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Abstract 

We present two-feldspar thermometry and diffusion chronometry from sanidine, orthopyroxene and 

quartz from multiple samples of the Bishop Tuff, California, to constrain the temperature stratification 

within the pre-eruptive magma body and the timescales of magma mixing prior to its eruption.  Two-

feldspar thermometry yields estimates that agree well with previous Fe-Ti oxide thermometry and 

gives a ~80 °C temperature difference between the earlier- and later-erupted regions of the magma 

chamber. Using this thermometry, we model diffusion of Ti in quartz, and Ba and Sr in sanidine as 

well as Fe-Mg interdiffusion in orthopyroxene to yield timescales for the formation of overgrowth 

rims on these phenocryst phases.  Diffusion profiles of Ti in quartz and Fe-Mg in orthopyroxene 

diffusion both yield timescales of <150 years for the formation of overgrowth rims.  In contrast, both 

Ba and Sr diffusion in sanidine yield nominal timescales 1-2 orders of magnitude longer than these 

two methods. The main cause for this discrepancy is inferred to be an incorrect assumption for the 

initial profile shape for Ba and Sr diffusion modelling (i.e., growth zoning).  Utilising the divergent 

diffusion behaviour of Ba and Sr, we place constraints on the initial width of the interface and can 

refine our initial conditions considerably, bringing Ba and Sr data into alignment, and yielding 

timescales closer to 500 years, the majority of which are then within uncertainty of timescales 

modelled from Ti diffusion in quartz.  Care must be thus taken when using Ba-in-sanidine 

geospeedometry in evolved magmatic systems where no other phases or elements are available for 

comparative diffusion profiling. Our diffusion modelling reveals piecemeal rejuvenation of the lower 

parts of the Bishop Tuff magma chamber at least 500 years prior to eruption. Timescales from our 

mineral profiling imply either that diffusion coefficients currently used are uncertain by 1-2 orders of 

magnitude, or that the minerals concerned did not experience a common history, despite being 

extracted from the same single pumice clasts. Introduction of the magma initiating crystallization of 

the contrasting rims on sanidine, quartz, orthopyroxene and zircon was prolonged, and may be a 

marker of other processes that initiated the Bishop Tuff eruption rather than the trigger itself.  
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Introduction 

Understanding the role of recharge in the assembly, stratification and evacuation of magma chambers 

has been a long standing question in the study of large-scale silicic magma systems, particularly those 

generating supereruptions.  These eruptions, of >10
15

 kg  (~ 450 km
3
) magma (Self 2006; Miller and 

Wark 2008), have the potential to cause massive destruction, as well as having catastrophic effects on 

global climate (Self and Blake 2007).  In terms of mitigating potential hazards, the more that can be 

determined regarding the timescales of the processes occurring in the parental magma systems 

(regardless of size), the more information that can be fed into monitoring programs at currently-active 

silicic volcanoes.  

 Recharge of volcanic systems has often been cited as a trigger for eruptions (e.g. Sparks et al. 

1977; Jellinek and DePaolo 2003; Wark et al. 2007; Arienzo et al. 2011; Matthews et al. 2012a; 

Saunders et al. 2012) whether due to direct increase in volume causing failure of the magma chamber 

wall rocks (e.g. Jellinek and DePaolo 2003), or by indirectly causing changes in volume of saturated 

gases and crystal cargo which eventually leads to eruption (e.g. Snyder 2000; Wark et al. 2007). 

Evidence of magmatic recharge or mixing is commonly preserved as zonations within crystal phases 

already present in the magma chamber (e.g. Morgan et al. 2004; Ginibre et al. 2007; Wark et al. 2007; 

Martin et al. 2008; Humphreys et al. 2009; Allan et al. 2013). However, two factors make 

interpretation complex. The first is whether the crystal phases are recording consistently the same 

event, resolution of which is hampered (in general) by use of single mineral phases for study (e.g. 

Wark et al. 2007; Gualda et al. 2012a). The second is whether evidence for recharge or magma 

mixing is automatically evidence for an eruption trigger (e.g. Wark et al. 2007), when other, external 

factors may be important in causing both the recharge and the eruption (e.g. Allan et al. 2012; 2013)..    

 Diffusional geochronometry aims to model the evolution of compositional profiles within 

zoned crystals to determine the time elapsed since compositional variations were introduced. 

Typically, an initial starting profile shape is assumed – usually a sharp, step-change – and this is 

modelled forwards in time until it matches the observed profile.  The timescale determined via this 

method can be regarded as a maximum, as the exact initial condition is not known.  We will return to 

the validity of this initial assumption later in this paper. Although diffusion modelling of single or 
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multiple elements has been frequently utilised to explore timescales of crystal residence in magma 

chambers (e.g. Zellmer et al. 1999; Costa et al. 2003; Morgan et al. 2004; Costa and Dungan 2005; 

Morgan et al. 2006; Wark et al. 2007; Gualda et al. 2012a; Saunders et al. 2012; Till et al. 2012; Allan 

et al. 2013), multiple phases from the same sample have not been routinely investigated. Here we 

compare and contrast the timescales inferred from Fe-Mg interdiffusion in orthopyroxene, Ti 

diffusion in quartz (cf. Wark et al. 2007; Gualda et al. 2012a), Sr diffusion in sanidine and Ba 

diffusion in sanidine (cf. Morgan and Blake 2006) from samples of the Bishop Tuff, eastern 

California. We also compare our data with alternative information on timescales of the processes 

involved from high-precision U-Pb chronometry and textural studies in co-erupted zircon 

(Chamberlain et al. 2014). 

 The Bishop Tuff (eruption age of 767 ka; Rivera et al. 2011) is an iconic example of a 

supereruption which displays evidence of magma mixing preserved as zonation in quartz, sanidine 

and orthopyroxene crystals (Hildreth 1977, 1979; Anderson et al. 2000; Peppard et al. 2001; Morgan 

and Blake 2006; Wark et al. 2007; Gualda et al. 2012a). Whilst the Bishop Tuff has been the subject 

of many volcanological and geochemical investigations (see Hildreth and Wilson 2007, for review), 

the timescales associated with magma chamber assembly, residence and pre-eruptive mobilisation 

remain controversial.  For example, early radiogenic isotopic studies on crystal and glass separates 

from the Bishop Tuff pointed to a long residence time for the magma (300 – 1300 kyr: Christensen 

and Halliday 1996; Davies and Halliday 1998), apparently supported by theoretical models of felsic 

magma genesis (Fowler and Spera 2010).  However, more recent studies of zircon U-Pb ages and 

crystal size distribution (CSD) modelling indicate that this is unrealistic and infer timescales of 

between ~160 kyr to a few thousand years (e.g. Gualda et al. 2012a; Pamukcu et al. 2012; Reid and 

Schmitt 2012; Chamberlain et al. 2014) for crystals residing in the melt-dominant magma body. 

Previous workers have investigated the timescales for magma mobilisation within the Bishop Tuff 

magma chamber, primarily by modelling Ti diffusion with quartz (Wark et al. 2007; Gualda et al. 

2012a) which yields timescales of <100 yr (for the ‘bright-rim’ [in CL imagery] overgrowths) to 

~2700 yr (for core-interior zonation). However, no comprehensive combined study of the diffusion 

records of multiple phenocryst phases within the Bishop Tuff has been undertaken.  Here we examine 
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 5 

the rim-forming overgrowths on sanidine, quartz and orthopyroxene crystals from multiple samples of 

multiple units of the Bishop Tuff.  We examine how comparable each of these timescales are, if they 

are tracing the same magmatic evolution, and reveal the relatively short-lived magmatic intrusions 

occurring prior to eruption. 

 

Geological setting 

The Bishop Tuff eruption was the culmination of ~3.8 Myr of magmatic development in the Long 

Valley region and is the product of one of the largest eruptions on Earth in the last 1 Myr. Over 600 

km
3
 of magma was erupted to generate fall deposits and ignimbrite, along with voluminous infill from 

the formation of Long Valley caldera (Fig. 1; Bailey et al. 1976; Hildreth 1979, 2004; Wilson and 

Hildreth 1997; Hildreth and Wilson 2007). The volume of rhyolite erupted as the Bishop Tuff is 

greater than all other felsic eruptions combined in the Long Valley area before or since (Hildreth 

2004), and so questions arise as to how, and over what time period, such a large body of magma was 

accumulated and what the triggering processes were for the eruption.  

 Proximal deposits of the eruption consist of nine fall units (F1-9) and eleven ignimbrite 

packages (Wilson and Hildreth 1997; Fig.1). A systematic change from ‘early’, crystal poor, more-

evolved (78.2 – 74.8 wt.% SiO2 whole rock; Hildreth and Wilson 2007) to ‘late’, crystal rich, less-

evolved (77.8 – 73.4 wt.% SiO2 whole rock; Hildreth and Wilson 2007) compositions is observed 

within the stratigraphy of the Bishop Tuff. (In the context of this paper, ‘early’ refers to fall units F1-

F8 and their coeval Ig1 ignimbrite packages; ‘late’ refers to Ig2N and Ig2NW; and ‘intermediate’ to 

the Ig2E ignimbrite packages and fall unit F9). Changes in pumice composition accompany an overall 

change in volatile contents and species in quartz hosted melt inclusions from water-richer, CO2-poorer 

to water-poorer, CO2-richer (Dunbar & Hervig 1992; Wallace et al. 1999) magma. For this study, 

single pumice samples were collected from every ignimbrite unit of the Bishop Tuff, and pumices 

covering the range of crystallinities were sampled (Fig. 1).  Pumice clasts are categorised within two 

spectra: the ‘normal’ crystal-poor (xp) to crystal-rich (xr) scale, and the ‘variant’ types, following 

Hildreth and Wilson (2007).  The latter are of particular interest because they often show evidence of 

physical mixing on millimetre to centimetre scales, and so eight samples of the ‘swirly’ and 
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‘chocolate’ variant pumice types of Hildreth and Wilson (2007) were inspected from packages Ig1Eb 

through to Ig2Nb.  

 

Methods 

Sample preparation 

Single pumices were selected, washed to remove adhering matrix, and then crushed to chips using a 

Boyd crusher at Victoria University of Wellington. Crushed material was sieved and the sample was 

water-panned to separate glass from crystals.  Quartz and sanidine phenocrysts were then hand-picked 

under optical microscope from the 1 – 2 mm size fraction.  Orthopyroxene was hand-picked from the 

250 – 500 µm size fraction (the sieved fraction in which orthopyroxene crystals were most common). 

Sanidine and orthopyroxene crystals were orientated with the crystal b- and c- axes in the plane of the 

section, so that these axes were exposed once the epoxy mount was ground and polished for imaging 

and analysis. 

 

BSE imaging 

Zoning patterns in sanidine and orthopyroxene were imaged by back-scattered electron (BSE) 

methods on a JEOL JXA 8230 Electron Microprobe (EPMA) at Victoria University of Wellington. 

Due to the dependence of BSE brightness on the effective atomic number of the sample per unit 

volume, changes in BSE brightness correspond to compositional changes within the crystal (Reed 

2005). In sanidine the major element affecting BSE brightness is Ba, and therefore brighter BSE tones 

relate, in these samples, to areas of higher Ba concentration. Sanidine compositions vary by less 0.5 

mol% anorthite, < 3 mol% albite and < 3 mol% orthoclase, though typically this does not exceed ~ 

0.2, ~0.8 and ~1 mol%, respectively. In orthopyroxene, BSE brightness is controlled largely by 

changing Fe-Mg content. Ca can have a minor effect, but this can be neglected in this case (see 

Electronic Appendix 3 and Allan et al. 2013). All crystals were imaged completely and any zoning 

identified, before high-resolution images of the boundaries in the crystal were acquired to give 

improved spatial resolution across boundaries of interest.  Image acquisition time was ~ 2 minutes, 

with a single integration. 
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 7 

 

CL imaging 

Quartz zoning patterns were gathered by cathodoluminescence (CL) imaging, where the brightness of 

the image directly corresponds to Ti concentration (Wark et al. 2007; Matthews et al. 2012a, b).  

Initial lower quality whole-crystal images were acquired at Stanford University using a JEOL LV 

5600 Scanning Electron Microscope (SEM) so that a large number of crystals could be evaluated for 

their zoning patterns prior to detailed analysis. High-resolution CL images of Ti boundaries in quartz 

crystals were obtained on a FEI Quanta 650 FEG-SEM (Field Emission Gun- Scanning Electron 

Microscope) with a KE Centaurus panchromatic CL detector at the University of Leeds, with a dwell 

time of 100 µs per pixel.  

 

Quantitative analyses 

Quantitative major, minor and selected trace element analyses were undertaken on a JEOL JXA 8230 

SuperProbe at Victoria University of Wellington.  For all elements apart from Sr and Ba an 

accelerating voltage of 15 kV, a beam current of 12 nA and a spot size of ~1 µm was used.  Elements 

were analysed with a 30 s count on-peak.  For Sr and Ba in sanidines a 20 kV accelerating voltage and 

40 nA beam current was used (following the method of Ginibre et al. 2002) with a defocused beam 

diameter of 5 µm.  Spots were placed at a 7 µm spacing so as to avoid significant convolution issues. 

Sr was analysed with a 240 s peak count, and background was measured within 2 mm of the peak 

location (unlike 5 mm for other elements) to remove the effect of Si.  Ba was analysed with a 120 s 

count time on-peak. 

 Trace element analyses from the EPMA were compared with trace element concentrations 

measured using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) at Victoria 

University of Wellington.  In situ measurements were undertaken using a New Wave deep UV laser 

(193 nm solid state) coupled to an Agilent 7500cs ICPMS. 

 

Modelling parameters 
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 8 

Greyscale profiles of Ba in sanidine, Fe-Mg in orthopyroxene and Ti in quartz were extracted from 

BSE or CL images using ImageJ
®
 software. Sr profiles in sanidine were taken directly from EPMA 

measurements at 7 µm spacing. For all profiles an initial condition of a step-function was assumed.  

Sanidine and quartz modelling was carried out using a simple 1D model (e.g. Morgan et al. 2006). 

This assumption can hold due to the relatively small extent of diffusion relative to grain size, and 

follows the method of Morgan et al. (2006) and Morgan and Blake (2006). Diffusion anisotropy was 

considered small for Ti in quartz, and Ba and Sr in sanidine, as previous studies have not noted 

marked anisotropy in these systems (Cherniak 2002, 2010; Cherniak and Watson 1992; Cherniak et 

al. 2007). The modelling parameters used for each species are presented in Table 1. Given the high 

temperature dependence of elemental diffusion, the uncertainty on every timescale was calculated 

using  ± 30 °C in the temperature input, based on common uncertainties in FeTi oxide thermometry 

(e.g. Hildreth and Wilson 2007), and that associated with the two-feldspar thermometry (see Results 

section). 

 In order to model diffusion for Ti in quartz, Sr in sanidine and Ba in sanidine, the diffusivity 

of the element (Di) being considered must be calculated.  In many systems (including those listed 

above) where there is no compositional or oxygen fugacity dependence, these diffusivities are 

expressed in the form: 

  (Equation 1; see e.g. Crank 1975; Zhang 2010), 

where Di,0 is the D0 for species i given in Table 1, E is the activation energy given in Table 1, R is the 

gas constant, and T is temperature in Kelvins.  Having calculated the appropriate values of D for each 

elemental system at the appropriate temperature, the following equation was solved for time: 

 (Equation 2; Morgan et al. 2004), 

where C is the normalised concentration of Ti, Sr or Ba, C0 and C1 refer to the initial amounts of the 

element on each side of an initial interface, Di is the calculated diffusivity in m
2
s

-1
, t is the diffusion 

time, and x is the position measured in metres along the profile and centred on the interface (the 

midpoint of the profile). The best-fit profiles were then determined by using a macro to minimise the 
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 9 

difference between modelled profile shape and the input profile, yielding a timescale for the best-fit 

profile.  

 For modelling in orthopyroxene, Fe-Mg profiles were obtained along the crystallographic a- 

or b-axis, to be internally consistent and to avoid anisotropy effects.  This is comparable with other 

Fe-Mg orthopyroxene interdiffusion chronometry where growth effects along the c-axis could be 

demonstrated to have occurred (e.g. Allan et al. 2013). Due to an expected fO2 dependence of DFe-Mg 

in orthopyroxene (Ganguly and Tazzoli 1994), the formula of Ganguly and Tazzoli (1994) modified 

as in Allan et al. (2013) is used to calculate DFe-Mg: 

 

 (Equation 3), 

where XFe is the molar proportion of the Fe end member (ferrosilite), T is temperature in Kelvins, and 

fO2 is oxygen fugacity. In order to then model a timescale, finite difference methods were used, as 

detailed in Allan et al. (2013).  We revisit the potential accuracy of this expression in the discussion.  

 In order to test that all profiles extracted were statistically significant, and to what degree 

variation on either end of the profile is significant, statistical analyses were conducted across every 

profile extracted from images.  The uncertainty on the greyscale profile, being essentially random 

thermal noise in the BSE or CL detector, scales as  where n is the number of pixels being averaged 

together; yielding a standard error (s.e.). If diffusion is the cause of the sigmoidal concentration 

profile, the plateaux at either end of the profile should be flat. Profiles which had variation in the 

plateaux that exceeded the calculated 2 s.e. were therefore rejected. 

 

Results 

Two-feldspar thermometry 

Where present, major element analyses of sanidine inclusions in plagioclase crystals (and vice versa) 

were used in combination with the Elkins and Grove (1990) calibration of the two-feldspar 

thermometer to iteratively calculate the temperatures at which these feldspars crystallised.  We 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 10 

present 26 new temperature calculations from the early Bishop Tuff (Ig1Eb- Fig. 1) through to the 

latest Bishop Tuff (Ig2Nc- Fig. 1).  The full results are presented in Table 2. All inclusions measured 

are within BSE-‘dark’ cores of crystals, showing that the temperature stratification of ~80 °C 

calculated by two-feldspar thermometry was present prior to any mixing with the contrasting magma 

composition that gave rise to the BSE-bright crystal rims.  The ‘bright-rim’ forming magma is 

inferred to have been of slightly higher temperature than the ‘normal’ Bishop Tuff magma due to its 

less-evolved melt composition and as indicated by increases in Fe-Ti oxide and oxygen-isotope model 

temperatures with inferred depth in the system (Hildreth 1979; Wallace et al. 1999; Bindeman and 

Valley 2002; Hildreth and Wilson 2007). 

 We then use these temperature results, in consideration with previously published Fe-Ti oxide 

thermometry (Hildreth and Wilson 2007), to estimate temperatures at which diffusion occurred (Table 

3).  Samples from units Ig2Na yield cooler temperatures than those of the overlying Ig2Nb and Ig2Nc 

packages (Fig. 1; Table 2), and are thus modelled at 770 °C, representing a rounded average of the 

calculated model temperatures. Samples from Ig2Nb and Ig2Nc appear indistinguishable based on the 

feldspar thermometry and thus are modelled at 790 °C, representing again a rounded average of the 

results. Samples from Ig2NWa and Ig2NWb are modelled at 815 °C due to their higher model 

temperatures than Ig2N packages.  Where zoning is present, crystals from the F9 sample are modelled 

using an average of 780 °C represented by the results from Ig2N. Some quartz crystals from Ig2SW 

preserved Ti zonation, and this diffusion was modelled at 753 °C, that is, an average of Ig2E and 

Ig2Na modelled temperatures.  In all cases a ±30 °C (1j) uncertainty on thermometry is assumed 

which is then propagated through to uncertainties on the diffusive timescales. The actual temperature 

controlling diffusion is, however, likely to have been slightly hotter than those modelled here from the 

cores of crystals due to the crystals being subsequently immersed in the ‘bright-rim’ forming melt 

(Hildreth 1979; Hildreth and Wilson 2007; Chamberlain et al. 2014: see Table 3 for temperatures 

used). 

 

Ti-in-quartz 
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Quartz from 16 samples from F1 (earliest erupted) to Ig2Nc (latest erupted: Fig. 1) were imaged, of 

which 11 samples showed bright rim overgrowths on quartz crystals suitable for modelling (Fig. 2). 

The 11 samples came from units Ig2Na, Ig2Nb, Ig2Nc, Ig2NWa, Ig2NWb, F9 as well as 3 boundaries 

from a sample of Ig2SW (Fig. 1).  As previously shown, only quartz crystals from ‘late’ in the Bishop 

Tuff eruption sequence (and therefore from deeper in the magma chamber: Wallace et al. 1999) have 

a high-Ti rim.  ‘Early’ samples (which constitute ~ 2/3 of the eruptive volume, Hildreth and Wilson 

2007) still retain some complex oscillatory zoning (Peppard et al. 2001; Wark et al. 2007; Gualda et 

al. 2012a), but this is not investigated further here.  

 One hundred and seventy four timescales were modelled, using the feldspar thermometry 

results detailed above.  Of these timescales, fifteen were rejected for not having a statistically 

significant contrast along the profile (see Methods). The boundaries between higher and lower Ti-

bearing quartz range in width from ~5 µm to ~30 µm, yielding maximum timescales which range 

from as little as 15 days (+37/-8 days uncertainty) to 226 years (+556/-97 yrs uncertainty) with a 

mean value of 24 years which is skewed by the dominance of shorter timescales. The best timescale 

resolution achievable from CL images was calculated by modelling the fictive apparent timescale 

across a known sharp contact, in this case, a crack within a quartz crystal.  This yielded a “timescale” 

of 0.56 years (at 815 °C), and therefore any timescales shorter than this are effectively unresolvable 

via CL imaging and are discounted. The shortest resolvable timescale is thus 1.0 years (+2.4/-0.45 

yrs) (Fig 3). All timescales are referred to as “maximum” due to the assumption that the initial 

boundary between the horizontal concentration profiles was both sharp and oriented perpendicular to 

the sample surface (see Fig. 2 dotted lines), as no angular correction has been applied (Matthews et al. 

2012a; Costa and Morgan 2010). Changing these assumptions would serve only to shorten the 

modelled timescales further.   

 There is no systematic difference in timescales obtained from individual samples or packages, 

although note that of the eighteen quartz crystals imaged from Ig2SW only two showed a bright 

overgrowth. In all other late-erupted packages the bright rim development was far more common (see 

Electronic Appendix 1 for compiled, low resolution images of representative samples; Electronic 

Appendix 2 for all modelled boundaries in quartz).  This pattern is matched in Bishop zircons 
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(Chamberlain et al. 2014) where samples from Ig2SW show only sparsely developed bright rim 

overgrowths when compared with other late-erupted material from the northern and north-western 

vents. 

 

Fe-Mg in orthopyroxene 

There were twelve samples from which orthopyroxene could be extracted (from packages Ig2Nb, 

Ig2Nc, Ig2NWa and Ig2NWb; note that there was a lack of significant orthopyroxene in Ig2Na). Of 

these, nine produced zoned crystals suitable for modelling for diffusive timescales.  The zoning 

textures in orthopyroxene are not as systematic as those in quartz, but can be split into three groups: 

unzoned (Fig. 4a); darker (i.e. Mg-richer) rims (Fig. 4b); and brighter (i.e. Fe-richer) rims (Fig. 4c).  

There is a direct correlation between BSE brightness and Fe-Mg content (e.g. Allan et al. 2013) and is 

demonstrated for the Bishop samples in Electronic Appendix 3. The variation in Mg content across 

the zones is relatively small, only up to 5.4 mol% enstatite, with the minimum resolvable change for 

diffusive modelling in this way being 0.5 mol% enstatite  

 Thirty-six timescales were obtained from diffusive modelling within orthopyroxene crystals 

following the method of Allan et al. (2013), where different oxygen fugacities (+0.48 log units to 

+1.11 log units, relative to NNO) were used in combination with the range in temperatures (790 °C or 

815 °C).  Oxygen fugacity data was taken from Hildreth and Wilson (2007) and calculated relative to 

NNO using the formulation from Huebner and Sato (1970).  The maximum resolution for 

orthopyroxene boundaries was calculated in the same way as for quartz crystals using a crystal edge 

as the known sharp boundary. The shortest time resolvable by this technique is equivalent to ~0.04 

years, shorter than that from CL images of Ti in quartz due to the better spatial resolution of BSE 

imaging and the different values of D calculated for different diffusion regimes. Boundaries between 

lower Fe and higher Fe vary in full width from ~4 µm to ~30 µm, giving ranges in maximum 

timescales of 0.1 year (+0.1/-0.05 yrs) to 14 years (+13/-6.7 yrs: Fig. 3).  The mean value of Fe-Mg 

interdiffusion timescales is 2.8 years, an order of magnitude shorter than that of Ti in quartz, and 

again shows a dominance of very short timescales (<4 years). Although different textural groups are 

observed, the timescales do not vary systematically with absolute rim compositions, relative changes 
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in Mg content (i.e. lighter versus darker rims), or eruptive package.  This observation implies that 

although the resulting rims have slightly different compositions, the process(es) causing the 

overgrowths occurred over similar timescales (Electronic Appendix 3). 

 

Ba-in-sanidine 

A total of 54 samples of sanidine crystals were imaged, spanning the entire eruptive sequence from F1 

to Ig2Nc (Fig. 1).  Of these, 15 samples showed sanidine crystals with a bright (higher Ba, Sr) 

overgrowth (Fig. 5).  These crystals were found dominantly in samples from the Ig2N and Ig2NW 

packages (plus single samples from F9 and Ig2SW).  As with quartz CL images (see above) the 

Ig2SW sanidines generally lack bright rims, with only two of twelve crystals having a bright 

overgrowth.  All other early-erupted samples show no zonation (Fig. 5a). We cannot replicate the 

observations by Gualda (2007) and Pamukcu et al. (2012) that some feldspars from Ig2E have bright 

rims in our ten sample suite from Ig2E pumices (representing a range in crystallinities). The minimum 

resolvable timescale for Ba in sanidine was calculated using the same method as for orthopyroxene, 

yielding a value of ~30 years. 

 Fifty-four timescales were modelled from the statistically significant profiles (see Methods 

section) between higher- and lower-Ba zones in sanidine crystals. The width of these boundaries 

varied from ~4 µm to ~40 µm, yielding maximum timescales that range from 44 years (+138/-33 yrs ) 

to 150,000 years (+540,000 /-114,000 yrs), although most are commonly on the order of 100s to 

10,000s of years (Fig. 3; Electronic Appendix 4 for all modelled timescales). The mean value of 

timescales for Ba diffusion in sanidine is 6770 years, but if the two longest values are removed this is 

reduced to 600 years. The median value of timescales for Ba diffusion in sanidine is 350 years. Even 

though these timescales are considered maxima there remains substantial differences from the 

modelled timescales of Ti diffusion in quartz and Fe-Mg interdiffusion in orthopyroxene. Ba diffusion 

timescales in sanidine appear to be between one and three orders of magnitude longer than those from 

other two phases (Fig. 3).  

 

Sr-in-sanidine 
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In order to assess if the contrast in Ba-in-sanidine model ages is due to sanidine having a different 

crystallisation history to quartz and orthopyroxene, or due to some problem related to the modelling 

of Ba behaviour, we undertook comparative modelling of Sr diffusion in sanidine.  Strontium 

distribution in these sanidines is known to mimic that of Ba (Hildreth 1977, 1979; Lu 1991; Lu et al. 

1992; Anderson et al. 2000; Hildreth and Wilson 2007). With the more rapid diffusion rates of Sr in 

alkali feldspar (Cherniak and Watson 1992), it would be expected that Sr profiles could be measureed 

via EPMA or LA-ICPMS. Ten of the 15 examples of Ba-zoned sanidine were selected for 

investigation.  Initial LA-ICPMS measurements were conducted to confirm that the correlations of Sr 

and Ba in zoned sanidines noted by earlier authors (Lu 1991; Anderson et al. 2000) were widespread 

throughout the Bishop Tuff (Fig. 6: R
2
 values of 0.87 for LA-ICPMS and 0.74 for EPMA).  Given 

these positive correlations, a range of diffusion boundaries previously analysed for Ba were selected 

for Sr analysis. Due to the relatively narrow width of the diffusion boundaries (<50 µm), LA-ICPMS 

lacked the spatial resolution to definitively measure Sr changes across the boundary without serious 

convolution problems.  Although use of Nano-SIMS (Saunders et al. 2014) would have been 

preferable in terms of spatial precision, the short time required to measure a Sr profile by EPMA (~1.5 

hrs) meant that modelling of maximum timescales (reflecting the spatial resolution) across multiple 

boundaries was relatively straightforward. By using a 40 nA current and long (240 s) count time, our 

measurement uncertainties were improved to ±75 ppm (2 sd), with a detection limit of 150 ppm (4 

sd), sufficient to define profiles in 19 grains. 

 Boundaries for Sr were located using the BSE images, as Sr and Ba were directly correlated 

(Figs. 5, 6).  Although many boundaries were analysed, only seventeen yielded Sr profiles which were 

deemed appropriate for diffusion modelling with acceptable definition, and lower degrees of 

analytical noise (e.g. Fig. 5d [i]). Only Sr profiles that were matched by changes in Ba concentration 

(from EPMA analyses) were used for modelling, to ensure that the change in Sr concentration was not 

an artifact of sub-optimal analytical procedures. The maximum width of these profiles varied between 

~5 µm and ~50 µm which yielded maximum timescales of 19 years (+65/-14 yrs) to 1710 years 

(+5790/-1290 yrs: Fig. 3), with a mean timescale of 430 years.  With analysis by EPMA and a 
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defocused beam, these results will necessarily include some convolution, and so these timescales are 

effectively overestimates but at least provide upper limits for comparative purposes. 

 

Discussion 

Temperature stratification within the Bishop magma body 

Many estimates have been presented of magmatic temperatures of the Bishop Tuff.  These 

thermometry calculations have utilised Fe-Ti oxides (Hildreth, 1977, 1979; Hildreth and Wilson 2007; 

Evans and Bachmann 2013), Ti concentrations in quartz (Wark et al. 2007; Thomas et al. 2010; 

Thomas and Watson 2012; Wilson et al. 2012), Ti concentrations in zircon (Reid et al. 2011; 

Chamberlain et al. 2014), 〉18
O fractionation between crystal phases (Bindeman and Valley 2002), 

and 2-pyroxene compositions (Hildreth 1979; Frost and Lindsley 1992) all of which yield ~100 °C 

temperature difference between upper and lower regions in the magma chamber. In contrast, 

thermodynamic modelling of the Bishop Tuff system has been used to propose a very uniform 

temperature range (Gualda et al. 2012b).  Calculations for thermometry can be somewhat limited as 

they often involve assumptions about the uniformity of pre-eruptive melt conditions (e.g. aTiO2 for 

Ti-in-quartz and Ti-in-zircon), or reveal only the most recent thermal stratification within the magma 

chamber [e.g. Fe-Ti oxides re-equilibrate rapidly and so cannot preserve evidence of any longer-term 

history (Buddington and Lindsley 1964; Hammond and Taylor 1982; Ghiorso and Sack 1991)]. By 

utilising two-feldspar thermometry we avoid entering into ongoing debates over the use of Fe-Ti 

oxide and Ti in quartz thermometry (cf. Thomas et al. 2010; Wilson et al. 2012; Evans and Bachmann 

2013; Ghiorso and Gualda 2013), although our conclusions are similar to those previously proposed 

rergarding thermal gradients within the Bishop magma body (Bindeman and Valley 2002; Hildreth 

and Wilson 2007). Our two-feldspar thermometry does not make any assumptions other than that the 

two feldspars were in equilibrium with each other at the time of inclusion.   The feldspar thermometer 

is not reset quickly due to the relatively slow diffusion timescales for Ca, Na and K within feldspar 

crystals and the need for coupled substitution of Al and Si for charge balance (Cherniak 2010). We 

therefore infer that our temperatures accurately record the magmatic temperatures at the point of 

crystallisation. All inclusion pairs analysed were within the cores of crystals, and have therefore been 
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unaffected by the late-stage mixing with the ‘bright-rim’ magma (Wark et al. 2007; Chamberlain et al. 

2014).  As such we can thus investigate any temperature stratification within the Bishop Tuff magma 

body prior to formation of the bright-rim overgrowths seen on quartz, sanidine and zircon.  

 Our results show that the ‘early’ units from Ig1Eb through to Ig2Eb (Fig. 1) have relatively 

uniform model temperatures of 740 – 760 °C (except for two analyses from Ig2Eb, Table 2). This is 

up to 30 °C hotter than the reported Fe-Ti oxide and 〉18
O (qtz-mt) temperatures of 714 °C (Bindeman 

and Valley 2002; Hildreth and Wilson 2007), but is more comparable (when the ± 30 °C uncertainty 

is considered) with Ti-in-quartz analyses which yield temperatures of 720 – 750 °C (Wark et al. 2007; 

Kularatne and Audetat, 2014). Temperatures then start to increase in Ig2Na, which appears to play a 

transitional role between the cooler, upper and hotter, lower regions of the magma chamber.  We 

observe a general progression within the northern and north-western units to the hottest model 

temperature of 821 °C (Table 2).  The temperatures calculated for cores of late-erupted northern and 

northwestern units are broadly similar to temperatures calculated from FeTi oxide, 〉18
O (qtz-mt) and 

Ti-in-quartz thermometry (Hildreth 1977, 1979; Bindeman and Valley 2002; Hildreth and Wilson 

2007; Wark et al. 2007), all of which are subject to late stage re-equilibration due to mixing with the 

less-evolved ‘bright-rim’ magma (for example, in the case of Ti-in-quartz the analyses are from 

within the bright, Ti rich rims).  These similarities in model temperatures imply that the ‘bright-rim’ 

magma was not in fact significantly hotter than the pre-existing ‘normal’ Bishop magma. Our data 

thus support the notion that a general temperature and compositional stratification (Hildreth and 

Wilson 2007, and references therein) existed within the unitary magma chamber prior to introduction 

of the ‘bright-rim’ magma. 

 In contrast, recent thermodynamic modelling (Gualda et al. 2012b) has led to the assertion 

that there was no significant thermal gradient through the Bishop Tuff magma chamber (and that in 

fact there existed two separate magma chambers: Gualda and Ghiorso 2013). This modelling suggests 

that the ‘late’ Bishop Tuff magma was held at ~760 °C and that there was a <30 °C gradient across 

the ‘late’ north and north-western units.  We do not find evidence of crystallisation at 760 °C for any 

of our ‘late’ ternary feldspar pairs, apart from those in Ig2Na (which fills a transitional role from the 
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with respect to model temperatures), and in turn see evidence for ~80 °C variation across the erupted 

Bishop compositions. 

 

Uncertainties in Diffusion Chronometry 

The single most important factor in calculating the uncertainties associated with diffusion 

chronometry is temperature, which has an exponential effect (see equations 1 and 2) on the timescales 

modelled via the Arrhenius relationship in equation 1 (e.g. Morgan et al. 2006; Allan et al. 2013). 

Given uncertainties of ± 30 °C in our thermometry estimates, this leads to an asymmetric uncertainty 

which, for the longer (+) timescale uncertainty, can be numerically more than double the calculated 

timescale (from modelling at the low temperature from uncertainties: see Electronic Appendix 6 for 

all timescales and their uncertainties). Uncertainties in D0 and fO2 are second order, but still play a 

considerable role. fO2 uncertainty is only considered in relation to Fe-Mg interdiffusion modelling, 

and an uncertainty of ± 0.3 log units is assumed (following Allan et al. 2013). In the case of Ti in 

quartz, Ba in sanidine and Sr in sanidine we calculate uncertainties of ± 0.06, 0.12 and 0.03 log units 

(for Ti, Ba and Sr, respectively) for D0 and E (Electronic Appendix 6). For further discussion on the 

effects of T and fO2 variation on orthopyroxene Fe-Mg interdiffusion modelling see Allan et al. 

(2013). 

 Timescales in this paper are referred to as maximum timescales due to the spatial limitations 

of constraining the maximum profile width of the zone across which diffusion has occurred. Due to 

either pixel size (a more limited effect) or spot size and spacing (for Sr) the maximum distance across 

which diffusion has occurred is always likely to be slightly over-estimated. Similarly, by assuming an 

initial step-change concentration profile, the full width of the profile is assumed to be caused by 

diffusion, yielding the maximum timescale (see Equation 2). These assumptions will be discussed 

later in relation to sanidine diffusion modelling. 

 

Trends in Diffusion Profiles 

Three distinct categories of profile shape are evident on visual inspection of all modelled profiles 

from all four modelled systems (Fig. 7). They can be defined as class 1: ideal diffusion shape, good 
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sigmoid and close fit to modelled profile shape; class 2: profiles with a spike on the side of one 

boundary, which sets an initially high/low condition on half of the profile; class 3: slightly 

asymmetric profiles, where one side of the measured profile deviates away from the modelled profile. 

 We interpret that the class 2 and class 3 profiles generally represent some relict growth zoning 

which has been over printed by diffusion and are not ideal for modelling. By their shape they indicate 

that our initial assumption of the starting profile shape was not correct, and the profile must have 

started with a width somewhat greater than zero, i.e., less sharp than the modelled step-change. Whilst 

this is problematic in terms of absolute timescale determination, the true timescale of such a profile 

cannot exceed the timescale from a simple step profile diffused to the same width.  Again, therefore, 

our choice of model starting condition leads us to an overestimate in timescale, and we can 

confidently regard the class 2 and class 3 profiles as maxima in the light of this knowledge. Whilst 

class 2 profiles seem to be quite reproducible in terms of their end results, giving answers close to the 

more ideal class 1 profiles, we are less confident about class 3, and there is no a priori method to 

determine how much growth versus diffusion these represent.  Whilst they do represent a maximum 

time constraint, we regard this as very loose, and so the class 3 profiles have been excluded from our 

accumulated data (but can be found in Electronic Appendices 4 and 6 due to the significant proportion 

of sanidine crystals which have these class 3 profiles). 

 The recognition of all three boundary types in Sr, Ba, Ti and Fe-Mg profiles raises the 

question as to what processes have caused the preservation of the class 2 and 3 profiles, and may yield 

insights into the precursory processes occurring in the Bishop Tuff magma chamber. Class 2 profiles, 

with their distinctive peak prior to the diffusion sigmoid, could represent evidence of relict growth 

zoning due to slow diffusion of cations to the crystal-melt interface (Margaritz and Hoffman 1978) or 

due to depletion in Ba/Ti/Sr/Fe/Mg in the boundary layer of melt at the crystal face.  They are 

typically most extreme in Ba profiles, which would suggest the involvement of zone-refining and 

boundary depletion effects due to the extreme partition coefficient of Ba in sanidine (28.4: Lu 1991).  

Class 3 profiles raise more challenging issues but, again, are most evident in Ba profiles from 

sanidine, and thus are likely to preserved evidence of an initial profile which had some component of 

growth zoning, possibly even caused by Ba retention during dissolution of the core prior to rim 
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growth. Although these three classes of profiles have significantly different appearances, there is no 

systematic difference in the range of timescales modelled from each mineral-element pair. The 

identification of all three boundary types in all phases investigated here strongly suggests that the 

zoning reflects common origins, and that the timescales modelled should be roughly comparable 

across all phases. 

 

Contrasts in modelled timescales between crystal phases 

Modelling diffusion in sanidine 

It is apparent that diffusion modelling of both Ba and Sr in sanidine yields much longer timescales, by 

up to 3 orders of magnitude, than modelling of Ti in quartz and Fe-Mg in orthopyroxene. This result 

matches other studies, for example from profiles obtained from Nano-SIMS analyses (Till et al. 

2012).  One interpretation could be that timescales from modelling of Ba and Sr diffusion in sanidine 

are overestimates (Figs. 3 and 5). Based on consideration of the applicable diffusivities, the width of 

Sr boundaries should be ~10 times wider than those of Ba (Cherniak 2002), had these elements been 

diffusing for similar amounts of time (Table 1). This is not always the case (Fig. 5; Electronic 

Appendices 4 and 5) and the widths of the boundaries can be similar. Given the variable nature of the 

relationship between Ba and Sr profile widths, and the longer timescales from Ba and Sr in sanidine 

diffusion modelling, there are several possible factors that could cause this discrepancy.  

(1). Ba and Sr are not always being affected in the same way, sometimes not being correlated during 

crystal growth across the boundary between darker core and brighter rim, and their behaviour may not 

be related to the change in Ti content in quartz crystals.  

(2). The very high activation energy and D0 of Ba and Sr diffusion in sanidine (Table 1) is sensitive to 

small thermal perturbations (although variably sensitive, due to differences in their diffusion 

coefficients: Table 1), so that short periods of time at elevated temperatures could allow Ba and Sr to 

diffuse rapidly, making their timescales appear unusually long. 

(3). The initial Ba and Sr profiles were not step-like as assumed, and modelling requires a different 

initial condition with some gradient across the boundary as an initial state from which to model.  
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All three of these factors could contribute towards yielding longer timescales, but in practice we can 

rule out some of these possibilities.  If Ba and Sr were unrelated in their behaviour, then the overall 

trends seen in graphs of Ba versus Sr in ICPMS and EPMA data would not be so clear (Fig. 6). Glass 

trace element data shows coupled increases in Ti, Ba and Sr (Hildreth and Wilson 2007; KJ 

Chamberlain unpub data) implying that the high-Ti rims on quartz are related to the high Ba and Sr 

rims on sanidine. These lines of evidence suggests that option (1) is unlikely.    

 The second option, that the high activation energy of Ba and Sr could allow the diffusion 

behaviours to decorrelate, is also demonstrably unlikely.   The high resolution EPMA data shows that 

the steps are correlated in space, occurring across the same regions.  The difference in timescales 

between sanidine, quartz and orthopyroxene is more reflective of differences in diffusion speed than 

discrepancies in profile width. For Ba diffusion to overtake Ti diffusion would require temperatures 

around 1100 °C, which is wholly implausible for a rhyolitic magma in which plagioclase-sanidine 

pairs survived (and lacking any other mineral textural evidence for such high temperatures). 

 Ti-in-quartz profiles are comparable in width to Ba-in-sanidine profiles, again showing that 

these Ba profiles are artificially wide (Ti diffuses faster in quartz than Ba in sanidine at these 

conditions: Cherniak 2002; Cherniak et al. 2007). Given the wide profile of Ba in sanidine it would 

thus seem likely that the initial assumption of a sharp step function is incorrect for the case of Ba and 

Sr diffusion in sanidine. The timescales modelled are therefore a combination of Ba and Sr diffusion, 

superposed on initially curved Ba and Sr starting profiles. This raises questions as to how initially 

curved Ba and Sr profiles can be generated in sanidine, but not in other phases, with the effect much 

more noticeable in Ba profiles than those of Sr concentration.  

 The highly compatible nature of Ba in Bishop Tuff sanidine (Kd ~22: KJ Chamberlain unpub 

data; ~28.4: Lu 1991) means that any partial dissolution of sanidine will lead to an interfacial layer of 

melt that is enriched in Ba. This interfacial layer will have Ba concentrations similar to those in the 

crystal, rather than the lower levels found in the ambient melt, and as a consequence the sanidine 

crystal cannot be in equilibrium. In response to this situation, the remaining sanidine phenocryst will, 

by diffusion, scavenge the Ba from the melt interface, leading to an enriched zone in the sanidine 

crystal prior to growth of the Ba-rich bright rim on sanidine, that is, a zone-refining process. Sr, with a 
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Kd of ~9 (KJ Chamberlain, unpub data); ~11.4 (Lu 1991) will be similarly affected. The more rapid 

diffusion of Sr in sanidine means, however, that this initially curved Sr profile will be broader and less 

well preserved than for Ba.  The curvature of the initial starting profile will also have less effect on 

timescales from diffusion modelling of Sr, as the initial curvature represents less equivalent diffusion 

time for Sr than for Ba. From this inference we conclude that both Ba and Sr in sanidine will yield 

over-estimates of time for diffusion, but that for Ba the timescales recovered will be dominated by the 

growth curvature, while the Sr profile would contain appreciable components of both diffusion and 

growth.  This conclusion agrees with the trends seen in timescales from Ba and Sr diffusion compared 

with those timescales from Fe-Mg interdiffusion in orthopyroxene and Ti in quartz (Fig. 3).  Evidence 

for dissolution of quartz is preserved in CL imagery, where interior zones are truncated against the 

bright rim overgrowth (Electronic Appendix 1; Peppard et al. 2001; Wark et al. 2007).  This texture is 

replicated in sanidine BSE images, which commonly reveal rounded corners on grains, inferring a 

similar resorptive process. 

 In systems where partial dissolution of sanidine could have occurred prior to rim overgrowth, 

and until its effects on the initial profile of Ba (and to a lesser extent Sr) can be constrained, Ba and Sr 

geospeedometry in low temperature rhyolitic systems (i.e. <900 °C: Till et al. 2012) yields 

discrepancies at ~800-840 °C and should be treated with caution.  It is necessary to bear in mind that 

a step change in composition is a model assumption, and that at one extreme, diffusion and growth are 

comparable processes at sub-micron lengthscales, placing a limit on how sharp a profile junction can 

be.  This limit in turn controls how far spatial resolution can reasonably be pushed before the 

assumptions of diffusion modelling have to be considered for their reliability. 

 

Removing the “growth” effect 

In order to derive a viable timescale from Ba and Sr diffusion in Bishop sanidines, a model to remove 

the effect of growth on compositional profiles was developed. The profile widths of both Ba and Sr in 

sanidine are interpreted to comprise both a true diffusion component (active for the same times and 

temperatures whether Ba or Sr is considered) and a “growth” component due to partial dissolution 

prior to overgrowth of the bright rim. Given that for individual profiles of Ba and Sr across the same 
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boundary within the same crystal, the modelled timescale due to diffusion alone should be the same, 

and thus by exploiting differential diffusion speeds, the combined modelling of both Ba and Sr 

diffusion simultaneously should allow for removal of the variable growth component. Twelve paired 

profiles of Ba and Sr were used to test this model, with all the modelled timescales being significantly 

reduced when compared to the timescales for either Ba or Sr alone (Table 4). Modelled timescales 

range from 24 years to 1540 years, with ten of the twelve modelled boundaries yielding timescales of 

<500 years. These values are within an order of magnitude of those from Ti-in-quartz modelling 

(Figs. 8, 9). Prior to the combined modelling the average model timescales in these crystals were 1500 

(Ba) and 540 years (Sr), ~63 times and ~23 times longer (respectively) than the average Ti-in-quartz 

model timescales, respectively. The average from combined modelling is now 440 years (~19 times 

longer than the Ti-in-quartz average), but with the two longest timescales removed this is shortened to 

only 230 years (~10 times longer than the Ti-in-quartz average).  

Given the very high activation energy of both Ba and Sr diffusion in sanidine when compared 

with Ti diffusion in quartz, small temperature changes from those at which diffusion is modelled, 

could allow for even greater agreement between the combined Ba and Sr timescales and those 

modelled from Ti in quartz. This is due to modelled sanidine timescales decreasing with increasing 

temperature much faster than timescales from Ti diffusion in quartz. In fact, as the uncertainties on 

our two-feldspar thermometry are ~ ± 30 °C, we model both Ti in quartz diffusion and Ba and Sr 

diffusion at 827 °C (within uncertainty of all but the Ig2Na temperature estimates; Table 2). This 

shortens the mean Ti in quartz timescale to 10 years, but shortens the average from combined 

modelling in sanidine to ~ 100 years (with all 12 timescales) or 57 years when the two longest 

timescales are ignored, only ~6 times as long as Ti in quartz timescales at 827 °C. This arbitrary 

temperature of 827 °C is within the upper limits of temperature estimates from FeTi oxides (Hildreth 

& Wilson., 2007) and is therefore not implausible for a diffusive temperature, however we consider 

this as means to highlight the large thermal effect in diffusion within sanidine, and not a revised 

estimate for the late Bishop Tuff magma. In order to properly constrain the role of growth zoning, the 

thermal effect on diffusion in sanidine, and to properly quantify how closely sanidine and quartz 

timescales agree, further investigation using techniques such as Nano-SIMS is needed. 
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Comparisons of modelled timescales between crystal phases 

Using the current calibration of the Fe-Mg interdiffusion coefficient within orthopyroxene, diffusion 

timescales for the Bishop Tuff are extremely short (<20 years: Fig. 3). Given the comparable profile 

groups observed in orthopyroxene, quartz and sanidine (Fig. 7), and the phase stability relationships 

of Naney (1983) it seems valid to infer that the orthopyroxene timescales should be comparable with 

those from sanidine and quartz. In order for this to be the case, the value of the diffusion coefficients 

for Fe-Mg interdiffusion would have to be over-estimated by about an order of magnitude (Fig. 9). 

This is not surprising in the light of the large range in orthopyroxene diffusion coefficients and 

calibrations used in the literature (Ganguly and Tazzoli 1994; Schwandt et al. 1998; Saunders et al. 

2012). Using the Ganguly and Tazzoli (1994) calibrations, D values used here are ~1 x 10
-19

 m
2
 s

-1
 to 

~ 1 x 10
-20

 m
2
 s

-1
. In contrast, using the calibration of Schwandt et al. (1998) D values at the relevant 

temperatures used here range from ~1 x 10
-22

 m
2
 s

-1
 to ~6 x 10

-22
 m

2
 s

-1
, two to three orders of 

magnitude smaller. Use of the latter figures would result in timescales which are two to three orders 

of magnitude longer than that calculated in this paper, i.e. up to ~ 14 000 years, and which are 

comparable with the un-corrected Ba-in-sanidine diffusion timescales we derive. 

 In order to bring the orthopyroxene timescales into alignment with those obtained from Ti 

diffusion in quartz, the value of D would need to be ~ 1/5 of that currently used: ~1-2 x 10
-20

 m
2
 s

-1
 

depending on the model temperature (790 or 815 °C). Following discussion with those conducting 

experimental research, preliminary findings suggest that  the Ganguly and Tazzoli (1994) formulation 

with added oxygen dependence we have used may well yield an overestimate of diffusion speed (S 

Chakraborty and R Dohmen, pers comm). Our work suggests that regarding orthopyroxene, the 

quantification of D0 and E for Fe-Mg interdiffusion in rhyolitic systems warrants further investigation, 

as it has significant impacts on the compatibility of timescales modelled from different phases in the 

Bishop Tuff. 

 

Pyroxenes and their textural implications 
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The diversity of textures observed in orthopyroxene (normal-zoned, bright rim grains, to reversely-

zoned, dark rim grains, to those which are unzoned) is not matched by changes in timescales.  In 

addition, the rim compositions do not converge towards a single composition, unlike that seen in the 

Oruanui example (Allan et al. 2013). These features raise the issue as to how the process that caused 

the growth of Fe-richer rims was occurring over the same timescales as that which caused growth of 

Mg-richer rims. Orthopyroxene with contrasting rim compositions revealing similar timescales has 

been previously noted at Mt St. Helens (Saunders et al. 2012) where compositional differences were 

larger than those recorded here (8 to 15 mol% enstatite variation from cores to rims compared with 

0.5 to 5.4 mol% enstatite variation in the Bishop orthopyroxenes: Electronic Appendix 3).  Saunders 

et al. (2012) cited intrusion of a more mafic component to cause growth of both reversely-zoned and 

normally-zoned orthopyroxene, due to changes not only in melt composition, but also volatile 

contents and fO2. For the Bishop Tuff, there appears to be multiple options for the formation of both 

Fe-rich and Mg-rich rims (Fig. 10), as follows.  

 Option (1). Mg-richer cores grew at depth within the Bishop magma reservoir, possibly 

within a crystal-rich mush zone (e.g. Hildreth and Wilson 2007) and consequently are slightly more 

enstatite-rich. Concurrently, a Fe-richer population of crystals were growing within the shallower 

melt-dominant magma chamber from the slightly more evolved melt (Fig. 10). When the ‘bright-rim’ 

magma intruded the Bishop melt-dominant magma body, it either originated in, or entrained crystals 

from, the underlying mush zone, bringing the Mg-richer cores into the melt-dominant body. Chaotic, 

piecemeal mixing within the lower parts of this body (Figs. 3 and 10) with this ‘bright-rim’ magma 

could produce rims of marginally higher or lower Mg content to crystallise simultaneously, depending 

on the sense of entrainment from Mg-richer to Mg-poorer melt, or vice versa.  

 Option (2). The ‘bright-rim’ magma was not compositionally different in Fe or Mg 

concentrations, but had higher fO2 values and CO2 contents (Wallace et al. 1999). In this scenario, 

there would be interplay between rapid crystallisation of more magnesian orthopyroxene from melts 

with higher CO2 (Fig. 10: Blundy et al. 2010) and the increased fO2 resulting in crystallisation of more 

Fe-rich rims. The interplay between these two factors and the degree of mixing would produce 

magma which has orthopyroxene with both Fe- and Mg-rich rims. 
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  Option (3). The orthopyroxene crystallised as a result of mixing between the dominant 

‘normal’ Bishop Tuff magma and the ‘bright-rim’ magma (Fig. 10). This would, however, appear to 

be a less likely explanation, as this would require extremely rapid crystallisation of orthopyroxene 

(and associated clinopyroxene). Although the timescales for Fe-Mg interdiffusion in orthopyroxene 

are relatively short (using the Ganguly and Tazzoli [1994] calibration), current investigation suggests 

that the inaccuracies in constraining the diffusion coefficients could be the cause of these apparently 

short timescales (S Chakraborty pers comm). In order to distinguish between options (1) and (2), more 

detailed investigation into the composition (major and trace elements) of orthopyroxene and other 

phases in the Bishop Tuff is required.   

 A major question has been raised in previous studies over the occurrence of pyroxene (both 

ortho- and clino-) in the Bishop Tuff, with some suggesting that the pyroxenes are not in equilibrium 

with other phenocrysts (e.g. Ghiorso and Sack 1991; Frost and Lindsley 1992; Evans and Bachmann 

2013).  The euhedral appearance of orthopyroxene (and clinopyroxene) phenocrysts (Fig. 4), the 

similar compositions of inclusions within the orthopyroxenes when compared with free crystals 

(Hildreth 1977, 1979) and phase stability relations based on the two-feldspar thermometry presented 

here (Naney 1983) counts against them being ‘foreign’. In addition, the similarity in groups of 

diffusion profiles (Fig. 7) from all three crystal phases modelled here could be used to suggest that 

Bishop pyroxene, sanidine and quartz crystals experienced similar controls on growth and diffusion.  

 

Rejuvenation of the Bishop magma body 

Many explanations have been put forward for the bright rim overgrowths on quartz and sanidine.  

Initially it was proposed that these rims grew from sinking of the crystals into less evolved, Ba-, Sr- 

and Ti-richer magma within the magma chamber (Anderson et al. 2000; Peppard et al. 2001). Studies 

on melt inclusion entrapment pressures and compositions have however, shown that core and rim 

inclusions crystallised at comparable pressures, but within varying melt compositions (Wallace et al. 

1999; Roberge et al. 2013). These observations imply that introduction of a melt with a slightly 

different composition underlies the growth of bright rims on quartz and sanidine (Wark et al. 2007; 

Roberge et al. 2013). The short timescales presented here support this hypothesis of shortly pre-
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eruptive rejuvenation of lower parts of the Bishop magma chamber by interaction with a melt 

enriched in Ti, Ba, Sr and CO2 (Wallace et al. 1999; Hildreth and Wilson 2007; Wark et al. 2007; 

Roberge et al. 2013).   

 Our timescales from quartz, sanidine and orthopyroxene diffusion profiles do not provide any 

evidence for long-lived (>1000 year) interaction between the ‘bright-rim’ magma and the resident 

melt-dominant body.  However, zircons from the same samples or eruptive units as those studied in 

this paper have parallel records of the presence or absence of bright-rim overgrowths, plus sparse 

numbers of grains wholly formed from the ‘bright-rim’ magma (Chamberlain et al. 2014). Age data 

from sectors of the crystal cores just inside the bright rims suggest that growth of these rims could 

have commenced up to ~10 kyr before eruption. It is plausible that the longer history of zircon 

interaction with the ‘bright-rim’ magma may be tracing crystal growth within the ‘bright-rim’ magma 

prior to its later interaction with the main Bishop magma body, and thus provides a maximum time 

constraint for interaction of the ‘bright-rim’ magma in the Bishop magma system. In addition, the 

contrasting timescales recorded of interaction between the zircon, sanidine, quartz and orthopyroxene 

and the ‘bright-rim’ magma may reflect a more gradual sequence of events than any immediately pre-

eruptive triggering event. 

 In the sanidine, quartz and orthopyroxene records, intrusion of the ‘bright-rim’ magma into 

the main Bishop melt-dominant magma body seems to have consisted of multiple events (at least 

three, from preserved crystal zonation: Electronic Appendices 2 – 5) which began ~500 years prior to 

eruption, as shown by the fairly continuous distribution of timescales that can be calculated from 

sequentially higher Ba/Sr/Ti profiles within sanidine and quartz phenocrysts (e.g. Fig. 3; Electronic 

Appendices 2 and 4). The modelled timescales appear to cluster towards eruption age (Figs. 3, 9), 

with 50% of the timescales being <18 years (Ti-in-quartz), <250 years (combined Ba and Sr in 

sanidine) and <2.5 years (Fe-Mg in orthopyroxene). Although the three suites of model ages have 

varying absolute values, their cumulative frequency distributions and textural boundary features are 

closely comparable. 

  The apparent clustering of timescales closer to eruption could be due to exponential increases 

in the volume and frequency of magmatic intrusion into the lower magma chamber immediately prior 
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to eruption, which would favour the concept of mixing as an eruptive trigger (Wark et al. 2007). 

Another possibility, however, is that although rates of ingress of the external ‘bright-rim’ magma 

stayed relatively constant, magmatic overturn and increased thermal contrasts between the less-

evolved magma and the ‘normal’ Bishop magma caused increases in mixing within the lower regions 

of the magma chamber. This would then expose more crystals to a less-evolved melt than that which 

they initially resided in, generating the shorter timescales and apparent increases in mixing, even if 

there was not an increasing rate of intrusion into the magma body. Whatever the cause, it is still 

apparent that rejuvenation (recorded from diffusion modelling in the major mineral phases) and 

mixing with a melt that was marginally hotter, but enriched in Ti, Sr and Ba occurred over a short 

timescale (<500 yrs) and continued to cause compositional variation within the Bishop magma 

chamber until quenched by eruption. 

 

Implications and conclusions 

We show that timescales calculated from simplistic diffusion modelling of Sr and Ba in sanidine are 

1-3 orders of magnitude longer than Ti diffusion in quartz, which are in turn an order of magnitude 

longer than timescale from Fe-Mg interdiffusion in orthopyroxene. There are no a priori reasons as 

such for supposing which of the three systems yields the ‘correct’ result. Recognition of the role of 

growth zoning in sanidine highlights an incorrect initial assumption of an initially sharp step in Ba 

and Sr contents in this mineral. We have used combined Ba and Sr diffusion modelling to remove this 

growth effect, and the resulting timescales are shortened to become more comparable (to within 

roughly an order of magnitude) of those modelled from Ti diffusion in quartz. Given the similar 

nature of diffusion profiles extracted from orthopyroxene images to those from quartz and sanidine 

images we suggest that modelling of Fe-Mg interdiffusion in orthopyroxene may produce artificially 

short timescales. In order for orthopyroxene timescales to align with those in modelled from Ti 

diffusion in quartz, for example, the calculated values of D would have to be approximately an order 

of magnitude smaller than those using the Ganguly and Tazzoli (1994) calibration with fO2 

dependence at T = ~800 °C, but 1-2 orders of magnitude larger than that of the Schwandt et al. (1998) 

calibration. Adoption of the latter values would then align the orthopyroxene timescales more closely 
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with those derived from the growth-corrected profiles for Ba and Sr in sanidine. These gross 

disparities highlight the very pressing need in particular for calibration of Fe-Mg interdiffusion at 

temperatures and pressures representative of evolved (particularly rhyolitic) compositions, in order to 

extract viable and consistent timescales. 

 Two-feldspar thermometry shows that a temperature stratification of ~80 °C existed between 

the upper and lower reaches of the Bishop Tuff magma chamber, and that this stratification is not 

simply a result of the late-stage intrusion at the base of the magma chamber. This temperature range is 

similar to that suggested by Fe-Ti oxide and oxygen-isotopic thermometry, and supports the model of 

Hildreth and Wilson (2007) for a unitary zoned magma chamber for the Bishop Tuff.  An important 

implication arising from the similarity of the temperature estimates is that the intruding ‘bright-rim’ 

magma was not significantly hotter than the basal parts of the Bishop magma chamber.  Instead it 

would appear that the intruding magma was enriched in Ba, Ti, Sr and CO2 (e.g. Wallace et al. 1999; 

Wark et al. 2007) which has affected crystallisation conditions to cause growth of the bright rims on 

orthopyroxene, quartz and sanidine (and zircon: Chamberlain et al. 2014). 

 The similarity of diffusion profile shapes between quartz, orthopyroxene and sanidine and the 

order of magnitude agreement between sanidine and quartz geospeedometry, indicates that for at least 

~500 years prior to eruption, these phases shared a common history and experienced magmatic 

intrusion causing the overgrowth of compositionally contrasting rims. It remains an open question as 

to whether the three major phases are actually recording events with closely similar timings, and that 

the diversity in model-age ranges reflects systematic errors in the diffusion parameters available at 

present. An important conclusion of our work is that application of diffusion modelling over multiple 

co-erupted mineral species is restricted by uncertainties over values for diffusion coefficients in such 

evolved, relatively low-temperature magmatic systems. The alternative end-member inference to 

explain the diverse zoning patterns and contrasting diffusive timescales is that the crystals are 

recording different timescales because gradational interaction with the ‘bright-rim’ magma affected 

different mineral species now found together within single pumices at different times. The great 

ranges in proportions of zircon crystals with bright rims, and the diversity of development of zircon 

overgrowths from the ‘bright-rim’ magma (Chamberlain et al. 2014) support this alternative inference 
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to some extent. These observations would imply that the zircons found within single pumices are 

mixtures that did not all grow in situ from the host melt represented in that pumice (cf. Hildreth 

1979), and such inferences may also apply to the major mineral phases, at least in the lower portion of 

the magma chamber which is pyroxene-bearing and has other phases with bright rims. 

  We show from textural proportions that rejuvenation of the Bishop magma chamber had only 

noticeable effects on mineral phases found in the northern and north-western ignimbrite packages, 

inferred to represent the deeper, less-evolved parts of the magma body. Rejuvenation by the ‘bright-

rim’ magma was not a single event and, from the timescales measured here in the common mineral 

phases, occurred over a period of ~500 years right up to eruption. The longer timescale for interaction 

of the ‘bright-rim’ magma (up to ~10,000 years) indicated by zircon age spectra from cores to bright-

rimmed crystals would imply that the intruding magma was in itself probably not the trigger for the 

eruption. Instead, its rise into and interaction with the Bishop magma chamber may have reflected 

other processes, such as changes in the regional stress conditions (cf. Allan et al. 2013) or disturbance 

of the mush zone by extraction of large volumes of melt. As such the ‘bright-rim’ magma could be 

regarded as the marker for processes leading to eruption, rather than the trigger. Our study has 

important implications not only for models of the Bishop Tuff magma chamber, but also raises 

significant issues regarding the application of systematic diffusion chronometry to other rhyolitic 

systems.   
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Figure and Table Captions 

Fig. 1 a Map of the Long Valley area, eastern California, USA  and b summary of the Bishop 

Tuff stratigraphy, after Hildreth and Wilson (2007). a The topographic outline of Long 

Valley caldera is shown as a dashed line, regions of Bishop ignimbrite are filled in grey. 

The envelope enclosing mapped vent locations for the precursory Glass Mountain (GM) 

eruptions is highlighted in light grey.  The line marked ‘Fall deposition envelope’ 

marks the westerly limits of where Bishop fall deposits are found in this area. The lines 

marked (i) and (ii)  relate to the labels (i) and (ii) in panel b. (i) Shows a hypothetical 

cross section from NW to NE across the northern ignimbrite lobes as viewed from the 

centre of Long Valley caldera. (ii) Is a schematic proximal to distal cross section, 

approximately along the line of the Owens River gorge. b Schematic stratigraphy of the 

Bishop Tuff in its proximal area based on sections (i) and (ii). Ignimbrite units are 

coloured; fall units are grey. Samples collected for this paper cover most of the 

stratigraphic units (See Electronic Appendix 1). 

Fig. 2 CL images of representative quartz crystals from a ignimbrite packages Ig2NWb and b 

Ig2Nb. Areas across which greyscale profiles were extracted are highlighted as red 

boxes, and their corresponding profiles shown below the images.  The modelled profile 

(age given next to the associated profiles) is shown as a black line, overlying the data 

(circles, connected by grey dashed line). The y axis for both graphs is relative greyscale 

values, with 2j uncertainty on greyscale value shown as the error bars. It is apparent 

that no matter which axis the greyscale profile is extracted from, timescales are 

comparable. White scale bars are 100 µm. 

Fig. 3 Compiled cumulative frequency plot of modelled timescales from Ti diffusion in 

quartz (grey diamonds), Fe-Mg interdiffusion in orthopyroxene (yellow circles), Sr in 
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sanidine (green crosses), and Ba in sanidine (blue triangles). The 1 s.d. uncertainty on 

each timescale modelled is shown as corresponding fields for each technique: yellow 

for Fe-Mg in orthopyroxene, grey for Ti in quartz, green for Sr in sanidine and blue for 

Ba in sanidine. 

Fig. 4 BSE images of orthopyroxene showing the three zoning categories, with Mg# labelled 

in white. a unzoned; b those with a dark rim (more Mg-rich rim); c those with a light 

(more Fe-rich rim). Areas across which greyscale profiles were extracted are shown by 

red boxes, with the corresponding profiles labelled with (i), (ii) or (iii).  The profiles 

have been corrected to XMg and the modelled timescale is given next to the associated 

profile. Extracted profiles are shown as circles (connected with a grey line), and the 

modelled profiles are the black lines. 2j uncertainty on greyscale value (corrected to 

XMg) is shown as the error bars. White scale bar on all images is 100 µm. 

Fig. 5 BSE images of sanidine crystals showing representative examples of a those which are 

unzoned and b those which have a bright, Ba- and Sr-rich rim. Sr and Ba contents are 

labelled in white, from EPMA analyses. Areas over which greyscale profiles were 

extracted are shown as red boxes, which are labelled to correspond to the profiles 

shown below.  All profiles are plotted as circles, connected with a grey dashed line; the 

modelled profiles are plotted as black curves. Ba profiles from b are shown in c with 

the y axis being relative grey-scale values, 2j uncertainty on greyscale value plotted as 

error bars. The associated Sr profiles from EPMA are plotted in d, with 2 s.d. EPMA 

analytical uncertainties shown. Note the lack of a stable Sr plateau in (d, i) which 

means that this timescale is not included in our results (see text for discussion of profile 

classes and Fig. 7, below). White scale bars in images a and b are 100 µm. 
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Fig. 6 Plot of Ba vs. Sr from LA-ICPMS (dark circles) and EPMA (light diamonds) analyses 

of sanidine phenocrysts from samples investigated in this study. Error crosses show 2 

s.d. uncertainties: the dark grey cross corresponds to LA-ICPMS analyses, the larger 

light grey cross to EPMA analyses. 

Fig. 7 The three classes of diffusion profiles demonstrated in Ba profiles in sanidine (blue), 

Ti profiles in quartz (grey), Mg# number profiles in orthopyroxene (yellow) and Sr 

profiles in sanidine (green) (see text for details).  All x axes are distance (in µm), y axes 

are concentrations (absolute or inferred) of the element in question. Class 1 is the ideal 

diffusion profile, being symmetrical and fitting the model (black line) well.  Class 2 

profiles reveal a false high/low on one side of the profile, where the “plateau” is not 

horizontal as assume in the modelling (black line). Class 3 shows the asymmetric 

boundaries which deviate away from the model (black line) within the concentration 

gradient. This relict of growth zoning would cause timescales to be over-estimated. 

Fig. 8 Cumulative frequency plot comparing the timescales modelled from Ti diffusion in 

quartz (diamonds), and the combined modelling of Ba and Sr in sanidine (red stars). 

The 1 s.d. error window is shown as grey (Ti in quartz) or red (Ba and Sr in sanidine) 

fields. The original timescales from Sr diffusion in sanidine (crosses) and Ba diffusion 

in sanidine (triangles) from the crystals used in the combined modelling are also 

plotted. This shows the significant reduction in Ba timescales once combined modelling 

is used for sanidine diffusion zones. 

Fig. 9 a Histogram of all combined diffusion timescales including those from Fe-Mg 

interdiffusion in orthopyroxene, Ti diffusion in quartz, and combined Ba-Sr diffusion in 

sanidine with b cumulative frequency chart showing the timescales and their 

uncertainties for each method.  All uncertainty bars are ± 1 s.d. 
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Fig. 10 Cartoons illustrating three possible model options (not to scale) for the origin of 

orthopyroxene and its associated zoning in the Bishop Tuff. Only a segment of the 

lower part of the magma chamber is depicted (in green) which is intruded by the ‘bright 

rim’ forming magma (white) from remelting of the underlying crystal mush (grey) by a 

more mafic magma (red). In all three models the end result is variably zoned 

orthopyroxene crystals, but the possible origins for these crystals is changeable. Note 

that in options 2 and 3 there must be limited convection within the melt-dominant 

magma body [consistent with the views of Hildreth (1979) and Hildreth & Wilson 

(2007)] in order to preserve small-scale heterogeneities within the melt-dominant 

magma body prior to late-stage mingling upon eruption. 
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Table 1 Listing of diffusion constants used for all species modelled 

 

Phase 
Diffusing 

Species 

D0 

(ms
-2

) 

Eact  

(J/mol) 

fO2  

(〉 NNO; range) 

T 

 (°C; range) 

Orthopyroxene Fe-Mg 0.00000288 
A
  0.483 – 1.111 

B
 790 – 815 

Quartz Ti 0.00000007 
C
 273000 

C
 NA 753 – 815 

Sanidine Ba 0.29 
D
 455000 

D
 NA 753 – 815 

Sanidine Sr 8.4 
E
 450000 

E
 NA 770 – 815 

 

Sources of values used. A: Ganguly & Tazzoli 1994; B: Hildreth & Wilson 2007; C: Cherniak et al. 

2007; D: Cherniak 2002; E: Cherniak 1996. NA = Not applicable. 
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Table 2 Major element analyses (wt. %) and  resulting two-feldspar temperatures from sanidine and plagioclase crystals in the Bishop Tuff 

 

Sample Phase 
Eruptive 

unit 
SiO2 TiO2 Al2O3 FeO MgO CaO Na2O K2O BaO Total 

An 

(%) 

Ab 

(%) 

Or 

(%) 

Calculated 

T (°C) 

BP080 
plag inc 

Ig1Eb 
65.53 0.00 22.66 0.13 0.00 2.90 8.56 1.75 0.33 101.87 14.16 75.68 10.16 

738 
san xtl 66.39 0.01 18.34 0.08 0.00 0.16 4.13 11.12 0.00 100.21 0.78 35.80 63.43 

BP087 
plag inc 

Ig1Eb 
65.01 0.00 23.16 0.14 0.00 3.41 8.33 1.52 0.00 101.57 16.79 74.29 8.92 

741 
san xtl 66.64 0.01 18.45 0.11 0.00 0.18 4.11 11.02 0.01 100.51 0.87 35.84 63.29 

BP098 
plag inc 

Ig1Eb 
65.13 0.00 22.66 0.15 0.00 3.04 8.26 1.77 0.01 101.01 15.16 74.38 10.46 

755 
san xtl 67.01 0.00 18.47 0.06 0.00 0.15 4.14 11.10 0.00 100.94 0.73 35.91 63.35 

BP032 
plag inc Ig1Eb         

(chocolate) 

64.78 0.00 23.09 0.17 0.00 3.21 8.32 1.90 0.00 101.47 15.63 73.33 11.04 
747 

san xtl 66.10 0.00 18.18 0.11 0.00 0.19 4.05 11.03 0.00 99.67 0.90 35.47 63.63 

BP036 
plag xtl Ig1Eb         

(Sherwin) 

64.93 0.00 22.43 0.11 0.00 3.07 8.44 1.82 0.00 100.80 14.98 74.44 10.58 
737 

san inc 66.30 0.00 18.45 0.11 0.00 0.22 4.32 10.65 0.02 100.06 1.04 37.73 61.23 

BP040 
plag inc Ig1Eb         

(Sherwin) 

63.93 0.02 23.98 0.17 0.00 4.17 8.11 1.08 0.00 101.45 20.73 72.90 6.37 
754 

san xtl 67.01 0.00 18.47 0.06 0.00 0.15 4.14 11.10 0.00 99.62 0.87 35.49 63.64 

BP040 
plag inc Ig1Eb         

(Sherwin) 

64.28 0.03 22.64 0.17 0.00 3.32 8.19 1.88 0.00 100.94 15.02 73.53 11.45 
746 

san xtl 65.91 0.00 18.16 0.08 0.00 0.18 3.85 11.05 0.02 99.41 0.95 35.27 63.78 

BP040 
plag inc Ig1Eb         

(Sherwin) 

64.75 0.00 22.41 0.13 0.00 3.08 8.33 1.97 0.27 100.52 16.28 72.72 11.01 
758 

san xtl 65.82 0.00 18.31 0.08 0.00 0.20 4.00 11.00 0.00 99.25 0.86 34.34 64.80 

BP112 
plag xtl 

Ig1NW 
65.16 0.00 22.92 0.12 0.00 2.98 8.29 1.81 0.00 100.79 15.91 74.88 9.21 

746 
san inc 66.04 0.00 18.38 0.06 0.00 0.19 4.23 11.05 0.12 100.13 0.74 35.37 63.89 

BP112 
plag inc 

Ig1NW 
64.59 0.00 22.61 0.15 0.00 3.19 8.02 2.17 0.00 101.29 14.79 74.50 10.71 

753 
san xtl 65.86 0.00 18.10 0.10 0.00 0.22 3.88 11.19 0.00 100.08 0.91 36.45 62.64 

BP003 
plag xtl 

Ig2Ea 
65.01 0.00 22.94 0.15 0.00 3.42 8.30 1.82 0.34 101.99 16.58 72.90 10.51 

754 
san inc 66.49 0.02 18.31 0.09 0.00 0.21 4.15 11.15 0.03 100.45 1.01 35.77 63.23 

BP197 
plag xtl 

Ig2Ea 
64.91 0.00 22.96 0.14 0.00 3.13 8.12 2.00 0.00 101.26 15.51 72.74 11.75 

755 
san inc 66.31 0.00 18.35 0.11 0.00 0.20 3.99 11.13 0.07 100.15 0.95 34.96 64.09 

BP164 
plag xtl 

Ig2Eb 
65.62 0.00 22.86 0.15 0.00 3.08 8.71 1.67 0.59 102.69 14.76 75.68 9.57 

711 
san inc 66.21 0.00 18.29 0.06 0.00 0.16 4.10 11.08 0.00 99.90 0.77 35.74 63.48 



Table 2 cont. 

Sample Phase 
Eruptive 

unit 
SiO2 TiO2 Al2O3 FeO MgO CaO Na2O K2O BaO Total 

An 

(%) 

Ab 

(%) 

Or 

(%) 

Calculated 

T (°C) 

BP164 
plag xtl 

Ig2Eb 
65.14 0.01 22.51 0.16 0.00 2.98 8.65 1.76 0.37 101.58 14.40 75.50 10.11 

715 
san inc 66.33 0.01 18.56 0.06 0.00 0.16 4.03 11.16 0.00 100.31 0.79 35.18 64.03 

BP164 
plag xtl 

Ig2Eb 
64.72 0.00 22.90 0.13 0.00 3.34 8.36 1.62 0.00 101.07 16.37 74.17 9.46 

744 
san inc 66.33 0.00 18.47 0.09 0.00 0.19 4.09 11.08 0.03 100.27 0.90 35.59 63.50 

BP164 
plag inc 

Ig2Eb 
64.21 0.02 22.67 0.14 0.00 3.27 8.28 1.59 0.63 100.81 16.23 74.35 9.42 

750 
san xtl 66.04 0.00 18.36 0.07 0.00 0.15 4.14 11.08 0.07 99.92 0.74 35.99 63.27 

BP055 
plag inc 

Ig2Na 
64.10 0.00 22.75 0.15 0.00 3.44 8.27 1.79 0.00 100.50 16.74 72.89 10.37 

742 
san xtl 65.89 0.00 18.12 0.07 0.00 0.18 4.03 11.04 0.01 99.34 0.87 35.35 63.79 

BP055 
plag inc 

Ig2Na 
64.23 0.00 22.48 0.14 0.00 3.16 8.20 2.02 0.00 100.23 15.50 72.75 11.76 

750 
san xtl 65.83 0.00 18.28 0.10 0.00 0.18 3.98 11.14 0.00 99.52 0.89 34.89 64.23 

BP055 
plag inc 

Ig2Na 
64.71 0.00 21.98 0.13 0.00 2.49 7.03 5.59 0.19 102.12 11.40 58.16 30.44 

803 
san xtl 66.12 0.00 18.26 0.10 0.00 0.16 3.95 11.08 0.00 99.68 0.79 34.89 64.33 

BP060 
plag inc 

Ig2Na 
64.74 0.00 22.35 0.15 0.00 3.17 7.98 2.38 0.00 100.77 15.49 70.64 13.87 

767 
san xtl 65.67 0.00 18.08 0.11 0.00 0.19 3.64 11.27 0.00 98.95 0.94 32.60 66.46 

BP016 
plag inc 

Ig2Nb 
62.30 0.02 24.14 0.23 0.01 5.19 7.42 1.56 0.49 101.36 25.35 65.58 9.07 

802 
san xtl 66.01 0.00 18.12 0.08 0.00 0.24 3.77 11.22 0.17 99.60 1.19 33.42 65.39 

BP016 
plag xtl 

Ig2Nb 
62.39 0.00 23.95 0.23 0.00 5.00 7.42 1.66 0.00 100.64 24.50 65.79 9.71 

785 
san inc 65.31 0.01 18.28 0.10 0.00 0.34 3.51 11.60 0.31 99.45 1.64 30.97 67.39 

BP209 
plag inc 

Ig2Nc 
62.75 0.00 23.86 0.31 0.00 4.83 7.59 1.50 0.00 100.85 23.75 67.47 8.78 

790 
san xtl 65.31 0.00 17.97 0.08 0.00 0.21 3.78 11.19 0.12 98.68 1.02 33.60 65.37 

BP118 
plag inc 

Ig2NWa 
64.72 0.00 22.64 0.12 0.00 3.26 8.47 1.58 0.00 100.72 15.72 71.57 12.72 

769 
san xtl 66.36 0.00 18.38 0.11 0.00 0.15 4.03 11.07 0.03 99.35 1.06 34.14 64.81 

BP124 
plag inc 

Ig2NWb 
64.09 0.00 23.75 0.21 0.00 4.52 7.70 1.99 0.15 102.41 21.69 66.92 11.39 

812 
san xtl 66.41 0.00 18.27 0.07 0.00 0.26 3.86 11.46 0.07 100.41 1.26 33.43 65.31 

BP124 
plag inc 

Ig2NWb 
63.08 0.00 24.05 0.22 0.00 4.89 7.42 1.87 0.46 101.99 23.79 65.36 10.85 

821 
san xtl 66.41 0.00 18.27 0.07 0.00 0.26 3.86 11.46 0.07 100.41 1.26 33.43 65.31 

Eruptive units after Hildreth & Wilson (2007). 



Table 3 Temperatures used for diffusion modelling in various units of the Bishop Tuff 

Eruptive unit 
T modelled 

at (°C) 
Rationale 

Ig2SW 753 Weighted Average of all Eastern and Ig2Na feldspar temperatures 

F9 780 Average of Ig2Na, Ig2Nb and Ig2Nc feldspar temperatures 

Ig2Na 770 Average of Ig2Na feldspar temperatures 

Ig2Nb + c 790 Average of Ig2Nb and Ig2Nc feldspar temperatures 

Ig2NWa + b 815 
Average of Ig2NWb temperature only, due to "eastern" appearance of 

sanidine, zircon, and glass chemistry in sample BP118 

 

Eruptive units after Hildreth & Wilson (2007). 

 

Table 4 Differences in modelled timescales in sanidine between using combined Ba and Sr diffusion 

versus Sr or Ba diffusion alone 

Sample 
T used 

(K) 
Boundary 

Combined Timescale 

(yrs) 

Sr timescale 

(yrs) 

Ba timescale 

(yrs) 

BP124-Ig2NWb 1088 k10 outer 24 30 78 

BP126-Ig2NWb 1088 k13-outer 30 39 124 

BP170- Ig2Nb 1063 k16-inner 64 140 1250 

BP209-Ig2Nc 1063 k12 77 125 682 

BP124-Ig2NWb 1088 k6 128 223 1370 

BP115-Ig2NWa 1088 k4 253 268 368 

BP124-Ig2NWb 1088 k10-inner 367 639 3940 

BP061-Ig2Na 1043 k4-rhs 407 527 1610 

BP016-Ig2Nb 1063 k12 438 640 2730 

BP015-Ig2Nb 1063 k18-outer 484 519 766 

BP060-Ig2Na 1043 k16 1490 1570 2100 

BP015-Ig2Nb 1063 k10 1540 1710 2950 

 

Sample numbers and boundaries relate to those used in Electronic Appendix 6. 
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