
Timely Authentication in Distributed Systems

Kwok-Yan Lam* and Thomas Beth

European Institute for System Security, Karlsruhe, Germany

Abstract. This paper discusses the use of time in distributed authenti­
cation. Our first objective is to give reasons for the provision of authen­
tication protocols whose correctness depends on the correct generation
of timestamps. Our second objective is to explain that this proposal is
not, at least theoretically, as insecure as it first seems to be. The con­
clusion of this paper motivated our current effort of designing a secure
clock synchronization protocol as a part of our overall goal of building a
secure distributed system.

Key words Distributed Operating Systems, Authentication Protocols,
lnterprocess Communications

1 Introduction

In a traditional single machine environment, computer security can be effectively
enforced by the operating system. High levels of security can be achieved purely
through careful construction of the operating system software. The hardware
allows an operating system to run processes in such a way that they cannot
interfere with each other and with the operating system itself.

In a general distributed environment, because of the autonomy of the ma­
chines and the open nature of the communication network, security can no longer
be provided and enforced by operating systems alone. Therefore, in an open sys­
tem, all machines on the network have to make their own arrangements to ensure
the privacy, integrity and timeliness of each message received from the network.

Distributed authentication, whose primary goal is to prevent impersonation,
is a common way to approach this problem. It is a fundamental mechanism for
the provision of security in computer systems in that authorization (identity
based access control), accounting and resource management mechanisms could
be circumvented if masquerading attempts were possible.

Authentication protocols are procedures by which various pairs of communi­
cants (we call them principals 2

) satisfy themselves mutually about each other's
identity. Often, by the end of a successful run of the protocol, if the principals

* Usual address of author: Computer Science Department, Royal Holloway, University
of London, U.K.

2 A principal is an entity whose identity can be authenticated, according to the inter­
national standard ISO/IEC 9798-1 [5)

© Springer-Verlag Berlin Heidelberg 1992
Y. Deswarte et al. (eds.), Computer Security - ESORICS 92

294

involved are really who they say they are, then they will end up in possession
of one or more shared secrets for use as encryption keys to secure interprocess
communications. For this reason, some authentication protocols are also called
key distribution protocols.

Another goal that authentication protocols aim to achieve is freshness of
messages involved in any run of the protocols. The requirement of freshness
ensures that replays of messages previously tapped from the network do not
compromise security of the protocol. Any principal who may be confused by
illegitimate replays of old messages needs to find a way to ensure that only fresh
messages are accepted for processing. There are a variety of ways to achieve
freshness including

the use of challenge-response operations: a principal A expecting a fresh
message from another principal B first sends a nonce identifier (challenge)
to B, and requires that the subsequent message (response) received from B
contains the correct nonce value. In this case, it is the responsibility of A to
choose a sensible value for the nonce identifier;
the use of time: a principal A accepts a message as fresh only if the mes­
sage contains a timestamp which, in A's judgement, is close enough to A's
knowledge of current time. This requires, in addition to the existence of a
globally accessible clock, that communicating principals are reasonable and
do not generate postdated messages unnecessarily.

Most existing distributed systems employ one or the other of these approaches
in their authentication mechanisms to enforce security. This results in two main
classes of authentication protocol: challenge/response-based authentication and
timestamp-based authentication.

One aim of this paper is to discuss how authentication mechanisms should
be provided in order to meet the communication requirements of most general
purpose distributed systems. A close inspection of the interprocess communi­
cation primitives most commonly used in distributed systems suggested that
challenge/response-based authentication can be satisfactorily incorporated into
connection-oriented communications while timestamp-based protocols are more
appropriate for connectionless interactions. Hence, we suggest that the provision
of both classes of authentication mechanisms is desirable.

However, regarding the use of timestamp-based protocols, the philosophy
of designing a security protocol whose strength relies on a vulnerable one, the
clock synchronization protocol, is doubtful. In this paper, we also explain that
the provision of timestamp-based authentication is not, at least theoretically, as
insecure as it first seems to be.

We describe these two classes of authentication protocols in the next sec­
tion. We then give a discussion of the features of the ways that processes in a
distributed system (without shared memory) communicate. This suggests that
authentication protocols of both classes should be provided in a system in order
to support secure communications for different applications. Finally, we discuss

295

the security oftimestamp-based authentication protocols. Our conclusion ofthis
discussion regarding how authentication should be provided is different from the
views of other researchers.

2 Two Classes of Authentication Approach

A number of strong authentication protocols have been developed in the past,
some based on the use of conventional shared-key cryptography while others are
based on the use of public-key cryptography. Using the X.509 [18] terminology,
a strong authentication mechanism is an authentication mechanism which re­
lies on the use of cryptographic techniques to protect the exchange of protocol
messages3 .

One or more trustworthy third parties, called authentication servers in shared­
key cryptosystems or certification authorities in public key cryptosystems, are
usually needed. An authentication server shares a key with each principal in the
system and typically generates new session keys for communication between the
principals. A certification authority, which may be an off-line entity, provides
certificates for principals' public keys. Public key certificates provide a trusted
binding of a principal's name to a public key.

Both authentication servers and certification authorities are trusted to make
proper use of the data they hold when executing authentication protocols. Au­
thentication servers are often trusted to generate new secrets in a proper manner.
A certification authority which has a well-known public key is trusted to pass
on the public keys of the principals. We use the term Key Distribution Center
(KDC) to refer to the trusted third party.

With respect to the ways of guarding against message replays, authentica­
tion protocols can roughly be classified into challenge/response-based authenti­
cation and timestamp-based authentication. Challenge/response-based protocols
require one or more steps of handshake between the KDC and a pair of com­
municating principals wanting to establish mutual authentication. The pair of
communicating principals is usually called a client-server pair. The client prin­
cipal initiates the communication session while the server principal awaits mes­
sages from the initiating principal. Using the ISO/IEC 9798-1 [5] terminology,
the client principal and the server principal in our discussion are known as the
authentication initiator and the authentication responder respectively.

Examples of this class include [4], [11] and [13]. These protocols assure both
client and server of the freshness of the interaction by means of nonce identifiers
and handshake. A general principle about the use of nonce identifiers is that
the identifier should always be generated by the party that sought reassurance
about the time integrity of a transaction [12].

A shared secret between the communicating principals is usually established
3 Whereas, simple authentication relies on the originator simply supplying its name

and password which are checked by the recipient.

296

at the successful completion of the protocols. The principals may use this shared
secret as an encryption key to protect their communications. Often sequence
numbers are used to ensure the freshness of messages to be exchanged thereafter.
A secure communication channel may therefore be established between them.

One of the disadvantages of using challenge/response mechanism is that, be­
cause of the use of multi-step handshake, it rules out the possibility of authenti­
cated datagrams. More seriously, all servers must then retain state information,
the nonce identifier, to complete the authentication protocol. In a distributed
system that employs the client/server model of system structuring, this require­
ment of maintaining state information by the server degrades scalability of the
system, and hence should be avoided whenever possible.

Timestamp-based protocols, also with the participation of the KDC, allow
mutual authentication by means of a pair of protocol messages, one in each
direction, between the communicating principals. Timestamp-based authentica­
tion begins with the client requesting a timestamped ticket from the KDC for
communication with the server. When the client wants to communicate with the
server, in addition to the message proper, it sends this ticket to the server as a
proof of the claimed identity.

Protocols of this class include [3], [9], [18] and [17]. Timeliness of these pro­
tocols is assured by the incorporation of timestamps in each encrypted message.
If a shared-key cryptosystem is used, the ticket usually carries one or more se­
crets known only to each legal participant of the authentication protocol. The
shared secrets are made known to the communicating principals at the end of
the protocol, and knowledge of them implies authenticity. It is also possible to
protect the communication channel using the shared secrets.

A timestamp-based protocol has the advantage that, within the lifetime of
a valid ticket, each message can be self-authenticated and that delays before
secure communications start can be reduced. This feature is especially desirable
for distributed applications which use connectionless communication service, e.g.
Remote Procedure Call and UDP /IP, as a major mechanism for interprocess
communications.

In addition, with the application of timestamp-based authentication in a
client-server environment, server processes are not required to maintain security­
related state information for each client. This stateless se1'1Jer approach is gen­
erally accepted to be desirable for improving system reliability and scalability
[16].

The dependence on timestamps for correctness, however, has the drawback
that it assumes the presence of a globally accessible clock. While a global clock
can be approximated by a system of synchronized clocks, the reliability and se­
curity of the underlying clock synchronizing protocol will have severe impacts
on the availability of the system and the correctness of the authentication pro­
tocol itself. This makes the security strength of timestamp-based authentication
doubtful, and is usually the main reason that such protocols are rejected by some
system designers [1] [12].

297

3 Primitives for Inter-Process Communications

Distributed systems rely heavily on computer networks for the communications
of data and control information between the computers of which they are com­
posed. In most distributed systems it is common to find two types of commu­
nication services, namely, connection-oriented and connectionless services. Both
these communication services are desirable due to the requirements of the ap­
plications which they support.

A connection-oriented service provides a reliable end-to-end message delivery
facility. Before any data is transmitted, a reliable connection is formed between
the principals wishing to communicate. This process involves the principal wish­
ing to establish a connection sending a request to the recipient, and the recipient
replying with its acceptance or refusal of the connection. In essence a "hand­
shake" is performed between the two parties. In the midst of the handshake
process, both ends of the connection establish state information for the reliable
transmission mechanism.

Once a connection is formed a reliable exchange of information can be initi­
ated. An example of a reliable connection-oriented service is the Transmiuion
Control Protocol (TCP) which is part of the Internet Protocol Suite. A typical
situation in which a reliable connection-oriented service is appropriate is when
a large file is to be transferred from a remote site, since the time required to
establish a reliable connection is usually not significant compared to the period
elapsed during the actual data transfer. Moreover, most users of file transfer
programs need to ensure that the file the destination receives is identical to the
original copy. This type of service is also essential for the support of applica­
tions where the source and destination are required to interact constantly over
a relatively long period of time, such as remote login and distributed window
applications.

The provision of a reliable connection-oriented communication service, how­
ever, may not be preferred for every situation. In fact, there are certain dis­
tributed applications which find such a communication primitive undesirable,
because its high reliability guarantee is not necessary while the overhead and
delays incurred through the handshake are too costly. Connectionless communi­
cation services are usually provided to meet the requirements of such applica­
tions.

A connectionless communication primitive provides an application with the
mechanism to transmit units of data across the network. Each data unit, which
carries the full destination address and is routed through the system indepen­
dent of all the others, is usually referred to as a datagram and is treated as an
individual entity by the underlying network. Connectionless services commonly
do not guarantee delivery and may transmit datagrams out of sequence or even
duplicate them. An example of a connectionless communication service is the
User Datagram Protocol (UDP) of the Internet Protocol Suite.

Connectionless communication services are sometimes preferred because of

298

4 Timestamp-based Security

As we have discussed, timestamp-based authentication is very attractive in that
it eliminates the necessity of multi-step handshake and requires no extra state
information to be maintained by the pair of communicants. However, its assump­
tion concerning the use of a globally accessible clock hampers its popularity, since
this global clock must be highly available, reliable and secure.

A reliable global dock can be approximated by using the individual proces­
sor clocks and requiring each processor to bring their clock values close to each
other by means of some fault-tolerant clock synchronization protocol [10] [15).
Each individual processor is said to implement a local time server. A distributed
implementation of the dock service reduces the reliance on a single component
of the system, and thus makes the clock service more available. The dock syn­
chronization protocol itself must be fault-tolerant so that the clock values on
each correct processor are reliable in the face of network and other processor
failures.

Keeping clocks in a distributed system synchronized without appealing to a
single, centralized, time service requires that clock value& be ezchanged and clock&

periodically adjusted. The time servers must provide accurate and precise time,
even with relatively large stochastic delays on the transmission paths. Therefore,
reliable time synchronization requires carefully engineered selection algorithms
and the use of redundant resources and diverse transmission paths.

While the fault-tolerance of clock synchronization algorithms has been stud­
ied extensively in the past, little progress has been made to ensure their secu­

rity. This seemed to be a consequence of the assumption about the environment
within which existing clock synchronization protocols were developed to operate.
A system of synchronized clocks was traditionally developed for the implemen­
tation of time-based synchronization of concurrent programming. Another main
application of clock synchronization was in real-time process control systems
which require that accurate timestamps be assigned to sensor values so that
these values can be correctly interpreted. The environment within which these
applications operated was usually assumed to be secure, while the system was
expected to experience random failures, be they results of hardware or software
causes.

In order to be used by a security service, the clock synchronization protocol
itself should be secure. Most of the controversy regarding the use of timestamp­
based authentication arose from its reliance on a system of synchronized clocks.
A clock synchronization protocol can be made secure if all interactions among the
time servers are protected by cryptographic means. The Signature-based Byzan­
tine Clock Synchronization Protocol discussed in [8] is one such example. One of
the consequences of using cryptographic techniques for securing clock synchro­
nization is that performance (which is usually described in terms of the accuracy
and precision of the synchronized clocks) may be degraded because encryption
and decryption operations introduce extra delay in every communication path.
The design of a secure clock synchronization protocol is an important area for

299

their simplicity and low protocol overhead. They also leave more room for ap­
plication programmers to make their own arrangements for passing messages.
A prime example to illustrate this point is Remote Procedure Call (RPC) [2],
a widely accepted paradigm for interprocess communication in distributed sys­
tems. Most RPC subsystems are based on a connectionless datagram network
service. The reasons for preferring datagrams are:

1. RPC messages are generally short and the establishment of a connection is
an undesirable overhead.

2. The Request-Reply style of interactions involved in RPC can simply be im­
plemented by a pair of datagrams: the datagram containing a request travels
from the caller to the callee and the datagram containing the reply travels
in the opposite direction.

3. Server computers may need to serve a large number of clients and the storing
of state information relating to connections is undesirable.

Therefore, distributed programs using the RPC mechanism communicate by
means of datagrams, but rely on the RPC subsystem to implement the semantics
of remote procedure calls.

With regard to the design of secure distributed systems, mechanisms that
protect all sorts of interprocess communications are of utmost importance. In
a distributed system, one cannot ignore the possibility that messages within a
distributed computing system may not come from where they appear to come
from, and may not arrive at the place as they are intended to. Moreover, every
packet of data being transmitted over the network is vulnerable to eavesdropping
and tampering.

Distributed authentication is usually used together with interprocess com­
munication mechanisms to achieve data secrecy and authenticity. Hence the
authentication services of a distributed system should be provided in such a way
that applications making use of them achieve improved security, and yet do not
necessarily experience a significant degradation in their other qualities e.g. relia­
bility and performance. Applications with different communication requirements
should find the overhead incurred by the authentication service acceptable.

Hence, it is necessary to make both challenge/response- and timestamp-based
authentication mechanisms available in a system, rather than just one of them,
since both connection-oriented and connectionless communication services are
desirable to satisfy the requirements of different applications. As discussed, the
exclusive use of challenge/response-based authentications hampers some appli­
cations that, for performance reasons, were designed to heavily rely on connec­
tionless communications. However, the security of solely using timestamp-based
authentications is questionable.

300

further research, because if the cryptographic technique is not used carefully,
the performance of the clock synchronization protocol will not be acceptable to
most applications because of the extra delays.

Another interesting problem is to distribute the corresponding keys for cryp­
tographic operations. A clock synchronization protocol will not be more secure
by simply using encryption and decryption; the ways that cryptographic keys are
distributed have a paramount efFect on the security achieved. Key distribution,
however, is usually achieved as a result of distributed authentication. This seems
to suggest that the philosophy of building an authentication mechanism whose
correctness relies heavily on a "to be secured" clock synchronization protocol is
questionable, because the reliance relationship is a mutual one. Fortunately, as
we shall see, this apparent paradox can be resolved.

The use of timestamp-based authentication is not as vulnerable as most
people first thought. With the provision of both challenge/response-based and
timestamp-based authentication mechanisms in a system, it is possible to retain
the advantages of both schemes without keeping the disadvantages. The key
point is to note that interactions among the set of time servers are constant and
over a very long period of time. This suggests that a challenge/response-based
authentication mechanism, which does not assume the existence of a globally
accessible clock, is appropriate for clock synchronization protocols.

Our prototype adopted the approach of using a primary time server which
periodically broadcasts its clock values to other machines. This approach is at­
tractive because of its simplicity. Further, broadcasting is acceptable to environ­
ments within which timestamp-based security is needed. The reason being that
timestamp-based authentication is most suitable to applications that employ
connectionless communications; and connectionless communications, because of
the lack of reliability guarantee, are mainly used by LAN applications. Hence
the main purpose of timestamp-based authentications is to support the security
needs of LAN applications. In addition, system overhead results from the use of
broadcast in a LAN environment is usually acceptable.

In order to ensure that distributed clocks are closely synchronized, the pri­
mary clock needs to distribute its knowledge of current time frequent enough to
avoid individual clocks drift too far apart. According to a preliminary measure­
ment conducted in our system, a pair of clocks drift away from each other at a
rate of one second per day. Therefore, clocks are resynchronized once every 60
seconds.

Such an approach to clock synchronization requires some kind of protection,
however. Broadcast from the primary time source is exposed to a variety of
security threats. In the context of secure clock synchronization, masquerading
of time server, modification and replay of resynchronization messages are of our
major concern. Fortunately, standard security services exist to guard against
these kinds of attack. Indeed, a key distribution protocol which makes use of
challenge-response is used to make the clock synchronization secure.

This idea is illustrated in Figure 1. The approach is to, first of all, provide

301

a challenge/response-based authentication mechanism as a fundamental compo­
nent of the security service. A secure clock synchronization protocol, which relies
on the provision of the multi-step handshake authentication, is then built to sup­
port a timestamp-based authentication mechanism. Each processor ensures the
availability of an approximated globally accessible clock by executing a copy of
the secure clock synchronization protocol. This protocol runs independently of
other applications and works as an ordinary operating system service to supply
timestamps to other system components. If a timestamp-based authentication
service is invoked before the secure clock synchronization protocol starts, the
system simply returns an error message notifying the event of "Security Ser­
vice Not Initialized". A more rigorous design of the secure clock synchronization
protocol is being developed [14].

Secure Applications

TS-Based Authentication!
Secure Clock Synchronization Protocol
C/R-Based Authentication

Fig. 1. Architecture for a Security Platform

Nevertheless, the foundation of our system security is still multi-step hand­
shake authentication. In principle, at least, building a secure clock synchroniza­
tion protocol is not impossible if a challenge/response-based mechanism is used;
and once security of the system of synchronized clocks is ensured, our timestamp­
based authentication can safely rely on it.

Therefore, the main purpose of providing a timestamp-based mechanism is
not to enhance system security, but to complement the use of the challenge­
response mechanism for those applications which find the multi-step handshake
unacceptable. The system will be as secure as if timestamp-based authentication
were not available, but its presence will encourage application designers to handle
the security of connectionless communications more seriously.

Certainly, timeliness of authentication is only achieved at the cost of ex­
tra interactions among the legal participants of the authentication protocol. If
a challenge/response-based approach is used, extra interactions (i.e. the multi­
step handshake) are required before secure communications start. Whereas, if
a timestamp-based approach is employed, although extra interactions are still
needed, these extra interactions are transparent to the application programmer
and, more importantly, do not necessarily introduce a significant communica­
tion overhead to the application before secure communication starts. This is
because, with a timestamp-based authentication scheme, the extra interactions
are accomplished by all participants of the secure clock synchronization protocol.

302

Before we close our discussion, it is worth noting that most of our current
effort is on the design of a message logging mechanism for security purposes.
As discussed in l7), timestamp-based authentication protocols, as they stand, do
not provide a very secure way of detecting message replays. At the cost of extra
storage, it is possible to eliminate the risk of accepting replay messages whose
timestamps are still regarded as valid. In order to achieve this, the recipient may
use a logging mechani8m that records all messages received within the current
acceptance window. Hence, freshness can be guaranteed by rejecting subsequent
occurrences of identical messages within that window. The storage requirement
of the logging mechanism is determined by the size of the acceptance window,
which in turn is determined by the performance of the secure clock synchroniza­
tion protocol and the expected message delivery delay. In principle, freshness
assurance of timestamp-based authentication protocols should be provided by
the logging mechanism [6]. However, a secure dock synchronization protocol is
needed to reduce the size of the acceptance window so as to make the logging
approach practical.

5 Conclusion

We have discussed the two classes of authentication protocols with respect to
freshness guarantees. We have also looked into the features of two major mech­
anisms for interprocess communications. We suggested that a secure distributed
system should make both kinds of authentication protocols explicitly available.
An important advantage of this proposal is that both connection-oriented and
connectionless communication services can be made secure without experiencing
a significant protocol overhead.

This paper also argued that the use oftimestamp-based authentication is not
necessarily a security compromise as most people thought. We have discussed
the security strength oftimestamp-based authentication protocols, and presented
one possible approach to achieve this.

Our proposal differs from the others in that we suggested the provision of
both authentication mechanisms in a system and, more importantly, we believe
that it is possible to build a timestamp-based protocol that is as secure as a
challenge/response-based one. The use of nonce identifier and handshake has
been suggested by Needham and Schroeder (11) [121 to ensure timeliness. This
approach was criticised by Denning and Sacco [3] based on the ground that
even a system of manually synchronized clocks could be sufficient to generate
timestamps of the required quality. In fact, Denning and Sacco recommended the
inclusion of timestamps in all authentication protocols. The timestamp-based ap­
proach was employed by project Athena of MIT, and the design of the Kerberos
authentication system was based on it [9}. Regarding the timely property of Ker­
beros, various security weaknesses of its timestamp-based authentications have
been discussed by Bellovin and Merritt [1). In addition,the authors of [1], while
having accepted that Kerberos's timestamp-based protocol be secure enough in

303

the Athena environment, suggested the provision of a challenge/response option
to enhance security for a more general computing environment.

References

1. Bellovin, S.M., Merritt, M.: Limitations of the Kerberos Authentication System.
ACM Computer Communications Review 20(5) (1990) 119-132

2. Birrell, A.D., Nelson, B.J.: Implementing Remote Procedure Calls. ACM Trans.
on Computer Systems 2(1) {1984)

3. Denning, D.E., Sacco, G.M.: Timestamps in Key Distributed Protocols. CACM
24(8) (1981) 533-536

4. Horster, P., Knobloch, H.-J.: Protocols for Secure Networks. Proceedings Euro­
crypt'91, Springer LNCS 547 {1991) 399-408

5. ISO/IEC: Information Technology - Security Techniques - Entity Authentication
Mechanisms - Part 1: General Model. ISO/IEC 9798-1

6. Lam, K.-Y.: Replay-Tolerance of Distributed Authentication. E.I.S.S. Technical
Report (in preparation)

7. Lam, K.-Y., Gollmann, D.: Freshness Assurance of Authentication Protocols. Pro­
ceedings ESORICS'92, Toulouse, {1992)

8. Lamport, L., Melliar-Smith, P.M.: Byzantine Clock Synchronization. ACM Oper­
ating Systems Review 20(3) (1986) 10-16

9. Miller, S.P., Neuman, C., Schiller, J.I., Saltzer, J.H.: Kerberos Authentication and
Authorization System. Project Athena Technical Plan Section E.2.1, MIT (July
1987)

10. Mill, D.: Internet Time Synchronization: the Network Time Protocol. RFC 1129
(October 1989)

11. Needham, R.M., Schroeder, M.: Using Encryption for Authentication in Large
Networks of Computers. CACM 21(12) (1978) 993-999

12. Needham, R.M., Schroeder, M.: Authentication Revisited. ACM Operating Sys­
tems Review 21(1) {1987) 7

13. Otway, D., 0. Rees, 0.: Efficient and Timely Mutual Authentication. ACM Oper­
ating Systems Review 21(1) (1987) 8-10

14. Salkield, T.J.: Secure Network Time Synchronization. Ph.D. Thesis Proposal, Com­
puter Science Dept, Royal Holloway, University of London (1992)

15. Schneider, F.B.: A Paradigm for Reliable Clock Synchronization. Proceedings of
the Advanced Seminar on Real-Time Local Area Networks (1986)

16. SUN MicroSystems, Inc.: Networking Programming. (May 1988)
17. Tardo, J .J. , Alagappan, K.: SPX - Global Authentication Using Public-Key Cer­

tificates. Proceedings of the IEEE Symposium on Security and Privacy (1991)
232-244

18. C.C.I.T.T.: The Directory - Authentication Framework. C.C.I.T.T. (December
1988)

