TIMES: a Tool for Schedulability Analysis and Code Generation of Real-Time Systems

Tobias Amnell Elena Fersman Leonid Mokrushin Paul Pettersson Wang Yi

Presenter: Henrik Kragh-Hansen

September 24, 2007

Importance of TIMES Features of TIMES

Why real-time systems?

- Expensive failures
- Loss of lives
- Environmental damages
- Financial loss

Introduction Terminology

Conclusior

Features of TIMES

TIMES

Features

- Schedulability analysis
- Verification
- Code generation

Importance of TIMES Features of TIMES

Schedulability analysis

- Worst case response time
- All tasks are computed within their deadlines
- Reachability problem
- Decidable

- Ensures deadlines
- Prevent failure

Importance of TIMES Features of TIMES

Schedulability analysis

- Worst case response time
- All tasks are computed within their deadlines
- Reachability problem
- Decidable

- Ensures deadlines
- Prevent failure

Importance of TIMES Features of TIMES

Code generation

- Executable C-code
- Tasks does not exceed worst case execution time

- Ensures valid code
- Reduces development time
- Limits inconsistency

Importance of TIMES Features of TIMES

Code generation

- Executable C-code
- Tasks does not exceed worst case execution time

- Ensures valid code
- Reduces development time
- Limits inconsistency

Introduction Terminology

Importance of TIME Features of TIMES

Task Task model

Terminology

Two central concepts

- Task an executable program
- Task model a task arrival pattern

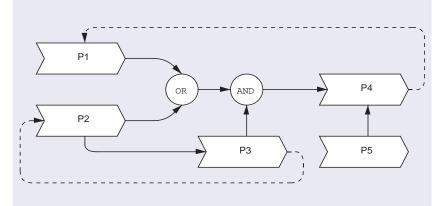
Task Task model

Types of tasks

- Periodic
- Sporadic
- Preemptive or Non-preemptive

Task Task model

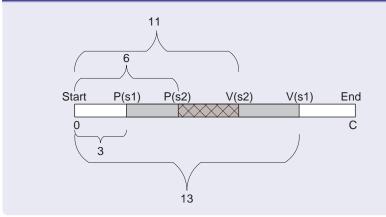
Tasks Parameters and Constraints


Timing constraints

- Relative deadline (D)
- Worst case execution time are pre-specified (C)
- $C \leq D$
- $[C_B, C_W]$

Task Task model

Tasks Parameters and Constraints

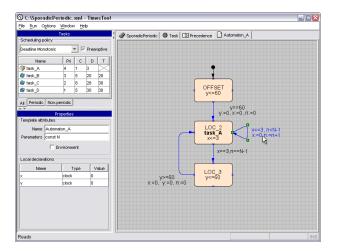

Precedence constraints

Task Task model

Tasks Parameters and Constraints

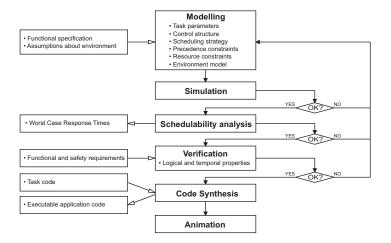
Resource constraints

Task Task model


Timed Automata as Task Arrival Patterns

Timed automata extended with variables and tasks

- Edge labeled with:
 - Guard
 - Sync
 - Assign/Update
- Locations may be annotated with task(s)
 - Task queue
 - Scheduled according to strategy


Task Task model

TIMES GUI

Design Process Schedulability Analysis Code Generation

Design Process using TIMES

Design Process Schedulability Analysis Code Generation

Schedulability Analysis

Timed automata extended with tasks

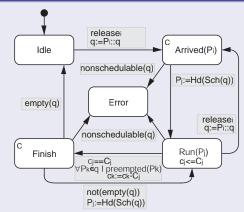
- A semantic state is a triple (*I*, *u*, *q*)
- I current control location
- u current values of clocks and data variables
- q current task queue

Design Process Schedulability Analysis Code Generation

Schedulability Analysis

Non-schedulable state

- The state (*I*, *u*, *q*)
- q contains a task with a missed deadline


Schedulable?

- An automaton is either schedulable or non-schedulable
- Reachability problem
- Decidable

Design Process Schedulability Analysis Code Generation

Schedulability Analysis

Scheduler automaton

Design Process Schedulability Analysis Code Generation

Schedulability Analysis

Schedulability strategy

- Highest priority first (FPS)
- First come first served (FCFS)
- Earliest deadline first (EDF)
- Least laxity first (LLF)

Design Process Schedulability Analysis Code Generation

Code Generation

The process

- Automata extended with tasks as design models
- Validated design model ⇒ executable code
- Preserves behavior of model.
- Platform must correspond to requirements

Target platform

- Generated for brickOS used for LEGO Mindstorm
- Tasks as separate threads

Usage of TIMES Contributions of TIMES

Is TIMES Actually Used?

A non-trivial application:

- Control software of a production cell
- 12 tasks
- 7 automata
- 17 integers
- 24 booleans
- 31 clock variables (7 in model and 24 in scheduler)

Results

- Two 1.8 GHz AMD, 2GB RAM, running Mandrake Linux
- 207 MB memory and terminates in 11 minutes
- Using over approximation only uses 13 MB and 9 seconds

Usage of TIMES Contributions of TIMES

Is TIMES Actually Used?

UML SPT profile

- Extension to the UML standard
- Model time and time-related aspects of embedded systems

Rhapsody developed by I-Logix (Telelogic)

- TIMES as a plug-in tool for schedulability
- Embedded Market Forecasters Rank Rhapsody #1 for Productivity

Usage of TIMES Contributions of TIMES

Contributions of TIMES

Two main functions

- Schedulability analysis
- Code generation

Usage of TIMES Contributions of TIMES

Pros

- Extends UPPAAL
- Schedulability analysis
- Model \Rightarrow Code

Cons

- Missing functionality UPPAAL
- How to retrieve worst case execution time?
- Code \Rightarrow Model

Usage of TIMES Contributions of TIMES

Pros

- Extends UPPAAL
- Schedulability analysis
- Model \Rightarrow Code

Cons

- Missing functionality UPPAAL
- How to retrieve worst case execution time?
- Code \Rightarrow Model

Usage of TIMES Contributions of TIMES

Thanks for Your Attention

Questions?