
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. IS. NO. 7, JULY 198Y

Timestamp-Based Orphan Elimination
MAURICE P. HERLIHY, MEMBER, IEEE, AND MARTIN S . McKENDRY

Abstract-An orphan in a distributed transaction system is an activ-
ity executing on behalf of an aborted transaction. Orphans are unde-
sirable because they waste system resources and because they may ob-
serve inconsistent data. This paper proposes a new method for
managing orphans created by crashes and by aborts. The method en-
sures that orphans are detected and eliminated in a timely manner,
and it prevents them from observing inconsistent states. A major ad-
vantage of this method is simplicity: it is easy to understand, to imple-
ment, and to prove correct. An “eager” version of this method uses
approximately synchronized real-time clocks to ensure that orphans
are eliminated within a fixed duration, and a “lazy” version uses log-
ical clocks to ensure that orphans are eventually eliminated as infor-
mation propagates through the system. The method is fail-safe: unsyn-
chronized clocks and lost messages may affect performance, but they
cannot produce inconsistencies or protect orphans from eventual elim-
ination.

Index Terms-Distributed systems, orphans, serializahility, trans-
actions.

I . INTRODUCTION
distributed system consists of multiple computers A(called sites) that communicate through a network. A

distributed program is one whose components reside and
execute at multiple sites in a distributed system. The
physical components of a distributed system can fail in-
dependently: sites can crash, and communication links can
be interrupted. Nonetheless, the data managed by a dis-
tributed program may be subject to consistency con-
straints that must be preserved in the presence of failures
and concurrency. Such constraints can apply not only to
individual pieces of data, but also to distributed sets of
data. For example, a distriuted banking system might be
subject to the constraint that the books balance: money is
neither created nor destroyed, only transferred from one
ledger to another. A widely accepted approach to ensuring
consistency is to make the activities that manage the data
atomic. Atomicity encompasses two properties: serializ-
ability and recoverability. Serializability [171 means that
the execution of one activity never appears to overlap (or
contain) the execution of another, while recoverability
means that the overall effect of an activity is all-or-noth-

Manuscript received June 30. 1986; revised February 13, 1989. This
work was supported in part by the Defense Advanced Research Projects
Agency (DOD). ARPA Order No. 3597. monitored by the Air Force
Avionics Laboratory under Contract F33615-81-K-1539. and in part by the
United States Air Force Rome Air Development Center under Contract
F30602-84-(-0063 and the U . S . Naval Ocean Systems Center under Con-
tract N66001-83-C-0305.

M. P. Herlihy wa\ with the Department ot’Computer Science. Carnegie-
Mellon University. Pittsburgh. PA 15213. He is now with DEC Cambridge
Research Center. One Kendall Square. Cambridge. MA 02 139.

M. S. McKendry is with FileNet Corporation, 3565 Harbor Blvd., Costa
Mesa. CA 92626.

IEEE Log Number 8928283.

ing: it either succeeds completely, or it has no effect.
Atomic activities are called transactions.

Well-known techniques such as two-phase locking [31,
1151 and commit protocols 161, [21] ensure atomicity for
committed transactions. Nevertheless, these techniques
make few guarantees about orphans, whi-ch are activities
executing on behalf of aborted transactions. Orphans may
be created by site crashes, or, in a nested transaction sys-
tem 1151, 1191, when a transaction unilaterally aborts a
nested subtransaction. Orphans are undesirable because
they waste resources: not only do they consume processor
cycles, they can introduce spurious delays and deadlocks
by holding locks needed by nonorphans.

Orphans are also undesirable because they can observe
inconsistent data. For example, in a system based on two-
phase locking, a site crash and recovery may release a
transaction’s locks before that transaction has finished ac-
quiring locks at other sites, an inadvertent violation of the
two-phase locking discipline. Such inconsistencies may
be of little concern in conventional database systems,
where a transaction does not interact with the outside
world until it commits. In a general-purpose distributed
system, however, such inconsistencies may be more prob-
lematic. For example, the Argus system [lo], 1261 sup-
ports a methodology in which user-defined atomic data
types are implemented by a mixture of atomic and non-
atomic data types at a lower level. In the absence of an
orphan management scheme, the implementor of such a
type must take care that transient inconsistencies in the
atomic components of the implementation do not produce
permament inconsistencies in the nonatomic components.
Orphans may also complicate interactive programs. For
example, it is acceptable for an automatic teller machine
to inform a customer that a requested transfer or with-
drawal has not been performed, but it may not be accept-
able to display nonsensical account balances before an-
nouncing the abort. Finally, debugging may be more
difficult since orphan-induced inconsistencies may be in-
distinguishable from logical errors.

This paper proposes a new method to detect and elim-
inate orphans. Our method ensures that orphans are de-
tected and eliminated in a timely manner, and it prevents
orphans from observing inconsistencies. The method em-
ploys timestamps generated at each site. Timestamps may
be generated by approximately synchronized real-time
clocks 1131, or by a system of logical clocks 181. The for-
mer yields an “eager” scheme in which orphans are elim-
inated within a fixed duration, while the latter yields a
“lazy” scheme in which orphans are eventually elimi-

0098-5589/89/0700-0825$01 .OO O 1989 IEEE

826 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. 7. J U L Y I Y X Y

nated as information propagates through the system. A
major advantage of the method is simplicity: it is easy to
understand, to implement, and to prove correct. The
method is fail-safe: unsynchronized clocks and lost mes-
sages may affect performance, but they cannot protect or-
phans from eventual elimination, nor can they produce
inconsistencies.

This paper is organized as follows. Section I1 summa-
rizes some related work. Section I11 describes the “ea-
ger” version of our method, and Section IV describes the
“lazy” version. Section V presents correctness argu-
ments, and Section VI summarizes our results.

11. RELATED WORK

Several research projects are studying transactions as
the foundation for general-purpose distributed systems
(e.g., [2], [lo] , [14], [22], [23]). An implementation
based on methods proposed here is described by Kenky

Outside the transaction domain, the orphan elimination
problem was first identified by Nelson [161, and solutions
based on timeouts have been proposed by Lampson [9] and
by Rajdoot [18]. More recently, Walker [24] has pro-
posed a transaction-based orphan elimination scheme that
dynamically tracks dependencies among transactions.
Walker’s scheme requires optimizations based on
timeouts to keep the amount of information sent in mes-
sages to a manageable level. An orphan elimination
scheme based on Walker’s method has been implemented
as part of the Argus system [1 I]. Walker has shown that
a similar orphan elimination scheme proposed by Allchin
[I] contains subtle errors. Although our method is simpler
than the Argus method, it may occasionally force nonor-
phan transactions to abort.

Our formal model for nested transactions incorporates
work of Lynch [12] and Weihl [25], and our correctness
condition for orphan elimination is a special case of a more
general condition proposed by Goree [5] . A preliminary
version of the eager scheme has appeared elsewhere [20].
The method described here incorporates several improve-
ments; most notably it does not delay committing trans-
actions. A general formal model for orphan elimination
algorithms has been proposed by the first author, Lynch,
Merritt, and Weihl [4].

[71.

111. EAGER ORPHAN ELIMINATION

This section describes an orphan elimination method
based on a system of approximately synchronized real-
time clocks (e.g., [13]). An advantage of this scheme is
that i t places a real-time bound on orphan lifetimes, hence
it bounds the resources that can be consumed by orphans.
We first consider single-level transaction systems, and
then we extend our method to nested transactions. The
informal discussion assumes that synchronization is ac-
complished by two-phase locking [3], [151, although Sec-
tion V shows the method is applicable to any synchroni-
zation mechanism that preserves atomicity.

A . Overview
The basic containers for data are called objects. Each

object has a type, which defines a set of possible states
and a set of primitive operations that provide the (only)
means to create and manipulate objects of that type.
Transactions operate on objects through a sequence of op-
eration executions, each consisting of a paired invocation
and response. Each transaction originates at a unique
home site. A site emitting an invocation on behalf of a
transaction is known as a calling site; the recipient site is
a culled site. Similarly, an object issuing an invocation is
a calling object, and the target of an invocation is a culled
object. A transaction is said to have visited called and
calling objects and sites. When a calling object issues an
invocative, execution suspends within that object and
passes to the called object. Execution resumes at the call-
ing object when the response is issued by the called ob-
ject. Thus, a transaction is active at only one object at a
time.

Each object has a clock, which is used to generate
timestamps. Clocks in a distributed system are subject to
the following constraints:

1) Each object’s clock generates successively increas-
ing timestamps.

2) When a message is sent from one object to another,
the time at which it is received (by the receiver’s clock)
is later than the time at which it was sent (by the sender’s
clock).

Property 2 is readily achieved by including the sender’s
current time with each message. In this section, we as-
sume that the objects at a site share a single real-time
clock, and that clocks at different sites are synchronized
using methods such as those of [131. We emphasize, how-
ever, that as long as clock properties l and 2 are satisfied,
unsynchronized clocks cannot protect orphans from even-
tual elimination or produce inconsistencies, although per-
formance may suffer.

When a transaction acquires a lock for an object, it is
assigned a quiesce time and a later release time. The
quiesce time controls how long a transaction may remain
active. When the object’s local clock indicates that the
transaction’s quiesce time has passed, that transaction may
no longer execute operations at that object, although it
may still commit or abort. The release time controls how
soon a transaction may abort. If the transaction aborts, its
locks cannot be released until its release time has passed.
If the transaction is not already prepared to commit when
its release time arrives, then it can be aborted unilaterally
at that object, and all information about the transaction
may be discarded. A transaction that commits may release
its locks immediately.

Let Quiesce(x, A) and Release(x, A) denote the quiesce
and release times for transaction A at object x. Let
First(Release(A)) denote the earliest release time for A at
any object, and let Last(Quiesce(A)) denote its latest
quiesce time. A transaction’s quiesce and release times
are subject to the following terminurion invariant:

Last(Quiesce(A)) 5 First(Release(A)).

H E R L I H Y A N D Mc K E N D R Y . T I M E S T A M P - B A S E D O R P H A N EI.IMINATION 827

By the time a transaction’s release time arrives at any ob-
ject, all activity on its behalf has quiesced. For locking
protocols, this invariant eliminates potential inconsisten-
cies by ensuring that all transactions, even orphans, sat-
isfy the two-phase discipline: no transaction acquires a
lock once it has released a lock.

The invariant is preserved in the presence of arbitrary
message delays simply by including each transaction’s lo-
cal quiesce and release times with each operation invo-
cation it sends to another object. The recipient refuses any
message from a transaction whose quiesce time precedes
the object’s local time.

A simple way to preserve the termination invariant
across site crashes is to keep locks and release times in
nonvolatile storage, perhaps in a small “stable cache.” If
this technique is impractical, an alternative technique is
to set a system-wide maximum value for the quiesce in-
terval, the duration between a site’s current clock value
and the quiesce time for any transaction (see Fig. 1).
When a site recovers, i t reinitializes its clock, and refuses
all operation invocations until the maximum quiesce in-
terval has elapsed at every site in the system, ensuring
that all transactions aborted by the crash have quiesced.
This method assumes the rate of clock drift can be
bounded. Recovery can be speeded up if sites periodically
checkpoint their clock values to stable storage.

B. The Refresh Protocol
A transaction that is not an orphan will be aborted un-

necessarily if its quiesce time arrives at a site before its
activity there completes. To avoid this difficulty, a refresh
protocol is periodically undertaken to advance each trans-
action’s quiesce and release times. The interval between
a site’s current time and the quiesce time for any trans-
action is the quiesce interval, and the interval between the
quiesce and release times is the release interval. The in-
terval between refresh protocols is the refresh interval.
These terms are illustrated in Fig. 1 . Unnecessary aborts
will be unlikely if clocks are closely synchronized and if
the refresh interval is significantly less than half the
quiesce interval.

The refresh protocol is a two-phase protocol similar to
the two-phase commit protocol [6]. In the first phase, the
home site attempts to advance the transaction’s release
time at all sites it has visited. If the first phase is success-
ful, the home site attempts to advance the transaction’s
quiesce time at all sites visited. Two phases are necessary
to ensure that the times are adjusted without violating the
termination invariant. If a transaction is an orphan, it will
be unable to complete the refresh protocol, thus its fixed
quiesce time will bound its active lifetime. The remainder
of this section describes the bookkeeping necessary to as-
certain whether the first phase has succeeded.

Each site maintains two sets on behalf of each trans-
action. When a transaction executing at a site makes a call
to an object, the called object is entered in the transac-
tion’s outgoing set. When a call arrives for an object at
that site, the called object is entered in the transaction’s

incoming set.’ A transaction’s home site is in charge of
refreshing its quiesce and release times. The home site
first sends a phase I refresh message containing the new
release time to sites visited by the transaction. Each site
updates the transaction’s local release time, and responds
to the home site with a phase 1 response message con-
taining the local incoming and outgoing sets. The home
site builds complete incoming and outgoing sets by merg-
ing all received incoming and all outgoing sets, respec-
tively. Phase 1 is successful if the union of all sites’ in-
coming sets equals the union of all sites’ outgoing sets.
This set is called the transaction’s visit list closure.

If phase 1 completes successfully, the transaction’s re-
lease time has been advanced at all sites. In phase 2, the
quiesce time is advanced. The home site transmits aphase
2 refresh message advising visited sites of the new quiesce
time. The termination invariant is preserved at each point
during the protocol. Although responses to the phase 2
messages are not needed for correctness, they can reduce
the likelihood of aborts caused by lost messages.

What if there are invocations in progress during the re-
fresh protocol? There are two cases to consider. First, if
an invocation occurs immediately before the transmission
of a phase one refresh, the called object might appear at
the calling site’s outgoing set, but not (yet) in the called
site’s incoming set. In this situation, the home site can
simply retry phase 1. Retransmission intervals should be
chosen to minimize the risk of starvation in this case. Sec-
ond, a site issuing a invocation after phase 1 but before
phase 2 will use the old quiesce time but the new release
time. The called site may retain the old quiesce time,
which, although it does not violate the termination in-
variant, may cause the transaction to abort unnecessarily.
This difficulty can be addressed by choosing a refresh in-
terval substantially less than half of the quiesce interval,
ensuring that any such site will be refreshed again before
its quiesce time. In practice, the refresh and quiesce in-
tervals may have to be tuned to incorporate such factors
as lost refresh messages and the retransmission rate.

C. The Termination Protocol
When a transaction is aborted, its locks cannot be re-

leased until its release time has passed. If the quiesce in-
terval is acceptably small, the aborted transaction’s locks
will eventually be released as its release times elapse. To
hasten lock release, a termination protocol can be used to
adjust the release time without violating the termination

‘An execution within a single site is regarded as both outgoing and in-
coming. but optimizations discussed below eliminate the need to maintain
this data.

828 IEEE TRANSACTIONS ON SOFTWARE ENGINtFRING. V O L 15. SO 7. JU1.Y 19X‘)

invariant. The termination protocol is similar to the re-
fresh protocol. The first phase attempts to move the
quiesce time back to the present. If the visit list closure
is successfully formed, indicating that all visited sites have
moved the quiesce time, the second phase can move the
release time back to the present.

D. Nested Transactions
Instead of treating transactions as monolithic entities,

it is often useful to provide hierarchically structured nested
transactions or subtransactions [151, [191. A hierarchical
transaction structure provides several benefits. Concur-
rency is enhanced by the ability to create parallel subtrans-
actions. Fault-tolerance is facilitated and recovery is sim-
plified because a subtransaction can abort without abort-
ing its parent, an important consideration in distributed
systems subject to faults. A subtransaction’s commit is
dependent on that of its parent; aborting the parent will
undo the child’s effects. A transaction’s effects become
permanent only when it commits at the top level. A trans-
action can commit only when all of its subtransactions
have either committed or aborted.

We use standard tree terminology (parent, child, ances-
tor, descendant) when discussing nested transactions. (A
transaction is considered its own ancestor or descendant.)
Each nested subtransaction is given a quiesce and release
time at each object it has visited. The quiesce time con-
trols how long the subtransaction can execute operations
at the object, and the release time controls when the sub-
transaction abort becomes visible to its parent. Quiesce
and release times are subject to the following generalized
termination invariant. If A is an ancestor of B:

Last(Quiesce(B)) I First(Release(A))

By the time a transaction’s release time arrives at any ob-
ject, all activity on behalf of its descendants has quiesced.

The generalized termination invariant can be main-
tained by controlling descendants’ refreshes from the par-
ent’s home site. Each transaction carries a descendant
count as part of its state on all invocations and responses.
The descendant count, in combination with the transac-
tion’s identity, is used to generate names for subtransac-
tions. Since a transaction is active at only one site at a
time, such names are unique. Initially, a nested transac-
tion is given the same quiesce and release times as its
parent, thus observing the termination invariant. During
subsequent refresh protocols, the parent includes notifi-
cation of the descendant’s existence, along with the par-
ent’s incoming and outgoing sets. In the absence of aborts,
and until it commits, the descendant is included in re-
freshes of its parent’s quiesce and release times.

A transaction cannot abort a subtransaction until the lat-
ter’s release time has elapsed at some object. Rather than
waiting, the parent may undertake a termination protocol
to move the subtransaction’s quiesce and release times to
the present. Note that the termination invariant permits a
parent’s quiesce and release times to be refreshed even if

its descendants are inaccessible. When a site recovers
from a crash, the techniques described above must be used
to retain locks until the release times elapse for the top-
level aborted transactions.

Eager orphan elimination imposes a negligible cost for
short, successful transactions. Long transactions incur the
cost of refresh protocols, and aborted transactions incur
the cost of delays. The choice of the refresh interval trades
one cost against the other: a long duration reduces the cost
of refreshing long transactions, while a short duration
provides faster orphan elimination. The choice should take
into account the expected distribution of transaction
lengths, the frequency of aborts, and the cost of delay.
Eager orphan elimination works best for systems in which
transaction lengths are predictable and aborts are infre-
quent.

IV. LAZY ORPHAN ELIMINATION
This section introduces a modified version of the pre-

vious section’s scheme. Instead of using the clock to drive
lock acquisition and release, we use lock acquisition and
release to drive the clock. Real-time clocks are replaced
by logical clocks [8]. Logical clocks are counters asso-
ciated with each object (or each site). Whenever a trans-
action visiting an object requests a timestamp, the counter
is incremented, and the new value is returned. Whenever
one object sends a message to another, the sender includes
its current logical time, and the recipient advances its own
logical clock beyond the observed value. A system of log-
ical clocks clearly satisfies properties 1 and 2 stated above,
but logical timestamps may be otherwise unrelated to
physical time. Logical timestamps provide a simple and
efficient technique for extending the natural partial order
of events in a distributed system to an arbitrary total or-
der.

As before, each transaction has a quiesce and release
time at each object, satisfying the same termination in-
variant, but now these times are logical clock values, not
real-time values. Lock acquisition and release are subject
to the following rules. An object will refuse lock requests
from any transaction whose quiesce time is less than the
object’s current clock value. When a transaction encoun-
ters such an object, however, it may attempt a refresh pro-
tocol to advance its quiesce time beyond the object’s cur-
rent clock value. When an aborted transaction releases its
locks at an object, that object’s clock is advanced beyond
the transaction’s release time.

The termination invariant is maintained across crashes
by techniques analogous to those used for the eager
scheme. For example, each object may periodically re-
cord its logical clock value on stable storage, maintaining
a maximum difference, say n , between the current logical
time and the latest release time. Upon recovery, the object
adds n to its recorded timestamp, and immediately re-
sumes operation.

The lazy scheme has a number of attractive features.
Since refresh protocols are “demand-driven” rather than
“time-driven,” they are executed only when conflicts

arise, instead of at regular intervals. It is never necessary
to wait for a transaction’s release time to elapse, either
for crash recovery or to abort a subtransaction, because
an object’s logical clock can be advanced instanta-
neously. Instead, a different kind of cost is incurred: ad-
ditional refresh protocols may be triggered as clock ad-
vances propagate through the system. Whether the eager
scheme’s combination of periodic refresh protocols with
delays is more cost-effective than the lazy scheme’s de-
mand-driven refresh protocols without delays depends on
the expected frequency of aborts and the relative costs of
delay and of message traffic. Perhaps the principal dis-
advantage of the lazy scheme is that it provides no real-
time guarantees about orphan elimination. An orphan will
continue to execute until it attempts to acquire a lock at
an object whose logical clock exceeds the orphan’s
quiesce time.

V . CORRECTNESS ARGUMENTS

So far, our discussion has assumed a transaction system
based on two-phase locking. The restrictions imposed by
our method can be generalized to apply to arbitrary con-
currency control mechanisms (e.g., timestamp-based sys-
tems) as follows: no transaction may execute an operation
at an object after its quiesce time there has elapsed, and
no transaction may abort at an object before its release
time there has elapsed.

This section presents formal correctness arguments for
the orphan elimination method. The correctness argu-
ments are valid for arbitrary data types (not just files), for
arbitrary concurrency control methods (not just two-phase
locking). One proof suffices for both the lazy and the ea-
ger schemes, since clock properties 1 and 2 of Section
I11 are the only assumptions needed about clock synchro-
nization.

A. Objects and Transactions

Let OBJECT be a universal set of objects. Each object
has a set of primitive operations that provide the (only)
means to create and manipulate objects of that type. For
example, a File might provide Read and Write operations,
and a FIFO Queue might provide enqueue and dequeue
operations. An operation execution is a paired invocation
and response.

Let TRANS be a universal set of atomic transactions.
Transactions have an a priori tree structure, with a distin-
guished transaction U as the root. For a transaction A dis-
tinct from U , let parent(A) denote A’s unique parent,
anc(A) and desc(A) denote A’s ancestors and descendants
(which include A) , proper-anc(A) and proper-desc(A) de-
note A’s proper ancestors and descendants (which do not
include A) , and /ca(A, B) denote the least common ances-
tor of A and B. Let siblings denote the set { (A , B) E
TRANS’ I parent(A) = parent(B) } . Let seq G siblings be
the partial order representing sequential dependency; if
(A , B) E seq, then A is constrained to run before B .

B. Serial and Concurrent Specifications

A system is a set of objects. A serial history is a se-
quence of pairs of the form [x e] , where x is an object and
e is an operation execution. A serial specijcation for a
system is a set of legal serial histories. A system’s serial
specification characterizes its behavior in the absence of
failures and concurrency. For example, the serial speci-
fication for a system including a FIFO queue would in-
clude all and only histories in which items are enqueued
and dequeued at the queue in FIFO order.

A concurrent history is a sequence of triples of the
form: [x e A] , where x is an object, e is either an opera-
tion execution, begin, commit, or abort, and A is a trans-
action. When a transaction commits at an object, its
changes there become visible (e.g., through lock release).
When a transaction aborts at an object, its effects there
are discarded (e.g., through roll-back and lock release).
Abort events encompass both explicit aborts, and aborts
that occur as a side-effect of site crash and recovery. For
brevity, a transaction commits (aborts) if it executes a
commit (abort) at any object.

A concurrent specification for a system is a set of legal
concurrent histories. A system’s concurrent specification
characterizes its behavior in the presence of failures and
concurrency. A concurrent history is well-informed if it
satisfies the following properties:

No transaction executes a begin until its parent has
done so.

Operation executions are associated only with leaf
transactions.

No transaction both commits and aborts.
If A precedes B in seg, then A commits before B ex-

ecutes any operations.
Each transaction commits at most once at each ob-

ject, and it does not execute any events there after it has
commited.

No transaction commits until all of its children have
either committed or aborted.

Henceforth, all concurrent histories are assumed to be
well-formed. Well-formedness places no constraints on
the behavior of orphans; once a transaction has aborted,
it may do anything except commit.

Let h be a concurrent history, and let Commit(h) be the
set of transactions that have committed in h. A transaction
B has committed to A in h if anc(B) fl proper-desc(lca(A,
B)) E Commit(h). Let View(h, A) denote the subhistory
of h containing all events of transactions commited with
respect to A. Let Perm(h) be View(h, U) , the subhistory
of transactions committed to the top level.

We are now ready to define the basic correctness prop-
erty for our orphan elimination method. A partial order
>> L siblings is linearizing if it is compatible with seq
and it totally orders all siblings in TRANS. A linearizing
partial order thus induces a total order (also denoted by
>>) on the operation executions of the leaf transactions.
A concurrent history is serializable if there exists a >>
such that reordering leaf transactions’ object-operation

830 IEEE rKANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO 7. JLlLY I Y X Y

pairs in the order >> yields a legal serial history. A con-
current history h is atomic if perm(h) is serializable. In-
formally, a concurrent history h is internally serializable
if each transaction has a serializable view for each oper-
ation execution. More precisely,

1) The empty history A is internally serializable.
2) h [x e A] is internally serializable if h is internally

serializable and View(h, A) . [x e A] is serializable.
Internal serializability does not require that each trans-

action’s view remain serializable after its last event has
completed.

A concurrent specification is atomic if each history in
the specification is atomic. To model schedulers that have
no advance knowledge of transactions, we assume that an
active transaction can choose to commit whenever the re-
sult is well-formed. A concurrent specification S is on-
line atomic if it is atomic, and whenever h is in S and h ’
= h . [x commit A] is well-formed, then h ‘ is also in S .

C. Proof of Correctness

A distributed system is modeled as an automaton A that
accepts an on-line atomic concurrent specification S . Our
orphan management scheme is modeled as a technique for
embedding any such A in a derived automaton A ’ that ac-
cepts only the internally serializable histories in S .

An automaton is a tuple < Q, qo, E , 6 > , where Q is a
set of states, qo is the initial state, E is a set of object-
event-transaction triples, and 6 C Q X E x Q is a tran-
sition relation. It is convenient to extend the transition
relation to sets of states:

S (0 , [x e ~]) = 0

6 (X , [x e A I) = UqEx 6 (q , [x e A])
and to sequences of events:

6 (X , A) = X

[x e A]) = 6 (6 (~ , h) , [x e A]) . 6 (~ , h
A history h is accepted by an automaton if 6(qo , h) f
0 .

Let TIMESTAMP be a totally ordered domain of time-
stamps. Given an automaton A = <Q, qo, E , 6 > that
accepts an on-line atomic concurrent specification S , we
construct the automaton A ’ = <e’, 46, E , 6 ’ > as fol-
lows. An element of Q ’ is a tuple <q, Clock, Quiesce,
Release > , where q E Q, Clock is simply a timestamp rep-
resenting the current time, either real or logical, and
Quiesce and Release model each object’s quiesce and re-
lease times for each transaction:

Quiesce: OBJECT x TRANS + TIMESTAMP

Release: OBJECT x TRANS + TIMESTAMP

Quiesce and Release are subject to the termination inva-
riant:

If A E anc(B) and x,y E OBJECT then Quiesce(x, B) I

Release(y , A) (1)

The first component of the new initial state q; is qo, Clock
has an arbitrary initial value, and Quiesce and Release
have arbitrary initial values satisfying Property 1.

The new transition relation 6’ is defined as follows.
6’(< q , Clock, Quiesce, Release > , [x e A]) is undefined
if either:

1) The event e is an operation execution and Quiesce(x,
A) < Clock, or

2) The event e is abort and Release(x, A) > Clock.
These conditions capture the constraints that a trans-

action cannot execute an operation at an object if its
quiesce time there has passed, and it cannot abort until its
release time there has passed.

Otherwise, the transition relation’s value is the set
(< q ’, Clock ’, Quiesce’ , Release’ >) such that:

1) q’ E 6(q [x e A I) ,
2) Clock’ > Clock, and
3) Quiesce’ and Release’ satisfy the termination inva-

riant, and their values are unchanged for aborted trans-
actions.

The first condition captures the notion that accepted
events have their usual effect on objects’ states, the sec-
ond that the clock’s value is increasing, and the third
models refresh and termination protocols for active trans-
actions.

We use the following lemma.
Lemma 1: If A ’ has accepted the event [x abort A] , then

Release(x, A) 5 Clock.
Proof By the definition of 6’, the property holds

when the automaton accepts [x abort A] . Moreover, the
property must remain invariant because Clock may ad-
vance, while Release(x, A) may not (because A is
aborted).

Let S ’ denote the histories accepted by the automaton
A ’ . S ’ is clearly a subset of S . It remains to show that:

Theorem 2: All concurrent histories in S ’ are internally
serializable.

Pro08 The proof is by induction on the length of the
accepted history. Clearly, the property holds for the empty
history A . Assume A ’ has accepted the internally serial-
izability history h , and then accepts a new event [x e A] .
Let h ’ = h * [x e A] . If e is commit or abort, then h’ is
internally serializable.

Suppose e is an operation execution. We first argue by
contradiction that no ancestor of A has aborbed in h . Sup-
pose, instead that [y abort B] appears in h , where B is an
ancestor of A . Lemma 1 implies that Release(y, B) I
Clock. The termination invariant, in turn, implies that
Quiesce(x, A) I Release(y, B) and hence that Quiesce(x,
A) I Clock. The definition of 6’, however, states that
[x e A] may be accepted only if Clock < Quiesce(x, A) ,
a contradiction.

Since A has no aborted ancestors, construct h” by com-
miting A’s ancestors in leaf-to-root order up to U , abort-
ing all other active transactions. Because S is on-line
atomic, h “ is also in S , and therefore Perm(h”) is serial-
izable, and so is View(h’, A) .

H b R L l H Y A N D M C KENDKY. T I M E S T A M P - B A S h D O R P H A N t L I M I N A T I O N 83 1

VI. CONCLUSIONS
This paper has proposed a new method for managing

orphans in a distributed transaction system. This method
ensures that orphans cannot observe inconsistencies, and
that orphans are eventually eliminated. The “eager” ver-
sion of this method uses synchronized real-time clocks to
ensure that orphans are eliminated within a fixed duration,
and the “lazy” version uses logical clocks to ensure that
orphans are eventually eliminated as information propa-
gates through the system. Transactions are assigned
timeouts at different sites. These timeouts are related by
a global invariant, and they may be adjusted by simple
two-phase protocols. The principal advantage of this
method is simplicity: it is easy to understand, to imple-
ment, and it can be proved correct. Although the method
is informally described in terms of two-phase locking, the
formal argument shows it is applicable to any concurrency
control method that preserves atomicity.

REFERENCES
[I] J. Allchin, “An architecture for reliable decentralized systems,”

Georgia Inst. Technol., Tech. Rep. GIT-ICS-83/23, 1983.
121 K. P. Birman, “Replication and fault-tolerance in the ISIS system,”

in Proc. 10th Symp. Operating Systems Principles, Dec. 1985: also
Tech. Rep. TR 85-668, Dep. Comput. Sci., Cornell Univ., Ithaca,
NY.

[3] K. P. Eswaran, J . N. Gray, R. A. Lorie, and I. L. Traiger, “The
notion of consistency and predicate locks in a database system,”
Commun. ACM, vol. 19, no. 1 1 , pp. 624-633, Nov. 1976.

[4] M. P. Herlihy, N. A. Lynch, M. Merritt, and W. E. Weihl, “On the
correctness of orphan elimination algorithms,” ACM, to be pub-
lished; abbreviated version in 17th FTCS.

[SI J . Goree, “Internal consistency of a distributed transaction system
with orphan detection,” Lab. Comput. Sci.. Massachusetts Inst.
Technol., Tech. Rep. TR-286, Jan. 1983.

161 J . N . Gray. Notes 0 1 1 Database Operuring Systems (Lecture Notes i n
Computer Science 60) . Berlin: Springer-Verlag. 1978. pp. 393-481.

171 G . G . Kenky, “An action management system for a distributed op-
erating system,” Master’s thesis, Georgia Inst. Technol., Dec., 1985.

[8] L. Lamport, “Time, clocks, and the ordering of events in a distrib-
uted system,” Commun. ACM, vol. 21, no. 7, pp. 558-565, July
1978.

[Y] B. Lampson, Remote Procedure Calls (Lecture Notes in Computer
Science 105).

1 IO] B. Liskov and R. Scheifler, “Guardians and actions: Linguistic sup-
port for robust. distributed programs,” ACM Trans. Program. Lung.
Syst., vol. 5 , no. 3, pp. 381-404, July 1983.

[I l l B. H. Liskov, R. Scheifler, E. Walker, and W. E. Weihl, “Orphan
detection,” in 17th Symp. Fault-Tolerant Computer Systems (FTCS),

[I21 N. A. Lynch, “Concurrency control for resilient nested transac-
tions,” in Proc. 2nd ACM Svmp. Principles of Database Systems,
Mar. 1983; revised version to appear in Advances in Computing Re-
search.

1131 K. Marzullo and S. Owicki, “Maintaining time in a distributed sys-
tem,” in Proc. 2nd ACM Symp. Principles of Distributed Computing,
Aug. 1983, pp. 295-305.

1141 M. S. McKendry, “Clouds: A fault-tolerant distributed operating
system,” IEEE Tech. Com. Distributed Processing Ne\vslett.. vol. 2 ,
no. 6, June 1984.

[I51 J. E. B. Moss, “Nested transactions: An approach to reliable distrib-
uted computing,” Lab. Comput. Sci., Massachusetts Inst. Technol.,
Tech. Rep. MITILCSITR-260, Apr. 1981.

[161 B. Nelson, “Remote procedure call,” Xerox Palo Alto Research
Center, Tech. Rep. CSL-79-3, 1981.

1171 C . H. Papadimitriou, “The serializability of concurrent database up-
dates,” J . ACM, vol. 26, no. 4 , pp. 631-653, Oct. 1979.

Berlin: Springer-Verlag, 1981, pp. 365-370.

July 1987, pp. 2-7.

[181 Rajdoot, “A remote procedure call mechanism supporting orphan de-
tection and killing,” Univ. Newcastle upon Tyne, Tech. Rep. TR
200, Apr. 1985.

[191 D. P. Reed, “lmplementing atomic actions on decentralized data,”
ACM Trans. Comput. Syst., vol. I , no. 1, pp. 3-23, Feb. 1983.

[20] M. S . McKendry and M. P. Herlihy. “Time-driven orphan elimina-
tion, ” in Proc. Fifrh Symp. Reliability in Distributed Softuure uncl
Database Systems, Jan. 1986; also available as Tech. Rep. CMU-CS-
85- 138.

(211 M. D. Skeen, “Crash recovery in a distributed database system,”
Ph.D. dissertation, Univ. California, Berkeley, May 1982.

[22] A. 2. Spector, D. S . Daniels, D. J . Ducharnp, J . L. Eppinger, and
R. Pausch, “Distributed transactions for reliable systems,” in Proc.
Tenth Symp. Operating System Principles, ACM, Dec. 1985, pp. 127-
146; also available in Concurrency Control and Reliabili t~ in Dis-
tributed Systems. New York: Van Nostrand Reinhold, and as Tech.
Rep. CMU-CS-85-117, Carnegie-Mellon Univ., Sept. 1985.

[23] A. Z. Spector, J. J . Bloch, D. S . Daniels, R. P. Draves, D. Du-
champ, J. L. Eppinger, S . G . Menees, and D. S . Thompson, “The
Camelot project,” Database Eng . , vol. 9 , no. 4 , Dec. 1986; also
available as Tech. Rep. CMU-CS-86-166, Carnegie-Mellon Univ..
Nov. 1986.

[24] E. F . Walker, “Orphan detection in the Argus system.” Massachu-
setts Inst. Technol., Lab. Comput. Sci.. Tech. Rep. TR-326. June
1984.

1251 W. E. Weihl, “Specification and implementation of atomic data
types,” Massachusetts Inst. Technol., Lab. Comput. Sci., Tech. Rep.
TR-314. Mar. 1984.

1261 W. E. Weihl and B. H. Liskov, ”lmplementation of resilient, atomic
data types,” ACM Trans. Program. Lung. Syst., vol. 7. no. 2, pp.
244-270, Apr. 1985.

Maurice P. Herlihy (S’80-M’82) received the
A.M. degree in mathematics from Harvard Uni-
versity, Cambridge. MA, and the M.S. and the
Ph.D. degrees in computer science from Masaa-
chusetts lnstitute of Technology. Cambridge.

In 1984 he joined the Department of Computer
Science at Carnegie-Mellon University in Pitts-
burgh, PA, where he is now an Assistant Profcs-
sor. His research interests include algorithms for
replication and concurrency control. as well a\
formal and informal aspects of programming lan-

guage support for reliable distributed computation.

Martin S. McKendry received the B.Sc. (Hons.) degree from Victoria
University, Wellington, New Zealand, in 1977, and the Ph.D. degree in
computer science from the University of lllinois at Urbana-Champaign in
1981.

From 1982 until 1984 he was an Assistant Professor at Georgia lnstitute
of Technology. where he led the Clouds project researching reliable dis-
tributed operating systems. During 1985, he was a Visiting Assistant Pro-
fessor at Carnegie-Mellon University. The work in this paper was per-
formed during this period. He is currently Principal Consulting Engineer
at FileNet corporation. His primary technical responsibility involves a dia-
tributed operating system and file system to support document image pro-
cessing. He also works in other areas of architecture for image processing.

8 3 2 IEEE TKANSACTIONS O N SOFTWAKE ENGINEERING. VOL 15. NO 7. J U L Y I Y X Y

The Effect of Execution Policies on the Semantics
and Analysis of Stochastic Petri Nets

MARC0 AJMONE MARSAN, SENIOR MEMBER, IEEE, GIANFRANCO BALBO, ANDREA BOBBIO,
GIOVANNI CHIOLA, GIANNI CONTE, MEMBER, IEEE, A N D ALDO CUMANI, MEMBER, IEEE

Abstruct-Petri nets in which random delays are associated with
atomic transitions are defined in a comprehensive framework that con-
tains most of the niodels recently proposed in the literature. The inclu-
sion into the model of generally distributed firing times requires to
specify the way in which the next transition to fire i s chosen, and how
the model keeps track of its past history; this set of specifications i s
called an execution policy. The paper discusses the impact that different
execution policies have on the semantics of the model, as well as the
characteristics of the stochastic process associated with each of these
policies. When the execution policy i s completely specified by the tran-
sition with the minimum delay (race policy) and the firing distributions
are of the phase type, an algorithm i s provided that automatically con-
verts the stochastic process into a continuous time homogeneous M a r -
kov chain. Finally, an execution policy based on the choice of the next
transition to fire independently of the associated delay (preselection
policy) i s introduced, and its semantics i s discussed together with pos-
sible implementation strategies.

Index Terms-Markov and semi-Markov processes, performance
evaluation, Petri nets, phase-type distributions, stochastic models,
stochastic Petri nets.

I . INTRODUCTION
ETRI nets (P N) [I]-[4] are becoming increasingly P popular as a powerful tool for the description and the

analysis of systems that exhibit concurrency, synchroniz-
ation, and conflicts. Although the basic Petri net model
includes no explicit notion of time, several researchers
have recently devoted their attention to augmented models
that include timing and that are therefore named timed
Petri nets [SI, [6].

Interpreting Petri nets as state/event models, time is
naturally associated with activities that induce state
changes, hence with the delays incurred before firing tran-
sitions. The choice of associating time with transitions is
the most frequent in the literature on timed Petri nets, al-
though other possibilities have been explored. Similarly,
a common assumption is that the net sojourns in a given
marking for a time that is related to the firing delay of the

Manuscript received November 17. 1986: revised January 29. 1988.
This work was supported in part by thc Italian Ministry for Education. and
by NATO under Research Grants 012.81 and 280.81.

M . Ajmone Marsan is with the Dipartimento di Scienze
dell ' lnformazione. Universiti di Milano. via Moretto da Brescia 9. 20133
Milano. Italy.

G . Balbo and G . Chiola are with the Dipartimento di Informatica, Univ-
ersith di Torino. corso Svizzera 185. 10149 Torino, I ta ly.

A . Bobbio and A . Cumani are with the I\tituto Elettrotecnico Nazionale
G. Ferraris. strada delle Cacce 91. 10135 Torino. Italy.

G. Conte is with the Istituto di Scienre per I'lngegneria. Universith di
Parrna. Parnia. Italy.

IEEE Log Number 8928284.

transitions enabled in that marking. Transition firings are
in this paper assumed to be atomic operations, and tokens
are consumed from input places and put into output places
at the same time instant. Alternative approaches are, how-
ever, possible. In [7]-[9] the firing process is split in two
phases: a start firing in which tokens are removed from
the input places, and an end firing in which tokens are put
into output places after some time has elapsed. When ran-
dom variables are used to specify the firing delays of tran-
sitions, timed Petri nets are called stochastic Petri nets
(S I ") . Specifications concerning the policy used to select
the enabled transition that fires, as well as the way in
which memory is kept of the past history of the net, are
required for a correct definition of the semantics of the
dynamic behavior of these models. We call this set of
specifications an executiori policy.

Stochastic Petri nets were initially proposed [IO]-[121
assuming exponentially distributed firing times and a race
execution policy, i.e., selecting to fire the transition
whose firing delay is statistically minimum among those
of the enabled ones. Under these assumptions the authors
proved that the dynamic behavior of the net could be rep-
resented by a continuous-time homogeneous Markov
chain with state space isomorphic to the reachability graph
of the Petri net.

In an attempt to extend the class of stochastic processes
representable by stochastic Petri nets, Natkin [1 I], and
Bertoni and Torelli [131 proposed a semi-Markov formu-
lation which is, however, not suited to the modeling of
parallel activities due to the total lack of memory after
every transition firing.

With the aim of extending the modeling power of sto-
chastic Petri nets, generalized stochastic Petri nets
(G S P N) were proposed in [14], [15], where two classes
of transitions are defined: exponentially timed transitions,
which are used to model the random delays associated
with the execution of activities, and immediate transi-
tions, which are devoted to the representation of logical
actions that do not consume time. Immediate transitions
allow the introduction of branching probabilities, inde-
pendently of the timing specifications. The possibility of
specifying branching probabilities was also proposed in
[161 using a simpler but less powerful formulation (prob-
abilistic arcs).

The first useful results concerning stochastic Petri nets
with generally distributed transition delays are due to Du-

0098-5589/89/0700-0832$01 .OO O 1989 IEEE

