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Timestamped Embedding-Matching
Acoustic-to-Word CTC ASR

Woojay Jeon

Abstract—In this work, we describe a novel method of training
an embedding-matching word-level connectionist temporal clas-
sification (CTC) automatic speech recognizer (ASR) such that
it directly produces word start times and durations, required
by many real-world applications, in addition to the transcrip-
tion. The word timestamps enable the ASR to output word
segmentations and word confusion networks without relying on
a secondary model or forced alignment process when testing.
Our proposed system has similar word segmentation accuracy
as a hybrid DNN-HMM (Deep Neural Network-Hidden Markov
Model) system, with less than 3ms difference in mean absolute
error in word start times on TIMIT data. At the same time,
we observed less than 5% relative increase in the word error
rate compared to the non-timestamped system when using the
same audio training data and nearly identical model size. We
also contribute more rigorous analysis of multiple-hypothesis
embedding-matching ASR in general.

Index Terms—Automatic speech recognition, CTC, embedding
matching.

I. INTRODUCTION

RECENTLY, embedding-matching acoustic-to-word
(A2W) ASR [1], [2] has gained interest due to its

flexibility in accommodating out-of-vocabulary (OOV) words.
The entire vocabulary of the ASR is explicitly represented
by a matrix of acoustic word embeddings [3], [4] generated
by an external word encoder. The matrix can be treated
independently of the rest of the system, and can be extended
with more columns (words) with no systemic limits. This
modularity is attractive for scenarios where the ASR’s
vocabulary must be extended with dynamic out-of-vocabulary
(OOV) words – especially user-dependent named entities –
on-the-fly for every utterance. Named entities can include
contact names, on-device song titles, and location-dependent
points of interest, all of which can change over time for a
given user, and vastly differ from user to user. The system is
also scalable because it distills continuous word recognition
into a series of nearest neighbor searches over a vector space,
which is highly parallelizable in modern hardware [5].

In this paper, a timestamped embedding-matching A2W
system is proposed, where the underlying connectionist tem-
poral classification (CTC) model is trained such that for every
hypothesized word, the model also estimates a word timestamp
– the start time and duration of the word. The model learns this
capability from ground truth segmentations provided during
training. The timestamps allow the decoder to directly produce
the word segmentations of recognition results, as well as
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word confusion networks [6], [7], which are vital to many
speech-based applications. Audio segmentations are used for
keyword search [8], as well as the “intercom” feature of
digital assistants. Word confusion networks are needed to rank
and display word alternatives in a mobile user interface [9],
semantically parse the utterance [10], and mitigate errors in
spoken language translation [11].

A “pure” end-to-end ASR where a static monolithic model
produces only the word transcription is of limited use in
practical applications [12]. The ability to dynamically modify
or augment the vocabulary, as well as produce accurate word
segmentations is also needed. The timings naturally produced
by conventional CTC models are generally too inaccurate
[13] to be relied on. Furthermore, the interval between word
onsets are poor estimates of word duration when there is
significant silence between the words. A common remedy is
to run a second-pass forced alignment using a hybrid DNN-
HMM acoustic model [14] to obtain the segmentation, but
this is inefficient, and not scalable for multiple hypotheses.
Other works used a constrained attention head in a second-
pass rescoring model to emit timings from an RNN transducer
model [15], combined a CTC model with a separate framewise
phoneme classifier [16], or used a separate timestamp estima-
tor model with a CTC-attention model [13]. Slightly related
to the timestamp problem is the streaming latency problem,
where E2E models are trained to reduce the latency of word
outputs [17]. Such methods cannot be a substitute for explicit
timestamp estimation, since they are essentially dealing with
word end times, not start times and durations, and furthermore
it is likely impossible to achieve zero streaming latency.

In our proposed system, the word-level CTC model directly
provides a timestamp with each word, with no additional
model or alignment process at runtime. A DNN-HMM ASR
is needed to force-align the audio to the transcriptions to
obtain ground truth segmentations used to train the CTC
model, but this force-alignment only needs to be done once
at data collection time, meaning that the ground truth can be
permanently stored and reused for the lifetime of the training
data. To the best of our knowledge, no CTC model with such
timestamping capability exists in the literature. Our system
also produces timestamps for every hypothesized word, not
just the 1-best words. If a CTC model can directly produce
timestamps without requiring an additional system at run-time,
the system becomes simpler and faster while consuming less
power and computational resources.

We will begin with some theoretical analysis that was
absent in our previous study [2] on embedding-matching word
CTC ASR. In particular, the multiple-hypothesis system we
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proposed in [2] left open the question of why a simple
summation of scores would not result in the multiple em-
beddings collapsing into the same embedding. In this paper,
we provide some theoretical developments that address this
question. We will then describe and analyze the proposed
timestamped system, followed by experimental results on its
word segmentation accuracy and its impact on recognition
accuracy.

II. A MORE RIGOROUS ANALYSIS OF
EMBEDDING-MATCHING WORD CTC

A. Review of Conventional Word CTC

We begin with a brief review of conventional word CTC
ASR. The word CTC loss [18], [19] is the negative sum of the
log posterior over all training samples D where each sample
consists of an audio input X and a reference word sequence
W :

L = −
∑

(X,W )∈D

ln P̂ (W |X). (1)

Each P̂ (W |X) is the sum of the individual posteriors of all
possible word sequences π in a set B−1(W ) that map to W ,
where the “words” in π include a “blank” word:

P̂ (W |X) =
∑

π∈B−1(W )

P̂ (π|X). (2)

Each sequence posterior P̂ (π|X) is in turn the product of the
frame-wise scores for every word in the sequence:

P̂ (π|X) =

T∏
t=1

pt,πt
, (3)

where T is the number of frames and the score pt,i for every
word wi in a vocabulary of n words at time t is obtained by
applying a softmax to the output of a neural network:

pt,i =
exp(st,i)∑n
j=1 exp(st,j)

, 1 ≤ t ≤ T, 1 ≤ i ≤ n (4)

B. Analysis of Single-Hypothesis System

An “embedding-matching” word CTC [1], [2] differs from
conventional word CTC in how each st,i in Equation (4) is
computed. Instead of training a neural network to freely and
directly produce st,i, we train the network to produce an audio
embedding vector ft. Each st,i is explicitly constrained to
be the negative L2 distance as in our previous study [2] (or
inner product [1]) between ft and a text embedding vector
gi precomputed by an external acoustic text encoder [3], [4]
for word wi. Only the blank word’s score st,0 is produced
directly:

st,i =

{
−b2t (i = 0)

−∥ft − gi∥2 (i = 1, · · · , n)
(5)

In practice, as we noted previously [2], all gi are stored as
the columns of matrix G, and a sequence of matrix operations
result in a vector st containing the st,i’s.

Although the pre-softmax score st,i is maximized when ft =
gi, the post-softmax score pt,i is not necessarily maximized,

due to the effect of the competing scores in the denominator
in (4). This would imply that the CTC criterion – which
essentially attempts to maximize pt,i for reference word i at
some time t – may not strictly try to make ft match gi. For
example, consider a vocabulary of 3 words with 1-dimensional
embedding vectors g1 = [1.0], g2 = [2.0], and g3 = [4.0]. st,2
is maximized when ft = [2.0], but pt,2 is maximized when
ft = [2.385].

We can argue, however, that if the embedding dimensions
are sufficiently higher than 1, we can expect ft ≈ gi when pt,i
is maximized. The log of the softmax in Equation (4) is

ln pt,i = − ln

[
1 +

n∑
j ̸=i

exp(st,j − st,i)

]
. (6)

A well-known interpretation of the softmax [20] is that if st,i
is much higher than all other st,j , then the summation term
above will be close to 0, resulting in pt,i ≈ 1 while pt,j ≈
0 (j ̸= i). In our case, if ft = gi, we will have st,i = 0, while
st,j will be strongly negative if gi is sufficiently far away
from the rest of the vectors. This effect is more apparent for
higher embedding dimensions, since more negative terms are
added to st,j . Hence, we conclude that ft = gi asymptotically
maximizes pt,i.

Other studies [1], [21] used an inner product instead of
negative Euclidean distance for st,i. In Appendix A, we show
that a similar argument as above can be made for the inner
product that for sufficiently high dimensions, one can expect
that ft = gi will asymptotically maximize pt,i.

C. Analysis of Multiple-Hypothesis System

In the multiple-embeddings approach we proposed in [2],
the underlying model produces L embeddings f

(1)
t , · · · , f (k)t ,

and their pre-softmax scores are summed:

st,i =

−b2t (i = 0)

−∑L
k=1 ∥f

(k)
t − gi∥2 (i = 1, · · · , n)

(7)

The training can be best understood with a simple example,
with L = 2. Consider a training dataset of just two utterances
that have almost the same audio but different transcriptions:
“Directions to First and Park” and “Directions to Fursten
Park.” We can further simplify this as the same audio pro-
ducing two different outputs, as shown in Fig. 1.

Assuming the language model does not contain the com-
pound word “first and”, all three words “First,” “and,” and
“Fursten” must be separately hypothesized by the acoustic
model. Furthermore, to avoid a result like “First Fursten”
or “Fursten First,” the system will ideally output “First” and
“Fursten” simultaneously (Figure 8a shows an example).

Suppose wa =“First” and wb = “Fursten”, and their text
embedding vectors are ga and gb, respectively. The intent
of the multiple-hypothesis system is to allow the network, at
some point in time t, to output f (1)t = ga and f

(2)
t = gb (or

vice versa) for the input audio in Fig. 1.
Since the training criterion is to maximize the posterior for

both training samples, we can consider the post-softmax score
pa and pb at time t. We need not consider the case where pa
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Fursten

First and Park

t

(ga)

(gb)

Fig. 1. Example where two training samples have nearly-identical audio
but different word transcriptions “First and Park” and “Fursten Park.” The
multiple-hypothesis embedding-matching system is induced to produce, for
the same input audio, two different embeddings f (1) = ga and f (2) = gb at
some point in time t (which may be anywhere, not necessarily at the beginning
of the words as shown in the diagram), where ga is the text embedding for
“First” and gb is the text embedding for “Fursten.”

and pb are maximized at different times because that would
result in the model outputting the two words in sequence, i.e.,
“First Fursten” or “Fursten First.” Since we are dealing with
only one specific value of t, we drop t from our notation for
simplicity. The CTC training will effectively try to maximize

ln(p) = ln(papb) = sa + sb − 2 ln
∑
j

exp(sj). (8)

We make a similar argument as in Sec. II-B that the maximum
sc among all sj is distinct enough so that

sc ≜ max
j

sj ≈ ln
∑
j

exp(sj). (9)

If we assume for a moment that gj can be any value,

∂sj
∂gj

= 2(f (1) − gj) + 2(f (2) − gj) (10)

and ∂2sj/∂g
2
j = −4 (elementwise), which means sj is

maximized by gj = 1
2 (f

(1) + f (2)). In reality, gj cannot be
arbitrary, and can only be chosen from our fixed vocabulary.
But if our vocabulary is large, we can assume that such
a gj exists. Since sc is the maximum sj in (9), we have
gc =

1
2 (f

(1) + f (2)). Next, we differentiate (8) to obtain

∂ ln(p)

∂f (1)
= 2(ga + gb)− 2(f (1) + f (2)) (11)

and ∂2 ln(p)/∂f (1)
2
= −2. Hence, ln(p) is maximized by any

values for f (1) and f (2) that satisfy:

f (1) + f (2) = ga + gb, (12)

which also implies gc =
1
2 (ga + gb).

We now see it is possible to have f (1) = f (2) = 1
2 (ga+gb),

i.e., both hypotheses are always the same, and always point to
the “midpoint” between “First” and “Fursten.” In such a case,
our network is equivalent to the single-embedding case, and
it serves no purpose to produce two embeddings.

However, the analysis changes when we assume a high
number of dimensions. The vectors become sparse, so we
can no longer assume the existence of gc in the vocabulary.
It is also known that the L2 distances become more and
more similar so that there is little difference between “near”
and “far.” [22]. To simplify our analysis, in Appendix B we
approximate all L2 distances in high dimensions as binary

distances, i.e., 0 if there is an exact match between the vectors,
and some positive constant D otherwise:

sj = D
{
δ(f (1)−gj)− 1

}
+D

{
(δ(f (2)−gj)− 1

}
∀j, (13)

where δ(.) is 1 if the input is 0, and 0 otherwise. Applying
Equation (13) to (8), we can identify 8 different cases for
ln(p) after accounting for symmetry, shown in Appendix C,
to see that ln p is maximized when f (1) = ga and f (2) = gb,
or vice versa. We therefore conclude that for a sufficiently
high number of dimensions, the network will be trained so
that f (1) becomes the embedding for “First” and f (2) becomes
the embedding for “Fursten” (or vice versa).

III. PROPOSED METHOD

A. Basic Intuition

The following two arguments are central to our approach:
1) CTC models do not give timely reports, but they can

still report accurate timings.
2) We use a vocabulary to train an embedding-matching

A2W, but teaching the vocabulary is not our main goal.
It is well-known that CTC [18], by design, operates in a
“segmentation-free” manner. The training criterion does not re-
quire segmentation information, nor is segmentation outputted
by the model. A CTC model’s decision about a word can be
made at any indeterminate point in time, as long as the correct
words are produced in the right order. This, however, does not
necessarily mean that the model cannot know the segmenta-
tion. In an embedding-matching CTC model, we previously
argued [2] that the network acts as a word segmenter followed
by an audio segment encoder. If this interpretation is indeed
true, then the CTC model must internally know the precise
location and duration of every word it hypothesizes, and we
need only to find a way to expose that knowledge.

Consider an example vocabulary of 3 words,
{I, like, honey}. We imagine expanding this to a
vocabulary of timestamped words, each with the form
“<word>_<start time>_<duration>”. If there are
100 possible start times and 10 possible durations, we
would have a vocabulary of 3,000 timestamped words,
i.e., {I 1 1, · · · , I 100 10, like 1 1, · · · , honey 100 10}.
Suppose we define the embedding vector for each timestamped
word as the original word’s embedding vector with the start
time and duration appended as two additional dimensions.
If the text embedding for “like” is glike, the embedding for
“like α β” is glike α β = [gT

like α β]T .
It is then conceivable that we use a training method similar

to Section II with the 3-word vocabulary replaced by the
expanded 3,000-word vocabulary. Reference start times and
durations for the training samples are prepared via forced
alignment using a conventional DNN-HMM hybrid ASR [14],
[23], [24], and are attached to the words when training the
CTC, e.g. “I 19 2 like 31 5 honey 52 9.”. Once trained, the
CTC model outputs sequences from the timestamped 3,000-
word vocabulary, and we have achieved our goal. Obviously,
this approach is impractical. The training vocabulary is in-
creased by a factor of 1,000, which is prohibitively large.
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Acoustic input X

Conformer

Softmax

−(·)2

· · ·

gi

· · ·

z(·) αi

βi

+

ft

τt θt

tanh sig

+t

st,i
dt,i

qt,0, qt,1, · · · , qt,n

zt,0 zt,1 zt,i zt,n

bS,t bZ,t

Fig. 2. Training mode of the proposed single-hypothesis system; in particular,
the computation of the timestamped-word CTC loss LZ at time t. A
comparator (△) represents the Euclidean distance between two inputs (for
st,i, the distance is negated). For clarity, we show only the computation of
zt,i for the i’th word in the training vocabulary of size n. The same process
is applied to all the other words. Note that bS,t is used for computing LS ,
so is unused here. Also note that bZ,t, zt,i, and qt,i are only used during
training, and not during testing (shown in Fig. 3).

This brings us to the second argument above. Note that in
our previous work [2], the training vocabulary was less than
1/10th of the testing vocabulary. Our training goal is to make
the conformer learn to segment the audio, and map (as an
f(·) encoder in [3] or [4]) each segment to an embedding.
As long as this goal is achieved, it doesn’t matter what exact
words we put into G (the matrix of gi’s in Section II-B) during
training. We could in fact put a random subset of words into
G that changes for every training sample. 1 In our hypothetical
scenario, we need not use all 3,000 timestamped words in G
during training. Rather, we can use a small random sample. A
static space of 1,000 possible timestamps does not even need
to be defined; one could use random start and duration values
where needed, as we will describe in greater detail in the next
section.

B. Timestamped Single-Hypothesis System

We now formally describe the single-embedding version of
our proposed system, illustrated in Fig. 2 and 3. At every time
t, the underlying model proposes a word-based blank score
bS,t, a timestamped-word-based blank score bZ,t, an acoustic
embedding vector ft, and a timestamp vector ut = [τt θt]

T

where τt is the start time and θt is the duration for ft.
When producing τt, the time t of the current output frame

is added first, so the neural network is actually trained to
produce offsets rather than absolute times. A scaled hyperbolic
tangent is used to limit the offset to −1 to +1 seconds. When
producing θt, a sigmoid is used to ensure that the value is

1Note that the model probably does learn some linguistic information that
helps it identify word segments, but our argument still stands that as long
as we keep the randomized G reasonably large and fairly sampled, the exact
words we include it in are not that important.

Acoustic input X

Conformer

Softmax

−(·)2

· · ·

gi

· · ·

ft tanh sig

τt θt

+t

st,0 st,1 st,i

pt,0, pt,1, · · · , pt,m

st,m

bS,t bZ,t

Fig. 3. Testing mode of the proposed single-hypothesis system. We compute
the st,i’s and pt,i’s the same way as in our original (non-timestamped)
embedding-matching system [2] for every word in a testing vocabulary of
size m, and also output a timestamp (τt, θt) at every time t. The blank score
bZ,t used to train LZ is ignored during testing.

positive, with a scale factor of 2 assuming a maximum word
duration of 2 seconds. In Appendix E, we show that both
limits are conservatively high, and do not have any effect at
testing time. However, when the model was trained without
the sigmoid and hyperbolic tangent, some degradation was
observed in the recognition and timestamp accuracy, implying
that the operations still help at training time.

The model is trained by using the sum of two CTC losses
as the optimization criterion: a word CTC loss LS and a
timestamped-word CTC loss LZ :

L = LS + LZ . (14)

The word CTC loss LS is exactly the same as that we used
previously [2], defined in Equation (1), using the scores in
Equation (5) where −b2S,t is the blank score:

st,i =

{
−b2S,t (i = 0)

−∥ft − gi∥2 (i = 1, · · · , n)
(15)

The timestamped-word CTC loss LZ includes a sequence
of word timestamps V corresponding to the word sequence
W of every training sample:

LZ = −
∑

(X,W,V )∈D

ln P̂ (W,V |X). (16)

For computing P̂ (W,V |X), we use the following pre-softmax
score:

zt,i =

{
−b2Z,t (i = 0)

z (st,i, dt,i) (i = 1, · · · ,m)
(17)

where

z(s, d) ≜ s− d+ sd (18)

dt,i ≜ ∥ut − vi∥2 = (τt − αi)
2 + (θt − βi)

2. (19)
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Here, we do not use a fixed-vocabulary G. A timestamped-
vocabulary of size m is prepared on-the-fly for every training
sample. Each i’th entry in the vocabulary is a tuple (gi,vi)
where vi is a timestamp [αi βi]

T for gi. The m training
samples consist of reference samples and negative samples.
The reference samples are the reference words and their
corresponding reference timestamps (obtained from forced-
alignment using a DNN-HMM ASR). The negative samples
are generated by taking 1. All the reference words, with ran-
dom perturbation added to their timestamps and 2. Randomly-
chosen non-reference words with random timestamps, where
the timestamps are perturbed versions of the timestamps in the
reference transcription. We found that such perturbed versions
of the reference timestamps – rather than purely random
timestamps – give better results.

The post-softmax score is

qt,i =
exp(zt,i)∑
j exp(zt,j)

. (20)

By inspection, we can see that the same argument can be made
regarding qt,i as we did for pt,i in Sec. II-B. Since dt,i ≥ 0,
it always makes zt,i lower, and leaves zt,i unchanged when
dt,i = 0 ↔ ut = vi. When ft = gi, τt = αi, and θt = βi, we
get the maximum value for zt,i, and for a sufficiently large
number of dimensions in the embedding vectors, zt,i will be
much higher than the other zt,j’s, allowing qt,i to be close to
the maximum value of 1.

This also implies that LZ may be all we need in Equation
(14). The reason why we still include LS is the blank score.
−b2Z,t from LZ is trained to compete with the non-blank scores
in Equation (17). However, at testing time, we use the non-
blank scores in Equation (5), so must use a compatible blank
score, which is −b2S,t trained using LS . Also note that the
non-blank scores in Equation (17) are generally lower than
the non-blank scores in Equation (5) because the former are
weighed down by the timestamp estimation errors. We would
get many insertion errors if we used −b2Z,t for testing, because
it must compete with non-blank scores that are overall higher
than what it had seen at training time.

Testing mode is shown in Fig. 3. When testing, we use st,i
and pt,i in Equation (5) and (4) as in the previous system, and
attach a timestamp vector ut,i = [τt θt]

T to every st,i (i > 0).
Whenever the prefix beam decoder chooses a word wi at time
t with score st,i, it takes ut,i as the word’s timestamp.

C. Timestamped Multiple-Hypothesis System

The multiple-embedding version of our system is shown in
Fig. 4 and Fig. 5. For each k’th embedding vector f

(k)
t , the

conformer outputs a timestamp vector u(k)
t = [τ

(k)
t θ

(k)
t ].

For each label i, the pre-softmax score for LZ is based
on the multiple-embedding score st,i in Equation (7) and the
hypothesized timestamp corresponding to the best-matching
hypothesized embedding:

zt,i =

{
−b2Z,t (i = 0)

z(st,i, dt,i) (i = 1, · · · , n),
(21)

Acoustic input X

Conformer

Softmax

+−(·)2

gi

argmax(·)

f
(1)
t f

(2)
t

z(·) αi

βi

+

tanh sigtanh sig

τ
(1)
t τ

(2)
t θ

(1)
t θ

(2)
t

τt,i θt,i

+ +t t

st,i

dt,i

qt,0, qt,1, · · · , qt,n

· · ·· · ·zt,0 zt,1 zt,i zt,n

bS,t bZ,t

Fig. 4. Training mode of the proposed system when L = 2; in particular,
computation of LZ at time t. A comparator (△) represents the L2 distance
(negated for st,i) between two inputs. A multiplexer ( ) chooses one of
two timestamps based on the hypothesized embedding that best matches the
i’th word. For clarity, we show only the computation of zt,0 and zt,i in this
figure. The other zt,j ’s are computed the same way, using different αj , βj

and gj . Note that bS,t is used for computing LS , so is unused here.

where z(·) is defined in Equation (18) and

st,i =
∑L

k=1s
(k)
t,i (i = 1, · · · , n) (22)

s
(k)
t,i = −∥f (k)t − gi∥2 (i = 1, · · · , n) (23)

dt,i = ∥ut,i − vi∥2 = (τt,i − αi)
2 + (θt,i − βi)

2 (24)

ut,i = u
(l)
t (25)

l = argmax
k

s
(k)
t,i (i = 1, · · · , n). (26)

The reasoning behind Equation (26) is that since each f (k)

corresponds to one segment in the speech, for every word wi

it will be the f (k) that best matches the word that will also
have the most accurate timestamp. We only care about cases
when there exists a strong match with wi. If all f (k)’s have
a weak match with wi, the word wouldn’t be chosen by the
decoder so it doesn’t matter what timestamp we assign to it.
If multiple f (k)’s have a strong match with the same wi, those
f (k)’s are also likely to have very similar timestamps (since
they are representing the same audio segment), so we could
choose any one of them.

D. Analysis of Timestamped Multiple-Hypothesis System

We extend the example in Sec. II-C to assume one input
training audio with two different reference timestamped word
transcriptions. We want to show that the timestamped multiple-
hypothesis system with L = 2 will be able to separately
represent both the word embeddings and the timestamps for
“First” and “Fursten.”
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Acoustic input X

Conformer

Softmax

+−(·)2

· · ·

gi

argmax(·)

· · ·

f
(1)
t f

(2)
t

·· ···· ··
·· ·· ·· ··

tanh sigtanh sig

τ
(1)
t τ

(2)
t θ

(1)
t θ

(2)
t

τt,1 τt,i θt,i

+ +t t

st,0 st,1 st,i st,m

pt,0, pt,1, · · · , pt,m θt,m

bS,t bZ,t

Fig. 5. Testing mode of the proposed multiple-hypothesis (L = 2) system.
At time t, for every word wi in the testing vocabulary, the network produces
a posterior score pt,i, a start time τt,i, and a duration θt,i. For clarity, in
the figure we only show the score computation for the i’th word. The same
process is applied to all the other words. The blank score bZ,t used to train
LZ is ignored during testing.

First and Park(ga)

Fursten (gb)

αa,αb

βa

βb

Fig. 6. Extension of the example in Fig. 1 with timestamps va = (αa, βa)
and vb = (αb, βb) included in the reference transcriptions where αi and βi

are the start time and duration, respectively, of word wi. This time, for one
audio input, the multiple-hypothesis embedding-matching system must learn
to produce two different timestamped embeddings (ga,va) and (gb,vb).

Word wa (“First”) is described by (ga,va) where va stores
the reference timestamp [αa, βb]

T . Word wb (“Fursten”) is
described by (gb,vb). The CTC’s underlying model produces
two embeddings f

(1)
t and f

(2)
t , and two corresponding times-

tamps u
(1)
t = [τ

(1)
t , θ

(1)
t ] and u

(2)
t = [τ

(2)
t , θ

(2)
t ].

Since our optimization criterion in (14) is the sum of the log
of two CTC losses, we can consider the product of the post-
softmax scores pa ·pb ·qa ·qb at some point in time t that CTC
training would attempt to maximize. We will show that the
following condition is a sufficient condition for maximizing
q:

f
(1)
t = ga, u

(1)
t = va, f

(2)
t = gb, and u

(2)
t = vb (27)

where 1 and 2 may be swapped.
We already know that (27) maximizes pa · pb, so we only

consider q = qa · qb. As before, we only need to consider
1 point in time, so we drop t to simplify the notation. Note
that f (1) = ga implies ua = u(1), i.e., for word wa, the first

embedding is the obvious “winner”, so wa is also assigned the
first timestamp. Likewise, f (2) = gb implies ub = u(2).

First, one can see that

∂zj
∂ui

=

{
2 (ui − vi) (si − 1), for i = j

0, for i ̸= j.
(28)

We wish to maximize

ln(q) = ln(qa) + ln(qb) = za + zb − 2 ln
∑
j

exp(zj). (29)

We can see that
∂ ln q

∂ua
=

∂za
∂ua

(1− 2qa) (30)

∂2 ln q

∂u2
a

= 2(sa − 1) (1− 2qa)− 2

(
∂za
∂ua

)2

qa(1− qa).

(31)

Hence, qa < 1/2 is a sufficient condition for ln q to be concave
with respect to ua, in which case ln q will be maximized with
respect to ua when ua = va. By symmetry, if qb < 1/2,
ln q will be maximized with respect to ub when ub = vb. In
Appendix D, we apply the same assumption as in Sec. II-C
for high embedding dimensions to show that qa < 1/2 and
qb < 1/2 indeed holds, and we also show that f (1) = ga and
f (2) = gb maximize q. Hence, Condition (27) is a sufficient
condition for maximizing q.

IV. EXPERIMENTS

We trained “previous” embedding-matching models using
word-pronunciation embeddings in the same manner as we
previously proposed in [2]. The training and development
data consisted of utterances spoken by diverse anonymized
speakers to a digital assistant. The training data had a total
2M utterances (3,030 hours), and the development data had
400k utterances (534 hours). We then trained the proposed
timestamped models using the same audio and embeddings as
the previous models, but also with ground truth timestamps
provided by a DNN-HMM ASR. We also varied the number
of internal embeddings (the value of L in Equations (7) and
(22)) from 1 to 3.

All models were conformer [25] networks, with 272 encoder
dimensions, 8 attention heads, 18 layers, and a kernel size
of 31. A final linear transformation was applied to the con-
former’s output to obtain the desired number of embeddings
and the timestamps (when applicable). For example, for the
proposed system with 3 internal embeddings, the final output
of the model had 40 × 3 + 2 + 2 × 3 = 127 dimensions (3
embeddings, 2 blank scores, 3 start times, and 3 durations).
The final models had the following total number of parameters:

The training schedule follows the 2-phase specification in
[25] and [26], but with an additional third phase where the
learning rate decays exponentially (rather than following the
inverse square root), which we found to improve accuracy. The
schedule is specified by 4 variables: the number of steps p1
in the first phase (warmup phase), the number of steps p2 in
the second phase (inverse square root), the exponential decay
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TABLE I
TOTAL NUMBER OF TRAINABLE MODEL PARAMETERS

Model Internal ParametersEmbeddings (L)

Previous
1 32,403,673
2 32,414,593
3 32,425,513

Proposed
1 32,404,492
2 32,415,958
3 32,427,424

rate γ in the third phase, and the peak learning rate R. The
learning rate at training step s is

R

p1
s 1 ≤ s ≤ p1

R
√
p1√
s

p1 ≤ s ≤ p1 + p2

R

√
p1

p1 + p2
· 2(p1+p2)/γ · 2−s/γ p1 + p2 ≤ s

(32)

We used R = 0.01/
√
d where d is the encoder dimensions

of the conformer. We also set p1 = 30k, p2 = 270k, and γ =
30k with a batch size of 256. A convolutional subsampling was
applied to the acoustic input before the conformer, resulting
in a frame rate of 25 frames/second (or 40ms per frame). For
every training job, the model produced at every epoch was
evaluated on a small held-out tuning dataset of 4k utterances,
and the model that had the lowest WER was chosen as the
final model.

All embedding-matching CTC models were word-
pronunciation-based models as described in [2], using a
pronunciation-based text encoder as described in [3] that
outputs text embeddings with 40 dimensions. For the previous
models, the training vocabulary size was 39,478. For the
timestamped models, the randomized timestamped vocabulary
size was fixed to a similar size, 40,000.

A. Segmentation Accuracy on TIMIT Data

The TIMIT [27] dataset includes human-edited reference
word timestamps [28]. We force-aligned the TIMIT audio to
the reference words using the proposed timestamped model,
as well as a hybrid DNN-HMM ASR (the same model
that provides the ground truth when training the proposed
model) to obtain hypothesized start times and durations. Force
alignment using the embedding-matching models is done by
constraining the prefix beam decoder (e.g. [29]) to only follow
the reference words. We compute the word start error as the
absolute difference between the hypothesized start and the
reference start for every word, then compute the mean of this
error over all the words. In another study [13], the same metric
is called “word absolute start time delta (WASTD).” The same
mean absolute error can be computed for word duration.

We will now describe how the decoder extracts word times-
tamps with the proposed CTC model. The first occurrence of
each word in the 1-best alignment is used to determine the
timestamp. For example, assume the optimal label sequence
found by the beam decoder has three words w41=“how’s”,

w25=“the”, and w73 =“weather” as follows (“ ” indicates
blank):

Time 0 1 2 3 4 5 6 7 8 9 10
Word how’s how’s the weather

The timestamps are u2,41, u6,25, u7,73, or (τ2,41, θ2,41),
(τ6,25, θ6,25), (τ7,73, θ7,73). Hence, the timestamp u3,41 as-
sociated with the second how’s is ignored. Note, however,
that u3,41 is most likely very similar to u2,41, because the
timestamp is part of the word identity during CTC model
training (the training wants both ut = vi and ft = gi in
Section III-B).

Label repetitions actually occur rarely, but we show a real
example from the TIMIT data that demonstrates the afore-
mentioned effect. For the dr8/mres0/si1847 utterance, our
decoder using the proposed timestamped CTC model produced
the sequence of labels shown in Table II, where the label for
“radiated” was repeated in frames 12 and 13.

The word start and durations (in milliseconds) produced by
the neural network for the corresponding labels are shown in
Tables III and IV, respectively. For the repeated label, we can
see that the start times and end times are near-identical for
both frames 12 and 13.

A total 6,300 utterances containing a total 54,387 words
were tested. Table V shows the results for the baseline hybrid
DNN-HMM ASR, and the proposed timestamped embedding-
matching CTC ASR using a variable number of internal
embeddings. The mean word start accuracy µα (18.9ms for
the baseline, 21.8ms for the proposed with 3 embeddings) is
similar to the same measurement made for a GMM-HMM
system in [13], which was 21.3ms. Compared to the baseline
hybrid DNN-HMM ASR, the proposed system has less than
3ms difference in average word start time accuracy, and less
than 7ms difference in average word duration accuracy. Note
that the accuracy of the proposed model is bounded by the ac-
curacy of the DNN-HMM, since the latter provides the ground
truth timestamps when the former is trained. The segmentation
accuracy of the proposed system also improves with increasing
number of internal embeddings. This is probably for similar
reasons as the improved recognition accuracy observed in [2],
i.e., the ability of the embedding-matching model to generate
more diverse hypotheses over more diverse word segments
allow it to better represent the reference word sequences during
forced alignment.

In Table VI, we ran the same experiment on Noisy TIMIT
[30] for three different types of noise with varying SNR. For
both the baseline DNN-HMM and the proposed systems, the
accuracy degraded as the SNR decreased. The accuracy gap
between the baseline and the proposed systems also seemed
to get wider for lower SNR, but in most cases, the gap was
not larger than 10ms.

B. Impact on Recognition Accuracy

To test for any negative impact on recognition accuracy by
the addition of LZ in Equation (14), we tested the system on
a dataset of 35,907 utterances spoken by diverse anonymized
speakers to a digital assistant. For every utterance, a user-
dependent list of contact names was added to the base vo-
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TABLE II
LABELS OUTPUTTED BY THE PROPOSED MODEL AT EVERY 40MS FRAME FOR dr8/mres0/si1847, STARTING AT FRAME 0 (THE TOP LEFT CELL), AND
ENDING AT FRAME 58. EACH ROW IN THE TABLE SHOWS 10 FRAMES (THE FIRST ROW SHOWS FRAMES 0 ∼ 9, THE SECOND ROW SHOWS 10 ∼ 19, AND

SO ON).

Frame No. 0 1 2 3 4 5 6 7 8 9
0 she
10 radiated radiated
20 warmth
30 and
40 good
50 fellowship

TABLE III
WORD START TIMES (IN MS) PRODUCED BY PROPOSED MODEL FOR THE LABEL SEQUENCE IN TABLE. II. FOR THE REPEATED LABEL AT FRAMES 12 AND
13, THE WORD START TIMES ARE NEAR-IDENTICAL. THE CORRESPONDING REFERENCE START TIMES (INCLUDED IN THE TIMIT DATA) ARE 141, 362,

992, 1512, 1649, AND 1864.

Frame No. 0 1 2 3 4 5 6 7 8 9
0 84
10 388 389
20 1024
30 1469
40 1573
50 1875

TABLE IV
DURATIONS (IN MS) PRODUCED BY PROPOSED MODEL FOR THE LABEL SEQUENCE IN TABLE. II. FOR THE REPEATED LABEL AT FRAMES 12 AND 13, THE

DURATIONS ARE NEAR-IDENTICAL. THE CORRESPONDING REFERENCE DURATIONS (INCLUDED IN THE TIMIT DATA) ARE 221, 630, 520, 137, 215,
AND 587.

Frame No. 0 1 2 3 4 5 6 7 8 9
0 270
10 597 599
20 423
30 73
40 256
50 600

TABLE V
WORD SEGMENTATION ACCURACY ON TIMIT DATA (LOWER VALUES ARE
BETTER). THE MEAN µ IN MILLISECONDS OF THE ABSOLUTE DIFFERENCE

BETWEEN THE HYPOTHESIZED AND REFERENCE START TIMES (α) AND
DURATIONS (β) ARE SHOWN FOR A HYBRID DNN-HMM ASR AND THE

PROPOSED TIMESTAMPED SYSTEM.

System Internal
µα (ms) µβEmbeddings

Baseline DNN-HMM (Not applicable) 18.9 30.4

Proposed
(trained on 3k hours)

1 23.6 38.7
2 22.6 37.4
3 21.8 37.1

cabulary. A language model (LM) that supports a $CONTACT
variable was used with the decoder, where $CONTACT ap-
pears in contexts such as “call $CONTACT office” or “text
$CONTACT I’ll be five minutes late.”. Table VII shows the
ASR accuracy. In addition to the word error rate (WER), we
also report a named entity error rate (NEER), which is the
word error rate computed on only the named entity portions of
the utterances. When comparing the proposed system with the
previous system in [2] – both using 3 internal embeddings – we
can notice a 4.5% relative degradation of the WER and 5.5%
degradation of the NEER. This is understandable given that
both systems are using the exact same training data and nearly
identical model size, but the proposed system has an additional

term LZ in the loss function that increases the complexity
of the learning criterion and requires more information (the
timestamps) to be modeled compared to the previous system.

For both the previous and proposed systems, there were 3
tunable parameters for each recognizer: a named entity weight
that is applied to the acoustic score of any named entity
hypothesized by the acoustic model, a language model weight
applied to the language model scores, and a constant blank
score divisor [31] applied to the acoustic model’s blank score.
The prefix beam decoder had 3 beam widths: an input beam
that limits the number of words emitted by the acoustic model
at every frame, a label beam that limits the total number
of label sequences (including blanks) hypothesized by the
decoder for each unique word sequence, and a word beam that
limits the total number of unique word sequences hypothesized
by the decoder. The label beam is always set to 1. On a
separate tuning dataset of 12k utterances, we set the input
beam to 40 and the word beam to 100 and did a coarse
parameter sweep to find the named entity weight, language
model weight, and blank score divisor that minimized the word
error rate. These tuning parameters were then applied to the
36k evaluation data, using an input beam of 200 and a word
beam of 500, to produce the results in Table VII.

In Appendix F, we also discuss some (infrequent) cases
where the timestamps allow the decoder to avoid insertion
errors when the acoustic model hypothesizes words whose
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TABLE VI
WORD SEGMENTATION ACCURACY ON NOISY TIMIT DATA (LOWER

VALUES ARE BETTER). THE MEAN µ IN MILLISECONDS OF THE ABSOLUTE
DIFFERENCE BETWEEN THE HYPOTHESIZED AND REFERENCE START

TIMES (α) AND DURATIONS (β) ARE SHOWN FOR A HYBRID DNN-HMM
ASR AND THE PROPOSED TIMESTAMPED SYSTEM USING 3 INTERNAL

EMBEDDINGS.

System Noise Type SNR µα (ms) µβ (ms)

Baseline
DNN-HMM

Babble

20 20.5 32.2
15 21.6 34.6
10 24.0 40.9
5 31.4 57.3

Pink

20 18.5 31.4
15 19.8 35.7
10 23.6 46.3
5 33.7 69.1

White

20 19.4 34.6
15 21.8 42.4
10 27.2 56.6
5 39.1 81.5

Proposed
(L = 3)

Babble

20 23.3 37.8
15 24.8 40.1
10 28.3 47.9
5 41.4 70.4

Pink

20 21.5 36.4
15 22.9 39.7
10 26.9 49.5
5 39.2 74.8

White

20 22.2 38.0
15 24.4 43.6
10 30.3 57.0
5 48.6 89.1

TABLE VII
RECOGNITION ERROR RATE (% WORD ERROR RATE AND NAMED ENTITY

ERROR RATE) ON DIGITAL ASSISTANT DATA WITH DYNAMIC
OUT-OF-VOCABULARY WORDS (CONTACT NAMES) FOR PREVIOUS

METHOD [2] AND THE PROPOSED METHOD.

System Internal WER NEEREmbeddings (L)

Previous
1 9.5 9.7
2 9.2 9.3
3 8.9 9.0

Proposed
1 9.9 10.0
2 9.8 10.0
3 9.3 9.5

pronunciations partially overlap with each other. The times-
tamps also enable the decoder to generate heterogeneous word
confusion networks (HWCNs) [7] for downstream processing.
The prefix tree built during decoding directly becomes the
ASR’s word hypothesis lattice, which can then be converted
to an HWCN. We show examples in Figure 9.

V. CONCLUSION AND FUTURE WORK

In this paper, a novel timestamped embedding-matching
acoustic-to-word (A2W) model has been proposed, where
a word-level embedding-matching CTC model is trained to
directly estimate a start time and duration of every hypothe-
sized word, allowing simpler, faster, and more efficient ASR.
Experiments show that the word segmentation accuracy can
approach that of a hybrid DNN-HMM ASR, with small impact
on word error rate. We also contributed more rigorous analysis
on multiple-hypothesis embedding-matching A2W to provide

further insight into how the model can learn to produce
multiple embeddings, and extended the analysis to show how
the model can also produce word timestamps.
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APPENDIX A
MAXIMIZATION OF THE SOFTMAX WHEN USING THE

INNER PRODUCT

In the inner product case [1], [21], we have

si,t = fTt gi. (33)

For embedding-matching to work, we need si,t to be max-
imized if and only if ft = gi. Such a property already always
holds for the negative L2 distance in Equation (5), but for the
inner product, we also require the normalization

fTt ft = gT
i gi = c ∀t, i, (34)

for some constant c > 0, so that by the Cauchy-Schwarz
Inequality we would have

(fTt gi)
2 ≤ (fTt ft)(g

T
i gi) = c2, (35)

where equality holds if and only if ft = gi.
If we were to take the approach of Sec. II-B, we have

ln pt,i = − ln

1 + n∑
j ̸=i

exp
(
fTt gj − fTt gi

) . (36)

We can apply the fact that any two isotropic random vectors
on a d-dimensional sphere tend to be orthogonal as d → ∞
[32]. Setting fTt gj = 0 and fTt gi = c (since ft = gi), we
obtain:

lim
d→∞

ln pt,i = − ln
[
1 + (n− 1)e−c

]
. (37)

Hence, for a sufficiently large number of dimensions d, and
a sufficiently large c, we will have pt,i ≈ 1 when ft = gi.

APPENDIX B
APPROXIMATE L2 DISTANCES IN HIGH DIMENSIONS

High dimensional vectors are known to exhibit the “distance
concentration phenomenon” [32]–[34] where d-dimensional
vectors with independent and identically-distributed elements
tend to be concentrated on a Lp sphere of constant radius as
d grows larger. In [34], this is expressed as

∀ϵ > 0, lim
d→∞

P

{∣∣∣∣ ||x||p
E||x||p

− 1

∣∣∣∣ ≥ ϵ

}
= 0 (38)

where x ∈ Rd.
It is also known that isotropic vectors tend to be orthogonal

in high dimensions [32], i.e.,

|xTy| ≈ 1√
d

(39)

which approaches 0 for large d. Acoustic neighbor embeddings
are trained by modeling the “induced” probabilities in the
embedding space as isotropic Gaussian distributions [3], [35].
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Hence, for the purpose of making our analysis easier in
Sections II-C and III-C, we make the first-order approximation
that the distance between any two distances will tend to be
some constant D in a high-dimensional space when x ̸= y:

||x− y||2 = xTx− 2xTy + yTy ≈ D (40)

This approximation is also a reflection of [22] where it is
shown that L2 distances become more and more similar so
that there is little difference between “near” and “far” in high
dimensions.

APPENDIX C
MAXIMIZATION OF POSTERIOR FOR HIGH DIMENSIONS IN

SECTION II-C

Defining sets G = {g1, · · · ,gn} and G′ = G ∩ {ga,gb}C ,
we can exhaustively identify – without using Condition (12)
– 8 different cases for the value of ln p after accounting for
symmetry

(i)− 4D − 2 ln(ne−2D), f (1) /∈ G, f (2) /∈ G
(ii)− 3D − 2 ln(e−D + (n− 1)e−2D),

f (1) = ga, f
(2) /∈ G

(iii)− 3D − 2 ln(2e−D + (n− 2)e−2D),

f (1) = ga, f
(2) ∈ G′

(iv)− 2D − 2 ln(1 + (n− 1)e−2D), f (1) = f (2) = ga

(v)− 2D − 2 ln(2e−D + (n− 2)e−2D),

f (1) = ga, f
(2) = gb

(vi)− 4D − 2 ln(2e−D + (n− 2)e−2D),

f (1) ∈ G′, f (2) ∈ G′, f (1) ̸= f (2)

(vii)− 4D − 2 ln(1 + (n− 1)e−2D), f (1) = f (2) ∈ G′

(viii)− 4D − 2 ln(e−D + (n− 1)e−2D),

f (1) ∈ G′, f (2) /∈ G

Since D > 0, it is obvious that (iii) < (v) and (vi) < (v).
For (i), we have

(i) = −2 ln(n) = −2 ln(2 + (n− 2)) (41)
< −2 ln(2 + (n− 2)e−D) = (v). (42)

For (ii), we have

(ii) = −2 ln(2eD/2 + (n− 1)e−D/2) (43)
< −2 ln(2eD/2 + (n− 1)e−D/2 − e−D/2) (44)
= (iii) < (v). (45)

For (iv), we have

(iv) = −2 ln(eD + e−D + (n− 2)e−D) (46)
< −2 ln(2 + (n− 2)e−D) = (v). (47)

where we used the fact that e−D + eD > 2.
It is also obvious that (vii) < (iv), so (vii) < (v).
It is also obvious that (viii) < (ii), so (viii) < (v).
Hence, (v) is the maximum among the 8 cases shown above.

APPENDIX D
MAXIMIZATION OF POSTERIOR FOR HIGH DIMENSIONS IN

SECTION III-D

Assuming high dimensionality, we can approximate as fol-
lows:

zi =


−di if f (1) = f (2) = gi

−D − di(D + 1) if f (1) = gi, f
(2) ̸= gi

−2D − di(2D + 1) if f (1) ̸= gi, f
(2) ̸= gi.

(48)

By Condition (27), we have da = db = 0, so za = zb =
−D, which means qa < 1/2 and qb < 1/2. Hence, u(1) = va

and u(2) = vb maximize q.
Under this constraint, we can identify 8 different cases for

ln(q) = ln(qa) + ln(qb) after accounting for symmetry:

(i)− 2D − 2 ln
(
2e−D + eD

∑
j ̸=a,b

hj

)
,

f (1) /∈ G, f (2) /∈ G
(ii)− 2D − 2 ln

(
e−D/2 + e−3D/2 + eD/2

∑
j ̸=a,b

hj

)
,

f (1) = ga, f
(2) /∈ G

(iii)−2D−2 ln
(
e−D/2+e−3D/2+eD/2mc+eD/2

∑
j ̸=a,b,c

hj

)
,

f (1) = ga, f
(2) = gc

(iv)− 2D − 2 ln
(
1 + e−2D +

∑
j ̸=a,b

hj

)
,

f (1) = f (2) = ga

(v)− 2D − 2 ln
(
2e−D +

∑
j ̸=a,b

hj

)
,

f (1) = ga, f
(2) = gb

(vi)− 2D − 2 ln
(
2e−D + eDmc + eDmd + eD

∑
j ̸=a,b,c,d

hj

)
,

f (1) = gc, f
(2) = gd

(vii)− 2D − 2 ln
(
2e−D + eDe−dc + eD

∑
j ̸=a,b,c

hj

)
,

f (1) = f (2) = gc

(viii)− 2D − 2 ln
(
2e−D + eDmc + eD

∑
j ̸=a,b,c

hj

)
,

f (1) = gc, f
(2) /∈ G,

where wa, wb, wc, wd are all distinct words in the train-
ing vocabulary, with corresponding distinct embeddings
ga,gb,gc,gd ∈ G, and we have defined

hi ≜ e−2D−di(2D+1) (49)
mi ≜ e−D−di(D+1), (50)

for i ≥ 1.
Since D > 0, it is obvious that (i) < (v).
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We know eD/2 + e−D/2 > 2, which implies e−D/2 +
e−3D/2 > 2e−D, and therefore

(ii) < −2D − 2 ln
(
2e−D + eD/2

∑
j ̸=a,b

hj

)
< (v). (51)

Since mc > hc,

(iii) < −2D − 2 ln
(
e−D/2 + e−3D/2 + eD/2

∑
j ̸=a,b

hj

)
= (ii) < (v) (52)

We know eD+e−D > 2, which implies 1+e−2D > 2e−D,
so

(iv) < −2D − 2 ln
(
2e−D +

∑
j ̸=a,b

hj

)
= (v). (53)

Since mc > hc and md > hd, we have

(vi) < −2D − 2 ln
(
2e−D + eD

∑
j ̸=a,b

hj

)
< (v). (54)

Since hc < e−dc , we have

(vii) < −2D−2 ln
(
2e−D+eDhc+eD

∑
j ̸=a,b

hj

)
= (i) < (v).

(55)
Since mc > hc, we have

(viii) < −2D−2 ln
(
2e−D+eD

∑
j ̸=a,b

hj

)
= (i) < (v). (56)

Hence, (v) is the maximum of ln(q).

APPENDIX E
WORD OFFSET AND DURATION LIMITS

In Figure 7, we show histograms of the word offsets and
durations produced by the proposed system (L = 3) system
for the TIMIT data. The minimum observed word offset
was −451ms, and the maximum was 133ms. The minimum
observed word duration was 17ms, and the maximum was
1684ms. All the offsets and durations are well within the −1s
∼ +1s and 2s limits imposed by the hyperbolic tangent and
sigmoid operators in the system, implying that the limits do
not have an actual effect during evaluation.

When we removed the sigmoid and hyperbolic tangent
operators and retrained the models, however, we noticed a
small degradation in the word segmentation accuracy and
speech recognition accuracy, implying that the operators may
still help train the system more accurately.

APPENDIX F
MITIGATION OF INSERTION ERRORS USING TIMESTAMPS

Fig. 8a shows a simplified set of word posterior scores
produced by the embedding-matching word CTC model for
the speech utterance “directions to Fursten Park.” Each bar “I”
represents a spike in the score for the corresponding word and
time. It is possible for the decoder to produce “directions to
Fursten and Park” as the final recognition result, even though
“and” is clearly the last part of “Fursten” erroneously getting
recognized a second time.
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Fig. 7. Histograms of word offsets and durations produced by the proposed
system for TIMIT data.

In a hybrid DNN-HMM ASR system, this sort of insertion
typically does not occur because every speech frame is ex-
plicitly assigned a position in a state sequence, and a speech
frame that is already consumed by “Fursten” cannot be reused
by any succeeding word. In our embedding-matching word
CTC system, however, such an insertion can occur because
there is no built-in systemic notion of word-frame ownership.
This is exacerbated when we aggressively induce the system
to hypothesize over multiple segment lengths at every point in
time [2] as described in Sec. II-C.

Accurate word timestamps allow us to easily address this
problem. As shown in Figure 8b, the beam decoder can see
that “Fursten” significantly overlaps with “and” and therefore
refuse to follow such a path. Hence, in the decoder for the
proposed timestamped system, we add a condition that when
a preceding word’s end time is te and a candidate succeeding
word’s start time is ts, the prefix decoder refuses to join the
two words if te > ts + γ where γ ≥ 0 is a constant tolerance.
For the results in Table VII, we used γ = 200ms.
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