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Abstract—This article presents TimeSen2Crop, a pixel-based
dataset made up of more than 1 million samples of Sentinel 2
time series (TSs) associated to 16 crop types. This dataset, publicly
available, aims to contribute to the worldwide research related
to the supervised classification of TSs of Sentinel 2 data for crop
type mapping. TimeSen2Crop includes atmospherically corrected
images and reports the snow, shadows, and clouds information per
labeled unit. The provided TSs represent an agronomic year (i.e.,
period from one year’s harvest to the next one for agricultural
commodity) ranging from September 2017 to August 2018. To
generate the dataset, the publicly available Austrian crop type map
based on farmer’s declarations has been considered. To ensure the
selection of reliable labeled units from the map (i.e., pure pixels
correctly associated to their labels), an automatic procedure for
the extraction of the training set based on a multitemporal deep
learning model has been defined. TimeSen2Crop also includes a
TS of Sentinel 2 images acquired in the following agronomic year
(i.e., from September 2018 to August 2019). These data are provided
with the aim of attract more research activities for solving a typical
challenge of the crop type mapping task: adapting multitemporal
deep learning models to different year (domain adaptation). The
design of the dataset is described along with a benchmark compar-
ison of deep learning models for crop type mapping.

Index Terms—Benchmark, crop type mapping, multispectral
images, multitemporal deep learning, Sentinel-2 dataset, time series
(TSs), TimeSen2Crop.

I. INTRODUCTION

S
ENTINEL 2 satellite constellation acquires multispectral

images with high spatial and temporal resolutions. Having

13 spectral bands, which has a spatial resolution ranging from

10 to 60 m, and a revisit time of 5 days (depending on the

latitude), Sentinel 2 generates dense time series (TSs) of images

at global scale. Differently from similar optical earth observation

missions (e.g., SPOT and Landsat), it acquires three bands in

the red-edge spectral range, which provide key information for

vegetation analysis. Given its temporal, spatial, and spectral
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resolutions, Sentinel 2 enables seasonal trend analysis, which

are extremely useful for crop type mapping. However, the lack

of large-scale training datasets hampers the possibility of de-

veloping and testing advanced methods for agricultural moni-

toring, such as those based on deep learning models. Indeed, to

successfully train deep learning architectures, a large amounts

of high-quality training data are required.

Recently, the RS community devoted a large effort to release

large-scale benchmark datasets. Most of them focus on the

modeling different application scenarios with single time RS

images neglecting the temporal component. In [1], Helber et al.

presents the EuroSAT dataset made up of 27 000 labeled and

geo-referenced Sentinel 2 satellite image patches (i.e., 64 ×
64 pixels). Although the classification scheme is made up of

ten different classes, including land covers having peculiar tem-

poral patterns (i.e., annual crops, permanent crops), the dataset

is based on single-time images. In [2], the DeepGlobe2018

benchmark dataset provides 6867.6 million of labeled samples

related to very high resolution satellite images (i.e., 50 cm). The

dataset is made up of 10 146 RGB images of size 20448× 20448

pixels associated to manual annotations based on pixelwise

segmentation masks. No spectral or temporal information is

provided.

Recently, by taking advantage from the open and free images

acquired by the Sentinel satellites, a large-scale training dataset

made up of geo-referenced Sentinel 1 SAR images and Sentinel

2 multispectral images has been released [3]. The dataset aims to

facilitate the development of deep learning methods capable to

extract and exploit the complementary information provided by

multisensor RS data. Although the data employed have been

acquired between December 2016 and November 2017, the

temporal information was used only to split the data into four

seasons, namely, winter (1 December 2016 to 28 February 2017),

spring (1 March 2017 to 30 May 2017), summer (1 June 2017 to

31 August 2017), and fall (1 September 2017 to 30 November

2017). Similarly in [4], Sumbul et al. propose a large-scale

training set for testing and developing novel methods in the

context of the multilabel image classification task by considering

Sentinel 2 images acquired between June 2017 and May 2018.

Also in this case, the temporal information is used only to

represent the land cover classes in different seasons.

In the context of the TS analysis, few benchmark datasets are

available. The 2019 MediaEval Benchmark dataset was defined

for monitoring flooding events [5]. The sequences of satellite
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images provided are focused on a fixed length of time around

a flood event. The benchmark aims to test the capability of

existing methods to create binary maps depicting the flooding

event ongoing in an urban area. In [6], the Onera Satellite Change

Detection dataset is proposed for urban change detection on Sen-

tinel 2 images. The dataset includes 24 regions of approximately

36 km2 with various levels of urbanization where urban changes

are visible. Given the target application, only pairs of bitemporal

images are provided.

Differently from standard land cover classification tasks,

where the class types can be identified by analyzing single-time

images (e.g., build-up, grassland, rivers), the discrimination of

similar crop types is not trivial and requires the exploitation

of temporal information. To create labeled data the know-how

of expert annotators that analyze by photo-interpretation the

whole TS of images is required. The alternative collection of

in situ measurement is unfeasible at large scale. Hence, the

scarcity of large-scale labeled multitemporal datasets for crop

type mapping is due to the complexity of the considered task.

In [7], a benchmark dataset for the supervised classification of

field crops is proposed. The dataset, which is made up of 610 000

labeled instances, is located in the Brittany region, France. To

generate the dataset, the publicly available crop type map of the

considered region has been used. The map, based on the farmer’s

declarations, is released by the National Institute of Forest and

Geography Information (IGN) in the context of Agricultural

Land Parcel Information System (LIPS)—Registre Parcellaire

Graphique (RPG). For each crop the average value of all the

pixels associated to a given field parcel is computed per spectral

band. The dataset, composed of Sentinel 2 images acquired

between January 1, 2017 and December 31, 2017, provides the

data in two processing levels: the raw reflectances at the top-of-

atmosphere (level 1 C) and the atmospherically corrected sur-

face reflectances at the bottom-of-atmosphere (level 2 A). The

classification scheme is made up of nine crop types: “barley,”

“wheat,” “rapeseed,” “corn,” “sunflower,” “orchards,” “nuts,”

“permanent meadows,” and “temporary meadows.” Although

this crop-type benchmark is the very first that allows testing

deep learning models for crop type mapping, the training set is

made up of ∼ 319.000 labeled units, which are still a relatively

small number for training deep learning architectures made up

of several hidden layers and a large number of parameters.

Moreover, the considered region is quite small compared to a

standard country scale, i.e., 27.208 km2. Finally, the extraction

of the crop type labels directly from the map may lead to

noisy labeled units, which are not correctly associated to their

labels.

In this article, with the aim of advancing the capacity of

exploiting Sentinel 2 TS for agricultural monitoring, we present

a large-scale dataset called TimeSen2Crop that is made up of

about 1 million of labeled samples belonging to 16 crop types.

The dataset includes atmospherically corrected TSs of Sentinel

2 images collected in the agronomic year (i.e., period from one

year’s harvest to the next one for agricultural commodity) rang-

ing between September 2017 and August 2018. The labeled units

were collected in the full Austria, which extends for 83.879 km2.

The shadow, cloud, and snow pixels masks are provided for each

labeled pixel. To generate the dataset, we considered the publicly

available Austrian crop type map, which is based on farmer’s

declarations collected by surveys within the subsidy application

process in the context of the common agricultural policy (CAP).

Although the reliability of such product is very high, the direct

extraction of labeled units from the map may lead to the selection

of pixels:

1) located on the crop boundary (i.e., mixed spectral signa-

ture);

2) associated to crop type labels that are not correct for the

whole year (rotation practice);

3) associated to the wrong crop type due to the spatial aggre-

gation (polygon label represents the dominant class but is

not correctly associated to all the pixels).

To solve this problem, the map-labeled units are selected

according to an automatic training set extraction procedure

based on a deep learning long short-term memory (LSTM)

model. This multitemporal deep learning architecture is able

to properly capture the phenological trend of the different cul-

tivation. Therefore, it is reasonable to assume that the labeled

units classified with the highest confidence are the pure pixels

having high probability to be correctly associated to their labels.

To assess the quality of the resulting dataset and highlight its

classification difficulties, a benchmarking experimental analysis

has been carried out by comparing deep learning models em-

ployed in the literature for crop type mapping. Moreover, this

article proposes a domain adaptation challenge, by providing the

TS of Sentinel 2 images acquired in the agronomic year right

after the one considered in the dataset (i.e., between September

2018 and August 2019). The goal of the challenge, which is

related to the solution of a domain adaptation problem, is to

direct more attention to one of the main critical issue of the crop

classification task, which is the need of regularly updating the

crop type maps, which strongly vary in the years due to the crop

rotation practices.

The main contributions of this article can be summarized as

follows. First, a novel labeled large-scale (about 1 million of

samples) dataset based on multitemporal Sentinel 2 images for

crop type mapping is proposed. The dataset has been gener-

ated by using an automatic system architecture, which extracts

annotated samples having high reliability from the considered

thematic product. Second, the practicality and the quality of

the dataset are verified by testing and comparing several deep

learning models employed for crop type mapping. Third, a

challenge covering a typical domain adaptation problem related

to crop type mapping is identified and the related dataset is

released to allow the RS community to effectively address it

in future studies.

The remainder of this article is organized as follows. The

procedures employed to design the benchmark dataset are de-

scribed in Section II. Section III gives an overview on the

peculiar properties of the generated benchmark dataset, while

Section IV introduces some deep learning models, used in the

literature for crop type mapping, which are tested and compared

on the proposed dataset. Section V illustrates the three proposed

challenges related to the presented dataset. Finally, Section VI

concludes this article.



WEIKMANN et al.: TIMESEN2CROP: A MILLION LABELED SAMPLES DATASET OF SENTINEL 2 IMAGE TIME SERIES 4701

Fig. 1. Architecture of the automatic method for extracting reliable crop type labels from the public available agricultural Austrian thematic product.

II. DESIGN OF THE TIMESEN2CROP

In this section, we present the procedures employed to gen-

erate the TimeSen2Crop dataset by describing in detail the

properties of the considered RS data and the thematic products

used to generate the benchmark.

A. Sentinel 2 Data Collection

The considered agricultural study area is located in Aus-

tria, which is characterized by a complex landscape typical

of the Alpine region. The topography of this country, which

ranges from high mountain to lowlands areas, together with its

peculiar climate (climatic gradient from west to east) lead to

high biodiversity [8]. This results in a large variety of different

agricultural landscape types, which occupies one fifth of the

Austrian territory (i.e., 83.879 km2).

Sentinel 2 data acquired between September 1, 2017 and

September 1, 2018 were collected by discarding only the data

having cloud coverage lower than 80%. The data were down-

loaded from the Food Security Thematic Exploitation Plat-

form [9], where Sentinel 2 images made up of nine spectral bands

are provided at 10 m spatial resolution, each having a size of

10980×10980 pixels. In particular, the blue (B2–490 nm), green

(B3–560 nm), red (B4–665 nm), the four vegetation red edge

(B5–705 nm, B6–740 nm, B7–0.783 nm, and B8A–865 nm)

and the two short wave infrared (SWIR) (B11–1610 nm and

B12–2190 nm) channels were considered. Band 8 was discarded

because of its coarser spectral resolution compared to band

8 A. The data are atmospherically corrected using the radiative

transfer model MODTRAN [10] and the spectral bands are

provided with a spatial resolution of 10 m [11].

B. Sample Labeling

To provide a reliable benchmark dataset, an automatic

machine-learning-based procedure has been considered to ex-

tract labeled units with high reliability from the considered

publicly available Austrian crop type map [12]. This thematic

product has been produced in the context of the CAP of the

European Union, in order to verify eligibility for area-based

subsidies. Hence, the crop types are based on farmer declara-

tions, while the polygon field boundaries are the ones provided

by the Land Parcel Identification System (LIPS) [13]. Although

the reliability of such product is very high, the random selection

of labeled units extracted directly from the map may lead to the

following:

1) outdated labeled samples;

2) crop types labels not valid for the whole agronomic year

due to the rotation practice;

3) samples associated to the wrong labels due to the polygon

spatial aggregation.

Hence, even though the map represents a rich information

source, it is necessary to accurately select the labeled units to

detect spectral pixels correctly associated to their labels [14].

Fig. 1 shows the automatic approach employed to address this

issue, which is made up on the following two main phases: 1)

preprocessing, and 2) map-labeled unit selection.

1) Preprocessing: In this step, we apply a preprocessing to

both the optical data and the thematic product. The optical pre-

processing step aims to the following: 1) spatially and temporally

harmonize the irregular TSs of cloudy images, and 2) mitigate

the cloud coverage problems. For each pixel associated to a

labeled unit, we extract the multitemporal spectral feature vector.

Such vector, which represents the whole TS of images, is con-

verted into a TS of 12 monthly composites using a pixel-based

statistic-based approach.

Let us focus the attention on the set of Q Sentinel 2 im-

ages acquired within the ith month, with i ∈ [1, 2, . . . , 12].

Let Xi
j = [xi,1

j ;xi,2
j ; · · · ;xi,Q

j ]T be the multitemporal spectral

matrix associated to the jth labeled pixel of the dataset, where

x
i,1
j = [xi,1

j,1, x
i,1
j,2, . . . , x

i,1
j,N ] is the spectral vector of the first

Sentinel 2 image of the considered ith month made up of N = 9
spectral channels, i.e., Xi

j ∈ R
N×Q. For each spectral band, the

Q reflectance values are collapsed into a single one (representing

the month) by computing their median. Let M{•} be the median

operator, the computation of the ith monthly composite is as

follows:

x̂i
j,1 = M{xi,1

j,1, x
i,2
j,1, . . . , x

i,Q
j,1 }

x̂i
j,2 = M{xi,1

j,2, x
i,2
j,2, . . . , x

i,Q
j,2 }

...

x̂i
j,N = M{xi,1

j,B , x
i,2
j,B , . . . , x

i,Q
j,N} (1)
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Fig. 2. Qualitative examples of map labeled units associated to the wrong crop category: (a) original crop type map, (b) high resolution aerial image, and (c)
preliminary predicted map. The administrative boundary of the crop field do not match perfectly the real cultivation present in the scene. Applying the proposed
automatic procedure, this problem is highly mitigated.

where x̂
i
j = [x̂i

j,1, x̂
i
j,2, . . . , x̂

i
j,N ] is the spectral vector of the

ith monthly composite. At the end of this step, the obtained

multitemporal spectral vector [x̂1

j , x̂
2

j , . . . , x̂
12

j ] is made up of

108 features, i.e., 9 reflectance values × 12 months. The median

computation is performed by discarding the cloudy, snowy, and

shadowy samples. If no cloud-free images are available for a

considered pixel within the month, the harmonization process

set all the reflectance values of the month to zero.

The thematic product is preprocessed in order to 1) convert the

map legend into the desired classification scheme, and 2) remove

the pixels close to the boundary of the crop fields, which may be

related to spectrally mixed pixels due to the spatial resolution of

Sentinel 2. The map legend has been carefully revised by RS and

agricultural experts to define a set of crop categories interesting

from the agricultural view point and discriminable according

to the spectral and temporal information provided by Sentinel

2. Details are provided in Section III-A. To remove the pixel

close to the field boundary, the standard erosion morphological

operator having disk element of radius equal to 3 is applied to

the thematic map [15]. This step highly increases the probability

of selecting samples having almost pure spectral signature, i.e.,

representative of the phenological properties of a single crop

type.

2) Selection of Map-Labeled Units: To generate a crop type

mapping dataset, the prior probabilities of the crop categories

are extracted from the thematic product using a stratified random

sampling approach. This sampling strategy extracts a number of

samples per crop type proportional to the number of crops asso-

ciated with that type in the considered study area. This procedure

allows us to generate a preliminary “weak” training set where

misclassified samples may be present (i.e., samples associated to

wrong labels) [14]. Then, we run the classifier to generate a pre-

liminary predicted map by using a multitemporal deep learning

LSTM network, a special kind of RNN widely used for crop type

mapping [16]. This network has been extensively employed to

elicit temporal patterns due to its long-term memory capabilities.

By storing a huge amount of evidence to make decisions in that

actual temporal context, it provides better solutions compared

to other recurrent deep learning models. The predicted map is

compared to the original one for selecting only the samples

located in the areas where the two maps agree. Moreover, the

pixel wise posterior probabilities provided by the network are

used as a confidence measure of the classification result. Only

the pixels having high probability to be correctly classified are

selected. In particular, the samples having pixelwise posterior

probabilities higher than the 75th percentile of all posteriors of

that class are selected as possible candidates. This rule allows us

to select the samples classified with high-confidence, adaptively

computing a different threshold value per class. To capture the

spatial variability of the crop classes all over the study area and

reducing correlation, we impose the constrain that the Sentinel

2 pixel labeled units included in the benchmark dataset must

have a distance of at least 12 pixels (i.e., 120 m) each others.

Fig. 2 shows a qualitative example of map labeled units asso-

ciated to the wrong crop category. The administrative boundaries

of the crop field do no match perfectly the real cultivations

present in the scene as visible in Fig. 2(a) and (b), where the

original crop type map and the high-resolution aerial image

are reported. Applying the proposed procedure, this problem is

mitigated [see Fig. 2(c)], thus highly increasing the probability

of associating the map label to pure spectral samples in the TSs

of Sentinel 2 images.

III. TIMESEN2CROP PROPERTIES

The Austrian country is covered by the 15 Sentinel 2 tiles

shown in Fig. 3. Samples extracted from spatially disjoint tiles

were included into the training set (13 tiles), the test set (1 tile),

and the validation set (1 tile) to generate three statistically inde-

pendent sets, each with 822 843 (76.71%), 133 419 (12.43%),

and 116 369 (10.84%) labeled pixels, respectively. Please note

that this condition allows us to have a test area, which extends for

12056.4 km2 and is statistically independent from the training

ones since no spatial overlapping is considered between the

training and the test samples. Fig. 3 shows the division into

training, test, and validation of the Sentinel 2 tiles.
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Fig. 3. Spatial division of the Sentinel 2 tiles into training, test and validation
is reported in blue, yellow, and green, respectively.

TABLE I
CLASS DISTRIBUTIONS IN THE TIMESEN2CROP DATASET

A. Classification Scheme

The definition of the classification scheme is a fundamen-

tal step for the proper generation of a reliable and consistent

benchmark dataset. In particular, the classification scheme must

include only classes that can be discriminated by using the

multitemporal multispectral information provided by the TSs of

Sentinel-2 images. To this end, the map legend of the considered

thematic product [12] was carefully revised by RS and agricul-

tural expert to fill the semantic gap between the crop categories

present in the map and the RS data. In greater detail, the proposed

classification scheme includes the 16 crop categories reported in

Table I. Fig. 4 presented the distribution of the crop categories

per tile, while Table I reports the pixel count (i.e., number of

labeled units) and the proportion per crop category.

The “grassland,” “spring cereals,” “legumes,” and “perma-

nent plantations” crop categories semantically aggregate minor

classes, which cannot be distinguished from the phenological

view point using multispectral optical images. The “grassland”

is made up of “clover” (52.59%), “green pruning rye” (0.15%),

and “alpine meadow” (47.24%), while the “spring cereals”

includes “spring oat” (30.94%), “spring wheat” (14.52%), and

“spring barley” (54.52%). The “legumes” includes horsebeans

(97.80%) and a small presence of sweet lupines (2.19%). The

“permanent plantations” crop type includes all the following

fruit trees: Vineyards (83.29%), Cherry Plantation (0.47%),

Apricots (1.48%), Nectarines (0.02%), Peach (0.44%), Apples

(0.94%), Pears (12.89%), and Plums (0.44%). Finally, “other

crops” includes all the remaining minor classes present in the

map to have an exhaustive classifications scheme. Due to their

scarcity, these crops are not enough to represent a singular crop

type. However, the presence of such a class is fundamental to

consider that not all the crops can be modeled and represented

in the training set but an exhaustive classification scheme is

required in real-world crop type mapping problems.

Differently from the RS dataset publicly available, the pro-

posed benchmark dataset is characterized by a detailed classi-

fication scheme that leads to a challenging crop type mapping

problem.

B. Temporal Properties

The proposed benchmark is made up of TSs of images ac-

quired in the agronomic year ranging between September 2017

and August 2018. Differently from the standard yearly-based

TSs, the provided temporal information allows the accurate char-

acterization of the phenological trend of the cultivations [17].

Only Sentinel 2 images having cloud coverage < 80% are

included in the dataset. Although such threshold is quite con-

servative, many images acquired in winter have been discarded

from the TSs since the considered study area is affected by heavy

cloud coverage.

Table II reports the acquisition dates of the images included in

the TSs for each Sentinel 2 tile. One can notice that TSs acquired

over different tiles present 1) unequal lengths, and 2) variations

in the temporal sampling rate. Indeed, due to the heavy cloud and

snow coverage, for some tiles no images are available for some

months, thus affecting their temporal sampling. Moreover, even

though Sentinel 2 satellites are characterized by a large swath

(i.e., 290 km width), different along-track strips are required to

cover large study areas. This leads to TSs:

1) having variations between the acquisition time of the first

and the last image of the TSs;

2) made up of images acquired in different time stamps

(different temporal sampling);

3) having sequences with variable lengths.

These issues are well known at operational level when work-

ing at country or continental scale. Therefore, the temporal prop-

erties of the proposed challenging benchmark dataset accurately

depict real-world scenarios.
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Fig. 4. Distributions of the crop categories of the TimeSen2Crop dataset per tile.

C. Structure of the Dataset

TimeSen2Crop aims to contribute to the worldwide research

related to the classification of TSs of Sentinel 2 images for

crop type mapping. Thus, it is publicly available at the website

TimeSen2Crop1. The structure of the dataset is hierarchical.

The data are first organized per Sentinel 2 tile, in 15 folders.

Each Sentinel 2 folder includes 16 subfolders, i.e., the crop

categories and the acquisition dates of the specific tile (see

Table II) reported in a CSV file. The dates are time-ordered

from the oldest acquisition to the newest.

Inside the crop type subfolders, each labeled sample has

associated a CSV file, which stores the multitemporal spectral

signature of the corresponding Sentinel 2 pixel. The number of

files depends on the number of pixels extracted for the consid-

ered crop category for the specific Sentinel 2 tile. The spectral

values of the pixels are stored in a matrix, which indicates the

reflectance values for each spectral channel within the different

acquisition dates. In particular, each row reports the different

acquisition time, while each column constrains the different

spectral bands, namely, the blue (B2), green (B3), red (B4), the

four vegetation red edge (B5, B6, B7, and B8A), and the two

SWIR (B11 and B12). The last column contains the information

regarding the condition of the pixel, which can be clear (value

0), cloud (value 1), shadow (value 2), or snow (value 3). Note

that as the considered study area is heavily affected by snow

coverage during the winter season, it is important to have precise

information on the snow presence in the scene.

D. Data Imbalance

Real-world crops classification tasks are usually character-

ized by classes having severely imbalanced prior probabilities.

1[Online]. Available: https://rslab.disi.unitn.it/timesen2crop/

Agricultural areas are usually dominated by few common crops,

which correspond to the crops cultivated extensively (e.g., corn,

wheat). This leads to very different prior probabilities of the

various classes present in the scene. When dealing with such

high imbalanced datasets, the classification model may fail to

accurately recognize the minority classes. However, the accurate

classification of minority crop types is still important. Due to the

use of a stratified random sampling strategy and the possibility

of having available the thematic product for the whole Austrian

country, the proposed benchmark dataset is a valid example of

challenging crop type mapping datasets since it is affected by a

real and strong class imbalance. Thus, it can be used to assess

the capability of different techniques to address this common

problem in agriculture applications.

IV. BENCHMARKING ALGORITHM COMPARISON

To assess the complexity of the proposed TimeSen2Crop

dataset, we have evaluated and compared existing deep learning

methods typically employed for crop type mapping training

them from scratch. We focus the attention on deep learning mod-

els since they outperformed shallows models such as random

forest or support vector machine [18]. Moreover, the proposed

large-scale dataset is meant to be used for deep architectures

that require a large number of samples to successfully train

the model [19]. This peculiar classification task has been ad-

dressed considering two main categories of multitemporal deep

learning architectures, i.e., recurrent deep learning models and

time-convolution deep learning models. While recurrent models

are suited for crop type mapping due to their capability of

capturing temporal dynamics, time-convolution models directly

focus on the temporal profiles to accurately classify sequential

data.

https://rslab.disi.unitn.it/timesen2crop/
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TABLE II
IMAGE ACQUISITION DATES (I.E., MONTH/DAY) OF THE TSS ACQUIRED OVER THE DIFFERENT TILES ARE REPORTED

Only Sentinel 2 images having cloud coverage < 80% are included in the dataset.

The benchmark time-convolution deep learning models con-

sidered are InceptionTime [20], Multiscale ResNet (MSRes-

Net) [21] and temporal convolutional neural network (Tem-

pCNN) [22], while the recurrent deep learning models selected

are the LSTM network [16], the STAR recurrent neural network

(StarRNN) [24], and a weighted LSTM suited for imbalanced

data problems. In particular, the weighted LSTM has been

trained by the two-step procedure proposed in [25], which

mitigates the problem of having imbalanced training data. In the

first step, the weights of the LSTM cost function per crop type are

set according to the number of samples of each class under the

assumption that the number of samples are in proportion to the

a priori probability of the different crops. This procedure avoids

that the gradient calculated with respect to the network weights is

dominated by the contributions of the dominant classes. Then,

the network weights obtained at the end of the first phase are

used as the initial ones of the second training phase, which

is performed using the standard cost function. This operation

allows the output to be restored as an approximation of the a pos-

teriori probabilities. Finally, a self-attention transformer model,

originally developed as sequence-to-sequence encoder–decoder

models for language translation [26], was tested on the proposed

dataset. This attention-based method has been selected since it

proved to be effective for crop type mapping problems [18], [23].

The experimental analysis has been carried out consider-

ing the trainSet, testSet, and validationSet of the proposed

dataset. Since all the considered deep learning models as-

sume to deal with homogeneous TSs characterized by uniform

length, the optical preprocessing step presented in Section II-B1

is first applied to harmonize the TSs acquired over different

tiles. To compare the performance obtained by the different

deep learning models, the Fscore (F1%) and the overall ac-

curacy (OA%) metrics are evaluated on the test set. The stan-

dard grid search approach was used to train the models. The
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TABLE III
OA% AND THE F1% OBTAINED ON THE TEST SET

The scores are reported for the following benchmark methods: InceptionTime [20], MSResNet [21], TempCNN [22], attention-based Transformer [23], StarRNN [24], LSTM [16],

and weighted LSTM.

optimal setup is identified according to the accuracy achieved

on the validationSet. The model specific parameters tested var-

ied per method according to what suggested by the authors.

The learning rate and the weight decay were sampled from

log-uniform distributions, respectively Ulog([10
−2, 10−4]) and

Ulog([10
−2, 10−8]). The weighted LSTM, the LSTM and the

StarRNN have been analyzed with different cascaded layers

L ∈ {2, 3, 4} and hidden representation H ∈ {25, 26, 27}. The

Inception model has been evaluated with different stacks of

Inception modules L ∈ {1, 2, 3, 4} and hidden representations

H ∈ {25, 26, 27}. The MSResNet model hidden representations

were selected within H ∈ {25, 26, 27, 28, 29}. The kernel size

and the hidden representations for the TempCNN were searched

over K ∈ {3, 5, 7} and H ∈ {25, 26, 27}, respectively. Lastly,

the Attention model was validated with Nhead ∈ {1, 2, . . ., 8}
by using L ∈ {1, 2, . . ., 8} stacked layers and H ∈ {25, 26, 27}
hidden representations. Please note that no extensive tuning of

the hyperparameters has been performed, since the goal of the

proposed benchmark comparison is to assess the quality of the

proposed dataset.

Table III reports the experimental results obtained per method.

As expected the most critical classes are the “permanent planta-

tions” and “other crops” regardless of the deep learning model.

This is due to the semantic aggregation of these classes, which

include several types of cultivations. The results obtained show

that the considered benchmark methods achieve similar perfor-

mances, with the OA% ranging from a minimum of 81.71%

(TempCNN) to a maximum of 85.39% (weighted LSTM). In

general, the time-convolution models performed a little worst

compared to the LSTM and the attention models. Hence, Incep-

tionTime, MSResNet, and TempCNN obtain an OA of 81.90%,

81.80%, 81.71%, respectively, compared to of 85.39%, 83.44%,

and 84.44% of the weighted LSTM, LSTM, and the Transformer

models, respectively. As expected the weighted LSTM obtains

better results with respect to the standard LSTM due to its

capability of better handling the imbalanced problem. Moreover,

this method is the one that achieve the highest median F1% equal

to 84.08%. These results point out the main properties of the

TimeSen2Crop dataset and highlights the related classification

difficulties.

V. PROPOSED TIMESEN2CROP CHALLENGE

In this section, we focus on one of the main challenge of

real-world crop type mapping: exploit trained deep learning

models to classify a TS of Sentinel 2 images acquired in a

different agronomic year. This is a particular problem of domain

adaptation. In particular, we focus the attention on the TSs

acquired in an agronomic year after the one considered in the

dataset, i.e., on images acquired between September 2018 and

August 2019. For making it possible the evaluation of the perfor-

mance of a given method under this critical condition, a testSet

is distributed that has been acquired over the 33UVP Sentinel 2

tile. Similar to the original testSet of the TimeSen2Crop dataset,

the images included in the TS present a cloud coverage smaller

than 80%. Also in this case, information about shadow, clouds,

and snow are reported for each labeled samples. This challenge

opens to the possibility to test the capability of adapting different

multitemporal deep learning models to different year acquisi-

tion (domain adaptation) assuming that no reference data are

available for the new year. Note that one of the most important

problems from the operational view point is the production of

consistent land-cover maps for multiple years. To overcome

this problem, sequential cascade classification methods [27],
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[28] and compounds methods [29] have been proposed in the

literature. They typically rely the temporal correlation between

TSs acquired over the same area in the different years. Moreover,

large effort has been devoted in the literature for adapting

pretrained deep learning models to different datasets sharing

similar properties considering fine-tuning strategies [30], [31].

However, also in this case, crop type mapping represents a

peculiar classification task since most of the crops change from

one year to the other because of the crop rotation practice.

Moreover, no comprehensive analyses have been carried out to

solve the problem of generating multiple years crop type maps.

VI. CONCLUSION

This article presents a multitemporal benchmark dataset based

on TSs of atmospherically corrected Sentinel 2 images for large-

scale crop type mapping called TimeSen2Crop. The dataset

presents a detailed classification scheme made up of 16 crop

categories including ∼1 million of labeled units collected in

the Austrian country, which extends for 83.879 km2. For each

labeled sample, the cloud, shadow, and snow information are

provided. The benchmark is provided divided into three spatially

disjoint sets for training the models (trainSet), optimizing the

parameters (validationSet), and evaluating the performances

(testSet). Several benchmarking algorithms and experimental

results have been evaluated and compared on the proposed

dataset. The experimental results point out the properties of the

dataset and provide an overview of its classification difficul-

ties. Moreover, TimeSen2Crop proposes a domain adaptation

challenge to address one of the main critical issues of crop

type mapping, which is the need of frequently update the maps

due to the crop rotation practice. TimeSen2Crop is publicly

available to allow the community to develop advanced methods

for crop type mapping at large scale. The dataset can be found

at TimeSen2Crop2.
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