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Abstract: The present paper is focused on time-like circular surfaces and singularities in Minkowski 3-
space. The timelike circular surface with a constant radius could be swept out by moving a Lorentzian
circle with its center while following a non-lightlike curve called the spine curve. In the present
study, we have parameterized timelike circular surfaces and examined their geometric properties,
such as singularities and striction curves, corresponding with those of ruled surfaces. After that,
a different kind of timelike circular surface was determined and named the timelike roller coaster
surface. Meanwhile, we support the results of this work with some examples.
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1. Introduction

In spatial kinematics, the movement of the one-parameter family of circles with station-
ary radius constructs a circular surface, while the movement of the one-parameter family
of lines constructs a ruled surface. A circular surface has a spine curve, and a ruled surface
has a striction curve. The envelope of the tangent lines to a space curve defines a tangent
developable ruled surface. The characteristics of a tangent ruled surface are straight lines
which are tangential to the edge of regression. The edge of regression designates singular
points of the tangent developable ruled surface [1–6]. With an analogous notion for ruled
surfaces, geometers have investigated circular surfaces in the Euclidean and Minkowski
3-spaces. For example, Izumiya et al. [7] discussed several geometric possessions and singu-
larities of circular surfaces corresponding with ruled surfaces. In [8], the authors initiated
great circular surfaces which were generated as a one-parameter family of great circles in
three spheres, and they gained a comprehensive classification of the singularities of such
surfaces while also discussing the geometric explanations via points of spherical geometry.
In [9], a new denomination of circular surfaces in Euclidean 3-space was considered by
a curve and a conformity of circles. The authors particularly inspected some geometri-
cal characterizations of circular surfaces in case the base curve was an algebraic curve.
Spacelike circular surfaces in Minkowski 3-space are introduced, and several geometric
possessions are obtained [10]. Furthermore, the authors defined spacelike roller coaster
surfaces as spacelike circular surfaces in the case when the generated circles were curvature
lines. Tuncer et al. [11] defined the equations of a spacelike circular surface and spacelike
roller coaster surface depending on the unit split quaternions and homothetic movements.
In [12], Nadia Alluhaibi presented some new results regarding circular surfaces in Eu-
clidean 3-space. Nadia Alluhaibi also showed the conditions for the roller coaster surfaces
to be minimal surfaces or flat. In [13], R. Abdel-Baky et al. studied timelike circular surfaces
in Minkowski 3-space. However, they did not consider the singularities’ properties. In this
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work, we consider the geometrical possessions and singularity of a timelike circular surface
with a stationary radius in Minkowski 3-space E3

1. In Section 3, we address a timelike circu-
lar surface and obtain its Gaussian and mean curvature. Then, we examine the conditions
of the curve in order to form striction curves on the timelike circular surface. Then, we
present a characterization of local singular points on timelike circular surfaces. In the case
of every generated circle with a curvature line, except for the singular or umbilical points,
a classification of such timelike circular surfaces into Lorentzian spheres, timelike canal
surfaces, a special type of timelike surfaces or timelike surfaces is regularly linked the three
surfaces. At the end, certain examples are given to support the idea of how to form the
timelike roller coaster and timelike circular surface.

2. Basic Concepts

For this study, we begin with certain concepts that will be used later [14–16]. Suppose
R3 = {(x1, x2, x3) |, xi ∈ R (i = 1, 2, 3)} is a 3-dimensional Cartesian space. For all
y = (y1, y2, y3) and x = (x1, x2, x3) ∈ R3, the Lorentzian scalar product of y and x is given
as follows:

< y, x >= y1x1 + y2x2 − y3x3.

(R3,<,>) defines the Minkowski 3-space, and we use it as an alternative to E3
1

(R3,<,>). A non-zero vector x ∈ E3
1 defines whether it is spacelike, lightlike or timelike

in the case where < x, x >> 0, < x, x >= 0 or < x, x >< 0 in the same order. The norm
of x ∈ E3

1 is ‖x‖ =
√
|< x, x >|. Furthermore, for two vectors y and x the cross product

y× x is

y× x =

∣∣∣∣∣∣
i j −k

y1 y2 y3
x1 x2 x3

∣∣∣∣∣∣ = ((y2x3 − y3x2), (y3x1 − y1x3),−(y1x2 − y2x1)),

where i, j, k is the canonical basis of E3
1. The hyperbolic and Lorentzian unit spheres, are

the following:

H2
+ =

{
x ∈ E3

1 | ‖x‖
2 = x2

1 + x2
2 − x2

3 = −1, x1 > 0
}

,

and
S2

1 =
{

x ∈ E3
1 | ‖x‖

2 = x2
1 + x2

2 − x2
3 = 1

}
.

Definition 1.

(i) Spacelike angle: If x as well as y are spacelike vectors at E3
1 which span a spacelike vector

subspace, then |< x, y >| ≤ ‖x‖‖y‖, and a unique real number ϑ ≥ 0 exists that is
< x, y >= ‖x‖‖y‖ cos ϑ. It is named the spacelike angle between x and y.

(ii) Central angle: If x and y are spacelike vectors at E3
1 which span a timelike vector subspace,

then |< x, y >| > ‖x‖‖y‖, and a unique real number ϑ ≥ 0 exists that is < x, y >=
‖x‖‖y‖ cosh ϑ. It is named the central angle between x and y.

(iii) Lorentzian timelike angle: If x is a spacelike vector and y is a timelike vector at E3
1, then a

unique real number ϑ ≥ 0 exists that is < x, y >= ‖x‖‖y‖ sinh ϑ. This is the Lorentzian
timelike angle among x and y.

We indicate the surface M at E3
1 as follows:

M : P(u, θ) = (p1(u, θ), p2(u, θ), (p3(u, θ)), (u, θ) ∈ D ⊆ R2. (1)

Suppose Γ is a standard unit normal vector field on a surface M determined using
Γ(u, θ) = Pu × Pθ‖Pu× Pθ‖−1, where Pi = ∂P

∂i . Therefore, the first fundamental form
(metric) I of the surface M is given as

I = g11du2 + 2g12dudθ + g22dθ2, (2)
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where g11 =< Pu, Pθ >, g12 =< Pu, Pθ >, g22 =< Pθ , Pθ >. In addition, the second
fundamental form I I of M will be as follows:

I I = h11du2 + 2h12dudθ + h22dθ2, (3)

where h11 =< Puu, Γ >, h12 =< Puθ , Γ >, h22 =< Pθθ , Γ >. The Gaussian curvature K and
the mean curvature H are

K(u, θ) = ε
h11h22 − h2

12
g11g22 − g2

12
, H(u, θ) =

h11g11 − 2h12g12 + h22g22

2(g11g22 − g2
12)

, (4)

where < Γ, Γ >= ε(±1). A surface in the Minkowski 3-space E3
1 names a spacelike or

timelike surface in case the induced metric at the surface is a positive or negative definite
Riemannian metric, respectively. This is identical to stating that the normal vector on the
spacelike or timelike surface is a timelike or spacelike vector, respectively [1–3].

3. Timelike Circular Surfaces

We consider the notion of timelike circular surfaces in E3
1. Let us have a non-null curve

α = α(u) as a regular curve with its tangent vectors α′(u) such that ‖α′‖ 6= 0 for all u ∈ I,
′ = d

du and a positive number r > 0, a timelike circular surface is defined as the surface
which is swept out using a set of timelike circles with its center points following the curve
α. Either circle names a generating circle, which lies on a Lorentzian plane named the circle
plane. Assuming e1 indicates the timelike unit normal vector of a circle plane, and e1 is
connected to all points of the spine curve α, when given a radius r of a generating circle, a
timelike circular surface is specified using α and e1. Henceforth, this work represents the
derivative with respect to u with primes.

In this case, u is the arc length of the spacelike spherical curve e1(u) ∈ H2
+, and

the unit spacelike tangent vector of e1(u) is e2 = e′1(u). We also have a spacelike unit
vector e3 = e1 × e2, and then we define an orthonormal moving frame {e1 = e1(u), e2 =
e′1(u), e3 = e1× e2} along e1(u). This is named the Blaschke frame of the spherical curve
e1(u) ∈ H2

+. It is clear that

− < e1, e1 >=< e3, e3 >=< e2, e2 >= 1,
e1× e2 = e3, e3× e1 = e2, e2× e3 = −e1.

(5)

Therefore, we have the following Blaschke formulae: e′1
e′2
e′3

 =

 0 1 0
1 0 γ(u)
0 −γ(u) 0

 e1
e2
e3

; (6)

where γ(u) is the spherical or geodesic curvature of e1(u) ∈ H2
+. Let us express the tangent

vector α′ as
α′(u) = δe1 + σe2 + ηe3, (7)

where δ(u), σ(u) and η(u) define its coordinate functions. Suppose e2 and e3 construct the
basis of the corresponding circle plane at all points of the spine curve α(u). Therefore, for
a sufficient small parameter r > 0, and using the solutions of the differential system in
Equation (6), the timelike circular surface M is constructed as follows:

M : P(u, θ) = α(u) + r(cos θe2(u) + sin θe3(u)), u ∈ I, θ ∈ R. (8)

We call α(u) a spine curve, and θ → α(u) + r(cos θe2(u) + sin θe3(u)) is named a
generating circle (Figure 1) [6]. γ(u), δ(u), σ(u) and η(u) define a complete system of
curvature functions (invariants) of the surface M.
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Figure 1. A cross-section of M.

In this paper, we do not consider timelike circular surfaces with fixed vectors e1.
Clearly, Equation (8) gives a method for constructing timelike circular surfaces with a
radius r > 0 by the following equation:

α(u) = α0 +

 u∫
0

δe1 + σe2 + ηe3

du. (9)

The P′s tangent vectors are

Pu = (r cos θ + δ)e1 + (σ− rγ sin θ)e2 + (η + rγ cos θ)e3,
Pθ = r(− sin θe2 + cos θe3).

}
(10)

Then, we have

g11 = −(r cos θ + δ)2 + (σ− rγ sin θ)2 + (η + rγ cos θ)2,
g12 = r(rγ− σ sin θ + η cos θ), g22 = r2.

}
(11)

The spacelike unit normal vector for M is presented as

Γ(u, θ) =
−(σ cos θ + η sin θ)e1 − (r cos θ + δ)(cos θe2 + sin θe3)√

−(σ cos θ + η sin θ)2 + (r cos θ + δ)2
. (12)

By a straightforward calculation, we find

Pθθ = −r(cos θe2 + sin θe3),
Puθ = −r(sin θe1 + γ cos θe2 + γ sin θe3),

Puu = (δ′ − σ)e1 + (σ′ + r cos θ + α)e2 + (η
′
+ σγ)e3 + γPθu.

(13)

Then, we have

h11 =


(r cos θ + δ)[rγ− (η′ + σγ) sin θ − (δ + r cos θ + σ′) cos θ]

+(α′ − σ− rγ sin θ)(η sin θ + σ cos θ)√
−(σ cos θ + η sin θ)2 + (δ + r cos θ)2

,

h12 =
r[−(σ cos θ + η sin θ) sin θ + γ(δ + r cos θ)]√
−(σ cos θ + η sin θ)2 + (δ + r cos θ)2

,

h22 =
r(δ + r cos θ)√

−(σ cos θ + η sin θ)2 + (δ + r cos θ)2
. (14)
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The following definition is helpful:

Definition 2. Assume M is the timelike circular surface with Equation (8). Therefore, at u ∈ I ⊆
R, the following holds:

(1) M is named a timelike canal (tubular) surface in the case where the spine curve is perpendicular
to the circular plane such that α′(u), e1(u), e2(u) and e3(u) satisfy

δ(u) =< e1, α′ > 6= 0, and < e2, α′ >=< e3, α′ >= 0⇔ σ(s) = η(s) = 0. (15)

(2) M is named a timelike roller coaster (or tangent) surface in the case where the spine curve is a
tangent to the circular plane such that α′(u), e1(u), e2(u) and e3(u) satisfy

δ(u) =< e1, α′ >= 0, and σ(u) =< e2, α′ >= 0 or η(u) =< e3, α′ >= 0. (16)

A thorough treatment on timelike roller coaster surfaces will be given latter.

3.1. Striction Curves

As we know, the lines are the simplest examples of curves, and circles with a stationary
radius give other simple examples of curves. Ruled surfaces are formed by a family of lines,
and circular surfaces are formed by a set of circles with a stationary radius. Ruled surfaces
have striction curves, and circular surfaces have spine curves. As a result, it is normal to
investigate circular surfaces as an analogy with the ruled surfaces. Thus, for the timelike
circular surface M, the curve

ζ(u) = α(u) + r(cos θ(u)e2(u) + sin θ(u)e3(u)), (17)

is the striction curve if ζ(u) ensures

< ζ′, cos θ(u)e2(u) + sin θ(u)e3(u) >= 0.

This is equivalent to

σ(u) cos θ(u) + η(u) sin θ(u) = 0. (18)

From Equation (18), it follows that striction points only exist when

sin θ(u) = ∓ σ(u)√
η2(u) + σ2(u)

, and cos θ(u) = ± η(u)√
η2(u) + σ2(u)

. (19)

Hence, two striction curves exist and are represented by

ζ1(u) = α(u) + r√
η2(u)+σ2(u)

(η(u)e2(u)− σ(u)e3(u)),

ζ2(u) = α(u) + r√
η2(u)+σ2(u)

(−η(u)e2(u) + σ(u)e3(u)).

 (20)

In light of Equations (15) and (20), all curves on the timelike canal surface transverse to
the generating circles ensure the condition of the striction curves; that is, ζ1(u) = ζ2(u) =
α(u). As a result, the sets of timelike canal surfaces are an analogous class to the sets of
Lorentzian cylindrical surfaces:

Proposition 1. Any non-canal timelike circular surface has two striction curves and intersects
with every generating circle. Lorentzian circles are antipodal points to each other.
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3.2. Curvature Lines and Singularities

Here, we consider timelike circular surfaces whose generating circles are curvature
lines, except for umbilical points or singular points. Using Equations (10) and (12), it is
clear that all generating circles are curvature lines if

Γϑ‖Pϑ ⇔ 2r‖Pu × Pθ‖2(rη + δη cos θ − δσ sin θ) = 0. (21)

We will now research this situation in detail. In case r = 0, then M cannot be gener-
ated. (In reality, we have assumed r > 0.) In addition, if ‖Pu × Pθ‖ = 0, then the surface M
is not regular. As stated in the assumption of M being regular, we find

rη + δ(η cos θ − σ sin θ) = 0, (22)

for all θ. Then, we have the following:

Case (1) When δ = σ = η = 0, then α′ = 0; that is, the spine curve is a fixed point. This
means that the timelike circular surface is a Lorentzian sphere with a radius r.
Namely, M = {P ∈ E3

1 | ‖P− α‖2 = r2}.
Case (2) When σ = η = 0, the spine curve is orthogonal to the spacelike circular plane;

that is, α′ is parallel to e1. Therefore, the timelike circular surface turns into a
timelike canal surface with a timelike spine curve.

Case (3) When δ = η = 0, the tangent vector α′ is parallel to e2. Hence, the tangent vector
of the spine curve lies at the spacelike circle plane for all points of M. Specifically,
α′ = σe2. When σ is constant, consequently, we have

α = α0 + σe1, (23)

where α0 is a constant vector. However, using Eqations (8) and (23) leads to

‖P− α0‖2 = −σ2 + r2 > 0, (24)

This implies that all the circle points lie on a Lorentzian sphere of a radius r > |σ|,
with α0 being its center point in E3

1.

After the above explanation we give the following theorem:

Theorem 1. In the Minkowski 3-space E3
1, aside from the general timelike circular surfaces, there

are two sets of timelike circular surfaces whose generating circles are curvature lines. These two sets
are the timelike roller coaster surfaces and the Lorentzian spheres with a radius less than that of the
generating circles.

Singularities are essential for aspects of timelike circular surfaces and are defined as
follows. In Equations (6)–(9), it is shown that M has a singular point at (s, θ) if

< e1, α′ + r cos θe2
′ + r sin θe3

′ >= 0, and < α′, r cos θe2 + r sin θe3 >= 0,

This yields two (linearly dependent) equations:

δ + r cos θ = 0, and σ cos θ + η sin θ = 0. (25)

The singular points are discussed as follows:

Case (1) This exists when δ + r cos θ = 0. If σ 6= 0 and η 6= 0, then the singular points are
located at θ = sin−1(σδ/ηr) and θ = π + sin−1(σδ/ηr). If δ 6= 0 and η = 0, then
the singular points are located at θ = ± cos−1(δ/r). If δ = 0, for a timelike circular
surface to have singular points, it is necessary that cos θ = 0 = η. Therefore, there
are two singular points on the generating circle, located at θ = ±π/2.
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Case (2) This exists if θ = − tan−1(σ/η). In the case of a timelike circular surface having
singular points, it is necessary that δ − r cos θ = 0. Since |cos θ| ≤ 1, we can
say that the singularities are only located when θ = π/2 and 3π/2. Thus, there
are two singular points on each generating circle. Adding these two sets of
singular points results in two curves (striction curves) that contain all the singular
points of a timelike circular surface. Then, the striction curves form a timelike
circular surface.

Under the above notations, it might be said that the geometrical properties of timelike
circular surfaces are analogues with those of developable ruled surfaces. Lorentzian spheres
correspond to cones, timelike canal surfaces to cylinders and timelike roller coaster surfaces
to tangent developable surfaces. Hence, the following corollary can be given:

Corollary 1. Suppose M is a timelike circular surface which has generating circles as curvature
lines, except at umbilical points or singular points. Therefore, M is a part of a Lorentzian sphere, a
timelike canal surface and a timelike roller coaster surface.

3.3. Timelike Canal (Tubular) Surfaces

Here, we check and construct a timelike canal surface (σ = η = 0 = 0) whose
parametric curves are curvature lines. Then, using Eqations (11) and (14), we consequently
have g12 = h12 = 0⇔ γ = 0. If we use this in Equation (6), we obtain the following ODE:

e
′′
1 − e1 = 0.

From this equation, the spherical curve e1(u) can be represented as

e1(u) = (sinh u, 0, cosh u), (26)

which is a timelike unit vector. Clearly, we have

e2(u) = (cosh u, 0, sinh u), e3(u) = (0, 1, 0). (27)

Assuming an integral with zero integration constants yields

α(u) =
u∫
0

δ(u)(sinh u, 0, cosh u)du.

Let us choose δ(u) = u. Therefore, we have

α(u) = (u cosh u− sinh u, 0, u sinh u− cosh u). (28)

It is clear that α(u) has a singular point (cusp) at u = 0 (Figure 2). Thus, the timelike
canal surface M with the timelike spine curve α(u) is given by

M : P(u, θ) = (u cosh u− cosh u + r cos θ cosh u, r sin θ, u sinh u− sinh u + r cos θ sinh u).

For r = 0.3, with 0 ≤ θ ≤ 2π and −3 ≤ u ≤ 3, the surface is illustrated in Figure 3.
We now give an example regarding singularity and the striction curve of a non-canal

timelike circular surface:

Example 1. A non-canal timelike circular surface can be defined as follows. Take the Blaschke frame
as shown in Equation (27) and γ(u) = δ(u) = η(u) = 1. Then, it is easy to derive

α(u) = (cosh u + sinh u, u, sinh u + cosh u).

which shows that α(u) has no singular point. Then, according to Equation (20), the striction
curves are
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ζ1(u) = (cosh u + sinh u, u, sinh u + cosh u) + r√
2
(cosh u,−1, sinh u),

ζ2(u) = (cosh u + sinh u, u, sinh u + cosh u) + r√
2
(− cosh u, 1,− sinh u).


The timelike circular surface M with the spine curve α(u) is then given by

M : P(u, θ) = (sinh u + (1 + r cos θ) cosh u, u + r sin θ, cosh u + (1 + r cos θ) sinh u),

which has different singularities appear on the striction curves (green), where r = 1, with 0 ≤ θ ≤
2π and −1.5 ≤ u ≤ 1.5 (Figure 4).

Figure 2. α(u) has a cusp at u = 0.

Figure 3. M has different singular points.
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Figure 4. M has different singular points along the striction curves.

3.4. Timelike Canal (Tubular) Surface

We now derive a parametric representation of a timelike canal (tubular) surface with a
timelike spine curve. Consider s to be the arc length parameter of α and {T(s), N(s), B(s)}
to be its Serret–Frenet frame. Then, we have

T(s) =
α′

‖α′‖ = e1, N(s) =
dT
ds

∥∥∥∥dT
ds

∥∥∥∥−1
= e2, B(s) = e3, (29)

and  T ′

N ′

B′

 =

 0 κ 0
κ 0 τ
0 −τ 0

 T
N
B

,
(
′ =

d
ds

)
where κ(s) and τ(s) define the natural curvature and torsion:

κ(s) =
1
|δ| , τ(s) =

γ

δ
, with δ 6= 0.

Notably, as long as T(s) is perpendicular to the circle planes at all points of the spine
curve, the canal surface can be defined as

M : P(s, θ) = α(s) + r(cos θN + sin θB), s ∈ I, θ ∈ R.

The P′s tangent vectors are

Ps = µT + τPθ , and Pθ = r(− sin θN + cos θB),

where µ = 1 + rκ cos θ such that

g11 = −µ2 + r2τ2, g12 = r2τ, g22 = r2,

and
Γ(s, θ) = cos θN + sin θB.

Then, we have

Pθθ = −r(cos θN + sin θB),
Psθ = −rκ sin θT − rτ(cos θN + sin θB),

Pss = r(κ′ cos θ − κτ sin θ)T + r
[
µκ − r

(
τ′ sin θ + τ2 cos θ

)]
N

+r
(

τ′ cos θ − τ
2

sin θ
)

B.
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Therefore, we can write

h11 = −rτ2 + µκ cos θ, h12 = −rτ, h22 = −r.

Hence, the Gaussian and mean curvatures can be calculated as

K(s, θ) =
κ cos θ

µr
, and H(s, θ) =

1
2

(
1
r
+ rK(s, θ)

)
.

On the other hand, because every Lorentzian generating circle is a curvature line, the
value of one principal curvature is

χ1(s, θ) := ‖Pθ × Pθθ‖‖Pθ‖−3 =
1
r

.

The principle direction of χ1 points in the direction of the Lorentzian generating circle,
and this curvature is constant:

Corollary 2. The principal curvature of a timelike canal surface is constant along all generating
Lorentzian circles.

Example 2. Let α(s) = (sin s
2 , cos s

2 ,
√

5
2 s), −2π ≤ s ≤ 2π be a unit speed timelike helix.

Clearly, we have
T(s) = ( 1

2 cos s
2 ,− 1

2 sin s
2 ,
√

5
2 ),

N(s) = (− sin s
2 ,− cos s

2 , 0),
B(s) = (

√
5

2 cos s
2 ,−

√
5

2 sin s
2 , 1

2 ).


Hence, we construct the timelike canal surface as follows:

P(s, θ) = (sin
s
2

, cos
s
2

,

√
5

2
s) + r(0, cos θ, sin θ)

 1
2 cos s

2 − 1
2 sin s

2

√
5

2
− sin s

2 − cos s
2 0√

5
2 cos s

2 −
√

5
2 sin s

2
1
2

.

The spine curve has no singular points. Clearly, P(s, θ) has different singularities with r = 1
and 0 ≤ θ ≤ 2π (Figure 5).

Figure 5. M has different singular points.
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3.5. Timelike Roller Coaster Surfaces

Timelike roller coaster surfaces are considered to be those where the tangent vector
of the spine curve α lies in the spacelike circle plane at all points of α. This means that
δ(u) = 0, σ(u) and η(u) do not equal zero simultaneously. Through this work, we will only
assume that δ(u) = η(u) = 0 and σ(u) 6= 0. If so, such a surface is called a timelike roller
coaster surface with a spacelike spine curve; that is, α′(u) = σ(u)e2. From Equation (19), it
follows that θ = π/2 and 3π/2. Hence, the equation of the striction curves is

ζ1,2(u) = α(u)± re3(u), (30)

which contains all the singular points. Therefore, striction curves form a timelike roller
coaster surface with a spacelike spine curve. The curvature and torsion may be derived,
depending on σ(u) and γ(u), as follows:

κ1(u) =
1

σ− rγ

√
−1 + γ2, τ1(u) =

γ′

(−1 + γ2)(σ− rγ)
,

κ2(u) =
1

σ + rγ

√
−1 + γ2, τ2(u) =

γ′

(−1 + γ2)(σ + rγ)
. (31)

Thus, if γ is a constant, then the torsions τi are zero simultaneously; that is, the
striction curves are planar spacelike curves. Moreover, the Gaussian and mean curvatures
at a regular point can be written as

K(u, θ) =
1

r2 − σ2 +
rσ′

(r2 − σ2)2 cos θ
,

H(u, θ) =
σ′

2r
(√

r2 − σ2
)3

cos θ

+
1√

r2 − σ2
. (32)

It is a noteworthy fact that concepts such as both Gaussian curvature and principal
curvatures, whose definition makes fundamental use of the location of a surface in a space,
do not rely on the geodesic curvature of e1 ∈ H2

+ but only on σ and θ. Hence, the following
conclusions can be given:

Theorem 2. If a set of timelike roller coaster surfaces has an equal radius and scalar σ, and its
derivative is σ′, then the Gaussian as well as the mean curvatures at corresponding points will be
equal to each other at the corresponding point. Moreover, their values are independent of the geodesic
curvature of the hyperbolic spherical image curve e1 ∈ H2

+.

Furthermore, to study the kinematic-geometric possessions of the timelike roller
coaster surface, the Serret–Frenet of the spine curve α(u) is necessary to build. Therefore,
assume v be the arc length of the spacelike spine curve α(u) and σ(u) > 0 at all u ∈ I ⊆ R,
where the Serret–Frenet frame of the spine curve can be presented as

t(v) =
α′

‖α′‖ = e2, n(v) =
t′

‖t′‖ =
e1 + γe3√

γ2 − 1
, b(v) =

γe1 + e3√
γ2 − 1

.

By letting cosh ϕ = γ√
γ2−1

, sinh ϕ = 1√
γ2−1

, |γ| > 1, it follows that

 t
n
b

 =

 0 1 0
sinh ϕ 0 cosh ϕ
cosh ϕ 0 sinh ϕ

 e1
e2
e3

, (33)
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Thus, we have

d
dv

 t
n
b

 =

 0 κ(v) 0
−κ(v) 0 τ(v)
0 τ(v) 0

 t
n
b

,

where

κ(v) =
1
σ

√
γ2 − 1, τ(v)− dϕ

dv
= 0,

dϕ

dv
=

γ′

σ(γ2 − 1)
, ϕ(v) = −

v∫
0

τdv + ϕ0. (34)

The timelike roller coaster surface can be presented as

M : P(s, θ) = α + r[cos θt + sin θ(cosh ϕn− sinh ϕb)]. (35)

Furthermore, the two striction curves are

ζ1(v) = α(v)− r(cosh ϕn(v)− sinh ϕb(v)),

ζ2(v) = α(v) + r(cosh ϕn(v)− sinh ϕb(v)).

 (36)

As in the previous equations, we not only prove the existence of the timelike roller
coaster, but we also give the specified expression of the surface. This is very significant in
practical application.

A surface with zero Gaussian curvature is called a flat surface. Clearly, M is flat if
K(u, θ) = (r2 − σ2)2 cos θ + rσ′ = 0. Thus, for every θ ∈ I ⊆ R, we have

∂2K(u, θ))

∂2θ
+ K(u, θ) = 0⇔ σ′(u) = 0. (37)

Using Equations (32) and (34), the indication of σ′(u) in terms of the Serret–Frenet
invariants is

σ′(u) = 0⇔ κ(v)τ(v) cosh ϕ(v) +
dκ

dv
sinh ϕ(v) = 0.

Therefore, in a neighborhood of every point on M with κ(v) 6= 0, we have dκ(v)
dv =

τ(v) = 0. Therefore, a timelike roller coaster surface whose Gaussian curvature vanishes
identically is a part of the timelike plane. In the same method, we find that M is a timelike
minimal flat surface. Hence, we state the following:

Corollary 3. All the flat (minimal) timelike roller coaster surfaces are subsets of Lorentzian planes.

Example 3. Take the case of a parametric spacelike circular helix, such as

α(v) = (a cos v, a sin v, bv), a > 0, b 6= 0, a2 − b2 = 1, 0 ≤ v ≤ π.

With normal computation, we have

t(v) = (−a sin v, a cos v, b), n(v) = (cos v, sin v, 0), b(v) = (−b sin v, b cos v, a).

Clearly, if τ = b, then ϕ(v) = bv + ϕ0. In the case of ϕ0 = 0, we have ϕ(v) = bv. For
a = 2 and r = 1, the corresponding timelike roller coaster surface with the spine curve α(v) (blue)
is shown in Figure 6. Singularities appear on the striction curves (green).
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Figure 6. Timelike roller coaster surface with its spine and striction curves.

4. Conclusions

This work investigates the smooth one-parameter family of standard Lorentzian cir-
cles with a fixed radius. A similar surface, named a timelike circular surface, has a fixed
radius. Then, several corresponding properties of timelike circular surfaces with ruled
surfaces were obtained. Through the differential operation of the frame, the geometric
properties of the timelike circular surface are explained, and their geometric meanings
are presented. Additionally, the conditions for timelike roller coaster surfaces to be flat or
minimal surfaces are obtained. Finally, some illustrative examples were presented. Fur-
thermore, interdisciplinary research can provide valuable new insights, but synthesizing
articles across disciplines with highly varied standards, formats, terminology, and methods
required an adapted approach. Recently, many interesting papers have been written related
to symmetry, molecular cluster geometry analysis, submanifold theory, singularity theory,
eigenproblems, etc. [17–53]. In future works, we plan to study the timelike circular surfaces
and singularities for different queries and further improve the results in this paper, com-
bined with the technics and results in [17–53]. We intend to perform the implementation of
those results and explore new methods to find more results and theorems related to the
symmetric properties of this topic in our following papers.
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