
Timeline: A Dynamic Hierarchical Dirichlet Process Model for
Recovering Birth/Death and Evolution of Topics in Text Stream

Amr Ahmed
amahmed@cs.cmu.edu

School of Computer Science
Carnegie Mellon University

Eric P. Xing
epxing@cs.cmu.edu

School of Computer Science
Carnegie Mellon University

Abstract

Topic models have proven to be a useful tool
for discovering latent structures in document
collections. However, most document collec-
tions often come as temporal streams and
thus several aspects of the latent structure
such as the number of topics, the topics’ dis-
tribution and popularity are time-evolving.
Several models exist that model the evolu-
tion of some but not all of the above as-
pects. In this paper we introduce infinite

dynamic topic models, iDTM, that can ac-
commodate the evolution of all the aforemen-
tioned aspects. Our model assumes that doc-
uments are organized into epochs, where the
documents within each epoch are exchange-
able but the order between the documents
is maintained across epochs. iDTM allows
for unbounded number of topics: topics can
die or be born at any epoch, and the repre-
sentation of each topic can evolve according
to a Markovian dynamics. We use iDTM to
analyze the birth and evolution of topics in
the NIPS community and evaluated the effi-
cacy of our model on both simulated and real
datasets with favorable outcome.

1 Introduction

With the dramatic increase of digital document col-
lections such as online journal articles, the Arxiv, con-
ference proceedings, blogs, to name a few, there is a
great demand for developing automatic text analysis
models for analyzing these collections and organizing
its content. Statistical admixture topic models (Blei
et al., 2003) were proven to be a very useful tool to
attain that goal and have recently gained much popu-
larity in managing large collection of documents. Via
an admixture model, one can project each document

into a low dimensional space where their latent seman-
tic (such as topical aspects) can be captured. This
low dimensional representation can then be used for
tasks like measuring document-document similarity or
merely as a visualization tool that gives a bird’s eye
view of the collection and guides its exploration in a
structured fashion.

An admixture topic model posits that each document
is sampled from a fixed-dimensional mixture model ac-
cording to a document’s specific mixing vector over the
topics. The variabilities in the topic mixing vectors
of the documents are usually modeled as a Dirichlet
distribution (Blei et al., 2003), although other alter-
natives have been explored in the literature (Blei and
Lafferty, 2007, Li and McCallum, 2006). The compo-
nents of this Dirichlet distribution encode the popu-
larity of each of the topics in the collection. However,
document collections often come as temporal streams
where documents can be organized into epochs; exam-
ples of an epoch include: documents in an issue of a
scientific journal or the proceeding of a conference in a
given year. Documents inside each epoch are assumed
to be exchangeable while the order between documents
is maintained across epochs. With this organization,
several aspects of the aforementioned static topic mod-
els are likely to change over time, specifically: topic
popularity, topic word distribution and the number of
topics.

Several models exist that could accommodate the evo-
lution of some but not all of the aforementioned as-
pects. Blei and Lafferty (2006) proposed a dynamic
topic model in which the topic’s word distribution and
popularity are linked across epochs using state space
models, however, the number of topics are kept fixed.
Wang and McCallum (2006) presented the topics over
time model that captures topic popularity over time
via a beta distribution, however, topic distributions
over words and the number of topics were fixed over
time, although the authors discussed a non-parametric
extension over the number of topics. Moreover, the



shapes of permitted topic trends in the TOT model
are restricted to those attained by the beta distribu-
tion. On the other hand, several models were pro-
posed that could potentially evolve all the aforemen-
tioned aspect albeit in a simple clustering settings, i.e.
each document is assumed to be sampled from a sin-
gle topic (Ahmed and Xing, 2008, Caron et al., 2007,
Srebro and Roweis, 2005). As we will show in this
paper, accommodating the evolution of the aforemen-
tioned aspects in a full-fledged admixture setting is
non-trivial and introduces its own hurdles. Moreover,
it is widely accepted (Blei et al., 2003) that admix-
ture models are superior compared to simple cluster-
ing models for modeling text documents, especially for
long documents such as research papers.

In this paper we introduce iDTM: infinite dynamic
topic models which can accommodate the evolution
of the aforementioned aspects. iDTM allows for un-
bounded number of topics: topics can be born and die
at any epoch, the topics’ word distributions evolve ac-
cording to a first-order state space model, and the top-
ics’ popularity evolve using the rich-gets richer scheme
via a ∆-order process. iDTM is built on top of the re-
current Chinese restaurant franchise (RCRF) process
which introduces dependencies between the atom loca-
tions (topics) and weights (popularity) of each epoch.
The RCRF process is built on top of the RCRP process
introduce in (Ahmed and Xing, 2008).

To summarize, the contributions of this paper are:

• A principled formulation of a dynamic topic
model that evolves: topic trend, topic distribu-
tion, and number of topics over time.

• An efficient sampling algorithm that relies on dy-
namic maintenance of cached sufficient statistics
to speed up the sampler.

• An empirical evaluation and illustration of the
proposed model over simulated data and over the
NIPS proceedings.

• A study of the sensitivity of the model to the set-
ting of its hyperparameters.

2 Settings and Background

In this section, we lay the foundation for the rest of this
paper by first detailing our settings and then review-
ing some necessary background to make the paper self-
contained. We are interested in modeling an ordered
set of documents w = (w1, · · · ,wT ), where T denotes
the number of epochs andwt denotes the documents at
epoch t. Furthermore, wt = (wtd)

Dt

d=1
, where Dt is the

number of documents at epoch t. Moreover, each doc-
ument comprises a set of ntd words, wtd = (wtdi)

Ntd
i=1

,

where each word wtdi ∈ {1, · · · ,W}. Our goal is
to discover potentially an unbounded number of top-
ics (φk)

∞

k=1
where each topic φk = (φk,tk1 , · · · , φk,tk2 )

spans a set of epoches where 1 ≤ tk1 ≤ tk2 ≤ T , and
φk,t is the topic’s word distribution at epoch t.

2.1 Temporal Dirichlet Process Mixture
Model

The Dirichlet process (DP) is a distribution over
distributions (Ferguson, 1973). A DP denoted by
DP (G0, α) is parameterized by a base measure G0

and a concentration parameter α. We write G ∼
DP (G0, α) for a draw of a distribution G from the
Dirichlet process. G itself is a distribution over a given
parameter space θ, therefore we can draw parameters
θ1:N from G. Integrating out G, the parameters θ
follow a Polya urn distribution (Blackwell and Mac-
Queen, 1973), also knows as a Chinese restaurant pro-
cess (CRP), in which the previously drawn values of
θ have strictly positive probability of being redrawn
again, thus making the underlying probability mea-
sure G discrete with probability one. More formally,

θi|θ1:i−1, G0, α ∼
∑

k

mk

i− 1 + α
δ(φk) +

α

i− 1 + α
G0. (1)

where, φ1:k denotes the distinct values among the pa-
rameters θ, and mk is the number of parameters θ
having value φk. By using the DP at the top of a
hierarchical model, one obtains the Dirichlet process
mixture model, DPM (Antoniak, 1974).

Several approached have been proposed to introduce
temporal dependencies in DPs (Ahmed and Xing,
2008, Caron et al., 2007, Ghahramani and Lafferty,
2005, Griffn and Steel, 2006, Rao and Teh , 2009), to
name a few. Here we focus on the temporal DPM in-
troduced in (Ahmed and Xing, 2008). The temporal
Dirichlet process mixture model (TDPM) is a frame-
work for modeling complex longitudinal data, in which
the number of mixture components at each time point
is unbounded; the components themselves can retain,
die out or emerge over time; and the actual parameter-
ization of each component can also evolve over time in
a Markovian fashion. In TDPM, the random measure
G is time-varying, and the process stipulates that:

Gt|φ1:k, G0, α ∼ (2)

DP

(

α+
∑

k

m′

kt
,
∑

k

m′

k,t
∑

l
m′
lt
+ α

δ(φk) +
α

∑

l
m′
lt
+ α

G0

)

where {φ1:k} are the mixture components available in
the previous ∆ epochs, in other words, {φ1:k} is the



collection of unique values of the parameters θt:t−∆,
where θtn is the parameter associated with data point
xtn. If we let mkt denotes the number of parameters
in epoch t associated with component k, then m

′

kt
, the

prior weight of component k at epoch t is defined as:

m
′

kt
=

∆
∑

δ=1

exp
−δ
λ mk,t−δ (3)

,where ∆, λ define the width and decay factor of the
time-decaying kernel. This defines a ∆−order process
where the strength of dependencies between epoch-
specific DPs are controlled with ∆, λ. Ahmed and
Xing (2008) showed that these two hyper-parameters
allow the TDPM to degenerate to either a set of in-
dependent DPMs at each epoch when ∆=0, and to
a global DPM, i.e ignoring time, when ∆ = T and
λ = ∞. In between, the values of these two param-
eters affect the expected life span of a given compo-
nent. The larger the value of ∆ and λ, the longer the
expected life span of the topic, and vice versa. Finally,
the life-span of topics followed a power law distribution
(Ahmed and Xing, 2008).

In addition to changing the weight associated with
each component, the parameterization φk of each com-
ponent changes over time in a markovian fashion, i.e.:
φkt|φk,t−1 ∼ P (.|φk,t−1). Integrating out the random
measures G1:T , the parameters θ1:t follow a polya-urn
distribution with time-decay, or as termed in Ahmed
and Xing (2008), the recurrent Chinese restaurant pro-
cess (RCRP). More formally:

θti|θt−1:t−∆, θt,1:i−1, G0, α ∝
∑

k

(

m′

kt
+mkt

)

δ(φkt)

+αG0 (4)

The RCRP allows each document w to be generated
from a single component (topic), thus making it subop-
timal in modeling multi-topic documents. In the next
subsection, we review the HDP process which allows
each document to be generated from multiple topics.

2.2 Hierarchical Dirichlet Processes

Instead of modeling each documentwd as a single data
point, we could model each document as a DP. In this
setting,each word wdn is a data point and thus will be
associated with a topic sampled from the random mea-
sure Gd, where Gd ∼ DP (α,G0). The random mea-
sure Gd thus represents the document-specific mixing
vector over a potentially infinite number of topics. To
share the same set of topics across documents, Teh
et al. (2006) introduced the Hierarchical Dirichlet Pro-
cess (HDP). In HDP, the document-specific random

measures are tied together by modeling the base mea-
sure G0 itself as a random measure sampled from a
DP (γ,H). The discreteness of the based measure G0

ensures sharing of the topics between all the groups.

Integrating out all random measures, we obtain
the equivalent Chinese restaurant franchise pro-
cesses(CRFP) (Teh et al., 2006). In our document
modeling setting, the generative story behind this pro-
cess proceeds as follows. Each document is refereed to
as a restaurant where words inside the document are
referred to as customers. The set of documents shares
a global menu of topics. The words in each document
are divided into groups, each of which shares a ta-
ble. Each table is associated with a topic (dish in
the metaphor), and words sitting on each table are as-
sociated with the table’s topic. To associate a topic
with word wdi we proceed as follows. The word can
sit on table bdb that has ndb words with probability
ndb

i−1+α , and shares the topic, ψdb on this table, or picks
a new table, bnew with probability α

i−1+α and orders
a new topic, ψdbnew sampled from the global menu.
A topic φk that is used in mk tables across all doc-
uments is ordered from the global menu with prob-
ability mk∑

K
l=1ml+γ

, or a new topic, knew not used in

any document, is ordered with probability γ
∑
K
l=1ml+γ

,

φknew ∼ H. If we let θdi denotes the distribution of
the topic associated with word wdi, then putting ev-
erything together we have:

θdi|θd,1:i−1, α,ψ ∼

b=Bd
∑

b=1

ndb
i− 1 + α

δψdb +
α

i− 1 + α
δψdbnew (5)

ψdbnew |ψ, γ ∼
K
∑

k=1

mk
∑

K

l=1
ml + γ

δφk +
γ

∑

K

l=1
ml + γ

H (6)

where Bd is the number of tables in document d.

While the CRFP allows each document to be gener-
ated from multiple topics, and allows for the number
of topics to be unbounded, it still can not evolve the
topics’ trends and word distributions.

3 Infinite Dynamic Topic Models

Now we proceed to introducing our model, iDTM
which allows for infinite number of topics with variable
durations. The documents in epoch t are modeled us-
ing an epoch specific HDP with high-level base mea-
sure denoted as Gt0. These epoch-specific base mea-
sures {Gt0} are tied together using the TDPM process
of (Ahmed and Xing, 2008). Integrating all random
measure, we get the recurrent Chinese restaurant fran-
chise process (RCRF).



Figure 1: The recurrent Chinese restaurant franchise (RCRF) precoces. The figure shows a first-order process with no
decay to avoid cluttering the display,however see the text for the description of a general ∆-order process.

Figure 1 depicts a RCRF process of order one for clar-
ity, however, in this section we give a description of
a general process of order ∆. In the RCRF, the doc-
ument in each epoch is modeled using a CRFP, and
then the global menus of each epoch are tied over time
as depicted in Figure 1.

As in the RCRP, the popularity of a topic at epoch t
depends both on its usage at this epoch, mkt as well
as it historic usage at the proceedings ∆ epochs, m′

kt
,

where m′

kt
is given in (3). This means that a topic

is considered dead only when it is unused for a con-
secutive ∆ epochs. For simplicity, we let m′

kt
= 0 for

newly-born topics at epoch t, and mkt = 0 for topics
available to be used(i.e having m′

kt
> 0) but not yet

used in any document at epoch t.

The generative process at the first epoch proceeds ex-
actly as in the CRF process. At epoch t, to asso-
ciate a topic with word wtdi we proceed as follows.
Word wtdi can sit on table b that has ntdb customers
and has topic ψtdb with probability ntdb

i−1+α . Alter-
natively, wtdi can choose to start a new table, bnew

td

with probability α
i−1+α and choose a new topic. It

can choose an already existing topic from the menu

at epoch t with probability
mkt+m

′

kt∑Kt
l=1mlt+m

′

lt
+γ

, Kt is the

number of topics at epoch t. Furthermore, if this
topic is inherited but not yet used by any previous
word (i.e mkt = 0), then wtdi modifies the distribu-
tion of this topic: φkt ∼ P(.|φk,t−1). Finally, wtdi can
choose a brand new topic φKnew

t
∼ H, with probability

γ
∑Kt
l=1mlt+m

′

lt
+γ

and increment Kt. Putting everything

together, we have:

θtdi|θtd,1:i−1, α,ψt−∆:t ∼

b=Btd
∑

b=1

ntdb
i− 1 + α

δψtdb +

α

i− 1 + α
δψtdbnew (7)

ψtdbnew |ψ, γ ∼
∑

k:mkt>0

mkt +m
′

kt
∑

Kt

l=1
mlt +m′

lt
+ γ

δφkt

+
∑

k:mkt=0

mkt +m
′

kt
∑

Kt

l=1
mlt +m′

lt
+ γ

P(.|φk,t−1)

+
γ

∑

Kt

l=1
mlt +m′

lt
+ γ

H (8)

If we use the RCRF process as a prior over word
assignment to topics in a mixed-membership model,
we get the infinite dynamic topic model (iDTM).
In iDTM, each word is assigned to a topic as in
the RCRF process, and then the word is generated
from this topic’s distribution. The base measure H
is modeled as H = N(0, σI), and the word distri-
bution of the topic k at epoch t, φkt evolves us-
ing a random walk kernel as in (Blei and Lafferty,
2006):φk,t|φk,t−1 ∼ N(φk,t−1, ρI). To generate word
wtdi from its associated topic, say φkt, we first map
the natural parameters of this topic φk,t to the sim-
plex via the logistic transformation L, and then gen-
erate the word, i.e.: wtdi|φkt ∼ M

(

L(φkt)
)

, where

L(φkt) = expφkt
∑
W
w=1 expφk,t,w

. This choice introduces non-

conjugacy between the base measure and the likelihood
function which we have to deal with in Section 4.

4 A Gibbs Sampling Algorithm

In this section, we give a Gibbs sampling algorithm
for posterior inference in the iDTM. We construct a
Markov chain over (k, b,φ), where ktdb, btdi, φkt are as
given in Section 3: the index of the topic on table b
in document td, the table index assigned to word wtdi,
and the parameterization of topic k at time epoch t,
respectively. We use the following notations. Adding
a superscript −i to a variable, indicate the same quan-
tity it is added to without the contribution of object i.
For example n−tdi

tdb
is the number of customers sitting



on table b in document d in epoch t without the con-
tribution of word wtdi, and k

−tdb

t
is kt\ktdb. We alter-

nate sampling each variable conditioned on its Markov
blanket as follows:

Sampling a topic ktdb for table tdb: The conditional
distribution for ktdb is given by:

P(ktdb = k|k−tdb

t−∆:t+∆, btd,φ,wt) ∝ (9)

P(ktdb = k|k−tdb

t−∆:t,φ,vtdb)
∆
∏

δ=1

P(kt+δ|k
−tdb→k

t+δ−∆:t+δ−1)

where vtdb is the frequency count vector (of length W)
of the words sitting on table tdb, and the notation
(−tdb→k) means the same as k−tdb

t−∆:t+∆ but in addition we
set ktdb = k. The second factor in (9) is the transition
probability which measures the likelihood of the table
assignments at future epochs if we choose to assign
ktdb = k. Now we focus on computing one of these
probabilities in the second factor in (9) at epoch t+ δ.
With reference to the construction in Section 3 and Eq
(8), and considering that documents are exchangeable
within each epoch, similar to Antoniak (1974), we have
1 :

P(kt+δ|k
−tdb→k

t+δ−∆:t+δ−1) = (10)

γK
born
t+δ

∏

s∈Kborn
t+δ

[1]ms,t+δ
∏

s/∈Kborn
t+δ

[m′,−tdb→k

s,t+δ ]ms,t+δ

∏m.,t+δ
i=1 (m′,−tdb→k

.,t+δ + γ + i)

where Kborn
t+δ is the number of topics born at epoch

t + δ,m.,t+δ is the summation of mk,t+δ over the first
dimension (the topic), and m′

.,t+δ is defined similarly.
Finally, [a]c = a(a+ 1) · · · (a+ c− 1).

Now we turn to the first factor in (9). Using (8),
P
(

ktdb = k|k−tdb

t−∆:t,φ,vtdb
)

∝ :































(

m−tdb

kt
+m

′

kt

)

f(vtdb|φkt)
k is being used : m−tdb

kt
> 0

m
′

kt

∫

f(vtdb|φkt)dP (φkt|φk,t−1)

k is available but not used : m
′

kt
> 0

γ
∫

f(vtdb|φkt)dH(φkt)
k is a new topic

(11)

Unfortunately, due to the non-conjugacy neither the
second nor the third case above can be computed ana-
lytically. In Ahmed and Xing (2008) a Laplace approx-
imation was used to fit these integrals. This was pos-
sible since the integrals were evaluated over the whole

1Ahmed and Xing (2008) used a finite dynamic-mixture
model, which is equivalent on the limit to RCRP, to com-
pute the same quantity. Our formula here is exact and
have the same amount of computation as the approximate
formula. We also note that our formula gives better results

document (a mixture model), however in our setting
(mixed-membership model), we need to evaluate these
integrals over small groups of words (like words on a
given table). We found that the deterministic approx-
imation overestimates the integrals and increases the
rate of generating new topics, therefore we resort to
algorithm 8 in Neal (1998). In this case, we replace
both of these integrals with Q fresh samples from their
respective distributions, and equally divide the corre-
sponding probability mass among these new samples.
These samples are then treated as if they were already
existing topics. We choose to use Q = 1 for the transi-
tion kernel since in our application, iDTM, this kernel
usually has a small variance. Substituting this in equa-
tion (11), we get that P

(

ktdb = k|k−tdb

t−∆:t,φ,vtdb
)

∝:































(

m−tdb

kt
+m

′

kt

)

f(vtdb|φkt)
k is used:m−tdb

kt
> 0

m
′

kt
f(vtdb|φkt)

m
′

kt
> 0,m−tdb

kt
= 0, φkt ∼ P (.|φk,t−1)

γ
Qf(vtdb|φ

q

kt
)

k is a new topic, φq
kt
∼ H, q = 1 · · ·Q

(12)

Sampling a table btdi for word xtdi: With reference
to (7), the conditional distribution for btdi, P

(

btdi =
b|b−tdi

td
,kt−∆:t+∆,φ, xtdi) is proportional to:



















n−tdi

tdb
f(xtdi|φktjb,t)

b is an existing table
αP
(

ktjbnew = k|kt−∆:t+∆
−tdi, b−tdi

td
,φ, xtdi,

)

bnew is a new table, k ∈ kt

(13)

Several points are in order to explain (13). There are
two choices for word wtdi:either to sit on an existing
table, or to sit on a new table and choose a new topic.
In the second case, we need to sample a topic for this
new table which leads to the same equation as in (11).
Moreover, if wtdi was already sitting on a table by
itself, then we need to first remove the contribution of
this table from the count vectorm. Finally, note that
in the second line, P is a proper distribution (i.e. it
should be normalized) and thus the total probability
mass for sitting on a new table is till α regardless of
how many topics are available at epoch t.

Sampling φk: P(φk|b,k,x) = P(φk|vk), where vk =
{vk,t}, vk,t is the frequency count vector of words gen-
erated from this topic at epoch t. This a state space
model with nonlinear emission, and fortunately there
is a large body of literature on how to use Metropolis-
Hasting to sample from this distribution (Tanizaki,
2003, Geweke and Tanizaki, 2001). There are two
strategy to deal with this posterior: either sample from
it as a block, or to sequentially sample each φkt. Both



of these options involve an M-H proposal,however, due
to the strong correlation between the successive values
of φkt, we found that sampling this posterior as a block
is superior. Let q(φk) be the proposal distribution,
and let φ∗

k
denote a sample from this proposal. The

acceptance ratio is r = min(1, u), where u is as follows
(for simplicity assume that the chain starts at t = t1):

H(φ∗
k,t1

)×
∏

t f(vkt|φ
∗

kt
)P (φ∗

kt
|φ∗
k,t−1)

H(φk,t1)×
∏

t f(vkt|φkt)P (φkt|φk,t−1)
×

∏

t q(φkt)
∏

t q(φ
∗
kt
)
(14)

With probability r the proposed values are accepted
and with probability 1− r the old values are retained.
Our proposal is based on a Laplace approximation to
the LTR smoother (details of calculating this proposal
is given in the appendix). A similar Laplace proposal
has been used successively in the context of Bayesian
inference of the parameters of a Logistic-Normal dis-
tribution (Hoff, 2003), as well as in the context of
non-linear state space models in Geweke and Tanizaki
(2001) who also noted that this proposal has high ac-
ceptance rate (a fact that we also observed).

4.1 Practical Considerations

A naive implementation of the Gibbs sampling algo-
rithm in 4 might be slow. We note here that the dif-
ference between the sampler we described in 4 and
the sampler of a standard CRFP comes in the calcu-
lation of the vales of m′

kt
and for the calculation of

(10). The case for m′ is simple if we note that it needs
to be computed only once before sampling variables
in epoch t, moreover, because of the form of the ex-
ponential kernel used, we can define a recurrence over

m′

kt
as: m′

kt
=
(

m′

k,t−1 + mk,t−1

)

exp
−1
λ if t < ∆ and

m′

kt
=
(

m′

k,t−1 + mk,t−1

)

exp
−1
λ − exp

−(∆+1)
λ mk,t−(∆+1)

otherwise.

On the other hand, a naive implementation of (10)
costs an O(K2∆) as we need to compute it for ∆
epochs and for each k. Here we describe an alter-
native approach. We divide and multiply (10) with
P(kt+δ|kt+δ−∆:t+δ−1) , which is the likelihood of the ta-
ble assignments at epoch t + δ given the current con-
figuration with the old value of ktdb = kold. This is
legitimate since this value is constant across k. Now
we absorb the value we multiplied in the normalization
constant, and focus on the following ratio:

Ct+δ(kold → knew) =
P(kt+δ|k

−tdb→k

t+δ−∆:t+δ−1)

P(kt+δ|kt+δ−∆:t+δ−1)
(15)

where Ct+δ(kold → knew) is the cost contributed by
the assignment of the table at epoch t+ δ for moving

an occupancy from table kold to knew. In fact (15) is all
what we need to compute (10) and thus (9). The idea
here is that all the terms not involving kold and knew

will cancel from (15), leaving only 2 terms that involve
kold and knew to be computed. To see why this is the
case, note that m′,−tdb→knew

s,t+δ reduces to m′

s,t+δ when-
ever s /∈ {knew, kold}. Furthermore, we can cache this
two dimensional array at each epoch and dynamically
update it whenever the sampled value in (9) for ktdb
is different from kold. In this case, we need to update
Ct+δ(kold → .) and Ct+δ(knew → .). Thus the cost
of computing the transition probability reduces from
O(K2∆) to at most O(K∆). Moreover, especially at
later stages of the sampler when tables do not change
their topic assignments frequently, the improvement
ratio will be more than that.

5 Experimental Results

In this section we illustrate iDTM by measuring its
ability to recover the death and birth of topics in a
simulated dataset and in recovering topic evolution
in the NIPS dataset. For all the experiments in this
paper, we place a vague gamma prior (1,1) over the
hyperparameters γ, α and sample them separately for
each epoch using the method described in Teh et al.
(2006). Unless otherwise stated, we use the following
values for the hyperparameters: the variance of the
base measure H, σ = 10; the variance of the random
walk kernel over the natural parameters of each topic,
ρ = 0.01; ∆ = 4; the number of sample from the base
measure Q = 5, and finally λ = .5.

Initialization of the Markov chain is quite important.
Our setup proceeds as follows. In the first iteration,
we run the Gibbs sampler in the filtering mode (i.e.
sampling each epoch conditioned on the ∆ preceding
epochs only) and used a liberal value for α = 4 and
γ = 10 to encourage the generation of large number
of topics. An initial large number of topics in desir-
able since as noted in Teh et al. (2007), initializing
HDP-like models with large number of topics results
in a better mixing than initializing the sampler with a
smaller number of topics. In the subsequent iterations,
we ran our standard Gibbs sampler that also samples
the values of α, γ. Finally, we ran all samplers for 2000
iterations and took 10 samples 200 iterations apart and
then used the sample with the highest Likelihood for
evaluation and visualization

5.1 Simulation Results

We generated a simple time-evolving document collec-
tion over T = 20 epochs. We set the vocabulary size
to 16, and hand-crafted the birth-death of 8 topics, as
well as their words’ distributions as shown in Figure 2.
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Figure 2: Illustrating simulation results. Left: topic’s
death-birth over time (topics numbered from bottom-top).
Ground truth is shown in red and recovered in blue. Right:
from top to bottom, topics’ distribution after iteration 1,
a posterior sample, ground truth (numbered from left to
right), and finally a set of documents at different time
epochs from the training data.

Each topic puts its mass on 4 words. At each epoch
we add a 5% random noise to each topic’s word dis-
tribution. We then ran the RCRFP with α = 1.5 to
generate 100 documents at each epoch each of which
having 50 words. γ was set to zero in this generation
since the topics layout were fixed by hand. Moreover,
Once a topic is alive, say at epoch t, its prior popular-
ity m

′

is set to the average prior popularity at epoch t.
Our goal was to assess the efficacy of iDTM in recov-
ering abrupt death and birth of topics. Finally given
the generated data, we ran the sampler described in
Section 4 to recover the topics and their durations. As
depicted in Figure 2, iDTM was able to recover the
correct distribution for each topic as well as its correct
lifespan.

5.2 Timeline of the NIPS Conference

We used iDTM to analyze the proceedings of the NIPS
conference from the years 1987-1999. We removed
words that appear more than 5000 times or less than
100 times which results in a vocabulary size of 3379
words. The collection contains 1740 documents, where
each document contains on average 950 words. Docu-
ments were divided into 13 epochs based on the pub-
lication year. We ran iDTM to recover the structure
of topic evolution in this corpus.

Figure 3.a shows the initial state of the sampler and
the MAP posterior sample. Each horizontal line gives
the duration of a topic where the x-axis denotes time.
Figure 3.c shows the number of topics in the collec-
tion over time. We also draw the symmetrized KL-
divergence between the unigram distribution of words
at epoch t and t− 1. It can be noticed that whenever
there is a sharp change in the KL value, the model
responds by changing the number of topics. However,
when the KL value is stable (but not zero), the model
responds by changing the word distributions of the
topics and/or the topics’ trends. This is in contrast
to DTM which can only change the last two quanti-

Start state

Posterior sample

(b)

(c)(a)

Figure 3: (a) The sampler initial state and the MAP pos-
terior sample. Each line represents the lifespan of a topic.
(b) Symmetrized-KL divergence between the unigram dis-
tribution of words at epoch t, t − 1. (c) The number of
alive topics over years in the NIPS collections.

ties. We would like to add that the trend of always-
increasing number of topics is not an artifact of the
model, but rather a property of the NIPS conference
in this lifespan: none of the topics that we observed
die completely during this time period. Moreover, as
we illustrated in the simulation study, the model can
detect an abrupt death of topics.

In Figure 4, we show a timeline of the conference point-
ing out the birth of some of the topics. We also give
how their trends change over time and show a few ex-
amples of how the top words in each topic change over
time. In Figure 5, we show a timeline of the Kernel
topic illustrating, in some years, the top 2 (3 in case
of a tie) papers with the highest weights for this topic.
Indeed the three papers in 1996 are the papers that
started this topic in the NIPS community. We would
like to warn here that the papers having the highest
weights of a topic need not be the most influential pa-
pers about this topic. Perhaps this is true in the year
in which the topic was born, but for subsequent years,
these papers give an overview of how this topic is being
addressed along the years, and it can provide a concise
input for summarization systems utilizing topic mod-
els as in (Haghighi and Vanderwende, 2009). Finally
it is worth mentioning that iDTM differs from DTM
in the way they model topic trends: DTM assumes a
smooth evolution of trends, whereas iDTM assumes a
non-parametric model and as such can spawn a topic
with a large initial trend as in the Kernel topic in 1996.

5.2.1 Quantitative Evaluation

In Addition to the above qualitative evaluation, we
compared iDTM against DTM (Blei and Lafferty,
2006) and against HDP (Teh et al., 2006). To com-
pare with DTM, we followed the model in (Blei and
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Figure 4: Timeline for the NIPS conference. Left: birth of a number of topics and their trends over time. Right: top
words in some topics over time.
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Figure 5: Timeline for the Kernel topic. The figure shows the top words in the topic in each year and the top 2 (3 in
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Figure 6: Held-out LL comparison between DTM,iDTM
and HDP.

Lafferty, 2006), and used a diagonal covariance for the
logistic-normal distribution over the topic-mixing vec-
tor at each epoch. We linked the means of the logistic-
normal distributions at each epoch via a random walk
model, and we evolved the distribution of each topic
as we did in iDTM. To make a fair comparison, in fit-
ting the variational distribution over the topic’s word
distribution φ in DTM , we used a Laplace variational
approximation similar to the one we used in fitting the
proposal distribution for iDTM. Moreover, we used im-
portance sampling with the variational distribution as
a proposal for calculating the test LL for DTM.

We divided the data into 75% for training and 25% for
testing, where the training and test documents were
selected uniformly across epochs. As shown in Figure
6, iDTM gives better predictive LL over DTM and
HDP.



Figure 7: Sensitivity of iDTM to hyperparameters. Every panel vary one hyperparameter while keeping all other
hyperparameters fixed to their default values. Left: Varying base measure variance σ. Middle:Variance of the random
walk model over topic parameters ρ (ρ is drawn in log-scale). Right:Parameter of time-decaying kernel λ (∆ is fixed at
13 in this specific experiments)

5.2.2 Hyperparameter Sensitivity

To assess the sensitivity of iDTM to hyperparameters’
settings, we conducted a sensitivity analysis in which
we hold all hyperparameters fixed at their default val-
ues, and vary one of them. As noted earlier, the hy-
perparameters are: the variance of the base measure
σ; the variance of the random walk kernel over the
natural parameters of each topic, ρ; and the param-
eter of the time-decaying kernel, λ. We should note
here that the order of the process ∆ can be safely set
to T , however, to reduce computation, we can set ∆
to cover the support of the time-decaying kernel, i.e,

we can choose ∆ such that exp
−∆
λ is smaller than a

threshold, say .001. The results are shown in Figure
7.

When ρ is set to 1, the performance deteriorates and
the topics become incoherent over time. We noticed
that in this setting the model recovers only 5 to 7
topics. When ρ is set to .0001, the word distribution of
each topic becomes almost fixed over time. In between,
the model peaks at ρ = .01. It should be clear from
the figure that an underestimate of the optimal value
of ρ is less detrimental than an overestimate, thus we
recommend setting ρ in the range [.001, .1]. It should
be noted that we could add a prior over ρ and sample
it every iteration as well; we leave this for future work.

While varying λ, we fixed ∆ = T to avoid biasing
the result. A large value of λ degenerates the process
toward HDP, and we noticed that when λ = 6, some
topics,like ICA, weren’t born and where modeled as a
continuation of other related topics. λ depends on the
application and the nature of the data. In the future,
we plan to place a discrete prior over λ and sample it
as well. Finally, the best setting for the variance of the
base measure σ is from [5, 10], which results in topics
with reasonably sparse word distributions.

6 Conclusions and Future work

In this paper we addressed the problem of modeling
time-varying document collections. We presented a

topic model, iDTM, that can adapt the number of
topics, the word distributions of topics, and the top-
ics’ trend over time. To the best of our knowledge,
this is the first model of its kind. We used the model
to analyze the NIPS conference proceedings and drew
several timelines for the conference: a timeline of topic
birth and evolution as well as a timeline for each topic
that shows its trend over time and the papers with
the highest weight of this topic in its mixing vector.
This information provides a bird’s eye view of the col-
lection, and can be used as input to a summarization
system for each topic. In the future, we plan to extend
our Gibbs sampler to sample all the hyperparameters
of the model. We also plan to extend our model to
evolve an HDP at various levels, for instance, lower
levels might correspond to conferences, and the high-
est level to time. This framework will enable us to
understand topic evolution within and across different
conferences or disciplines.
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Appendix A: Fitting the proposal distribution
in (14)

Recall that our goal is to sample P(φk|vk), where
vk = {vk,t}, vk,t is the frequency count vector of

words generated from this topic at epoch t. Without
loss of generality, and for notational simplicity, we will
drop the topic index k, and assume that the topic’s
lifespan is form 1 to T . Thus we would like to com-
pute P (φ1, . . . , φT |v1, . . . , vT ). This is a linear state-
space model with non-linear emission, thus the RTS
smoother (Minka , 1998) will not result in a closed form
solution. Therefore, we seek a Laplace-approximation
to this posterior and call this approximation, q(φ) =
∏

t q(φt). To compute q we note that the RTS
smoother defines two recurrences: the forward recur-
rence, and the backward recurrence. Following Minka
(1998), lets assume that the forward value at epoch
t − 1 is given by α̂(φt−1) ∼ N (ut−1,Υt−1) where Υ
has a diagonal covariance. The forward equation be-
comes:

α̂(φt) = LN (vt|φt)×
∫

φt

N (φt|φt−1, ρI)N (φt−1|ut−1,Υt−1)

= LN (vt|φt)N (φt|φt−1,Υt−1 + ρI) (16)

Equation (16) does not result in the desired Gaussian
form because of the non-conjugacy between the LN
and the normal distributions. Therefore, we seek a
Laplace approximation to (16) which puts it back into
the desired Gaussian form to continue the recurrence.
In this case ut is the mode of (16) and Υt is the nega-
tive inverse Hessian of (16) evaluated at the mode. We
use a Diagonal-approximation of the Hessian though
because of the high-dimensionality of φ.

As detailed in Minka (1998), the backward recurrence
can be defined using the α̂’s instead of the data, and
can be computed exactly if the dynamic model is lin-
ear, which is the case in our model. This backward
recurrence computes q(φt|v1, . . . , vT ) that we desire.


