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Abstract-An orphan in a distributed transaction system is an activ- 
ity executing on behalf of an aborted transaction. Orphans are unde- 
sirable because they waste system resources and because they may ob- 
serve inconsistent data. This paper proposes a new method for 
managing orphans created by crashes and by aborts. The method en- 
sures that orphans are detected and eliminated in a timely manner, 
and it prevents them from observing inconsistent states. A major ad- 
vantage of this method is simplicity: it is easy to understand, to imple- 
ment, and to prove correct. An “eager” version of this method uses 
approximately synchronized real-time clocks to ensure that orphans 
are eliminated within a fixed duration, and a “lazy” version uses log- 
ical clocks to ensure that orphans are eventually eliminated as infor- 
mation propagates through the system. The method is fail-safe: unsyn- 
chronized clocks and lost messages may affect performance, but they 
cannot produce inconsistencies or protect orphans from eventual elim- 
ination. 

Index Terms-Distributed systems, orphans, serializahility, trans- 
actions. 

I .  INTRODUCTION 
distributed system consists of multiple computers A( called sites) that communicate through a network. A 

distributed program is one whose components reside and 
execute at multiple sites in a distributed system. The 
physical components of a distributed system can fail in- 
dependently: sites can crash, and communication links can 
be interrupted. Nonetheless, the data managed by a dis- 
tributed program may be subject to consistency con- 
straints that must be preserved in the presence of failures 
and concurrency. Such constraints can apply not only to 
individual pieces of data, but also to distributed sets of 
data. For example, a distriuted banking system might be 
subject to the constraint that the books balance: money is 
neither created nor destroyed, only transferred from one 
ledger to another. A widely accepted approach to ensuring 
consistency is to make the activities that manage the data 
atomic. Atomicity encompasses two properties: serializ- 
ability and recoverability. Serializability [ 171 means that 
the execution of one activity never appears to overlap (or 
contain) the execution of another, while recoverability 
means that the overall effect of an activity is all-or-noth- 
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ing: it either succeeds completely, or it has no effect. 
Atomic activities are called transactions. 

Well-known techniques such as two-phase locking [ 31, 
1151 and commit protocols 161, [21] ensure atomicity for 
committed transactions. Nevertheless, these techniques 
make few guarantees about orphans, whi-ch are activities 
executing on behalf of aborted transactions. Orphans may 
be created by site crashes, or, in a nested transaction sys- 
tem 1151, 1191, when a transaction unilaterally aborts a 
nested subtransaction. Orphans are undesirable because 
they waste resources: not only do they consume processor 
cycles, they can introduce spurious delays and deadlocks 
by holding locks needed by nonorphans. 

Orphans are also undesirable because they can observe 
inconsistent data. For example, in a system based on two- 
phase locking, a site crash and recovery may release a 
transaction’s locks before that transaction has finished ac- 
quiring locks at other sites, an inadvertent violation of the 
two-phase locking discipline. Such inconsistencies may 
be of little concern in conventional database systems, 
where a transaction does not interact with the outside 
world until it commits. In a general-purpose distributed 
system, however, such inconsistencies may be more prob- 
lematic. For example, the Argus system [lo], 1261 sup- 
ports a methodology in which user-defined atomic data 
types are implemented by a mixture of atomic and non- 
atomic data types at a lower level. In the absence of an 
orphan management scheme, the implementor of such a 
type must take care that transient inconsistencies in the 
atomic components of the implementation do not produce 
permament inconsistencies in the nonatomic components. 
Orphans may also complicate interactive programs. For 
example, it is acceptable for an automatic teller machine 
to inform a customer that a requested transfer or with- 
drawal has not been performed, but it  may not be accept- 
able to display nonsensical account balances before an- 
nouncing the abort. Finally, debugging may be more 
difficult since orphan-induced inconsistencies may be in- 
distinguishable from logical errors. 

This paper proposes a new method to detect and elim- 
inate orphans. Our method ensures that orphans are de- 
tected and eliminated in a timely manner, and it prevents 
orphans from observing inconsistencies. The method em- 
ploys timestamps generated at each site. Timestamps may 
be generated by approximately synchronized real-time 
clocks 1131, or by a system of logical clocks 181. The for- 
mer yields an “eager” scheme in which orphans are elim- 
inated within a fixed duration, while the latter yields a 
“lazy” scheme in which orphans are eventually elimi- 
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nated as information propagates through the system. A 
major advantage of the method is simplicity: it is easy to 
understand, to implement, and to prove correct. The 
method is fail-safe: unsynchronized clocks and lost mes- 
sages may affect performance, but they cannot protect or- 
phans from eventual elimination, nor can they produce 
inconsistencies. 

This paper is organized as follows. Section I1 summa- 
rizes some related work. Section I11 describes the “ea- 
ger” version of our method, and Section IV describes the 
“lazy” version. Section V presents correctness argu- 
ments, and Section VI summarizes our results. 

11. RELATED WORK 

Several research projects are studying transactions as 
the foundation for general-purpose distributed systems 
(e.g., [2], [ lo] ,  [14], [22], [23]). An implementation 
based on methods proposed here is described by Kenky 

Outside the transaction domain, the orphan elimination 
problem was first identified by Nelson [ 161, and solutions 
based on timeouts have been proposed by Lampson [9] and 
by Rajdoot [18]. More recently, Walker [24] has pro- 
posed a transaction-based orphan elimination scheme that 
dynamically tracks dependencies among transactions. 
Walker’s scheme requires optimizations based on 
timeouts to keep the amount of information sent in mes- 
sages to a manageable level. An orphan elimination 
scheme based on Walker’s method has been implemented 
as part of the Argus system [ 1 I].  Walker has shown that 
a similar orphan elimination scheme proposed by Allchin 
[ I ]  contains subtle errors. Although our method is simpler 
than the Argus method, it may occasionally force nonor- 
phan transactions to abort. 

Our formal model for nested transactions incorporates 
work of Lynch [12] and Weihl [25], and our correctness 
condition for orphan elimination is a special case of a more 
general condition proposed by Goree [ 5 ] .  A preliminary 
version of the eager scheme has appeared elsewhere [20]. 
The method described here incorporates several improve- 
ments; most notably it does not delay committing trans- 
actions. A general formal model for orphan elimination 
algorithms has been proposed by the first author, Lynch, 
Merritt, and Weihl [4]. 

[71. 

111. EAGER ORPHAN ELIMINATION 

This section describes an orphan elimination method 
based on a system of approximately synchronized real- 
time clocks (e.g., [13]). An advantage of this scheme is 
that i t  places a real-time bound on orphan lifetimes, hence 
it bounds the resources that can be consumed by orphans. 
We first consider single-level transaction systems, and 
then we extend our method to nested transactions. The 
informal discussion assumes that synchronization is ac- 
complished by two-phase locking [3], [ 151, although Sec- 
tion V shows the method is applicable to any synchroni- 
zation mechanism that preserves atomicity. 

A .  Overview 
The basic containers for data are called objects. Each 

object has a type, which defines a set of possible states 
and a set of primitive operations that provide the (only) 
means to create and manipulate objects of that type. 
Transactions operate on objects through a sequence of op- 
eration executions, each consisting of a paired invocation 
and response. Each transaction originates at a unique 
home site. A site emitting an invocation on behalf of a 
transaction is known as a calling site; the recipient site is 
a culled site. Similarly, an object issuing an invocation is 
a calling object, and the target of an invocation is a culled 
object. A transaction is said to have visited called and 
calling objects and sites. When a calling object issues an 
invocative, execution suspends within that object and 
passes to the called object. Execution resumes at the call- 
ing object when the response is issued by the called ob- 
ject. Thus, a transaction is active at only one object at a 
time. 

Each object has a clock, which is used to generate 
timestamps. Clocks in a distributed system are subject to 
the following constraints: 

1) Each object’s clock generates successively increas- 
ing timestamps. 

2) When a message is sent from one object to another, 
the time at which it is received (by the receiver’s clock) 
is later than the time at which it was sent (by the sender’s 
clock). 

Property 2 is readily achieved by including the sender’s 
current time with each message. In this section, we as- 
sume that the objects at a site share a single real-time 
clock, and that clocks at different sites are synchronized 
using methods such as those of [ 131. We emphasize, how- 
ever, that as long as clock properties l and 2 are satisfied, 
unsynchronized clocks cannot protect orphans from even- 
tual elimination or produce inconsistencies, although per- 
formance may suffer. 

When a transaction acquires a lock for an object, it is 
assigned a quiesce time and a later release time. The 
quiesce time controls how long a transaction may remain 
active. When the object’s local clock indicates that the 
transaction’s quiesce time has passed, that transaction may 
no longer execute operations at that object, although it  
may still commit or abort. The release time controls how 
soon a transaction may abort. If the transaction aborts, its 
locks cannot be released until its release time has passed. 
If the transaction is not already prepared to commit when 
its release time arrives, then it  can be aborted unilaterally 
at that object, and all information about the transaction 
may be discarded. A transaction that commits may release 
its locks immediately. 

Let Quiesce(x, A )  and Release(x, A )  denote the quiesce 
and release times for transaction A at object x. Let 
First(Release(A)) denote the earliest release time for A at 
any object, and let Last(Quiesce(A)) denote its latest 
quiesce time. A transaction’s quiesce and release times 
are subject to the following terminurion invariant: 

Last(Quiesce(A)) 5 First(Release(A)). 
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By the time a transaction’s release time arrives at any ob- 
ject, all activity on  its behalf has quiesced. For locking 
protocols, this invariant eliminates potential inconsisten- 
cies by ensuring that all transactions, even orphans, sat- 
isfy the two-phase discipline: no transaction acquires a 
lock once it has released a lock. 

The invariant is preserved in the presence of arbitrary 
message delays simply by including each transaction’s lo- 
cal quiesce and release times with each operation invo- 
cation it sends to another object. The recipient refuses any 
message from a transaction whose quiesce time precedes 
the object’s local time. 

A simple way to preserve the termination invariant 
across site crashes is to keep locks and release times in 
nonvolatile storage, perhaps in a small “stable cache.” If 
this technique is impractical, an alternative technique is 
to set a system-wide maximum value for the quiesce in- 
terval, the duration between a site’s current clock value 
and the quiesce time for any transaction (see Fig. 1). 
When a site recovers, i t  reinitializes its clock, and refuses 
all operation invocations until the maximum quiesce in- 
terval has elapsed at every site in the system, ensuring 
that all transactions aborted by the crash have quiesced. 
This method assumes the rate of clock drift can be 
bounded. Recovery can be speeded up if sites periodically 
checkpoint their clock values to stable storage. 

B. The Refresh Protocol 
A transaction that is not an orphan will be aborted un- 

necessarily if its quiesce time arrives at a site before its 
activity there completes. To avoid this difficulty, a refresh 
protocol is periodically undertaken to advance each trans- 
action’s quiesce and release times. The interval between 
a site’s current time and the quiesce time for any trans- 
action is the quiesce interval, and the interval between the 
quiesce and release times is the release interval. The in- 
terval between refresh protocols is the refresh interval. 
These terms are illustrated in Fig. 1 .  Unnecessary aborts 
will be unlikely if clocks are closely synchronized and if 
the refresh interval is significantly less than half the 
quiesce interval. 

The refresh protocol is a two-phase protocol similar to 
the two-phase commit protocol [6]. In the first phase, the 
home site attempts to advance the transaction’s release 
time at all sites it has visited. If the first phase is success- 
ful, the home site attempts to advance the transaction’s 
quiesce time at all sites visited. Two phases are necessary 
to ensure that the times are adjusted without violating the 
termination invariant. If a transaction is an orphan, it will 
be unable to complete the refresh protocol, thus its fixed 
quiesce time will bound its active lifetime. The remainder 
of this section describes the bookkeeping necessary to as- 
certain whether the first phase has succeeded. 

Each site maintains two sets on behalf of each trans- 
action. When a transaction executing at a site makes a call 
to an object, the called object is entered in the transac- 
tion’s outgoing set. When a call arrives for an object at 
that site, the called object is entered in the transaction’s 

incoming set.’ A transaction’s home site is in charge of 
refreshing its quiesce and release times. The home site 
first sends a phase I refresh message containing the new 
release time to sites visited by the transaction. Each site 
updates the transaction’s local release time, and responds 
to the home site with a phase 1 response message con- 
taining the local incoming and outgoing sets. The home 
site builds complete incoming and outgoing sets by merg- 
ing all received incoming and all outgoing sets, respec- 
tively. Phase 1 is successful if the union of all sites’ in- 
coming sets equals the union of all sites’ outgoing sets. 
This set is called the transaction’s visit list closure. 

If phase 1 completes successfully, the transaction’s re- 
lease time has been advanced at all sites. In phase 2, the 
quiesce time is advanced. The home site transmits aphase 
2 refresh message advising visited sites of the new quiesce 
time. The termination invariant is preserved at each point 
during the protocol. Although responses to the phase 2 
messages are not needed for correctness, they can reduce 
the likelihood of aborts caused by lost messages. 

What if there are invocations in progress during the re- 
fresh protocol? There are two cases to consider. First, if 
an invocation occurs immediately before the transmission 
of a phase one refresh, the called object might appear at 
the calling site’s outgoing set, but not (yet) in the called 
site’s incoming set. In this situation, the home site can 
simply retry phase 1. Retransmission intervals should be 
chosen to minimize the risk of starvation in this case. Sec- 
ond, a site issuing a invocation after phase 1 but before 
phase 2 will use the old quiesce time but the new release 
time. The called site may retain the old quiesce time, 
which, although it does not violate the termination in- 
variant, may cause the transaction to abort unnecessarily. 
This difficulty can be addressed by choosing a refresh in- 
terval substantially less than half of the quiesce interval, 
ensuring that any such site will be refreshed again before 
its quiesce time. In practice, the refresh and quiesce in- 
tervals may have to be tuned to incorporate such factors 
as lost refresh messages and the retransmission rate. 

C.  The Termination Protocol 
When a transaction is aborted, its locks cannot be re- 

leased until its release time has passed. If the quiesce in- 
terval is acceptably small, the aborted transaction’s locks 
will eventually be released as its release times elapse. To 
hasten lock release, a termination protocol can be used to 
adjust the release time without violating the termination 

‘An execution within a single site is regarded as both outgoing and in- 
coming. but optimizations discussed below eliminate the need to maintain 
this data. 
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invariant. The termination protocol is similar to the re- 
fresh protocol. The first phase attempts to move the 
quiesce time back to the present. If the visit list closure 
is successfully formed, indicating that all visited sites have 
moved the quiesce time, the second phase can move the 
release time back to the present. 

D. Nested Transactions 
Instead of treating transactions as monolithic entities, 

it is often useful to provide hierarchically structured nested 
transactions or subtransactions [ 151, [ 191. A hierarchical 
transaction structure provides several benefits. Concur- 
rency is enhanced by the ability to create parallel subtrans- 
actions. Fault-tolerance is facilitated and recovery is sim- 
plified because a subtransaction can abort without abort- 
ing its parent, an important consideration in distributed 
systems subject to faults. A subtransaction’s commit is 
dependent on that of its parent; aborting the parent will 
undo the child’s effects. A transaction’s effects become 
permanent only when it commits at the top level. A trans- 
action can commit only when all of its subtransactions 
have either committed or aborted. 

We use standard tree terminology (parent, child, ances- 
tor, descendant) when discussing nested transactions. (A 
transaction is considered its own ancestor or descendant.) 
Each nested subtransaction is given a quiesce and release 
time at each object it has visited. The quiesce time con- 
trols how long the subtransaction can execute operations 
at the object, and the release time controls when the sub- 
transaction abort becomes visible to its parent. Quiesce 
and release times are subject to the following generalized 
termination invariant. If A is an ancestor of B: 

Last(Quiesce(B)) I First(Release(A)) 

By the time a transaction’s release time arrives at any ob- 
ject, all activity on behalf of its descendants has quiesced. 

The generalized termination invariant can be main- 
tained by controlling descendants’ refreshes from the par- 
ent’s home site. Each transaction carries a descendant 
count as part of its state on all invocations and responses. 
The descendant count, in combination with the transac- 
tion’s identity, is used to generate names for subtransac- 
tions. Since a transaction is active at only one site at a 
time, such names are unique. Initially, a nested transac- 
tion is given the same quiesce and release times as its 
parent, thus observing the termination invariant. During 
subsequent refresh protocols, the parent includes notifi- 
cation of the descendant’s existence, along with the par- 
ent’s incoming and outgoing sets. In the absence of aborts, 
and until it commits, the descendant is included in re- 
freshes of its parent’s quiesce and release times. 

A transaction cannot abort a subtransaction until the lat- 
ter’s release time has elapsed at some object. Rather than 
waiting, the parent may undertake a termination protocol 
to move the subtransaction’s quiesce and release times to 
the present. Note that the termination invariant permits a 
parent’s quiesce and release times to be refreshed even if 

its descendants are inaccessible. When a site recovers 
from a crash, the techniques described above must be used 
to retain locks until the release times elapse for the top- 
level aborted transactions. 

Eager orphan elimination imposes a negligible cost for 
short, successful transactions. Long transactions incur the 
cost of refresh protocols, and aborted transactions incur 
the cost of delays. The choice of the refresh interval trades 
one cost against the other: a long duration reduces the cost 
of refreshing long transactions, while a short duration 
provides faster orphan elimination. The choice should take 
into account the expected distribution of transaction 
lengths, the frequency of aborts, and the cost of delay. 
Eager orphan elimination works best for systems in which 
transaction lengths are predictable and aborts are infre- 
quent. 

IV. LAZY ORPHAN ELIMINATION 
This section introduces a modified version of the pre- 

vious section’s scheme. Instead of using the clock to drive 
lock acquisition and release, we use lock acquisition and 
release to drive the clock. Real-time clocks are replaced 
by logical clocks [8]. Logical clocks are counters asso- 
ciated with each object (or each site). Whenever a trans- 
action visiting an object requests a timestamp, the counter 
is incremented, and the new value is returned. Whenever 
one object sends a message to another, the sender includes 
its current logical time, and the recipient advances its own 
logical clock beyond the observed value. A system of log- 
ical clocks clearly satisfies properties 1 and 2 stated above, 
but logical timestamps may be otherwise unrelated to 
physical time. Logical timestamps provide a simple and 
efficient technique for extending the natural partial order 
of events in a distributed system to an arbitrary total or- 
der. 

As before, each transaction has a quiesce and release 
time at each object, satisfying the same termination in- 
variant, but now these times are logical clock values, not 
real-time values. Lock acquisition and release are subject 
to the following rules. An object will refuse lock requests 
from any transaction whose quiesce time is less than the 
object’s current clock value. When a transaction encoun- 
ters such an object, however, it may attempt a refresh pro- 
tocol to advance its quiesce time beyond the object’s cur- 
rent clock value. When an aborted transaction releases its 
locks at an object, that object’s clock is advanced beyond 
the transaction’s release time. 

The termination invariant is maintained across crashes 
by techniques analogous to those used for the eager 
scheme. For example, each object may periodically re- 
cord its logical clock value on stable storage, maintaining 
a maximum difference, say n ,  between the current logical 
time and the latest release time. Upon recovery, the object 
adds n to its recorded timestamp, and immediately re- 
sumes operation. 

The lazy scheme has a number of attractive features. 
Since refresh protocols are “demand-driven” rather than 
“time-driven,” they are executed only when conflicts 



arise, instead of at regular intervals. It is never necessary 
to wait for a transaction’s release time to elapse, either 
for crash recovery or to abort a subtransaction, because 
an object’s logical clock can be advanced instanta- 
neously. Instead, a different kind of cost is incurred: ad- 
ditional refresh protocols may be triggered as clock ad- 
vances propagate through the system. Whether the eager 
scheme’s combination of periodic refresh protocols with 
delays is more cost-effective than the lazy scheme’s de- 
mand-driven refresh protocols without delays depends on 
the expected frequency of aborts and the relative costs of 
delay and of message traffic. Perhaps the principal dis- 
advantage of the lazy scheme is that it provides no real- 
time guarantees about orphan elimination. An orphan will 
continue to execute until it attempts to acquire a lock at 
an object whose logical clock exceeds the orphan’s 
quiesce time. 

V .  CORRECTNESS ARGUMENTS 

So far, our discussion has assumed a transaction system 
based on two-phase locking. The restrictions imposed by 
our method can be generalized to apply to arbitrary con- 
currency control mechanisms (e.g., timestamp-based sys- 
tems) as follows: no transaction may execute an operation 
at an object after its quiesce time there has elapsed, and 
no transaction may abort at an object before its release 
time there has elapsed. 

This section presents formal correctness arguments for 
the orphan elimination method. The correctness argu- 
ments are valid for arbitrary data types (not just files), for 
arbitrary concurrency control methods (not just two-phase 
locking). One proof suffices for both the lazy and the ea- 
ger schemes, since clock properties 1 and 2 of Section 
I11 are the only assumptions needed about clock synchro- 
nization. 

A. Objects and Transactions 

Let OBJECT be a universal set of objects. Each object 
has a set of primitive operations that provide the (only) 
means to create and manipulate objects of that type. For 
example, a File might provide Read and Write operations, 
and a FIFO Queue might provide enqueue and dequeue 
operations. An operation execution is a paired invocation 
and response. 

Let TRANS be a universal set of atomic transactions. 
Transactions have an a priori tree structure, with a distin- 
guished transaction U as the root. For a transaction A dis- 
tinct from U ,  let parent(A) denote A’s unique parent, 
anc(A) and desc(A) denote A’s  ancestors and descendants 
(which include A ) ,  proper-anc(A) and proper-desc(A) de- 
note A’s proper ancestors and descendants (which do not 
include A ) ,  and /ca(A, B) denote the least common ances- 
tor of A and B. Let siblings denote the set { ( A ,  B) E 
TRANS’ I parent(A) = parent(B) } .  Let seq G siblings be 
the partial order representing sequential dependency; if 
( A ,  B) E seq, then A is constrained to run before B .  

B. Serial and Concurrent Specifications 

A system is a set of objects. A serial history is a se- 
quence of pairs of the form [x e ] ,  where x is an object and 
e is an operation execution. A serial specijcation for a 
system is a set of legal serial histories. A system’s serial 
specification characterizes its behavior in the absence of 
failures and concurrency. For example, the serial speci- 
fication for a system including a FIFO queue would in- 
clude all and only histories in which items are enqueued 
and dequeued at the queue in FIFO order. 

A concurrent history is a sequence of triples of the 
form: [x  e A ] ,  where x is an object, e is either an opera- 
tion execution, begin, commit, or abort, and A is a trans- 
action. When a transaction commits at an object, its 
changes there become visible (e.g., through lock release). 
When a transaction aborts at an object, its effects there 
are discarded (e.g., through roll-back and lock release). 
Abort events encompass both explicit aborts, and aborts 
that occur as a side-effect of site crash and recovery. For 
brevity, a transaction commits (aborts) if it executes a 
commit (abort) at any object. 

A concurrent specification for a system is a set of legal 
concurrent histories. A system’s concurrent specification 
characterizes its behavior in the presence of failures and 
concurrency. A concurrent history is well-informed if it 
satisfies the following properties: 

No transaction executes a begin until its parent has 
done so. 

Operation executions are associated only with leaf 
transactions. 

No transaction both commits and aborts. 
If A precedes B in seg, then A commits before B ex- 

ecutes any operations. 
Each transaction commits at most once at each ob- 

ject, and it does not execute any events there after it has 
commited. 

No transaction commits until all of its children have 
either committed or aborted. 

Henceforth, all concurrent histories are assumed to be 
well-formed. Well-formedness places no constraints on 
the behavior of orphans; once a transaction has aborted, 
it may do anything except commit. 

Let h be a concurrent history, and let Commit(h) be the 
set of transactions that have committed in h.  A transaction 
B has committed to A in h if anc(B) fl proper-desc(lca(A, 
B)) E Commit(h). Let View(h, A )  denote the subhistory 
of h containing all events of transactions commited with 
respect to A. Let Perm(h) be View(h, U ) ,  the subhistory 
of transactions committed to the top level. 

We are now ready to define the basic correctness prop- 
erty for our orphan elimination method. A partial order 
>> L siblings is linearizing if it is compatible with seq 
and it totally orders all siblings in TRANS. A linearizing 
partial order thus induces a total order (also denoted by 
>>) on the operation executions of the leaf transactions. 
A concurrent history is serializable if there exists a >> 
such that reordering leaf transactions’ object-operation 
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pairs in the order >> yields a legal serial history. A con- 
current history h is atomic if perm(h) is serializable. In- 
formally, a concurrent history h is internally serializable 
if each transaction has a serializable view for each oper- 
ation execution. More precisely, 

1)  The empty history A is internally serializable. 
2) h [x  e A ]  is internally serializable if h is internally 

serializable and View(h, A )  . [x e A ]  is serializable. 
Internal serializability does not require that each trans- 

action’s view remain serializable after its last event has 
completed. 

A concurrent specification is atomic if each history in 
the specification is atomic. To model schedulers that have 
no advance knowledge of transactions, we assume that an 
active transaction can choose to commit whenever the re- 
sult is well-formed. A concurrent specification S is on- 
line atomic if it is atomic, and whenever h is in S and h ’ 
= h . [ x  commit A ]  is well-formed, then h ‘  is also in S .  

C. Proof of Correctness 

A distributed system is modeled as an automaton A that 
accepts an on-line atomic concurrent specification S .  Our 
orphan management scheme is modeled as a technique for 
embedding any such A in a derived automaton A ’ that ac- 
cepts only the internally serializable histories in S .  

An automaton is a tuple < Q, qo, E ,  6 > , where Q is a 
set of states, qo is the initial state, E is a set of object- 
event-transaction triples, and 6 C Q X E x Q is a tran- 
sition relation. It is convenient to extend the transition 
relation to sets of states: 

S ( 0 ,  [x e ~ ] )  = 0 

6 ( X ,  [x e A I )  = UqEx  6 ( q ,  [x e A ] )  
and to sequences of events: 

6 ( X ,  A )  = X 

[ x  e A ] )  = 6 ( 6 ( ~ ,  h ) ,  [x e A ] ) .  6 ( ~ ,  h 
A history h is accepted by an automaton if 6(qo ,  h )  f 
0 .  

Let TIMESTAMP be a totally ordered domain of time- 
stamps. Given an automaton A = <Q,  qo, E ,  6 >  that 
accepts an on-line atomic concurrent specification S ,  we 
construct the automaton A ’  = <e’, 46, E ,  6 ’ >  as fol- 
lows. An element of Q ’  is a tuple <q,  Clock, Quiesce, 
Release > , where q E Q, Clock is simply a timestamp rep- 
resenting the current time, either real or logical, and 
Quiesce and Release model each object’s quiesce and re- 
lease times for each transaction: 

Quiesce: OBJECT x TRANS + TIMESTAMP 

Release: OBJECT x TRANS + TIMESTAMP 

Quiesce and Release are subject to the termination inva- 
riant: 

If A E anc(B) and x,y E OBJECT then Quiesce(x, B )  I 

Release( y ,  A )  ( 1 )  

The first component of the new initial state q; is qo, Clock 
has an arbitrary initial value, and Quiesce and Release 
have arbitrary initial values satisfying Property 1. 

The new transition relation 6’ is defined as follows. 
6’( < q ,  Clock, Quiesce, Release > , [x  e A ] )  is undefined 
if either: 

1) The event e is an operation execution and Quiesce(x, 
A )  < Clock, or 

2) The event e is abort and Release(x, A )  > Clock. 
These conditions capture the constraints that a trans- 

action cannot execute an operation at an object if its 
quiesce time there has passed, and it cannot abort until its 
release time there has passed. 

Otherwise, the transition relation’s value is the set 
( < q ’, Clock ’, Quiesce’ , Release’ > ) such that: 

1) q’ E 6(q [x e A I ) ,  
2)  Clock’ > Clock, and 
3) Quiesce’ and Release’ satisfy the termination inva- 

riant, and their values are unchanged for aborted trans- 
actions. 

The first condition captures the notion that accepted 
events have their usual effect on objects’ states, the sec- 
ond that the clock’s value is increasing, and the third 
models refresh and termination protocols for active trans- 
actions. 

We use the following lemma. 
Lemma 1: If A ’ has accepted the event [x  abort A ] ,  then 

Release(x, A )  5 Clock. 
Proof By the definition of 6’, the property holds 

when the automaton accepts [x  abort A ] .  Moreover, the 
property must remain invariant because Clock may ad- 
vance, while Release(x, A )  may not (because A is 
aborted). 

Let S ’  denote the histories accepted by the automaton 
A ’ .  S ’  is clearly a subset of S .  It remains to show that: 

Theorem 2: All concurrent histories in S ’ are internally 
serializable. 

Pro08 The proof is by induction on the length of the 
accepted history. Clearly, the property holds for the empty 
history A .  Assume A ’ has accepted the internally serial- 
izability history h ,  and then accepts a new event [ x  e A ] .  
Let h ’  = h * [x e A ] .  If e is commit or abort, then h’ is 
internally serializable. 

Suppose e is an operation execution. We first argue by 
contradiction that no ancestor of A has aborbed in h .  Sup- 
pose, instead that [ y  abort B ]  appears in h ,  where B is an 
ancestor of A .  Lemma 1 implies that Release(y, B )  I 
Clock. The termination invariant, in turn, implies that 
Quiesce(x, A )  I Release(y, B )  and hence that Quiesce(x, 
A )  I Clock. The definition of 6’, however, states that 
[x  e A ]  may be accepted only if Clock < Quiesce(x, A ) ,  
a contradiction. 

Since A has no aborted ancestors, construct h” by com- 
miting A’s  ancestors in leaf-to-root order up to U ,  abort- 
ing all other active transactions. Because S is on-line 
atomic, h “  is also in S ,  and therefore Perm(h”) is serial- 
izable, and so is View(h’, A ) .  
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VI. CONCLUSIONS 
This paper has proposed a new method for managing 

orphans in a distributed transaction system. This method 
ensures that orphans cannot observe inconsistencies, and 
that orphans are eventually eliminated. The “eager” ver- 
sion of this method uses synchronized real-time clocks to 
ensure that orphans are eliminated within a fixed duration, 
and the “lazy” version uses logical clocks to ensure that 
orphans are eventually eliminated as information propa- 
gates through the system. Transactions are assigned 
timeouts at different sites. These timeouts are related by 
a global invariant, and they may be adjusted by simple 
two-phase protocols. The principal advantage of this 
method is simplicity: it is easy to understand, to imple- 
ment, and it can be proved correct. Although the method 
is informally described in terms of two-phase locking, the 
formal argument shows it is applicable to any concurrency 
control method that preserves atomicity. 
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The Effect of Execution Policies on the Semantics 
and Analysis of Stochastic Petri Nets 
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Abstruct-Petri nets in which random delays are associated with 
atomic transitions are defined in a comprehensive framework that con- 
tains most of the niodels recently proposed in the literature. The inclu- 
sion into the model of generally distributed firing times requires to 
specify the way in  which the next transition to fire i s  chosen, and how 
the model keeps track of its past history; this set of specifications i s  
called an execution policy. The paper discusses the impact that different 
execution policies have on the semantics of the model, as well as the 
characteristics of the stochastic process associated with each of these 
policies. When the execution policy i s  completely specified by the tran- 
sition with the minimum delay (race policy) and the firing distributions 
are of the phase type, an algorithm i s  provided that automatically con- 
verts the stochastic process into a continuous time homogeneous M a r -  
kov chain. Finally, an execution policy based on the choice of the next 
transition to fire independently of the associated delay (preselection 
policy) i s  introduced, and its semantics i s  discussed together with pos- 
sible implementation strategies. 

Index Terms-Markov and semi-Markov processes, performance 
evaluation, Petri nets, phase-type distributions, stochastic models, 
stochastic Petri nets. 

I .  INTRODUCTION 
ETRI nets ( P N )  [ I]-[4] are becoming increasingly P popular as a powerful tool for the description and the 

analysis of systems that exhibit concurrency, synchroniz- 
ation, and conflicts. Although the basic Petri net model 
includes no explicit notion of time, several researchers 
have recently devoted their attention to augmented models 
that include timing and that are therefore named timed 
Petri nets [SI, [6]. 

Interpreting Petri nets as state/event models, time is 
naturally associated with activities that induce state 
changes, hence with the delays incurred before firing tran- 
sitions. The choice of associating time with transitions is 
the most frequent in the literature on timed Petri nets, al- 
though other possibilities have been explored. Similarly, 
a common assumption is that the net sojourns in a given 
marking for a time that is related to the firing delay of the 
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transitions enabled in that marking. Transition firings are 
in this paper assumed to be atomic operations, and tokens 
are consumed from input places and put into output places 
at the same time instant. Alternative approaches are, how- 
ever, possible. In [7]-[9] the firing process is split in two 
phases: a start firing in which tokens are removed from 
the input places, and an end firing in which tokens are put 
into output places after some time has elapsed. When ran- 
dom variables are used to specify the firing delays of tran- 
sitions, timed Petri nets are called stochastic Petri nets 
( S I " ) .  Specifications concerning the policy used to select 
the enabled transition that fires, as well as the way in  
which memory is kept of the past history of the net, are 
required for a correct definition of the semantics of the 
dynamic behavior of these models. We call this set of 
specifications an executiori policy. 

Stochastic Petri nets were initially proposed [IO]-[ 121 
assuming exponentially distributed firing times and a race 
execution policy, i.e.,  selecting to fire the transition 
whose firing delay is statistically minimum among those 
of the enabled ones. Under these assumptions the authors 
proved that the dynamic behavior of the net could be rep- 
resented by a continuous-time homogeneous Markov 
chain with state space isomorphic to the reachability graph 
of the Petri net. 

In an attempt to extend the class of stochastic processes 
representable by stochastic Petri nets, Natkin [ 1 I], and 
Bertoni and Torelli [ 131 proposed a semi-Markov formu- 
lation which is, however, not suited to the modeling of 
parallel activities due to the total lack of memory after 
every transition firing. 

With the aim of extending the modeling power of sto- 
chastic Petri nets, generalized stochastic Petri nets 
( G S P N )  were proposed in [14], [15], where two classes 
of transitions are defined: exponentially timed transitions, 
which are used to model the random delays associated 
with the execution of activities, and immediate transi- 
tions, which are devoted to the representation of logical 
actions that do not consume time. Immediate transitions 
allow the introduction of branching probabilities, inde- 
pendently of the timing specifications. The possibility of 
specifying branching probabilities was also proposed in 
[ 161 using a simpler but less powerful formulation (prob- 
abilistic arcs). 

The first useful results concerning stochastic Petri nets 
with generally distributed transition delays are due to Du- 
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