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Abstract. This paper discusses the use of time in distributed authenti­
cation. Our first objective is to give reasons for the provision of authen­
tication protocols whose correctness depends on the correct generation 
of timestamps. Our second objective is to explain that this proposal is 
not, at least theoretically, as insecure as it first seems to be. The con­
clusion of this paper motivated our current effort of designing a secure 
clock synchronization protocol as a part of our overall goal of building a 
secure distributed system. 
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1 Introduction 

In a traditional single machine environment, computer security can be effectively 
enforced by the operating system. High levels of security can be achieved purely 
through careful construction of the operating system software. The hardware 
allows an operating system to run processes in such a way that they cannot 
interfere with each other and with the operating system itself. 

In a general distributed environment, because of the autonomy of the ma­
chines and the open nature of the communication network, security can no longer 
be provided and enforced by operating systems alone. Therefore, in an open sys­
tem, all machines on the network have to make their own arrangements to ensure 
the privacy, integrity and timeliness of each message received from the network. 

Distributed authentication, whose primary goal is to prevent impersonation, 
is a common way to approach this problem. It is a fundamental mechanism for 
the provision of security in computer systems in that authorization (identity 
based access control), accounting and resource management mechanisms could 
be circumvented if masquerading attempts were possible. 

Authentication protocols are procedures by which various pairs of communi­
cants (we call them principals 2

) satisfy themselves mutually about each other's 
identity. Often, by the end of a successful run of the protocol, if the principals 

* Usual address of author: Computer Science Department, Royal Holloway, University 
of London, U.K. 

2 A principal is an entity whose identity can be authenticated, according to the inter­
national standard ISO/IEC 9798-1 [5) 
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involved are really who they say they are, then they will end up in possession 
of one or more shared secrets for use as encryption keys to secure interprocess 
communications. For this reason, some authentication protocols are also called 
key distribution protocols. 

Another goal that authentication protocols aim to achieve is freshness of 
messages involved in any run of the protocols. The requirement of freshness 
ensures that replays of messages previously tapped from the network do not 
compromise security of the protocol. Any principal who may be confused by 
illegitimate replays of old messages needs to find a way to ensure that only fresh 
messages are accepted for processing. There are a variety of ways to achieve 
freshness including 

the use of challenge-response operations: a principal A expecting a fresh 
message from another principal B first sends a nonce identifier (challenge) 
to B, and requires that the subsequent message (response) received from B 
contains the correct nonce value. In this case, it is the responsibility of A to 
choose a sensible value for the nonce identifier; 
the use of time: a principal A accepts a message as fresh only if the mes­
sage contains a timestamp which, in A's judgement, is close enough to A's 
knowledge of current time. This requires, in addition to the existence of a 
globally accessible clock, that communicating principals are reasonable and 
do not generate postdated messages unnecessarily. 

Most existing distributed systems employ one or the other of these approaches 
in their authentication mechanisms to enforce security. This results in two main 
classes of authentication protocol: challenge/response-based authentication and 
timestamp-based authentication. 

One aim of this paper is to discuss how authentication mechanisms should 
be provided in order to meet the communication requirements of most general 
purpose distributed systems. A close inspection of the interprocess communi­
cation primitives most commonly used in distributed systems suggested that 
challenge/response-based authentication can be satisfactorily incorporated into 
connection-oriented communications while timestamp-based protocols are more 
appropriate for connectionless interactions. Hence, we suggest that the provision 
of both classes of authentication mechanisms is desirable. 

However, regarding the use of timestamp-based protocols, the philosophy 
of designing a security protocol whose strength relies on a vulnerable one, the 
clock synchronization protocol, is doubtful. In this paper, we also explain that 
the provision of timestamp-based authentication is not, at least theoretically, as 
insecure as it first seems to be. 

We describe these two classes of authentication protocols in the next sec­
tion. We then give a discussion of the features of the ways that processes in a 
distributed system (without shared memory) communicate. This suggests that 
authentication protocols of both classes should be provided in a system in order 
to support secure communications for different applications. Finally, we discuss 
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the security oftimestamp-based authentication protocols. Our conclusion ofthis 
discussion regarding how authentication should be provided is different from the 
views of other researchers. 

2 Two Classes of Authentication Approach 

A number of strong authentication protocols have been developed in the past, 
some based on the use of conventional shared-key cryptography while others are 
based on the use of public-key cryptography. Using the X.509 [18] terminology, 
a strong authentication mechanism is an authentication mechanism which re­
lies on the use of cryptographic techniques to protect the exchange of protocol 
messages3 . 

One or more trustworthy third parties, called authentication servers in shared­
key cryptosystems or certification authorities in public key cryptosystems, are 
usually needed. An authentication server shares a key with each principal in the 
system and typically generates new session keys for communication between the 
principals. A certification authority, which may be an off-line entity, provides 
certificates for principals' public keys. Public key certificates provide a trusted 
binding of a principal's name to a public key. 

Both authentication servers and certification authorities are trusted to make 
proper use of the data they hold when executing authentication protocols. Au­
thentication servers are often trusted to generate new secrets in a proper manner. 
A certification authority which has a well-known public key is trusted to pass 
on the public keys of the principals. We use the term Key Distribution Center 
(KDC) to refer to the trusted third party. 

With respect to the ways of guarding against message replays, authentica­
tion protocols can roughly be classified into challenge/response-based authenti­
cation and timestamp-based authentication. Challenge/response-based protocols 
require one or more steps of handshake between the KDC and a pair of com­
municating principals wanting to establish mutual authentication. The pair of 
communicating principals is usually called a client-server pair. The client prin­
cipal initiates the communication session while the server principal awaits mes­
sages from the initiating principal. Using the ISO/IEC 9798-1 [5] terminology, 
the client principal and the server principal in our discussion are known as the 
authentication initiator and the authentication responder respectively. 

Examples of this class include [4], [11] and [13]. These protocols assure both 
client and server of the freshness of the interaction by means of nonce identifiers 
and handshake. A general principle about the use of nonce identifiers is that 
the identifier should always be generated by the party that sought reassurance 
about the time integrity of a transaction [12]. 

A shared secret between the communicating principals is usually established 
3 Whereas, simple authentication relies on the originator simply supplying its name 

and password which are checked by the recipient. 



296 

at the successful completion of the protocols. The principals may use this shared 
secret as an encryption key to protect their communications. Often sequence 
numbers are used to ensure the freshness of messages to be exchanged thereafter. 
A secure communication channel may therefore be established between them. 

One of the disadvantages of using challenge/response mechanism is that, be­
cause of the use of multi-step handshake, it rules out the possibility of authenti­
cated datagrams. More seriously, all servers must then retain state information, 
the nonce identifier, to complete the authentication protocol. In a distributed 
system that employs the client/server model of system structuring, this require­
ment of maintaining state information by the server degrades scalability of the 
system, and hence should be avoided whenever possible. 

Timestamp-based protocols, also with the participation of the KDC, allow 
mutual authentication by means of a pair of protocol messages, one in each 
direction, between the communicating principals. Timestamp-based authentica­
tion begins with the client requesting a timestamped ticket from the KDC for 
communication with the server. When the client wants to communicate with the 
server, in addition to the message proper, it sends this ticket to the server as a 
proof of the claimed identity. 

Protocols of this class include [3], [9], [18] and [17]. Timeliness of these pro­
tocols is assured by the incorporation of timestamps in each encrypted message. 
If a shared-key cryptosystem is used, the ticket usually carries one or more se­
crets known only to each legal participant of the authentication protocol. The 
shared secrets are made known to the communicating principals at the end of 
the protocol, and knowledge of them implies authenticity. It is also possible to 
protect the communication channel using the shared secrets. 

A timestamp-based protocol has the advantage that, within the lifetime of 
a valid ticket, each message can be self-authenticated and that delays before 
secure communications start can be reduced. This feature is especially desirable 
for distributed applications which use connectionless communication service, e.g. 
Remote Procedure Call and UDP /IP, as a major mechanism for interprocess 
communications. 

In addition, with the application of timestamp-based authentication in a 
client-server environment, server processes are not required to maintain security­
related state information for each client. This stateless se1'1Jer approach is gen­
erally accepted to be desirable for improving system reliability and scalability 
[16]. 

The dependence on timestamps for correctness, however, has the drawback 
that it assumes the presence of a globally accessible clock. While a global clock 
can be approximated by a system of synchronized clocks, the reliability and se­
curity of the underlying clock synchronizing protocol will have severe impacts 
on the availability of the system and the correctness of the authentication pro­
tocol itself. This makes the security strength of timestamp-based authentication 
doubtful, and is usually the main reason that such protocols are rejected by some 
system designers [1] [12]. 
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3 Primitives for Inter-Process Communications 

Distributed systems rely heavily on computer networks for the communications 
of data and control information between the computers of which they are com­
posed. In most distributed systems it is common to find two types of commu­
nication services, namely, connection-oriented and connectionless services. Both 
these communication services are desirable due to the requirements of the ap­
plications which they support. 

A connection-oriented service provides a reliable end-to-end message delivery 
facility. Before any data is transmitted, a reliable connection is formed between 
the principals wishing to communicate. This process involves the principal wish­
ing to establish a connection sending a request to the recipient, and the recipient 
replying with its acceptance or refusal of the connection. In essence a "hand­
shake" is performed between the two parties. In the midst of the handshake 
process, both ends of the connection establish state information for the reliable 
transmission mechanism. 

Once a connection is formed a reliable exchange of information can be initi­
ated. An example of a reliable connection-oriented service is the Transmiuion 
Control Protocol (TCP) which is part of the Internet Protocol Suite. A typical 
situation in which a reliable connection-oriented service is appropriate is when 
a large file is to be transferred from a remote site, since the time required to 
establish a reliable connection is usually not significant compared to the period 
elapsed during the actual data transfer. Moreover, most users of file transfer 
programs need to ensure that the file the destination receives is identical to the 
original copy. This type of service is also essential for the support of applica­
tions where the source and destination are required to interact constantly over 
a relatively long period of time, such as remote login and distributed window 
applications. 

The provision of a reliable connection-oriented communication service, how­
ever, may not be preferred for every situation. In fact, there are certain dis­
tributed applications which find such a communication primitive undesirable, 
because its high reliability guarantee is not necessary while the overhead and 
delays incurred through the handshake are too costly. Connectionless communi­
cation services are usually provided to meet the requirements of such applica­
tions. 

A connectionless communication primitive provides an application with the 
mechanism to transmit units of data across the network. Each data unit, which 
carries the full destination address and is routed through the system indepen­
dent of all the others, is usually referred to as a datagram and is treated as an 
individual entity by the underlying network. Connectionless services commonly 
do not guarantee delivery and may transmit datagrams out of sequence or even 
duplicate them. An example of a connectionless communication service is the 
User Datagram Protocol (UDP) of the Internet Protocol Suite. 

Connectionless communication services are sometimes preferred because of 
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4 Timestamp-based Security 

As we have discussed, timestamp-based authentication is very attractive in that 
it eliminates the necessity of multi-step handshake and requires no extra state 
information to be maintained by the pair of communicants. However, its assump­
tion concerning the use of a globally accessible clock hampers its popularity, since 
this global clock must be highly available, reliable and secure. 

A reliable global dock can be approximated by using the individual proces­
sor clocks and requiring each processor to bring their clock values close to each 
other by means of some fault-tolerant clock synchronization protocol [10] [15). 
Each individual processor is said to implement a local time server. A distributed 
implementation of the dock service reduces the reliance on a single component 
of the system, and thus makes the clock service more available. The dock syn­
chronization protocol itself must be fault-tolerant so that the clock values on 
each correct processor are reliable in the face of network and other processor 
failures. 

Keeping clocks in a distributed system synchronized without appealing to a 
single, centralized, time service requires that clock value& be ezchanged and clock& 

periodically adjusted. The time servers must provide accurate and precise time, 
even with relatively large stochastic delays on the transmission paths. Therefore, 
reliable time synchronization requires carefully engineered selection algorithms 
and the use of redundant resources and diverse transmission paths. 

While the fault-tolerance of clock synchronization algorithms has been stud­
ied extensively in the past, little progress has been made to ensure their secu­

rity. This seemed to be a consequence of the assumption about the environment 
within which existing clock synchronization protocols were developed to operate. 
A system of synchronized clocks was traditionally developed for the implemen­
tation of time-based synchronization of concurrent programming. Another main 
application of clock synchronization was in real-time process control systems 
which require that accurate timestamps be assigned to sensor values so that 
these values can be correctly interpreted. The environment within which these 
applications operated was usually assumed to be secure, while the system was 
expected to experience random failures, be they results of hardware or software 
causes. 

In order to be used by a security service, the clock synchronization protocol 
itself should be secure. Most of the controversy regarding the use of timestamp­
based authentication arose from its reliance on a system of synchronized clocks. 
A clock synchronization protocol can be made secure if all interactions among the 
time servers are protected by cryptographic means. The Signature-based Byzan­
tine Clock Synchronization Protocol discussed in [8] is one such example. One of 
the consequences of using cryptographic techniques for securing clock synchro­
nization is that performance (which is usually described in terms of the accuracy 
and precision of the synchronized clocks) may be degraded because encryption 
and decryption operations introduce extra delay in every communication path. 
The design of a secure clock synchronization protocol is an important area for 
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their simplicity and low protocol overhead. They also leave more room for ap­
plication programmers to make their own arrangements for passing messages. 
A prime example to illustrate this point is Remote Procedure Call (RPC) [2], 
a widely accepted paradigm for interprocess communication in distributed sys­
tems. Most RPC subsystems are based on a connectionless datagram network 
service. The reasons for preferring datagrams are: 

1. RPC messages are generally short and the establishment of a connection is 
an undesirable overhead. 

2. The Request-Reply style of interactions involved in RPC can simply be im­
plemented by a pair of datagrams: the datagram containing a request travels 
from the caller to the callee and the datagram containing the reply travels 
in the opposite direction. 

3. Server computers may need to serve a large number of clients and the storing 
of state information relating to connections is undesirable. 

Therefore, distributed programs using the RPC mechanism communicate by 
means of datagrams, but rely on the RPC subsystem to implement the semantics 
of remote procedure calls. 

With regard to the design of secure distributed systems, mechanisms that 
protect all sorts of interprocess communications are of utmost importance. In 
a distributed system, one cannot ignore the possibility that messages within a 
distributed computing system may not come from where they appear to come 
from, and may not arrive at the place as they are intended to. Moreover, every 
packet of data being transmitted over the network is vulnerable to eavesdropping 
and tampering. 

Distributed authentication is usually used together with interprocess com­
munication mechanisms to achieve data secrecy and authenticity. Hence the 
authentication services of a distributed system should be provided in such a way 
that applications making use of them achieve improved security, and yet do not 
necessarily experience a significant degradation in their other qualities e.g. relia­
bility and performance. Applications with different communication requirements 
should find the overhead incurred by the authentication service acceptable. 

Hence, it is necessary to make both challenge/response- and timestamp-based 
authentication mechanisms available in a system, rather than just one of them, 
since both connection-oriented and connectionless communication services are 
desirable to satisfy the requirements of different applications. As discussed, the 
exclusive use of challenge/response-based authentications hampers some appli­
cations that, for performance reasons, were designed to heavily rely on connec­
tionless communications. However, the security of solely using timestamp-based 
authentications is questionable. 
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further research, because if the cryptographic technique is not used carefully, 
the performance of the clock synchronization protocol will not be acceptable to 
most applications because of the extra delays. 

Another interesting problem is to distribute the corresponding keys for cryp­
tographic operations. A clock synchronization protocol will not be more secure 
by simply using encryption and decryption; the ways that cryptographic keys are 
distributed have a paramount efFect on the security achieved. Key distribution, 
however, is usually achieved as a result of distributed authentication. This seems 
to suggest that the philosophy of building an authentication mechanism whose 
correctness relies heavily on a "to be secured" clock synchronization protocol is 
questionable, because the reliance relationship is a mutual one. Fortunately, as 
we shall see, this apparent paradox can be resolved. 

The use of timestamp-based authentication is not as vulnerable as most 
people first thought. With the provision of both challenge/response-based and 
timestamp-based authentication mechanisms in a system, it is possible to retain 
the advantages of both schemes without keeping the disadvantages. The key 
point is to note that interactions among the set of time servers are constant and 
over a very long period of time. This suggests that a challenge/response-based 
authentication mechanism, which does not assume the existence of a globally 
accessible clock, is appropriate for clock synchronization protocols. 

Our prototype adopted the approach of using a primary time server which 
periodically broadcasts its clock values to other machines. This approach is at­
tractive because of its simplicity. Further, broadcasting is acceptable to environ­
ments within which timestamp-based security is needed. The reason being that 
timestamp-based authentication is most suitable to applications that employ 
connectionless communications; and connectionless communications, because of 
the lack of reliability guarantee, are mainly used by LAN applications. Hence 
the main purpose of timestamp-based authentications is to support the security 
needs of LAN applications. In addition, system overhead results from the use of 
broadcast in a LAN environment is usually acceptable. 

In order to ensure that distributed clocks are closely synchronized, the pri­
mary clock needs to distribute its knowledge of current time frequent enough to 
avoid individual clocks drift too far apart. According to a preliminary measure­
ment conducted in our system, a pair of clocks drift away from each other at a 
rate of one second per day. Therefore, clocks are resynchronized once every 60 
seconds. 

Such an approach to clock synchronization requires some kind of protection, 
however. Broadcast from the primary time source is exposed to a variety of 
security threats. In the context of secure clock synchronization, masquerading 
of time server, modification and replay of resynchronization messages are of our 
major concern. Fortunately, standard security services exist to guard against 
these kinds of attack. Indeed, a key distribution protocol which makes use of 
challenge-response is used to make the clock synchronization secure. 

This idea is illustrated in Figure 1. The approach is to, first of all, provide 



301 

a challenge/response-based authentication mechanism as a fundamental compo­
nent of the security service. A secure clock synchronization protocol, which relies 
on the provision of the multi-step handshake authentication, is then built to sup­
port a timestamp-based authentication mechanism. Each processor ensures the 
availability of an approximated globally accessible clock by executing a copy of 
the secure clock synchronization protocol. This protocol runs independently of 
other applications and works as an ordinary operating system service to supply 
timestamps to other system components. If a timestamp-based authentication 
service is invoked before the secure clock synchronization protocol starts, the 
system simply returns an error message notifying the event of "Security Ser­
vice Not Initialized". A more rigorous design of the secure clock synchronization 
protocol is being developed [14]. 

Secure Applications 

TS-Based Authentication! 
Secure Clock Synchronization Protocol 
C/R-Based Authentication 

Fig. 1. Architecture for a Security Platform 

Nevertheless, the foundation of our system security is still multi-step hand­
shake authentication. In principle, at least, building a secure clock synchroniza­
tion protocol is not impossible if a challenge/response-based mechanism is used; 
and once security of the system of synchronized clocks is ensured, our timestamp­
based authentication can safely rely on it. 

Therefore, the main purpose of providing a timestamp-based mechanism is 
not to enhance system security, but to complement the use of the challenge­
response mechanism for those applications which find the multi-step handshake 
unacceptable. The system will be as secure as if timestamp-based authentication 
were not available, but its presence will encourage application designers to handle 
the security of connectionless communications more seriously. 

Certainly, timeliness of authentication is only achieved at the cost of ex­
tra interactions among the legal participants of the authentication protocol. If 
a challenge/response-based approach is used, extra interactions (i.e. the multi­
step handshake) are required before secure communications start. Whereas, if 
a timestamp-based approach is employed, although extra interactions are still 
needed, these extra interactions are transparent to the application programmer 
and, more importantly, do not necessarily introduce a significant communica­
tion overhead to the application before secure communication starts. This is 
because, with a timestamp-based authentication scheme, the extra interactions 
are accomplished by all participants of the secure clock synchronization protocol. 
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Before we close our discussion, it is worth noting that most of our current 
effort is on the design of a message logging mechanism for security purposes. 
As discussed in l7), timestamp-based authentication protocols, as they stand, do 
not provide a very secure way of detecting message replays. At the cost of extra 
storage, it is possible to eliminate the risk of accepting replay messages whose 
timestamps are still regarded as valid. In order to achieve this, the recipient may 
use a logging mechani8m that records all messages received within the current 
acceptance window. Hence, freshness can be guaranteed by rejecting subsequent 
occurrences of identical messages within that window. The storage requirement 
of the logging mechanism is determined by the size of the acceptance window, 
which in turn is determined by the performance of the secure clock synchroniza­
tion protocol and the expected message delivery delay. In principle, freshness 
assurance of timestamp-based authentication protocols should be provided by 
the logging mechanism [6]. However, a secure dock synchronization protocol is 
needed to reduce the size of the acceptance window so as to make the logging 
approach practical. 

5 Conclusion 

We have discussed the two classes of authentication protocols with respect to 
freshness guarantees. We have also looked into the features of two major mech­
anisms for interprocess communications. We suggested that a secure distributed 
system should make both kinds of authentication protocols explicitly available. 
An important advantage of this proposal is that both connection-oriented and 
connectionless communication services can be made secure without experiencing 
a significant protocol overhead. 

This paper also argued that the use oftimestamp-based authentication is not 
necessarily a security compromise as most people thought. We have discussed 
the security strength oftimestamp-based authentication protocols, and presented 
one possible approach to achieve this. 

Our proposal differs from the others in that we suggested the provision of 
both authentication mechanisms in a system and, more importantly, we believe 
that it is possible to build a timestamp-based protocol that is as secure as a 
challenge/response-based one. The use of nonce identifier and handshake has 
been suggested by Needham and Schroeder (11) [121 to ensure timeliness. This 
approach was criticised by Denning and Sacco [3] based on the ground that 
even a system of manually synchronized clocks could be sufficient to generate 
timestamps of the required quality. In fact, Denning and Sacco recommended the 
inclusion of timestamps in all authentication protocols. The timestamp-based ap­
proach was employed by project Athena of MIT, and the design of the Kerberos 
authentication system was based on it [9}. Regarding the timely property of Ker­
beros, various security weaknesses of its timestamp-based authentications have 
been discussed by Bellovin and Merritt [1). In addition,the authors of [1], while 
having accepted that Kerberos's timestamp-based protocol be secure enough in 
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the Athena environment, suggested the provision of a challenge/response option 
to enhance security for a more general computing environment. 
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