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Abstract	

 

Brain imaging studies have shown that progressive cerebral atrophy characterized 

the development of Alzheimer’s Disease (AD). The key question is how long 

before the diagnosis of AD the neurodegenerative process started leading to these 
structural alterations. To answer this question, we proposed an innovative way by 

inferring brain structure volume trajectories across the entire lifespan using 

massive number of MRI (N=4714). Our study provides evidences of early 
divergence of the AD model from the control model for the hippocampus before 40 

years, followed by the lateral ventricles and the amygdala around 40 years for the 

AD model. Moreover, our lifespan investigation reveals the dynamic of the 

evolution of these biomarkers and suggest close abnormality trajectories for the 
hippocampus and the amygdala. Finally, our results highlight that the temporal 

lobe atrophy, a key biomarker in AD, is a very early pathophysiological event 

potentially associated to early life exposures to risk factors. 

 

Alzheimer’s disease (AD) is the most prevalent form of dementia in persons older 

than 65 years [1]. Cognitive impairment, mainly related to memory deficits, is the 
most common manifestation of this disease [2]. Available neuroimaging evidence 

suggests that the neuropathological alterations underlying AD probably begin much 

                                                
*
 Data used in preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the 

investigators within the ADNI contributed to the design and implementation of ADNI 

and/or provided data but did not participate in analysis or writing of this report. A 

complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-

content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf  
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earlier than the appearance of clinical symptoms and years before clinical diagnosis 

[3]. From these results, it appeared that the pharmacological management was finally 
implemented in patients with a largely advanced neurodegenerative process, making 

it difficult to fight against pathological progression. In this context, the concept of 

disease-modifying therapies is emerging and the search for early biomarkers of 

these alterations is currently a hot topic of research [4]. Neurodegeneration, 
assessed by the level of cerebral atrophy, is one of these biomarkers. In recent 

decades, several studies have investigated neurodegeneration in the prodromal 

phase of Alzheimer's disease. However, studying the prodromal phase of the 
disease, which is an asymptomatic phase, is a difficult task. Indeed, this type of study 

is based on subjects with rare autosomal dominant mutations associated with a high 

risk of developing dementia [5-7] or on longitudinal studies with long follow-up in 
which brain imaging can be performed before the appearance of clinical symptoms 

(i.e., memory impairment) [8-10]. In these previous long follow-up studies, the 

starting point of the neurodegeneration was not determined since incident cases 

already present brain morphometric differences at baseline 7 or 10 years before the 
diagnosis [11, 12]. Therefore, the key question remains, how long before the AD 

brain trajectory diverges from the cognitively normal model? To answer this question, 

an alternative approach is to build an extrapolated lifespan model of AD brain 
structures by using large-scale databases. Indeed, epidemiological studies indicate 

that late dementia is associated with early exposure to risk factors at midlife, 

highlighting the need to consider brain biomarkers throughout the entire lifespan [13-
15]. Therefore, we propose to take advantage of the new paradigm of BigData 

sharing in neuroimaging [16] to analyze publically available large-scale databases 

containing subjects from a wide age range covering the entire lifespan.  

 
Recently, we used such BigData approach to propose an analysis of brain trajectory 

across the entire lifespan using N=2944 MRI of cognitively normal subjects (CN)   

[17]. Herein, we present a study following a similar approach to perform lifespan 
analysis of the timeline of brain atrophy in AD. To this end, we propose to build an 

extrapolated model of AD for brain structures. We assume that the 

neurodegenerative process is slow and progressive. Consequently, to build our 

lifespan AD model we used N=3262 MRI data, 1385 from AD and Mild Cognitive 
Impairment (MCI) patients (from 55y to 96y) and 1877 from healthy/asymptomatic 

subjects younger than them (from 9 months to 55y). The proposed approach can be 

viewed as a conservative lifespan model of AD since CN are used as young 
asymptomatic AD subjects, in agreement with studies suggesting brain alterations at 

presymptomatic stage several years before diagnosis or MCI stage [11, 12]. We 

have focused the present study on temporal lobe structures such as the 
hippocampus and amygdala – known to be affected in AD  [18] – and the lateral 

ventricles, also a known AD biomarker [19, 20]. We also included global white matter 

and gray matter and subcortical structures – thalamus, accumbens, caudate, 

putamen and globus pallidus.  
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Results 
 
Figure 1 presents trajectories of all considered structures for AD/MCI and CN groups 

(see online method for groups definition). This figure shows that hippocampus (HPC) 

and amygdala (AG) models present marked divergences between AD/MCI and CN, 
but also indicates that this divergence increases with age. Moreover, the divergence 

of control and pathological models for these structures occurs early around 40-45y. 

Lateral ventricles (LV) also exhibits early divergence – starting around 42y –between 

both models, however the distance between models decreases at advanced ages. 
Similarly, the thalamus presents an early but weak divergence that decreases at 

advanced ages. Pathological models of caudate and accumbens nuclei exhibit 

accelerated volume decreases from 50-60y. However, confidence intervals for these 
structures overlap again after 85y (see Table 1). For white matter (WM) and grey 

matter (GM), AD/MCI models present an early accelerated aging compared to CN 

models around 45y. However, after 80y, CN models of brain tissues show an 

accelerated volume decreases. Consequently, confidence intervals of pathological 
and normal models overlap after 85 years (see Table 1). Finally, normal and 

pathological models for globus pallidus and putamen present similar trends. 

 

 
Figure 1: Trajectories based on relative volumes (% total intracranial volume) for brain cortical and 
subcortical structures across the entire lifespan. These volume trajectories are estimated according to 
the age of subjects. Model for CN group (N=2944) is in black and model for AD/MCI group (N=3262) is 
in red. The prediction bounds of the models are estimated with a confidence level at 95%. 
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Table 1 shows the age ranges where the confidence interval of the predicted 

pathological models (i.e., AD, MCI and AD/MCI) do not overlap with the confidence 
interval of the control models.  

 

First, only HPC and AG trajectories present non-overlapping confidence intervals 

after trajectory divergence for all the studied pathological modes (i.e., AD/MCI, AD 
and MCI) (see Table 1). This is also valid for lateral ventricle but only when using the 

AD group. For all other considered structures, predicted confidence intervals overlap 

again at advanced ages around 80-90y.  
 

Second, HPC is the first impacted deep gray structure with a trajectory divergence at 

39y when using the AD/MCI group, 37y when using the AD group and 42y for the 
MCI group. The second structure impacted is the LV with a divergence point at 42y 

when using AD/MCI group, 39y for AD group and 45y for MCI group. Afterwards, 

thalamus (TH) trajectory divergence from control at 43y when using AD/MCI group, 

42y for AD group and 45y for MCI group. AG trajectory divergence occurs then at 
44y when using AD/MCI group, 41y when using AD group and 49y for MCI group. 

Impact on global GM and WM volume is observed later, with trajectories diverging at 

45y and 48y respectively for the AD/MCI group, at 46y and 47y respectively for the 
AD group and at 58y and 54y respectively for the MCI group. Finally, accumbens and 

caudate trajectories diverge slightly later, but in a similar age range. Putamen and 

globus pallidus are the only deep gray matter structures for which trajectories do not 
diverge from CN across the entire lifespan. 

 

To further analyze trajectories of well-known AD biomarkers, we propose an 

additional analysis focusing on the HPC, the LV and the AG. Figure 2 presents the 
trajectories of these structures for CN, AD and MCI groups. Moreover, relative rate of 

change and abnormality percentages are provided. 

 
Table 1: Age range in years where confidence intervals of the predicted pathological models do not 

overlap with the predicted control models. The prediction bounds are estimated with a confidence level 
at 95%. Three model comparisons are presented CN (N=2944) vs. AD/MCI (N=3262), CN (N=2944) vs. 
AD (N=2303) and CN (N=2944) vs. MCI (N=2836). 

 CN vs. AD/MCI  
 

CN vs. AD 
 

MCI vs. CN 

White Matter [47.6 - 85.8] [46.9 – 89.9] [53.7 - 82.3] 

Gray Matter [45.0 – 85.6] 
 

[46.2 – 86.4] 
 

[58.3 – 86.7] 
 

Lateral Ventricles [42.0 – 93.2] >38.6 [45.1 – 89.2] 

Caudate 
 

[62.7 - 84.1] 
 

[68.8 - 82.8] 
 

[70.3 - 84.7] 
 

Putamen N/A 
 

N/A 
 

N/A 
 

Thalamus [42.8 – 89.1] 
 

[41.7 – 89.6] 
 

[45.5 – 86.7] 
 

Globus Pallidus 
 

N/A 
 

N/A 
 

N/A 
 

Hippocampus  >39.0 
 

>37.1 
 

>42.4 
 

Amygdala 
 

>43.8 
 

>40.2 
 

>49.3 
 

Accumbens [48.1 – 85.6] 
 

[46.0 – 88.0] 
 

[52.6 – 82.3] 
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First, divergence points for the AD models compared to the CN models are earlier 

than for the MCI models (see Table 1 for exact time). As expected, MCI trajectories 
are in between AD and CN ones. Second, when using relative rate of change, AG 

and LV exhibit a more pronounced relative change compared to HPC. The maximum 

relative changes for AD models of these structures are -3.6%/y for AG at 96y, -

2.1%/y for HPC at 96y and 3.4%/y at 42y for LV. Contrary to HPC and AG, which 
show an increasing relative change with age, LV exhibits enlargement following an 

inverted U-shape. When considering abnormality percentage, an earlier abnormality 

increase is observed for HPC than for LV and AG. This abnormality reaches a 
maximum of 32% for the AD model at 96y. Abnormality appears later in life for LV 

and AG and follows very different patterns for both. The LV abnormality trajectory 

follows an inverted U-shape with a maximum of 47% at 63y for the AD model. The 
AG abnormality trajectory has similar trend to that of the HPC abnormality. AG 

reaches 40% of abnormality at 96y for the AD model. Therefore, while HPC 

abnormality starts first, AG presents a greater abnormality at advanced age. 

Moreover, the abnormality observed in LV is also important but its maximum is 
reached at 65y. Afterwards, percentage of abnormality of LV decreases to end at 

19% at 96y for the AD model. Therefore, at late age, the LV shows lower 

abnormalities than those of the HPC and the AG at the same ages.  
 

 

 

   

 

   

 

   

Figure 2: Hippocampus, lateral ventricles and amygdala trajectories for CN, AD and MCI models. The 
relative volumes (% total intracranial volume) are displayed according to the age in years across the 
entire lifespan. The prediction bounds are estimated with a confidence level at 95%. Relative rate of 
change is based on the first derivative of the model divided by the model and provided in % per year. 
Finally, percentage of abnormality is estimated as the difference between CN model and AD or MCI 
models divided by CN model. The model for CN group (N=2944) is displayed in black, the model for 
MCI group (N=2836) is displayed in yellow and the model for AD group (N=2303) is displayed in red.  
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Discussion 
 
Our lifespan analysis based on large-scale datasets using inferred timeline of brain 

atrophy in AD indicates that the HPC is the first brain structure to exhibits a 

significant volume difference between cognitively normal subjects and subjects who 
will present clinical symptoms. This difference is detectable early in life, at 39y for the 

AD/MCI model and at 37y for the AD model. The HPC is followed by another 

temporal lobe region, the AG, which is different between the two groups at 44y for 

the AD/MCI model and at 40y for the AD model. It is noticeable that AG is 
undergoing larger changes proportionally to its size compared to HPC. Finally, the 

LV presents an early enlargement at 42y for the AD/MCI model and at 39y for the AD 

model. However, LV enlargement occurring during normal aging reduces the 
abnormality of this structure after 65y. Finally, TH shows early divergence at 43y for 

the AD/MCI model and at 42y for the AD model.  

 

Our results presenting the HPC as the first brain region diverging in the preclinical 
stage of AD is in accordance with previous morphometric studies focused on the 

prodromal phase of the disease [9-12]. It is also in accordance with histopathological 

studies showing the temporal lobe as the starting point of the neurodegenerative 
process in AD [21]. In the long follow-up studies mentioned previously, authors 

observed that incident cases of AD present morphometric difference in the 

hippocampus at least 10 years before the diagnosis. In our study, the youngest 
subjects presenting clinical symptoms included in the AD model are 55 years old, 

while the pathological trajectories diverge from normal model 18 years and 16 years 

for the AD model and the AD/MCI model, respectively. This result suggests that the 

neurodegeneration of the hippocampus is present several years before the onset of 
cognitive deficit. Therefore, our model seems to confirm the presence of a long-

lasting period of silence before the diagnosis of AD, as discussed in [22]. Moreover, 

our model indicates that the age of 40y is a critical period in the onset of the temporal 
lobe atrophy. Exposure to risk factors (such as diabetes and smoking) occurring at 

this lifetime period should be considered in future studies to evaluate their implication 

in the atrophy process [14]. It worth to note that all the results about HCP in this 
paper have been obtained using the EADC-ADNI harmonized protocol. Therefore, this 

study, to the best of our knowledge, is the largest analysis using this protocol to date. 

 

The second temporal lobe region diverging from the cognitively normal subjects 
according to our model is the AG, which is different from CN at 40y for the AD model 

and at 44y for the MCI/AD models. Atrophy of this structure has been repeatedly 

described in AD subjects, with a rate of change less important [23] or similar [18] 
than hippocampal one. Notably, in the transgenic mouse model APPswe/ PS1dE9 of 

AD, the neurodegeneration in the amygdala even precedes that found in the 

hippocampus [24]. In our study, we found that the relative rate of change and 

abnormality were greater for AG than for the HPC at advanced ages. The early 
atrophy of the AG in the prodromal phase of AD is not surprising when considering 

the implication of emotion in memory. Indeed, the activity of basolateral and lateral 

nuclei of the AG is associated to a facilitation during the encoding phase and to an 
enhanced retrieval, these effects being mediated through the important 

interconnections between these structures and the HPC [25]. In addition, degradation 

of emotion processing ability is also observed in AD patients, as expected given the 
amygdala atrophy [26]. Moreover, the atrophy of the AG is likely contributing to the 

olfactory deficits associated with AD, since the cortical nuclei of the AG are 

associated with the processing of olfactory stimuli [27]. Hyposmia has been 

described in AD [28], and olfactory deficits can substantially precede cognitive 
symptoms [29]. However, it has to be taken into account that pathological alterations 
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in AD occur also in other olfactory structures [30]. Finally, timeline atrophy of the 

HPC and the AG never overlaps across lifespan between the AD and CN models, in 
contrast to other deep gray matter structures investigated in this study. This result 

highlights the specificity all along life of the medial temporal lobe atrophy associated 

to the mnesic symptoms, which characterize the disease.  

 
According to our results, the volume of the LV is also an early biomarker of AD, since 

its trajectory diverges at 39y for the AD model and at 42y for the AD/MCI model. The 

potential of LV volume as AD biomarkers has been previously mentioned over 
restricted periods [20]. In this study, by analyzing the change of LV abnormality over 

time, we showed that LV abnormality decreases after 65y. Therefore, the use of this 

biomarker is difficult for the late onset cases due to important LV enlargement 
occurring during normal aging. However, it may be useful to discriminate cases 

around 65y, an early age at which the AD diagnosis is particularly relevant because 

intervention is more effective in the early phases of the disease [31]. The importance 

of taking into account volume increase at advanced age in normal aging has been 
previously mentioned [19]. In this study, early divergence has been also observed for 

TH around 42y. Such thalamic atrophy was previously reported in AD literature [32]. 

However, we found that TH abnormality was very small (4.6% at 81y). This may 
explain why only a small number of studies have mentioned that this structure could 

be affected by AD because a large number of subjects are needed to detect such 

subtle atrophy. Consequently, TH does not appear to be an optimal biomarker for 
AD.  

 

In this study, we proposed to process a massive number of cross-sectional MRI to 

investigate timeline atrophy of AD across the entire lifespan. The use of cross-
sectional data to analyze a dynamic process may appear not optimal. However, 

previous studies demonstrated that cross-sectional and longitudinal approaches 

produce similar age-related patterns in normal aging and a similar atrophy model in 
AD [33]. Compared to previous longitudinal investigations, our results are consistent 

with most previous findings on the importance and timing of atrophy in the HPC and 

the AG and the enlargement of the LV [20, 34]. Moreover, the obtained values for 

relative rates of change fit well within the expected range of annual atrophy rate 
reported in the longitudinal literature for both AD and CN [34-36]. With respect to the 

estimated time of divergence between the CN and AD models, there is no 

longitudinal or cross-sectional literature over the lifetime with which to compare. 
However, long follow-up population-based studies tracking cognition decline at 

preclinical stage provides evidences of a very long silent phase. This preclinical 

period was estimated from few years up to several decades before AD diagnosis that 
is in consistent with our results [37-39].  

Online Method 
 

Groups definition 
 
This study aims at comparing normal and pathological trajectories of brain atrophy 

during AD progression across the entire lifespan to study the timeline. To this end, 

models were estimated on four different groups to generate CN, AD/MCI, AD and 
MCI trajectories.  

 

• For CN trajectories, we used the N=2944 subjects from 9 months to 94y of 

the cognitively normal dataset as done in [17].  
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• For the AD/MCI trajectories, we used N=3262 samples. We mixed AD 

patients, with MCI patients considered being at an early stage of AD, and with 
young CN considered as presymptomatic subjects. We used 426 AD patients 

(from 55y to 96y), 959 MCI patients (from 55y to 92y) of the AD/MCI dataset 

and all the CN younger than 55y (i.e., 1877 samples). These subjects are 

included in the CN used for CN trajectory. 

• For the AD trajectories, we used N=2303 samples. We mixed AD patients 

with young CN. More precisely, we used 426 AD patients (from 55y to 96y) of 

the AD/MCI datasets and all the CN younger than 55y (i.e., 1877 samples). 

• For the MCI trajectories, we used N=2836 samples. Here, 959 MCI patients 
(from 55y to 92y) of the AD/MCI datasets were mixed with all the CN younger 

than 55y (i.e., 1877 samples). 

Datasets description 
 

To study structures trajectory across the entire lifespan for CN and AD, we 
aggregated several open access databases to construct two datasets. In the 

following, CN and AD/MCI datasets will be described. The four previously described 

groups are built on these datasets. 
 

Cognitively	normal	dataset	(N=2944)	
 

The cognitively normal dataset is composed of the 3296 T1-weight (T1w) MRI used 

in [17]. The composition of the nine open access databases used to build the control 

dataset is provided in Table 2. As explained in [17], after a demanding 3-stage 
quality control, only 2944 MRI were kept. The female proportion is 47% for the 

remaining subjects and the age range is [ 0.75 – 94] years. 

 
Table 2: Dataset description used for the CN models. This table provides the name of the 
dataset, the MR acquisition configuration, the number of considered image before and after 
QC, the gender proportion after QC and the average mean, standard deviation in 
parentheses and the interval in brackets. 

DATASET Before 
QC 

After 
QC 

Gender  
after QC 

Age in years  
after QC 

C-MIND  266 236 F = 129 
M =107 

8.44 (4.35) 
[0.74-18.86] 

NDAR  612 382 F = 174 
M = 208  

12.39 (5.94) 
[1.08-49.92] 

ABIDE  528 492 F = 84 
M = 408  

17.53 (7.83) 
[6.50-52.20] 

ICBM  308 294 F = 142 
M = 152  

33.75 (14.32) 
[18-80] 

IXI  588 573 F = 321 
M = 252 

49.52 (16.70) 
[20.0- 86.2] 

OASIS  315 298 F = 187 
M = 111  

45.34 (23.82) 
[18 - 94] 

AIBL 236 233 F = 121 
M =112  

72.24 (6.73) 
[60 - 89] 

ADNI 1 228 223 F = 108 
M = 115 

75.96 (5.03) 
[60 – 90] 

ADNI 2  215 213 F = 113 
M = 100  

74.16 (6.39) 
 [56.3 - 89] 

Total 3296 2944 F =1379 (47%) 
M = 1565 (53%)  

39.65 (26.62) 
[0.74 - 94] 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 7, 2017. ; https://doi.org/10.1101/229195doi: bioRxiv preprint 

https://doi.org/10.1101/229195


9 

 

AD/MCI	dataset	(N=1385)	
 

The AD/MCI dataset is composed of 426 AD patients and 959 MCI patients extracted 

from OASIS, AIBL, ADNI1 and ADNI2 databases. Details on clinical criterion for 
groups definition are provided in [40] for ADNI1, ADNI2 and AIBL and in [41] for 

OASIS. The composition of the databases used to build the AD/MCI dataset is 

provided in Table 3.  After our 3-stage quality control, only 1385 MRI were kept. The 
female proportion is 44% for the remaining subjects and the age range is [55 – 96] 

years. 

 
Table 3: Dataset description used for the AD models. This table provides the name of the 
dataset, the MR acquisition configuration, the number of considered image before and after 
QC, the gender proportion after QC and the average mean, standard deviation in 
parentheses and the interval in brackets. 

DATASET Before 
QC 

After 
QC 

AD stage (MCI / AD) 
after QC 

Gender  
after QC 

Age in years  
after QC 

OASIS  98 95 50 / 45 F = 56 
M = 39  

76.58 (7.18) 
[62 - 96] 

AIBL 112 106 59 / 47 F = 58 
M =48  

74.15 (7.80) 
[55 - 93] 

ADNI 1 587 568 385 / 183 F = 225 
M = 343 

75.04 (7.41) 
[55 – 91] 

ADNI 2  621 616 465 / 151 F = 270 
M = 346  

72.56 (7.64) 
 [55 - 90] 

Total 1418 1385 959 / 426 F = 609 (44%) 
M = 776 (56%) 

73.7 (7.84) 
[55 - 96] 

 

In the following, more details are provided about acquisition protocols of the different 
datasets used in this study. 

 

• C-MIND: 266 images of control subjects from the C-MIND dataset 

(https://research.cchmc.org/c-mind/) are used in this study. All the 3D T1-weight 
(T1w) MPRAGE high-resolution MRI were acquired at the same site on a 3T 

scanner with spatial resolution of 1 mm3 acquired using a 32 channel SENSE 

head-coil.  

• NDAR:  415 of control subjects from the Database for Autism Research (NDAR) 

(https://ndar.nih.gov) are used in this study. The T1w 3D MRI were acquired on 

1.5T MRI and 3T scanners. In our experiments, we used the NIHPD 

(http://www.bic.mni.mcgill.ca/nihpd/info/data_access.html) dataset and 197 
images of control subjects from the Lab Study 19 of National Database for Autism 

Research. For the NIHPD dataset, the 3D T1w SPGR MRI were acquired at six 

different sites with 1.5 Tesla systems by General Electric (GE) and Siemens 
Medical Systems with spatial resolution of 1 mm3. The 3D T1w MPRAGE MRI 

from the Lab Study 19 were scanned using a 3T Siemens Tim Trio scanner at 

each site with spatial resolution of 1 mm3  

• ABIDE: 528 control subjects from the Autism Brain Imaging Data Exchange 

(ABIDE) dataset (http://fcon_1000.projects.nitrc.org/indi/abide/) are used in this 

study. The MRI are T1w MPRAGE acquired at 20 different sites on 3T image and 

the details of acquisition, informed consent, and site-specific protocols are 
available on the website. 

• ICBM: 308 normal subjects from the International Consortium for Brain Mapping 

(ICBM) dataset (http://www.loni.usc.edu/ICBM/) obtained through the LONI 

website are used in this study. The T1w MPRAGE MRI were acquired on a 1.5T 
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Philips GyroScan imaging system (Philips Medical Systems, Best, The 

Netherlands) with spatial resolution of 1 mm3. 

• IXI: 588 normal control from Information eXtraction from Images (IXI) database 

(http://brain-development.org/ixi-dataset/ ) are used in this study. The MRI are 

T1w images collected at 3 sites with 1.5 and 3T scanners with spatial resolution 

close to 1mm3. 

• OASIS: 315 control subjects and 98 AD/MCI patients from the Open Access 

Series of Imaging Studies (OASIS) database (http://www.oasis-brains.org) are 

used in this study. The MRI are T1w MPRAGE image acquired on a 1.5T Vision 

scanner (Siemens, Erlangen, Germany) and resliced at 1mm3.  

• ADNI1: 228 control subjects and 587 AD/MCI patients from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu ) phase 

1 are used in this study. These baseline MRI are T1w MPRAGE acquired on 1.5T 
scanners at 60 different sites across the United States and Canada with 

reconstructed spatial resolution of 1 mm3. 

• ADNI2: 215 control subjects and 621 AD/MCI patients from the ADNI2 database 

(second phase of the ADNI project) are used in this study. The baseline MRI are 
T1w MPRAGE acquired on 3T MR scanners with the standardized ADNI-2 

protocol (www.loni.usc.edu) with spatial resolution close to 1mm3. 

• AIBL: 236 control subjects and 112 AD/MCI patients from the Australian Imaging, 

Biomarkers and Lifestyle (AIBL) database (http://www.aibl.csiro.au/) are used in 
this study. The baseline MRI are T1w image acquired on 3T MR scanners with 

the ADNI protocol (http://adni.loni.ucla.edu/research/protocols/mri-protocols) and 

with custom MPRAGE sequence on the 1.5T scanners. 

 

Image processing 
 
All the considered images were processed with the volBrain pipeline [42] 

(http://volbrain.upv.es). The volBrain system is a web-based online tool providing 

automatic brain segmentation and generating report summarizing the volumetric 
results. The full processing time is around 10 minutes. In the past 2 years, volBrain 

has processed online around 55.000 brains for approximately 1500 users. In a recent 

work, we compared volBrain pipeline with two well-known tools used on MR brain 
analysis (FSL and Freesurfer). We showed significant improvements in terms of both 

accuracy and reproducibility for intra and inter-scanner scan-rescan acquisitions [42].  

The volBrain processing pipeline includes several steps to improve the quality of the 
input MR images and to homogenize their contrast and intensity range. The volBrain 

pipeline achieves the following preprocessing steps: 1) denoising using spatially 

adaptive non-local means [43], 2) rough inhomogeneity correction using N4 method 

[44], 3) affine registration to MNI152 space using ANTS software [45], 4) SPM based 
fine inhomogeneity correction [46] and 5) tissue based intensity standardization [47]. 

After preprocessing, the brain is segmented into several structures at different 

scales. First, the total intracranial volume (TIV) is obtained with NICE method [48]. 
Then, tissue classification is performed using the TMS method [47] and finally 

subcortical structures are estimated using the non-local label fusion method [49]. All 

the segmentation methods of volBrain are based on a library of 50 experts manually 

labelled cases (covering almost the entire lifespan). It is worth to note that the used 
manual hippocampus labeling followed the EADC-ADNI harmonized protocol which 

is the current consensus protocol for hippocampus segmentation in AD [50]. More 

details about volBrain pipeline can be found in [42]. Finally, a multi-stage quality 
control (QC) procedure was performed to carefully select subjects included. First, a 

visual assessment was done for all input images by checking screen shots of one 

sagittal, one coronal and one axial slice in middle of the 3D volume. Then, a visual 
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assessment of processing quality was carried out by using the volBrain report which 

provides screenshots for each step of the pipeline. Finally,  a last control was 
performed by individually checking with a 3D viewer all outliers detected using the 

estimated model (see [17] for more details).  

Statistical Analysis 
 

Different model types were considered to estimate the final model of each structure. 

The candidate models were tested from the simplest to the most complex. A model 
type was kept as a potential candidate only when simultaneously F-statistic based on 

ANOVA (i.e., model vs. constant model) was significant (p<0.05) and when all its 

coefficients were significant using t-statistic (p<0.05). As in [17], the following model 
types were used as potential candidates: 

 

1. Linear model 

 

𝑉𝑜𝑙 = 𝛽& +	𝛽)𝐴𝑔𝑒 + 	𝜀 

2. Quadratic model 

 

𝑉𝑜𝑙 = 𝛽& +	𝛽)𝐴𝑔𝑒 + 𝛽.𝐴𝑔𝑒
. + 	𝜀 

3. Cubic model 

 

𝑉𝑜𝑙 = 𝛽& +	𝛽)𝐴𝑔𝑒 + 𝛽.𝐴𝑔𝑒
. +	𝛽/𝐴𝑔𝑒

/ + 	𝜀 
 

4. Linear hybrid model: exponential cumulative distribution for growth with linear 

model for aging 

𝑉𝑜𝑙 = 𝛽0. 1 − 𝑒
4567 89 + 𝛽& +	𝛽)𝐴𝑔𝑒 + 	𝜀 

 

5. Quadratic hybrid model: exponential cumulative distribution for growth with 

quadratic model for aging 
 

𝑉𝑜𝑙 = 𝛽0. 1 − 𝑒
4567 89 + 𝛽& +	𝛽)𝐴𝑔𝑒 + 𝛽.𝐴𝑔𝑒

. + 	𝜀 

 
6. Cubic hybrid model: exponential cumulative distribution for growth with cubic 

model for aging 

 

𝑉𝑜𝑙 = 𝛽0. 1 − 𝑒
4567 89 + 𝛽& +	𝛽)𝐴𝑔𝑒 + 𝛽.𝐴𝑔𝑒

. +	𝛽/𝐴𝑔𝑒
/ + 	𝜀 

 

To select the best model type, we used the Bayesian Information Criterion (BIC) 

among kept candidate models – p<0.05 for ANOVA of the model vs. constant model 

and p<0.05 for T-test of all the coefficients. The BIC is a measure providing a trade-
off between bias and variance to select the model explaining most of the data with a 

minimum number of parameters. Moreover, to compensate for variability introduced 

by head size difference, models were estimated on normalized volume in % of total 
intracranial volume (TIV). Left and right volumes were added to obtain the final 

volume structure. The prediction bounds were estimated with a confidence level at 

95%. This model selection procedure was applied to all the considered structures. In 

this study, we studied the following brain structures:  lateral ventricles (LV), caudate, 
thalamus (TH), accumbens, globus pallidus, amygdala (AG), hippocampus (HPC) 

and putamen. Moreover, tissue classification was used to obtain the global volume of 

white matter (WM) and gray matter (GM). All statistical tests were performed with 

Matlabã using default parameters. Afterwards, percentage of relative rate of change 

per year and percentage of abnormality were computed on the estimated models. 
The relative rate of change in percentage per year was computed as the first 
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derivative of the model divided by the model and the abnormality as the difference 

between pathological models and control model divided by control model.  
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