
 

 

 
Abstract—This paper proposes a novel method for 

demodulating low-frequency amplitude-modulated (AM) 
signals provided by sensors. The method relies on a 
digital timer that carries out the demodulation and 
digitization simultaneously, without requiring a rectifier, a 
mixer, a low-pass filter, or an analog-to-digital converter. 
This timer-based demodulator extracts the amplitude of 
the AM signal by measuring the period of a reference 
signal that is altered by the AM signal itself. The period 
measurement undergoes a deviation that carries 
information about the amplitude of the AM signal. The 
feasibility and also the limitations, such as the non-
linearity and aliasing effects, of this novel demodulator are 
proved theoretically and experimentally. The concept is 
also applied to measure an inductive displacement sensor 
in a range of ±30 mm. A non-linearity error of 0.5% full-
scale span and a resolution of 9 bits are achieved for an 
overall measuring time of 100 ms. 

 
Index Terms— Demodulator, digital timer, displacement 

sensor, inductive sensor, sensor interface electronics. 

I. INTRODUCTION 
N the field of electronic instrumentation, many sensors are 
read by a signal conditioning circuit that excites the sensor 

through an alternating (AC) signal. This is the case for 
capacitive and inductive sensors, which are widely employed 
to measure displacement [1], flow rate [2], human posture [3], 
position, level, among others. Resistive sensors based on 
electrolytes also require an AC excitation so as to avoid 
electrolysis. As a result of this AC excitation, the variation of 
resistance, capacitance, or inductance modulates the amplitude 
(AM) or the frequency (FM) of an alternating output signal. 
This output signal is generally sinusoidal for the AM case, as 
happens in AC bridges [4-6], but it can be sinusoidal or square 
for the FM case, as occurs in harmonic and relaxation 
oscillators [7], respectively. 

In AM sinusoidal signals, the amplitude is modulated by the 
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measurand, whereas the carrier frequency is constant. This 
frequency is usually equal to units of kilohertz for inductive 
sensors [2,4-6], and tens [8,9] or hundreds [10,11] of kilohertz 
for capacitive sensors. The demodulation of these signals can 
be either asynchronous or synchronous. An envelope detector, 
which is the most employed asynchronous demodulator, has a 
rectifier and a peak detector that can be a simple RC-circuit 
[2,5,11] or a more advanced design providing shorter time 
constants [12,13]. On the other hand, a synchronous 
demodulator relies on a mixer and a low-pass filter (LPF) 
[3,8,10]. For double-sideband transmitted carrier AM signals, 
as happens in AC voltage dividers, the demodulation can be 
asynchronous or synchronous, but taking into account that the 
latter offers a higher capacity to reject noise/interference [14] 
at the expense of a more complex circuit. However, for 
double-sideband suppressed carrier AM signals, as occurs in 
AC bridges, the demodulation must be synchronous so as to 
detect phase changes. Whatever the case, after demodulating 
the signal in the analog domain, the resulting low-frequency 
signal is digitized by an analog-to-digital converter (ADC). 
The demodulation can also be carried out in the digital domain 
but using first an ADC operating at a higher sampling 
frequency [6,15].  

In FM sensor signals, the frequency or the period is 
modulated by the measurand, whereas the amplitude is 
constant; for instance, it is equal to the supply voltage of the 
oscillator in FM square signals. This type of modulation has 
the advantage that the dynamic range is not limited by the 
supply voltage of the circuit. The main drawback is that the 
sensor is not excited at a constant frequency and, hence, the 
sensor specifications given at a nominal frequency can be 
inapplicable along all the frequency range. The demodulation 
of these signals can be carried out by a time-to-digital 
converter (TDC), which can be implemented by a digital 
timer/counter [16,17]. Sensor circuits based on TDCs, instead 
of ADCs, have advantages in terms of current consumption 
and layout area. Note, for instance, that in recent low-cost 
mixed-signal microcontrollers, the more power-demanding 
peripheral is the ADC, with a current consumption of 
hundreds of microampere. On the other hand, in integrated 
designs, a digital timer/counter can occupy a layout area 
smaller than 0.01 mm2 [18,19], which is one or two orders of 
magnitude smaller than that required by a successive-
approximation [20] or a delta-sigma ADC [21], respectively.  
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Taking into account the advantages of using TDCs instead 

of ADCs, extensive research has been carried out in the 
development of timer-based conditioning circuits for resistive 
[22-24], capacitive [25-27], and inductive sensors [28,29]. 
Most of these circuits rely on measuring the charging or 
discharging time of a first-order circuit that is excited by a step 
of voltage. Sensors with a quasi-static analog output voltage 
have also been measured using a timer-based conditioning 
circuit [30]. However, the measurement or the demodulation 
of AM sinusoidal signals by means of a digital timer has never 
been suggested before in the literature. 

This paper proposes a novel method for the demodulation of 
AM sinusoidal signals using a digital timer, which can be 
embedded into a low-cost microcontroller, as a core and 
without requiring the typical blocks of an AM demodulator.  
This is intended for AM signals with a carrier frequency in the 
range of kilohertz, as happens in circuits for inductive and 
capacitive sensors, and without carrier suppression. The 
demodulation of signals with a higher carrier frequency (say, 
higher than 1 MHz [31]) is out of the scope of the proposed 
demodulator since it would require a timer with a crystal 
oscillator of very high frequency. 

The paper is organized as follows. Section II qualitatively 
describes the operating principle of the proposed demodulator. 
Section III theoretically analyzes its performance and 
limitations. Section IV shows experimental results and Section 
V applies the concept to demodulate the signal coming from 
an inductive displacement sensor. Section VI draws the main 
conclusions. An Appendix analyses the aliasing phenomenon 
involved in the proposed measurement method. 

II. OPERATING PRINCIPLE 
The proposed timer-based demodulator extracts the 

amplitude of the AM sinusoidal signal by measuring the 
period of a reference triangular signal, which suffers from 
interference effects caused by the AM signal itself. These 
concepts are explained in more detail next. 

A. Period measurement 
The period measurement of a signal through a digital timer 

relies on the following principle. When the input signal 
crosses a given threshold voltage, the digital timer starts 
counting high-frequency pulses coming from a crystal 
oscillator. After one period of the input signal, this crosses 
again the same threshold voltage with the same edge and the 
digital timer stops. The instants at which the timer starts and 
stops are identified next as starting and stopping trigger points, 
respectively. The period of the signal can be then calculated as 
the (digital) number of counts registered in the timer 
multiplied by the period of the oscillator signal. This 
measurement suffers from three main uncertainty sources [32]: 
instability of the crystal oscillator, quantization, and trigger 
noise/interference. The effects of the latter are here exploited 
to demodulate the AM sinusoidal signal, which will be 
superimposed on the threshold voltage to intentionally alter 
the trigger points during the period measurement of a 
reference signal. 

B. Interference effects on period measurements 
If the method explained before is applied to measure the 

period of a signal with a slow slew rate, the measurement 
becomes susceptible to interference superimposed on both the 
threshold voltage and the input signal [33]. Both the starting 
and stopping trigger points are erroneous due to the 
interference and, therefore, the period measurement suffers 
from a non-constant deviation. This variability, which can be 
quantified by the standard deviation (STD) of the 
measurements, increases with the amplitude of the 
interference and depends on the ratio between the interference 
frequency (fi) and the input-signal frequency (f0). Interference 
effects are null when fi / f0 = m, whereas they are maximum 
when fi / f0 = m + 0.5, m being any positive integer including 
the zero [33]. Such a performance is similar to what happens 

 
Fig. 1.  Proposed demodulator for AM signals based on a digital timer. 
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Fig. 2.  Waveform of the main signals in Fig. 1 when the AM signal 
has an amplitude A1.  
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in integrating ADCs that completely reject interference 
superimposed on the input signal provided that the period of 
the interference is a submultiple of the integrating time of the 
ADC. In the proposed demodulator, the AM signal will 
behave as interference during the period measurement.  

C. AM demodulation based on period measurements 
The AM signal is proposed to be demodulated by 

superimposing it on the threshold voltage during the period 
measurement of a reference triangular signal. Fig. 1 shows the 
basic circuit to carry out such an operating principle. The AM 
signal is AC-coupled through a capacitor to a resistive voltage 
divider.  Assuming two equal resistors, the resulting voltage is 
VDD/2 plus the AM signal, which will act as a threshold 
voltage. On the other hand, an oscillator provides a triangular 
signal with an amplitude of VDD, an offset of VDD/2, and a 
period of T0. Both signals are then compared via a comparator 
that provides at the output a square signal whose period is 
measured by a digital timer. 

If the amplitude of the AM signal is zero, the threshold 
voltage is free of interference and, therefore, the comparison 
between the two signals is triggered at the ideal trigger points. 
In these conditions, the comparator output is a square signal 
with a period equal to T0. However, if the amplitude of the 
AM signal is A1, the comparison is triggered at erroneous 
trigger points, as shown in Fig. 2, thus resulting in a square 
signal with a period equal to T instead of T0. A higher 
amplitude of the AM signal (i.e. A2 > A1) generates a higher 
deviation in the period measurement, as shown in Fig. 3 
assuming that the phase shift between the triangular and 
sinusoidal signals is the same considered before in Fig. 2. The 
measurement of N periods in such conditions generates N 
different values of T, each with a particular deviation with 
respect to the ideal value. The root mean square (RMS) value 
of the set of deviations is expected to increase with increasing 
the amplitude of the AM signal.  

III. THEORETICAL ANALYSIS 
The proposed demodulator aims to extract the amplitude of 

the following sinusoidal signal: 
 

  s
c( ) sin 2

2
Av t f t    (1) 

 
where As is the peak-to-peak amplitude modulated by the 
measurand, fc is the carrier frequency, and  is the phase shift 
with respect to the triangular signal. If the signal described by 
(1) is superimposed on the threshold voltage when the period 
of a triangular signal is measured, the starting trigger point is 
moved from t1

* to t1, whereas the stopping trigger point from 
t2

* to t2, as shown in Fig. 4. Consequently, at both trigger 
points, there is a time error or deviation that can expressed as 

 
 1 1( ) SRe v t   (2a) 
 2 2( ) SRe v t  (2b) 

 
where v(t1) and v(t2) are the voltage values of (1) at the actual 
trigger points t1 and t2, respectively, and SR (= 2VDD/T0) is the 

slew rate of the triangular signal. The deviation is assumed 
positive if it increases the value of the measured period; 
accordingly, both deviations represented in Fig. 4 are negative. 
This sign convention involves the minus sign included in (2a). 
The overall deviation in the period measurement can be then 
calculated, from (2), as 
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A. Small-signal model 
For a low-amplitude low-frequency AM signal, the 

following approximation can be assumed [34] 
 

 *
1 1( ) ( )v t v t  (4a) 

 *
2 2( ) ( )v t v t  (4b) 

 
where v(t1

*) and v(t2
*) are the voltage values of (1) at the ideal 

trigger points t1
* and t2

*, respectively. Replacing (4) in (3) and 
considering t2

* to be the time ‘now’ and t1
* the time T0 ‘ago’ 

[34] yields 
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Substituting now (1) in (5) gives 
 

 s c c
T c

0 0

( ) sin cos 2
SR
A f fe t f t

f f
   
   

     
   

 (6) 

 
where f0 = 1/T0. According to (6), the deviation in the period 
measurement evolves as a sinusoidal signal with an amplitude 

Fig. 4. Deviation (e1 and e2) generated by the AM signal during the 
period measurement of a triangular signal. 
 

 
Fig. 5.  Amplitude of the overall deviation (eT) in the period 
measurement versus the ratio fc / f0. 
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and phase that depend on the ratio fc / f0. The amplitude is zero 
when fc / f0 = m, whereas it is maximum when fc / f0 = m + 0.5, 
m being any positive integer including the zero, as shown in 
Fig. 5. For fc / f0 = m + 0.5, which is here of interest so as to 
have the highest effects of the AM signal on the period 
measurement, (6) can be simplified to 
 

 T
2( ) ( )

SR
e t v t  (7) 

 
which has an amplitude that is proportional to the amplitude of 
the AM signal.  

The use of an exponential signal resulting from the charge-
discharge process of an RC circuit instead of a triangular 
signal is in principle not recommended. This is because then 
the SR is not constant, thus generating a non-linear relation 
between the amplitude of eT and the amplitude of the AM 
signal, even in a small-signal model. 

B. Large-signal model 
The approximation considered in (4) has several limitations 

if the amplitude of the AM signal is high (say, in the range of 
units of volt). To analyze the response of the timer-based 
demodulator for such values of amplitude, we propose to 
express v(t1) and v(t2) with a second-order Taylor-series 
approximation: 
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The minus sign in the second term in (8a) is necessary to 
compensate for the minus sign of e1 when t1 > t1

*, following 
the sign convention indicated before. In addition, for the case 
of interest in which fc / f0 = m + 0.5, we have the following 
relations: 
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Therefore, substituting (9) in (8a), (8) can be rewritten in 
function of t2

* as 
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Replacing now (10a) in (2a) and (10b) in (2b) yields two 
quadratic equations in the unknowns e1 and e2, respectively. 
Solving these and adding the results, we can find an 

expression of eT that can be written, assuming again t2
* to be 

the time ‘now’, as 
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For low values of As, y(t) becomes a high (>>1) time-

dependent value so that Term 2 in (11) can be simplified to 1, 
except for the instants corresponding to the half and full 
period of v(t) at which Term 2 is equal to 0. Therefore, (11) 
can be simplified to Term 1, which is the same result as in the 
small-signal analysis [see (7)]. However, for high values of As, 
y(t) is a low time-dependent value and Term 2 in (11) becomes 
smaller than 1 and time-dependent, thus attenuating and 
distorting the sinusoidal signal described by Term 1. 
Accordingly, the relation between the amplitude of eT and the 
amplitude of the AM signal is expected to be non-linear, 
especially at high values of As. 

In addition to the non-linearity effects indicated before, the 
proposed method can suffer from aberrant period 
measurements if the amplitude of the AM signal is too high. 
This is qualitatively shown in Fig. 6, where a high-amplitude 
AM signal causes non-expected crossings between the two 
signals under comparison, thus resulting in an aberrant period 
measurement (T instead of T0). In order to avoid this, the slope 
(or SR) of the triangular signal must be higher than the 
maximum slope of the AM signal, which involves 
 

 0DD
s

c

2 fVA
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Assuming VDD = 5 V, the maximum value of As resulting from 
(13) is 6.37 V, 2.12 V, and 1.27 V for fc / f0 = 0.5, 1.5, and 2.5, 
respectively. 

 
Fig. 6.  Waveform of the main signals in Fig. 1 when the amplitude of 
the AM signal is too high, thus producing an aberrant period 
measurement of the triangular signal. 



 

 
C. Sampling and aliasing 

According to (7) and (11), if the period measurement is 
subjected to the effects of the AM sinusoidal signal, then the 
resulting deviation is also sinusoidal (distorted if As is high) 
with the same frequency fc and an amplitude that depends on 
As and SR. The analysis method developed in [34] states that a 
sample of this sinusoidal signal is taken every time the period 
of the triangular signal is measured. In a demodulator based on 
a single digital timer, the period can be measured at most 
every other cycle; note that the timer cannot end and start 
simultaneously on the same cycle edge. In such a case, which 
is then tested experimentally in Section IV, the sinusoidal 
signal represented by (7) or (11) is sampled at a frequency (fs) 
that is half the frequency of the triangular signal, i.e. fs = f0/2. 
In a demodulator based on two digital timers operating in 
parallel, it would be possible to carry out back-to-back period 
measurements, thus resulting in fs = f0. 

If fc / f0 = m + 0.5 and fs = f0/2, then fs = fc/(1+2m). For 
example, fs = fc, fc/3, and fc/5 for m = 0, 1, and 2, respectively. 
Consequently, the Nyquist criterion, which states that the 
signal should be sampled at fs  2fc, is not satisfied. In these 
conditions, an alias component at 0 Hz is generated, as 
demonstrated in the Appendix. An alias component of 0 Hz 
means that the same value of eT is repeatedly sampled and, 
therefore, a set of period measurements does not provide 
useful information to estimate the amplitude of the AM signal. 

The previous limitation can be avoided by running the 
demodulator at fc / f0 = (m + 0.5)(1+Δ), where |Δ| << 1. Then, 
the sampling frequency is slightly shifted to 
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which generates a low-frequency alias component at fc·|Δ|, as 
demonstrated in the Appendix, that is independent of m. The 
amplitude of this alias can be considered equal to that of the 
original signal described by (7) or (11) provided that |Δ| << 1, 
as shown in (A.4). Therefore, although the wave reconstructed 
from the period samples has a frequency different to fc, its 
amplitude has information about the amplitude of the AM 
signal of interest.  

D. Processing 
In order to correctly characterize the discrete-time signal 

resulting from the sampling process, it is necessary to take 
samples of the period of the triangular signal at least during 
one period of the alias component, i.e. (fc·|Δ|)-1. This can be 
considered the overall measuring time since the processing 
can be quite fast in current digital systems. An alias 
component of a higher frequency (obtained with a higher 
value of Δ) decreases the measuring time but with the 
following limitations: (i) the number of samples (per period of 
the alias component) becomes smaller and, hence, the 
characterization of the discrete-time signal could be more 
complicated; and (ii) the approximation fc / f0  m + 0.5 
becomes less valid and, therefore, the amplitude of eT would 
be lower, as can be observed in Fig. 5 and in (A.4).  

Once the samples of the triangular-signal period have been 
taken during one period of the alias component, we propose to 

process them through the STD. This provides the RMS level 
of the AC component of the period samples, or in other words: 
the RMS of eT. Another option would be to find the maximum 
value of the period samples so as to estimate the amplitude of 
eT. However, this method could be more sensitive to noise 
since it would rely on the value of a single sample (i.e. the 
maximum value).  

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Materials and method 
The concept of timer-based demodulator shown in Fig. 1 

has been experimentally proved using the following setup. A 
waveform generator (Agilent 33120A) provided the triangular 
signal with an amplitude of 5 V, an offset of 2.5 V, and a 
frequency of f0. Another waveform generator (Agilent 
33210A) provided the AM sinusoidal signal at fc = 1500 Hz, 
which is in the range of typical exciting frequencies for 
inductive sensors [4-6]. The different ratios of fc / f0 under test 
were obtained by changing f0 and keeping fc constant. These 
two waveform generators were not synchronized so that the 
phase shift between the two generated signals was arbitrary for 
each set of period measurements. The AM signal also had an 
offset level of 2.5 V and, hence, the capacitor and the two 
resistors shown in Fig. 1 were not necessary. These two 
signals were compared using an ultrafast single-supply 
comparator (Analog Devices AD8561). The period of the 
comparator output was then measured using a bench-top 
universal counter (Agilent 53220A). This was configured to 
carry out a single-period measurement, which was realized 
every other cycle according to the internal firmware of the 
instrument. Consequently, as indicated before, fs = f0/2. 

B. Preliminary measurements 
With the aim of determining the baseline of STD, the 

demodulator was initially tested with As = 0. In these 
conditions, the period measurement of a triangular signal with 
f0 = 1 kHz had an STD  50 ns, which can be ascribed to the 
inherent noise of the two signals under comparison and to the 
comparator noise. In addition, the histogram of the period 
measurements was clearly Gaussian.  

 
Fig. 7.  Period samples obtained for As = 500 mV. Two cases with
fc / f0  1.5 involving different alias components are represented. 
Assuming fs = f0/2, a sample of period was taken every 2 ms. 
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For As  0 and fc / f0 = m, the STD was also around 50 ns 
and the histogram was also Gaussian regardless of the value of 
As, which was tested up to 5 V. Very similar results were 
obtained when fc / f0 was exactly equal to m + 0.5 since the 
alias component had a frequency of 0 Hz. Therefore, these 
ratios cannot be employed to extract the amplitude of the AM 
signal, as already suggested in Section III. The main 
difference between these two cases was that the histogram was 
centered at the ideal value (i.e. T0) when fc / f0 = m, but there 
was a bias when fc / f0 = m + 0.5 that depended on , as 
predicted by (A.2). 

C. Aliasing 
The demodulator was then tested for As  0 and 

fc / f0 = (m + 0.5)(1+Δ). Fig. 7 shows, for instance, the period 
samples obtained for As = 500 mV, m = 1, and Δ = 0.67% 
and 0.34%, which involve fc / f0 = 1.49 and 1.505, 
respectively. The waves reconstructed from the samples in 
Fig. 7 correspond to an alias component of 10 Hz and 5 Hz, 
respectively, which agrees with fc·|Δ|. These two waves were 
not centered at the same value in the y-axis because they 
correspond to different values of T0, to be precise: T0 = 993 µs 
and 1003 µs for fc / f0 = 1.49 and 1.505, respectively. 

D. STD vs signal amplitude 
The amplitude and, hence, the STD of the alias component 

represented in Fig. 7 clearly depended on As. This is shown in 
more detail in Fig. 8 on a log-log scale for 
fc / f0  0.5, 1.5, and 2.5; the ratios were selected so that the 
alias component had a frequency of 10 Hz. For the three cases, 
the higher the amplitude of the AM signal, the higher the STD, 
which is the essence of the proposed demodulator. As for the 
operating range, aberrant measurements were obtained when 
As > 2.0 V for fc / f0  1.5, and when As > 1.2 V for fc / f0  2.5, 
which agrees with (13). No aberrant measurements were seen 
for fc / f0  0.5 since the values of As under test were lower 
than the maximum value predicted by (13). 

E. Linearity 
The non-linearity expected at high values of As can be better 

observed by representing STD versus As on a linear scale, as 
shown in Fig. 9 for fc / f0  0.5. Besides the experimental data 
already represented in Fig. 8, Fig. 9 also shows the STD 
calculated by both the small-signal model (7) and the large-
signal model (11), identified as “SS model” and “LS model”, 
respectively. The SS model satisfactorily predicts the response 
of the demodulator up to As  2 V, whereas the LS model is 
able to predict the non-linearity obtained at higher values of 
As. The discrepancy between the experimental data and the LS 
model shown in Fig. 9 can be ascribed to limitations of the 
model. Note that a second-order Taylor-series approximation 
is assumed in (8), and that (9) is valid when fc / f0 is exactly 
equal to m + 0.5.  

F. Discussion 
With regard to the selection of m when the demodulator 

operates at fc / f0 = (m + 0.5)(1+Δ), the following issues should 
be considered. A low value of m enables the demodulation of 
signals with higher amplitude, but with a non-linearity 
response at these high values, as shown in Figs. 8 and 9. A 
low value of m also involves a higher value of the sampling 
frequency, as indicated by (14), which means that a higher 
number of samples can be taken in one period of the alias 
component. The higher the number of samples, the better the 
estimation of STD, but the longer the processing time. On the 
other hand, a high value of m involves a triangular signal of 
lower frequency that causes a higher value of STD, as shown 

 
Fig. 9.  Theoretical and experimental values of STD versus the peak-
to-peak amplitude of the AM signal for fc / f0  0.5.  
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Fig. 10.  Timer-based demodulator applied to measure an inductive 
displacement sensor. The differential topology of the sensor is 
configured as an AC voltage divider. 

 
Fig. 8.  Experimental values of STD of the period samples versus the 
peak-to-peak amplitude of the AM signal for fc / f0  0.5, 1.5, and 2.5. 
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in Fig. 8, because the SR is smaller. Furthermore, in such a 
case, the (relative) uncertainty caused by the quantization of 
the timer is smaller. 

V. APPLICATION TO AN INDUCTIVE SENSOR 

A. Materials and method 
The proposed timer-based demodulator has been applied to 

measure an inductive displacement sensor with a differential 
topology, as shown in Fig. 10. This was assembled using the 
two secondary coils of a commercial AC linear variable 
differential transformer (LVDT), model M-12 65 from 
Measurement Specialties; the primary coil of the LVDT was 
not employed [29]. The sensor was excited by a waveform 
generator (Agilent 33210A) providing a sinusoidal signal 
superimposed on a DC level of 5 V. This sinusoidal signal had 
a peak-to-peak amplitude of App at fc = 1500 Hz. The output of 
the sensor (vout) had the same frequency but its amplitude was 
modulated by the position (x) of the magnetic core, with a 
length of 60 mm, inside the sensor. The actual position was 
monitored by a digital Vernier caliper attached to the core-
connecting rod, as shown in Fig. 11. Since the two inductances 
(L1 and L2) of the sensor had the same DC parasitic resistance 
and this was independent of x, the DC level of vout was 2.5 V, 
thus facilitating the comparison with the triangular signal. The 
rest of the electronic instrumentation employed in Fig. 10 was 
the same indicated in Section IV.A.  

The sensor output was measured by both a digital 
multimeter (Agilent 34410A) in AC voltage mode and the 
proposed demodulator at different positions of the core. Two 
cases were tested: (a) App = 5 V and fc / f0 = 0.5·(10.67%), 
and (b) App = 2 V and fc / f0 = 1.5·(10.67%). The value of 
App was selected to be smaller than that provided by (13) to 
avoid aberrant measurements, whereas the value of Δ was 
chosen to have an alias component of 10 Hz. 

B. Experimental results 
The two cases indicated before provided the results 

represented in Figs. 12 and 13, respectively, in the range of 
±30 mm around the center of the sensor. In both figures, the 
output of the timer-based demodulator (i.e. the STD of the 
period samples) was able to accurately follow the amplitude 
change of the AM signal caused by the change of the sensor 
position. Although the amplitude to be demodulated was lower 
in Fig. 13, the resulting STD was higher than in Fig. 12 since 
the SR of the triangular signal was lower. The linearity was 
then evaluated by representing STD versus the amplitude of 
vout, thus obtaining a maximum non-linearity error (NLE) of 

0.7% and 0.5% full-scale span (FSS) in cases (a) and (b), 
respectively.  

The measurement resolution in Figs. 12 and 13 can be 
computed by dividing the output span by the residual value of 
STD of 50 ns found in Section IV.B. The result is a resolution 
of 9 bits for a measuring time of 100 ms (i.e. 1/10 Hz), which 
corresponds to 0.1 mm in a ±30 mm range. Such a resolution 
could be improved by: (a) increasing the frequency of the 
crystal oscillator of the timer so as to have a residual value 
lower than 50 ns, and (b) employing an amplifier between the 
sensor output and the comparator in order to increase the span 
of the signal amplitude. This, however, could cause an 
increment of the non-linearity.  

C. Discussion 
The circuit shown in Fig. 10 was mainly intended to prove 

the feasibility of the novel demodulation technique with a 
commercial sensor, but it was not optimized to show its 
benefits in terms of current consumption. Note that the static 
current consumption of the inductive sensor was of several 
milliamperes and, hence, the fact of using a TDC-based circuit 
instead of an ADC-based circuit offers a small improvement in 
the overall current consumption of the circuit. In order to 

 
Fig. 13.  Peak-to-peak amplitude of the sensor output signal and STD 
measured by the timer-based demodulator at different positions of the 
core inside the sensor, when App = 2 V and fc / f0  1.5. 
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Fig. 12.  Peak-to-peak amplitude of the sensor output signal and STD 
measured by the timer-based demodulator at different positions of the 
core inside the sensor, when App = 5 V and fc / f0  0.5. 
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Fig. 11. Measurement setup including a digital Vernier caliper to know 
the actual position of the core inside the displacement sensor. 



 

 
better show the advantages of the timer-based demodulator in 
terms of current consumption, it would be preferable, for 
instance, to demodulate the signal coming from a capacitive 
sensor that does not consume static power. 

According to Section V.B, the proposed demodulator has an 
NLE (0.5% FSS that corresponds to an R2 value of 0.9999) 
that is comparable to and even better than those presented in 
the literature, for instance: an NLE of 1.4% FSS in [2] and an 
R2 value of 0.998 in [11]. Commercial monolithic signal 
conditioners for inductive sensors with a differential topology, 
such as the AD598 from Analog Devices, offer an NLE of 
several tenths of 1%, which is also similar to that obtained 
here. The duration of the measurement, which is in the range 
of tens or hundreds of millisecond, is the major drawback of 
the proposed demodulator, thus limiting the measurement to 
slowly varying magnitudes. This also happens in the circuits 
for resistive displacement sensors recently suggested in 
[35,36] with a conversion time of 100 ms and 1.2 s, 
respectively, which have been proposed for automobile 
applications. Such a long conversion time is not a handicap 
either for the demodulation of AM signals coming from 
capacitive sensors that monitor slow magnitudes such as 
relative humidity [25] and soil water content [37]. 

VI. CONCLUSION 
This work has gone a step further in the field of sensor 

electronic interfaces by employing a digital timer to 
demodulate AM sinusoidal signals. It has been theoretically 
and experimentally proved that the amplitude of AM signals 
can be extracted by measuring –with a digital timer– the 
period of a reference triangular signal that is altered by the 
AM signal itself. However, in order to have the expected 
output, an appropriate relation between the carrier frequency 
of the AM signal and the frequency of the triangular signal has 
to be selected. The application of the proposed demodulator to 
read the signal coming from an inductive displacement sensor 
excited at 1500 Hz has shown the following features: a 
maximum NLE of 0.5% FSS, a resolution of 9 bits, and an 
overall measuring time of 100 ms. The main advantage of the 
proposed demodulator is the fact that the demodulation is 
carried out directly in the digital domain without using an 
ADC, with the corresponding benefits in terms of current 
consumption and die area. However, this is at the expense of a 
long conversion time. The demodulation of AM signals with 
carrier suppression and the use of two digital timers operating 
in parallel will be investigated in the next future. 

APPENDIX 
For the case of interest in which fc / f0 = m + 0.5, the 

resulting deviation evolves as indicated by (7). If this 
sinusoidal signal is sampled every Ts (= 1/fs), the result is a 
discrete-time signal that can be expressed as 
 

  s
T T s c s[ ] ( ) sin 2

SR
A

e n e nT f nT     (A.1) 

 
where n is the sample number. Assuming fs = f0/2, (A.1) is 
simplified to 

 

 s
T[ ] sin

SR
Ae n   (A.2) 

 
which shows that all samples have the same value, thus 
generating an alias component at 0 Hz. However, if the 
demodulator operates at fc / f0 = (m + 0.5)(1+Δ), then (6) can 
be rewritten as  
 

  s
T c( ) cos( )sin 2

SR
A

e t f t       (A.3) 

 
where ε = Δ(m + 0.5). If (A.3) is now sampled at fs = f0/2, then 
the resulting discrete-time signal is 
 

  s
T[ ] cos( )sin (4 1)

SR
Ae n n      (A.4) 

 
which is periodic every ns samples, where ns = 1/(2||). This 
involves an alias component with a frequency equal to  
 

 s
alias c c

s 1
f

f f f
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
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
 (A.5) 

 
where fs is defined in (14). For example, if fc = 1500 Hz and 
Δ = 0.67%, then ε = 3.33·10-3 and 9.99·10-3 for m = 0 and 
1, respectively, involving 150 and 50 samples to have a 
complete period of the alias component at 10 Hz. 
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