition ððl; vÞ; f!; ?ga; ðl0; ½R :¼ 0�vÞÞ for each transition
ðl; l0; f!; ?ga;R;GÞ in the TIOA such that v satisfies G.
Afterwards, we repeat the same process starting with state
ðl0; ½R :¼ 0�vÞ. The complete algorithm is shown in Fig. 16.

Except for the granularity, our algorithm constructs a
grid automaton similar to the one obtained in [32] by the
definition of the grid automaton for a given TIOA. The
complexity of our algorithm is exponential in terms of the
number of clocks and the integer constants used in the
TIOA. This is inherent for any verification or testing method
based on the region graph.

7.2 Transformation of Grid Automata into
Nondeterministic FSM

In testing real-time systems, the controllability of the time at
which an output is produced is difficult or impossible
without time stamp instrumentation. To avoid this problem,
we will not focus on which exact time an output is
produced but we ensure if it occurs in the allowable time
interval or not. This is guaranteed by the use of  , ¼ , > ,
and � in output constraints in the specification and the
transformation of the grid automaton into an equivalent
Nondeterministic Timed FSM (NTFSM).

Definition 7.2: Nondeterministic Timed FSM. A Nondeter-
ministic Timed FSM (NTFSM) is a tupleM ¼ ðS; s0; I; O; T Þ,
where:

. S is a finite set of states.

. s0 2 S is the initial state.

. I is a finite set of inputs.

. O is a finite set of outputs.

. T is a finite set of transitions. Each transition is

denoted by si �!
ijo
sj, where i is an input, o is an

output, and si and sj are, respectively, the source and

the target states.

The nondeterminism is mainly due to the delay transi-
tions. In this transformation, the action corresponding to the
elapsing of time is interpreted as an input action. Following
this interpretation, during testing, the testers (Upper and
Lower Testers) will check regularly (each g time units
depending on the granularity of sampling g) the imple-
mentation output queue looking for an output. By choosing
a suitable granularity, we test the outputs of the IUT at the
bounds of their constraints and at least one point within the
allowable time interval.

The transformation of the grid automaton into an
NTFSM is based on the two schemes shown in Fig. 17.
This transformation is very simple. It consists of coupling
each output with the input or the delay preceding it in the
GA. If the GA has a transition on input ?a from a state si to a
state sj followed by a transition on output !b from the state
sj to a state sk, we create two transitions

si �!
ajb
sk and si �!

aj�
sj

in the NTFSM. However, if the GA has a transition on
input ?a from a state si to a state sj followed by no
transition on output from the state sj, we create only one

transition si �!
aj�
sj in the NTFSM. We note that a delay

transition is handled as a transition on an input. It is clear
that this transformation preserves the expressed behavior
and one can easily prove the equivalence between the grid
automaton and the NTFSM. Moreover, the NTFSM is
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Fig. 14. A very simple TIOA.

Fig. 15. The grid automaton of the TIOA given in Fig. 14.



observable which means that the tester is able to determine

the state where the IUT will be after the execution of each

transition. As an example, the NTFSM corresponding to the

grid automaton of Fig. 15 is shown in Fig. 18.
In the NTFSM model, we distinguish between two

categories of states:

. States that are connected only by delay transitions:
these states have the same first component and an
incoming g-delay transition. They cannot be distin-
guished by input sequences because they are sub-
states of the same super-state. However, the seman-
tics of time distinguishes these states if no clock has
been reset to zero during the last g-unit of time. The
semantics of time guarantees that by letting the time

elapses with g-unit, we change the state of the
system. Furthermore, the model we use ensures
whether or not a clock has been reset to zero. Notice
that the set of time connected states, denoted by ST ,
is a set of subsets of S.

. States that are identified by input sequences as in the
FSM model. Contrary to ST , the set of input
identified states, denoted by SI , is a subset of S.

As an example, the states fðl0; 0Þ; ðl1; 0Þg in the Fig. 18 are

input identified while the set of states

ffðl0; 0Þ; ðl0;
1

2
Þ; ðl0; 1Þ; ðl0;1Þg; fðl1; 0Þ; ðl1;

1

2
Þ; ðl1; 1Þ; ðl1;1Þgg

are time connected.
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7.3 Timed Wp-Method

As mentioned previously, by constructing the grid auto-
maton we explicitly extend the alphabet of the TIOA with
the delay action g in a way that each state has a transition
labeled with this action and can be completely specified for
the other input actions. Furthermore, we use our test
architecture to make explicit the reset to zero operation on
clocks. Therefore, we can apply the state characterization
technique to generate timed test cases for the control part of
our test model. The state characterization methods generate
test cases that are conceptually applied in two phases. The
first phase checks if all the states defined in the specification
are identifiable in the implementation. The second phase
checks if all transitions defined in the specification are
implemented correctly. In general, the second phase does
not check for the transitions which are already covered by
test cases in the first phase.

For the generation of timed test cases, we have adapted
the generalized Wp-method [23]. Our algorithm uses many
sets which are defined as follows:

Definition 7.3: State Cover. A set Q � I�A is a state cover of an

NTFSM A if, for every state si, Q contains an input sequence

that brings the machine A from the initial state s0 to si.

Definition 7.4: Transition Cover. A set P � I�A is a transition

cover of an NTFSM A if, for every transition si�!
ajb

Asj, P

contains input sequences . and .:a that bring the machine A

from the initial state s0 to si and sj, respectively.

Definition 7.5: Delay Sequence Set. A setD � ðfgg [ IAÞ� is

a delay sequence set of an NTFSM A if, for every transition

si�!
gjb

Asj, D contains an input sequence . and .:g that bring

the machine A from the initial state s0 to si and sj,

respectively.

Definition 7.6: Characterization Set. A set W � I�A is a

characterization set for an NTFSM iff 8si; sj 2 SI; i 6¼ j) 9$

such that: $ 2 TracesðsiÞ xor $ 2 TracesðsjÞ, and $eIA 2W ,
where $eIA denotes the projection of $ on IA obtained by
removing the output actions from $. With the completeness
assumption, this means ð$eIAÞ applied to si and sj will yield
different output traces.

Definition 7.7: Prefix Set. Let V be a set of input sequences. We
define the prefix set of V as follows:

PrefðV Þ ¼ ft1 j t1 6¼ " ^ t2 2 I�&t1:t2 2 V g:

Definition 7.8: State Identification Set. Given an NTFSM
and a characterization set W, fW0;W1; :::;Wn�1g is said to be
a set of identification sets if, for i ¼ 0; 1; :::; n� 1;Wi is a
minimal set such that: Wi � PrefðWÞ and for j ¼
0; 1; :::; n� 1; j 6¼ i) 9$ 2 TracesðsiÞ xor TracesðsjÞ and
$eI�A 2Wi.

Fig. 19 shows our algorithm for the generation of a timed
test suite. It consists of six steps. After transforming the
TIOA into NTFSM (step 0 and step 1), it constructs in the
following steps (step 2, step 3, and step 4) the sets ST , SI , Q,
W , and fW0;W1; :::;Wn�1g as defined before. Then, the
algorithm derives the transitions cover set P ¼ Q:ðI [ f"gÞ
and the set R. R denotes all transitions of NTFSM except
those belonging to Q (i.e., R ¼ PnQ). Finally (in step 6), the
algorithm generates the timed test suite

Q
which consists of

two subsets
Q

1 and
Q

2 which are directly derived.
Q

1
consists of the concatenation of the sets Q andW . However,Q

2 is derived by concatenating each sequence ðxeIÞ 2 R
with the state identification Wi of each state si reachable
from the initial state of the NTFSM by the input sequence
xeI. It suffices to have the set of all states reachable by each
input sequence xeI.

The algorithm generates test cases to check the con-
formance of an implementation to the specification given as
TIOA. Since the grid automaton is a subautomaton of the
region graph, the generated test cases ensures the correct
behavior of the grid automaton in the implementation but
do not cover the entire region graph. However, with the set
of hypotheses we use, we prove that the test cases generated
by our algorithm detect all the faults discussed in Section 6.
In order to reduce the set of hypotheses, we have to use a
very small granularity for the construction of the grid
automaton. In fact, if we use a fine granularity, we will
reduce the set of hypotheses and increase the fault cover-
age. However, the use of a fine granularity leads to a very
large number of test cases and makes the method
impracticable. This is due to the complexity of the sampling
algorithm, which is exponential on the number of clocks
and constants used in the time constraints of the TIOA. If
we consider again the TIOA of Fig. 14 and use the
granularity 1

4 , we will get an NTFSM with at least 12 states.
Consequently, timed Wp-method will generate more than
40 test cases. The number of test cases would increase much
faster if the TIOA contains more than one clock. For all the
previous reasons, we used an appropriate granularity in
order to come out with a practical timed test cases
generation method.

The timed test cases generated by the algorithm for the
TIOA in Fig. 14 are given in Fig. 20.
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8 FAULT COVERAGE OF TIMED WP-METHOD

In this section, we study the fault coverage of Timed Wp-

method introduced in the previous section. More specifi-

cally, we discuss what are the faults, among those presented

in Section 6, detected by the test cases generated with

Timed Wp-method.

8.1 Reset of a Clock Fault

Timed Wp-method is based on a particular architecture

consisting of the separation of the control and the clock

parts (see Fig. 4). Using this architecture, the reset of a clock

is observable at the interface of the control and clock parts via

the internal signal ResetClock. Therefore, if an implementa-

tion does not reset a clock that is initialized to zero in the

specification (e.g., Fig. 6), the tester will not observe the

signal ResetClock expected at the interface of the control

part. Consequently, the fault will be detected and the

implementation will so be declared faulty. Similarly, if an

implementation resets a clock that remains unchanged in

the specification (e.g., Fig. 7), the tester will observe the

nonexpected signal ResetClock at the interface of the control

part. Consequently, the fault will be detected and the

implementation will be declared faulty.

Proposition 8.1: Detection of Reset of a Clock Fault. The

reset of a clock faults are detected by timed Wp-method,

because of the test architecture we use.

Proof. The proof is simple. It is based on the assumption

that the implementation uses the same number of clocks

as the specification (Test hypothesis 3). tu

Notice that the test architecture we use makes the test of

reset of a clock easy. In fact, the reset of a clock is viewed as

an internal action like the 1-transition in labeled transition

systems (LTS) model (see [35], [34], for instance). Therefore,

the testing of the reset of a clock without making it explicit

is very difficult.

8.2 Time Constraint Restriction Fault

From Section 6.2.2, we have seen that the restriction of time
constraints for outputs is not considered as a fault; so, it will
not be studied in this section. However, the restriction of a
time constraint of an input is considered a fault as discussed
previously in Section 6.2.2. Each transition constraint gives
rise to at least one clock region (system state) where the
transition is executable. The restriction of a transition
constraint leads to states or transitions missing in the
implementation. Test cases are generated from the specifi-
cation where all the system states are considered. Thus, they
cover all the states and all the transitions of the specifica-
tion. The following proposition states the relation between
test cases and transitions constraints.

Proposition 8.2: Transitions Time Space. For any input
transition, there exists at least one test case that covers the time
space of the transition.

Proof. Let us consider an input transition l �!?a;R;G
l0 of the

TIOA A. In testing, we deal with a correct specifica-

tion; so, the transition is executable. Therefore, the

region graph contains at least one state ðl; ZÞ (Z is a

clock region) where the transition is enabled (i.e.,

8v 2 Z; v � G). When we sample the region graph, we

obtain at least one representative of state ðl; ZÞ.
Therefore, there exists at least one test case that covers

the time space of the input transition l �!?a;R;G
l0. tu

Thus, if the implementation restricts a time constraint of
a transition, some states and/or transitions will be missing
in its region graph. This is true because of the test
hypothesis 6. The missing states and/or transitions are
covered by some test cases generated by the test cases
generation algorithm. So, when the tester applies one of
these test cases, the implementation will reject it, i.e., the
IUT will remain in its current state, and the tester will not
observe the expected output. Consequently, the tester
logically concludes that a time constraint restriction fault
has been introduced and the implementation will be
declared faulty.

Proposition 8.3: Detection of Input Time Constraint
Restriction Faults. The test cases generated by the timed
Wp-method detect input time constraint restriction faults.

Proof. Let us consider an input transition ls �!?a;R;G
l0s of the

specification and its corresponding transition li �!?a;R;G0

l0i
in the implementation such that G0 is a restriction of G.

Assume that the restriction concerns the constraint

over a clock x such that we have x < m in G and

x < m0 in G0 (m0 < m). This modification of the bound

of the constraint over clock x reduces the set of clock

regions corresponding to G (noted RegionsðGÞ). In

other words, the set RegionsðGÞnRegionsðG0Þ is not

empty (RegionsðGÞnRegionsðG0Þ 6¼ ;). Using test hy-

potheses 4 and 6, and Proposition 8.2, we conclude

that the regions (the states) RegionsðGÞnRegionsðG0Þ
are covered by some test cases. These test cases will be

rejected by the implementation. Therefore, the fault is

detected and the implementation is declared faulty.

The cases of formulas x  m, x ¼ m, x > m, and x � m
are proven similarly. tu
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8.3 Time Constraint Widening Faults

The TIOA used as basis for the specification of the system
has the property that all irrelevant values of a clock (i.e., the
values greater than the greatest constant used in constraints
over that clock) are represented by the constant 1. So,
when we sample the region graph, we obtain at least one
state of the grid automaton in which the value of the clock is
1. This state serves to verify whether or not the
implementation enlarges a transition constraint, especially
a constraint like x < m. The following corollary states the
relation between a transition constraint widening and the
grid automaton.

Proposition 8.4: Transition Constraint Widening. For each

transition l �!f?;!ga;R;G
l0 in the TIOA, the grid automaton

possibly contains a state ðl; vÞ such that v 6� G.

Proof. Let us consider a transition l �!f?;!ga;R;G
l0 in the

specification. The constraint G gives rise to at least one
clock region (system state) where the transition is
executable. However, inorder to verify the existence of
a reachable state ðl; vÞ such that v 6� G we study the
following cases.

. If the constraint G contains a formula x < m
(respectively, x  m or x ¼ m), there exists at
least one state in the grid automaton where x ¼
m (respectively, x > m). This is true because
each state in the grid automata has an outgoing
delay transition labeled with the granularity of
sampling.

. If the constraint G contains a formula x � m or
x > m, the region graph may contain a state ðl; ZÞ
where G is not satisfied. But, when such state
exists, the grid automaton will have a state ðl; vÞ
where the value of clock x is less than m. The
existence of states ðl; ZÞ in the region graph

depends on the constraints of the transitions

preceeding l �!f?;!ga;R;G
l0 in the specification. tu

Now, since we assume the implementation does never
reject an input (see test hypotheses in Section 3), we can
easily see that timed Wp-method tests time constraint
widening. For outputs, the constraint widening faults are
detected by waiting the expected output within the allowed
time interval. If the tester does not observe the output, it
concludes that the implementation enlarges the constraint
of that output, or does not respond with that output. For
inputs, the tester applies them in states where their time
constraints are not satisfied, to verify if they will be
accepted. If it is the case, the implementation will be
declared faulty.

Proposition 8.5: Detection of Time Constraint Widening

Faults. The test cases generated by Timed Wp-method detect

all time constraint widening faults in an implementation.

Proof. For each input transition l �!?a;R;G
l0, there is a state ðl; vÞ

in the grid automaton such that v 6� G. The implementa-
tion is completely specified; so, the state ðl; vÞ has a delay
transition and another transition for each input of the
TIOA. Moreover, hypotheses 3, 4, and 6 guarantee that
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the number of states in the IUT is no greater than that of
the specification. So, since timed Wp-method covers all
states and all transitions in the grid automaton, it
generates a test case that tests the time constraint

widening of the transition l �!?a;R;G
l0. tu

8.4 Output Faults

These faults can be detected easily by visiting all the
transitions in the TIOA.

Proposition 8.6: Detection of Output Faults. Timed
Wp-method guarantees the detection of output faults.

Proof. Timed Wp-method covers all the states and transi-
tions of the NTFSM. Therefore, it detects output faults.tu

8.5 Transfer Faults

The transfer faults are detected by any method based on a
state identification facility [7], [18], [30]. It suffices to reach a
state, apply the input, observe the expected output, and
then apply the identification sequence of the target state to
verify whether it is the correct one.

Like W-method [7] and Wp-method [18], the Timed
Wp-method is based on state characterization technique. So,
it checks the target state of each transition of the system.
This means that timed Wp-method detects the transfer
faults.

Proposition 8.7: Detection of Transfer Faults. The test cases
generated by the Timed Wp-method detect all the transfer
faults in an implementation.

Proof. The test suite generated by Timed Wp-method
consists of two parts: Q:W and ðPnQÞ:fWig. Let us

consider a specification transition t : ls �!f?;!ga;R;G
l0s, and

assume that the corresponding transition,

t0 : li �!f?;!ga;R;G
l0i;

in the implementation contains a transfer fault. Since the
sets of clocks to be reset with t and t0 are the same (i.e.,
R), the target state, ðl0i; vÞ, of t0 will be equivalent to a state
ðl; vÞ in the specification (because of hypotheses 3, 4, and
6). Suppose that the expected state is ðl00i ; vÞ, which is
equivalent to the state ðl0s; vÞ in the specification, and the
identification set of ðl0s; vÞ is Wj. W and Wj distinguish
between states ðl0s; vÞ and ðl; vÞ. So, there exists a test case
in Q:W or ðPnQÞ:Wj that will detect the fault. tu

9 RELATED WORK

Contrary to the (untimed) finite state models (FSM, LTS,
EFSM), test cases generation and testing of timed systems is
still a new research area which is being investigated by
different teams with different backgrounds. In this section,
we summarize some of these works [27], [24], [8], [32], [9],
[19], [17], [20], [21], [28] and compare them to our approach.

In [24], Liu proposes a testing methodology to generate
test cases from an FSM with timers and counters. The
author adapted Wp-Method [18] as follows: The author first
draws two FSMs to represent respectively the behavior of
timer and counter. Then, the three FSMs are combined into

one and Wp-method is applied on the resulting FSM.
Compared to our approach, this methodology does not deal
with a general specification of real-time systems. Moreover,
the author makes stronger assumptions about the IUT in
order to increase the fault coverage of the method.

In [27], the authors propose a tool for the generation of
test cases from specifications given as temporal logic
formulas extended with time measures. The time domain
is discretized into integer values and test cases are
generated on the basis of what is called Histories. Compared
to our approach, this methodology is restrictive in the sense
that the logic formulas used as basis for test cases
generation uses only one clock. Moreover, the generated
test cases cover only integer values of time. Therefore, the
fault coverage of the method is limited.

In [8], the authors introduce a framework for testing the
constraints in timed systems. Test cases are derived from a
specification described in the form of a constraint graph
(CG). This method differs from our approach at least in the
following three points. First, the test cases are generated
based on the satisfaction of some test criteria for real-time
systems, like EFSM-based testing. Second, the constraint
graph is not general since it is restricted to the description of
a minimum and a maximum allowable delay between
input/output events in the execution of a system, following
Taylor’s and Dasarathy’s [33], [10] classification of timing
requirements. Finally, the test cases generated by the
proposed approach do not cover all the potential faults in
an implementation of the CG.

In [32], the authors present a theoretical framework for
testing timed automaton. This is the first real approach for
the generation of test cases from timed finite state models
using methods developed for untimed models. In fact, the
W-method [7] is used for the generation of test cases. The
approach proposed in [32] is based on a previous work by
Cerans [5] for the reduction of the test of a region
automaton into the test of a subautomaton, referred to also
as a Grid Automaton. Even if this methodology and our
approach are generally similar and use the same model (i.e.,
TIOA), the TIOA model used in [32] is restrictive in the
sense that outputs can occur only on integer values of
clocks. Moreover, the authors themselves claim that their
approach has no practical value in its original form since the
number of test cases generated with their method is
astronomically large. Indeed, to generate test cases from a
TIOA, the authors use a granularity of 2�n, where n is at
least equal to the number of clock regions of the TIOA
resulting from the composition of the TIOA of the
specification and that of the implementation.

In [9], the authors propose a technique to generate timed
test cases from the model of timed transition systems
(TTSs). A TTS is a couple consisting of an initial state and a
set of transition rules. Each transition must take place
between a lower and an upper time bounds. To generate
test cases, the authors first transform the TTS into a labeled
transition system containing all the observable traces of the
system and, then, apply an adapted version of W-method
[7] on the resulting automata. The proposed approach has
two drawbacks. First, the authors use a discrete time model
that does not allow the specification of a system with clocks
assuming continuous values. Second, the number of
generated test cases may be very large if the implementa-
tion has more states than the specification.
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In [20], the authors present an approach and an
architecture to test real-time protocols specified by timed
input output automata with discrete time domain (an
extension to the continuous time domain is presented in
[21]). The proposed approach consists of two steps. First, the
timed specification is transformed into an equivalent un-
timed one using the well-known timer operations SetðT; dÞ
and ExpðT Þ. Then, the Wp-method [18] is applied on the
resulting automata. The test architecture presented in this
work represents a refinement to the one introduced in [13].
The main advantage of the proposed work is that it avoids the
state explosion problem inherent to the use of the region
graph. However, the major drawback of the approach is that
it may introduce undesirable nondeterminism during testing
and may produce nonexecutable test cases.

In [19], the authors propose a method to generate a test
sequence from a timed input output automata. Each input/
output action must be executed at an adequate timing,
which satisfies all timing constraints in the test sequence.
However, since the implementation outputs are uncontrol-
lable, a tester cannot designate the timing of their occur-
rence in advance. The authors define two types of
executable test sequences, must-traceable and may-trace-
able, and present an algorithm to decide if a given test
sequence is executable. The authors also present in their
work a test generation technique using UIOv-method [37].
The major problem of the proposed approach is that it may
take a long time to terminate.

In [17], the authors present a method for testing real-time
protocols with multiple conflicting timers. Here, the authors
assume that each input/output exchange takes a certain time
to realize and timers can be started or stopped in arbitrary
transitions. The proposed method generates an executable
test sequence after many transformations. However, the
method does not guarantee a complete fault coverage.

In [28], the authors presents a test generation technique
for a restricted class of timed automata, called Event
Recording Automata (ERA). An ERA is a timed automata
in which each action a is associated with a clock xa such that
whenever a transition is executed on action a, the clock xa is
reset to zero. To generate test cases, the authors extend the
Hennessy test theory [11] in order to take into account the
timing aspect of real-time systems. The test cases selection is
not based on the region graph but on a equivalence class
graph. This graph is a coarse partition of the system time
space. The test generation method proposed in [28] consists
of two steps. First, a class equivalence graph is constructed
for the ERA. Then, some test cases satisfying Hennessy
criteria are selected using a symbolic reachability analysis.
The main advantage of this approach is that it generates a
small number of test cases. However, its main difficulty is
that it does not ensure a complete fault coverage.

10 CONCLUSION

We introduced a method, called Timed Wp-method, for the
derivation of test cases for real-time systems modeled as a
TIOA, a variant of the Alur and Dill timed automata model.
In order to generate test cases, we first discussed the model
at the syntactic and semantic levels. Then, we studied a
fault model for real-time systems and described a timed test
architecture. For the generation of test cases, we made
explicit the elapsing of time by sampling the region graph

with a known granularity and obtained a reduction called
the grid automaton. Furthermore, to ensure a good cover-
age of the potential faults in a timed system, we
transformed the grid automaton into an observable non-
deterministic finite state machine and we generated test
cases from the resulting automaton using a generation
technique based on state characterization sets. Finally, we
proved that the test cases generated by our method detect
all the faults of our fault model, provided that our test
hypotheses are satisfied.

We have implemented our method and applied it to
various examples with different sizes. The method gener-
ates successfully timed test cases for a large number of these
examples. Even if the sampling algorithm is exponential on
the number of clocks and constants used as bounds in time
constraints, our approach remains scalable because most of
the real-time systems we are aware of are specified with at
most three clocks and small integer constants. However, we
recognize that, in some cases, the number of test cases is
large but we can optimize it in one of the following ways:

. We can use test purposes to generate test cases only
for the critical parts we want to test.

. We can also use an optimization algorithm to delete
any test case which is a prefix of another one.

. We can make a tradeoff between the fault coverage
and the number of generated test cases. For instance,
instead of choosing all the representatives of a clock
region we can select only one representative. We can
also use a large granularity for sampling the region
graph of the system.

Finally, we would like to mention that the timed Wp-
method can be used to derive timed test cases for a real time
system specified as a set of communicating TIOA. This can
be done in two steps. In the first step, the complete or a
partial product of the system is computed by composing all
the parts nedeed to be tested. In the second step, the timed
Wp-method is applied on the resulting automaton.
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