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Abstract

In research and practice, public transportation planning is executed in a series of steps,

which are often divided into the strategic, the tactical, and the operational planning

phase. Timetables are normally designed in the tactical phase, taking into account a

given line plan, safety restrictions arising from infrastructural constraints, as well as

regularity requirements and bounds on transfer times.

In this paper, however, we propose a timetabling approach that is aimed at decision

making in the strategic phase of public transportation planning and to determine an

outline of a timetable that is good from the passengers’ perspective. Instead of including

explicit synchronization constraints between train runs (as most timetabling models do),

we include the adaption time (waiting time at the origin station) in the objective function

to ensure regular connections between passengers’ origins and destinations. We model the

problem as a mixed integer quadratic program and linearise it. Furthermore we propose

a heuristic to generate starting solutions. We illustrate the type of solutions found by our

approach on two case studies based on the Dutch railway network and analyse trade-offs

that are made to balance dwell times and regularity of trains.

Keywords: public transportation planning, strategic timetabling, integration of

timetabling and passenger routing

1 Introduction

The public transportation planning process is traditionally subdivided into a number of steps

which are assigned to either the strategic, the tactical, or the operational planning phase.
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According to Huisman et al. [2005], the strategic phase encompasses a time horizon of two

to ten years before implementation and includes infrastructure decisions and line planning.

The timetabling problem is often allocated to the tactical phase (approximately one year

before implementation). Timetabling in the tactical phase takes a given line plan, safety

restrictions arising from infrastructural constraints, as well as regularity requirements and

bounds on transfer times as input.

This paper, however, focuses on strategic timetabling, i.e., the generating of a (prelimi-

nary) timetable already in the strategic planning phase. Strategic timetabling can be used

to make strategic decisions with respect to timetables, like ”What should the headway times

be between consecutive trains at a station?” and ”Where should good transfer connections

between trains be made?”. Due to the location of strategic timetabling early in the plan-

ning horizon, it can also be used to evaluate line plans and to point to bottlenecks in the

infrastructure (and thus to promising infrastructure investments).

The value of strategic timetabling has been recognized in the practice of transporta-

tion planning. Following the example of Switzerland, the initiative Deutschland-Takt aims

at establishing a so-called ‘integraler Taktfahrplan’ in Germany from the year 2030 on

(Deutschland-TAKT [2019]). The transportation system should be redeveloped in such a way

that connections between cities are served every 30 or 60 minutes, and that better transfer

connections are provided. Reversing the current planning practice, the creation of a so-called

’target timetable’ should precede and guide infrastructure investment decisions (e.g. in ad-

ditional tracks between stations, or additional platforms at stations). In the Netherlands, a

similar approach is used to evaluate infrastructure investments (Beter & Meer [2014]).

However, to the extent of our knowledge, models from academic research on timetabling

as well as software tools for timetabling decision support are aimed at timetabling in the

tactical (and operational) planning phase. Therefore, they focus on operational feasibility on

a given infrastructure, and are rather restrictive in modeling of quality requirements. While

these features are suitable for the more restrictive setting of tactical and operational planning

(where changes in infrastructure and major changes in passenger behaviour are not desirable

or possible), they are not appropriate to find new and innovative timetabling solutions as is

desirable in the strategic planning phase.

In this paper we aim to close this gap by presenting an optimisation approach to strategic

timetabling. As common in railway timetabling, we aim at finding a periodic timetable, i.e.,

we require that the timetable follows a repeating pattern and hence the timetable of a base

period is repeated throughout the day. Our objective is to find a periodic timetable that

minimizes average perceived travel time for a given line plan. Different from most other

timetabling models, we include adaption time in the perceived travel time. Adaption time

describes the time difference between the desired departure time of a passenger and his actual

departure time. This allows us to omit regularity constraints between runs of the same line
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(or runs of different lines that run in parallel for part of their route), which are otherwise often

used to ensure low adaption times in an indirect way, simply by enforcing regular departures.

Note that in case of dense networks and high frequencies, where OD-pairs are served by more

than one line, the question which trains should be synchronized with each other becomes far

from trivial to answer. In such situations, imposing synchronization constraints may lead to

sub-optimal solutions or even infeasibility of the timetabling problem.

This is illustrated in the following example. Consider three stations S1, S2, S3, and travel

demand between all pairs of stations. Assume that the line plan prescribes a line from S1 via

S2 to S3 with a frequency of two trains per hour, and a line from S2 to S3 with a frequency

of one train per hour. If we synchronize all trains between S2 and S3, the headway between

the trains on this part of the route will be 20 minutes, but from S1 to S2 the headways are

20 minutes and 40 minutes. This is depicted in the time-space diagram in Figure 1a, where

time and distance are shown on the horizontal and vertical axis, respectively. On the other

hand, if we synchronize between S1 and S2, we have one headway of 30 minutes and two

shorter headways between S2 and S3 (Figure 1b). Perfect synchronization on both parts of

the network is possible, but only if one of the trains from S1 to S2 waits an additional 10

minutes at S2 (Figure 1c). Which of this solutions is best with respect to average perceived

travel times depends on the size of the travel demand between the stations and the perceived

value of adaption time compared to in-train time.

Our timetabling model allows us to find the best trade-off in such situations by explicitly

including the adaption time into the perceived travel time, instead of deciding on where to

impose regularity constraints heuristically before the optimisation.

S1

S2

S3

40 20

20 20 20

(a) S2 → S3 synchronised

S1

S2

S3

30 30

15 1530

(b) S1 → S2 synchronised

S1

S2

S3

30 30

20 20 20

(c) All synchronised

Figure 1: Time space diagrams for different synchronisation options

We define the Strategic Passenger-Oriented Timetabling (SPOT) problem as follows:

Given a railway network consisting of stations and links connecting them, and a line plan

specifying lines routes and frequencies on the network: find a timetable that minimizes

average perceived passenger travel time under the assumption that passengers will choose
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the route with least perceived travel time. Hereby, perceived travel time is measured from

the desired departure time on, that is, it includes adaption time.

Since we consider timetabling in the strategic planning phase, we cannot expect to have

accurate demand information. In particular, the exact timing of travel requests is unknown.

Therefore, we think that in this time frame it is appropriate to model passengers’ desired

departure times as evenly spread over the period and explicitly use this assumption in our

mathematical program for the SPOT problem. Both the assumption that passengers indeed

arrive randomly at the station and the assumption that they adapt to the communicated

timetable to a large extent can be modeled by a parameter in our objective function which

relates the perceived duration of waiting at the origin to in-train time.

We model the SPOT problem as a quadratic mixed integer program that extends the

traditional PESP model for periodic timetabling (Serafini and Ukovich [1989]). We linearise

the model and develop a heuristic to find a starting solution. We test our approach in two

case studies based on the Dutch railway network.

Note that infrastructure constraints can be included in PESP (and thus also in our SPOT

model) as headway constraints in a natural way (Liebchen and Möhring [2007]). However,

due to the strategic perspective we take, we do not include them in our approach for two

reasons: to be able to identify promising infrastructure investments, and to keep the model

tractable. In later planning phases (tactical and operational planning), when the timetabling

focus shifts towards macroscopic and later microscopic feasibility, such constraints can (and

should) be added. Furthermore, in our model we omit upper bounds on transfer times and

regularity constraints, since this would artificially restrict the solution space and long transfers

and irregular departure patterns will already be penalized in the objective function.

Our contribution in this paper is fourfold. First, we formulate the Strategic Passenger-

Oriented Timetabling (SPOT) problem for timetabling in the strategic planning phase. Sec-

ond, we model this problem as a quadratic integer program that integrates timetabling with

passenger routing (on perceived-travel-time-minimal routes) and linearise this formulation.

Third, we propose a heuristic to construct a starting solution, in order to find good solutions

even for complex large instances. Fourth, we test our model on two case studies based on the

Dutch railway network, illustrating the trade-offs between the duration of dwell times and

regularity of train service.

The remainder of this paper is organized as follows. In Section 2, we describe literature

that is related to our study. We state our problem definition and formulate a quadratic

integer programming model for SPOT in Section 3. In Section 4 we linearise this model and

describe how we solve it. In Section 5 we evaluate our solution approach and perform a case

study on two practical instances from Netherlands Railways. Finally, we conclude the study

in Section 6.
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2 Related Work

In this section, we give an overview on related research. In Section 2.1 we describe other

attempts to timetabling in the strategic planning phase. Section 2.2 gives a brief overview

on periodic timetabling. Section 2.3 describes how passenger routing can be combined with

timetabling and how this is done in existing literature.

2.1 Strategic timetabling

While in the practice of public transportation planning, strategic attempts on timetabling are

not uncommon (see, e.g., Deutschland-TAKT [2019]), research on railway planning normally

allocates timetabling to the tactical phase in the public transportation planning process. For

this reason, many timetabling models take into account a given line plan, safety restrictions

arising from infrastructural constraints, as well as regularity requirements and bounds on

transfer times. However, there are also approaches (see, e.g., Robenek et al. [2017, 2016],

Pätzold et al. [2017], Schmidt and Schöbel [2015], Borndörfer et al. [2017]) which neglect,

e.g., infrastructural constraints in a railway timetabling setting, which may make them more

suitable for strategic than for tactical planning.

2.2 Periodic Timetabling

The Periodic Event Scheduling Problem (PESP) model that is commonly used for periodic

railway timetabling was introduced in Serafini and Ukovich [1989]. Overviews on how to

model timetabling constraints and extensions in a PESP framework can be found, e.g., in

Odijk [1996], Peeters [2003]. Liebchen and Möhring [2007] provide a discussion on what

can be included in the PESP framework, and what cannot, like symmetry of timetables and

maximum headway times between consecutive trains.

In its original formulation, PESP is a feasibility problem. Approaches to solve it in-

clude besides integer programming approaches (Liebchen [2008]) also constraint programming

(Kroon et al. [2009]), the modulo-simplex heuristic (Nachtigall and Opitz [2008], Goerigk

and Schöbel [2013]), a matching-approach (Pätzold and Schöbel [2016]), using a Satisfiability

(SAT) solver after applying a polynomial transformation from PESP to SAT (Großmann

et al. [2012], Kümmling et al. [2015]), or by combining SAT with machine learning (Matos

et al. [2018]). If a feasible solution exists, this can often be found rapidly.

The integer program for PESP can be extended with an objective function, to find good

timetables, as several of the aforementioned approaches do. For example, a weighted sum of

the activity durations can be minimized. See, e.g., Peeters [2003], Nachtigall [1999], Liebchen

[2008], Liebchen and Peeters [2009], Caimi et al. [2017]. More details about the PESP model

are provided in Section 3.
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2.3 Timetabling and passenger routing

Timetables are evaluated according to different criteria. Following Cacchiani and Toth [2012],

the most prominent are that the timetable should be (1) ‘efficient’ and (2) ‘robust’. Overviews

on approaches to deal with robustness can be found in Cacchiani and Toth [2012], Lusby et al.

[2018]. Efficiency can be aimed both at costs and travel time aspects (or a trade-off of both).

In the following we give an overview on how the literature addresses one aspect of ‘efficiency’,

namely minimizing the passenger travel times, since this is also the objective we use in our

model.

Early approaches to find timetables minimize passenger waiting times by assigning

weights, modeling passenger numbers, to activities in the objective function (see the afore-

mentioned references). This approach, however, neglects that passengers choose their routes

based on the timetable, which makes it difficult to assign a-priori weights to activities.

Thus, better results can be obtained when timetable and passenger routing are de-

termined simultaneously. Several approaches have been published regarding an integrated

approach, both in periodic and aperiodic settings. Schmidt and Schöbel [2015] integrate

passenger routing in aperiodic timetabling. Passenger demand is a priori assigned to a de-

parture event, and passengers are routed from that point onwards. For periodic timetabling,

a similar approach is taken by Borndörfer et al. [2017]. In this approach, train capacities

are used to determine frequencies of train lines. Furthermore, many performance criteria are

introduced regarding several routing methods. A more recent approach where a viewpoint

on applicability in practice is taken is by Schiewe and Schöbel [2018]. The authors study

the effect of including only a subset of the OD-pairs, in order to reduce the computational

effort and to obtain good timetables in a short time. Hartleb et al. [2019b] also integrate

timetabling with passenger routing, but here passengers are not routed along shortest paths,

but a logit distribution is used. An alternative to integrating timetabling and passenger

routing in one integer programming model, is to iterate timetabling and passenger routing.

Kinder [2008], Lübbe [2009], Siebert [2011], Siebert and Goerigk [2013] determine passenger

flows by routing passengers through the network on, for example, shortest paths with respect

to the travel time. After this, the timetable is optimised and passenger are rerouted, until a

stopping criterion is reached.

The division of the public transportation planning into several sub problems (like line

planning, timetabling, vehicle scheduling, etc.) is likely to lead to globally suboptimal solu-

tions. Therefore, there are attempts to also integrate line planning and vehicle scheduling

into timetabling with passenger routing (see, e.g., Schöbel [2017], Lübbecke et al. [2018]).

However, for real-life instances this leads to models that are hard to solve, and in these cases

each sub problem is solved separately.

None of the aforementioned approaches considers adaption time, although a few ap-
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proaches exist who explicitly consider this. Some of them focus on a single corridor and sched-

ule the trains such that the average adaption time is minimized (Barrena et al. [2014b,a]).

In these papers, a mathematical programming model and a large-neighbourhood search algo-

rithm to find good solutions is provided. A similar situation is considered in Zhu et al. [2017],

where the authors consider a bi-level model. In the upper layer, a timetable is found based

on passenger demand. In a lower layer, passenger arrival times are updated such that passen-

gers arrive shortly before their train departs, in order to minimize adaption time. Another

approach to solve timetabling with integrated passenger routing including adaption times is

given in Gattermann et al. [2016], where the problem is modelled as a Satisfiability problem

and solved with a dedicated solver. Here passengers are assigned to a time slice and a penalty

is given if a passenger cannot depart in that time slice and has to adapt to a different slice.

Borndörfer et al. [2017] and Hartleb et al. [2019a] discuss and compare alternative evaluation

functions for passenger-oriented timetabling. Wang et al. [2015] propose an approach to re-

duce the operation costs of train which models demand as time-dependent and includes route

choice. Finally, Yin et al. [2017] include passenger demand and adaption time minimization

into an approach to optimise energy efficiency.

In this paper, we integrate timetabling and passenger routing in a mathematical model

and include the adaption time of passengers. By discarding the current infrastructural situa-

tion, solutions to our model can be used to support decision making in the strategic planning

phase of railway planning.

3 Problem Definition and Integer Programming Model

In this section, we model the SPOT problem as a mathematical program. We introduce

the necessary notation and terminology in Section 3.1. After that, we present the quadratic

integer programming formulation in Section 3.2, and its linearisation.

3.1 Notation and Terminology

The approach we take in solving the SPOT problem is by formulating a quadratic mixed inte-

ger programming model integrating periodic timetabling with passenger routing. Passengers

are routed along perceived-travel-time-shortest paths in the timetable. The perceived travel

time is composed of adaption time, in-train time, transfer time and a possible penalty for a

transfer. The penalty is indicated by a parameter γt. Whether it is assumed that passengers

have a strong preference for the requested departure time, or will adapt to the communicated

timetable to a large extent, can be modelled by the parameter γw which relates the perceived

duration of adaption time to in-train time.
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3.1.1 Periodic timetabling

We use the well-known PESP model (Serafini and Ukovich [1989]) to model the timetabling

part of the problem. Following the PESP approach, we model the timetabling constraints

of the problem as arcs in an event-activity network G = (V,A), with (periodic) events V

and activities A. Each activity (i, j) ∈ A is a relation between events i and j, stating that

the time difference between these two events should be in a given (periodic) time interval,

bounded by a lower bound ℓij and an upper bound uij . Examples of activities are drive,

dwell and transfer activities. They respectively state a time difference between a departure

and the next arrival, the time a train may dwell at a station, and a restriction on how long a

transfer may take for a passenger. It is also possible to include headway activities, ensuring

a certain time distance between trains. Overviews on how to model timetabling constraints

in a PESP framework can be found in Odijk [1996], Peeters [2003].

The base period of a periodic timetable is denoted by T . The aim in PESP is to

assign event times to all events, satisfying all these activities, i.e., to find an assignment

π : V → {0, . . . , T − 1}, such that all activities are satisfied. Each activity (i, j) ∈ A is of the

form

(πj − πi − ℓij mod T ) + ℓij ∈ [ℓij , uij ], (3.1)

i.e., the time difference between events i and j should be within the T -periodic interval

[ℓij , uij ]. An alternative way of formulating (3.1) is by introducing a term Tpij , where pij is

an integer variable, representing the modulo operator. The result can then be written as

yij = πj − πi + Tpij (3.2a)

ℓij ≤ yij ≤ uij (3.2b)

pij ∈ Z. (3.2c)

The additionally introduced variable yij represents the activity duration for activity (i, j) ∈ A.

Because we consider the strategic timetabling problem, we consider driving times, mini-

mum and maximum dwell times, and minimum transfer times as input to the problem, but

do not consider headway activities. We do not set upper bounds to the dwell times and

transfer times, in order not to not limit the search space.

3.1.2 Passenger routing

Next to timetabling, we have a set of variables and constraints dealing with the passenger

routing. Demand is specified in an OD-matrix OD, providing for each k ∈ OD an estimate of

the number of passengers dk that want to travel from the origin to the corresponding desti-

nation per time period. We assume that the demand is assumed to be uniformly distributed
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over the time period.

For each OD-pair k ∈ OD, we precompute a set of possible routes. A route r ∈ R is

a directed path through the Event-Activity Network. It consists of a sequence of trip and

dwell activities, possibly with transfer activities, so r is an (ordered) subset of A. Note that

the perceived duration of a route is timetable dependent. To precompute the possible routes,

we use the method described in Warmerdam [2004]. This method first determines all direct

travel options. Next, this is extended by all options with 1 transfer, then with 2 transfers,

and so on. After each step, a check is done whether some travel options are dominated by

others (based on expected travel time and number of transfers), and if so, they are removed.

Note that a different method would be possible as well, as long as the paths can be used as

input to the model.

The set of routes for OD-pair k ∈ OD is denoted by Rk. The set of all routes is denoted

by R and is determined as

R =
⋃

k∈OD

Rk. (3.3)

The total (timetable-dependent) perceived duration Yr of a route is determined as the

sum of all activity durations it uses, possibly plus a transfer penalty, i.e.:

Yr =
∑

a∈r

ya + γt · 1t(a). (3.4)

The function 1t(a) is an indicator function, denoting whether activity a ∈ A is a transfer

activity or not.

For each OD-pair k, we denote the set of relevant departure events, that is, all first

departure events j(r) of the routes in r ∈ Rk by

V k =
⋃

r∈Rk

j(r). (3.5)

We assume that each passenger will choose the route that minimizes his perceived passen-

ger travel time. Note that passengers are not a priori assigned to depart at a given departure

event, this is chosen together with the timetable. The route passengers choose depends on

what are the next trains departing, and this can only be known once a timetable is available.

For all passengers, arriving between two potential departure events in V k, the same route will

be optimal, and therefore they can all be grouped together. In order to do so, we determine

the time differences between all departure events. For OD-pair k, we denote by Ak
v the time

span between the time of a relevant departure event v ∈ V k, πv, and the departure time of
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the previous departure event. I.e.,

Ak
v = min

v′∈V k

{πv − πv′ + Tαv′,v},

where αv′,v is a binary variable modeling the modulo operator. To impose an order between

events, even if two departures happen at the same time, we require

αv,v′ + αv′,v = 1 ∀ v, v′ ∈ V k.

Then, using the assumption of uniformly distributed demand over the period, the number of

passengers of OD-pair k, for who the next relevant departure event is v, is given as dk ·A
k
v/T .

Their average adaption time before departure is W k
v = Ak

v/2.

There may be several routes to the destination of OD-pair k starting with departure

event v. We denote by Y k
v := minr∈Rk

v
Yr the time duration of the shortest route from

departure event v to the destination of OD-pair k. However, starting with the next train

that leaves from the origin station may not be the best option for a passenger, if the train

is slow, or if the corresponding route contains a long transfer. To correctly model that each

passenger takes the route with the lowest perceived travel time, we thus allow a passenger to

wait at the station beyond the next relevant departure event v ∈ V k. We denote by

Y k
v := min

v′∈V k

min
r∈Rk

v′

{

γw · (πv′ − πv + Tαv,v′) + Yr
}

the perceived time from πv to arrival at the destination. Note that this includes the perceived

duration of the chosen route r, Yr, as well as the adaption time between event v and departure

event v′ of route r.

Then, the perceived total travel time of a passenger whose next relevant departure event

is v is computed as the sum of total adaption time until πv, and perceived travel time from

πv until arrival:

γw ·W k
v + Y k

v .
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3.2 Mathematical Program

Using the notation and constraints introduced above, our mathematical model for SPOT can

now be formulated as follows:

Minimize
∑

k∈OD

dk
T

∑

v∈V k

Ak
v ·

(

γw ·W k
v + Y k

v

)

(3.6a)

Such that yij = πj − πi + Tpij ∀ (i, j) ∈ A (3.6b)

ℓij ≤ yij ≤ uij ∀ (i, j) ∈ A (3.6c)

Yr =
∑

a∈r

(ya + γt · 1t(a)) ∀ r ∈ R (3.6d)

Ak
v = min

v′∈V k\{v}
{πv − πv′ + Tαv′,v} ∀ k ∈ OD, v ∈ V k (3.6e)

αv,v′ + αv′,v = 1 ∀ k ∈ OD, v ∈ V k, v′ ∈ V k \ {v}

(3.6f)

W k
v =

1

2
Ak

v ∀ k ∈ OD, ∀ v ∈ V k (3.6g)

Y k
v = min

v′∈V k

min
r∈Rk

v′

{

Yr + γw · (πv′ − πv + Tαv,v′)
}

∀ k ∈ OD, v ∈ V k (3.6h)

Ak
v ∈ [0, T ] ∀ k ∈ OD, v ∈ V k (3.6i)

W k
v ∈ [0, T/2] ∀ k ∈ OD, v ∈ V k (3.6j)

Yr, Y
k
v ∈ R≥0 ∀ r ∈ R, k ∈ OD, v ∈ V k

(3.6k)

πv ∈ {0, . . . , T − 1} ∀ v ∈ V (3.6l)

pij ∈ Z≥0 ∀ (i, j) ∈ A (3.6m)

αv,v′ ∈ {0, 1} ∀ k ∈ OD, v ∈ V k, v′ ∈ V k \ {v}.

(3.6n)

The objective (3.6a) minimizes the perceived travel time for all passengers. It is com-

posed of adaption time, plus the actual travel time. Constraints (3.6b) and (3.6c) are the

timetabling constraints. Constraints (3.6d) determine the length of each route. Constraints

(3.6e) and (3.6f) determine the time between two departures, and define the expected wait-

ing times in (3.6g). The actual perceived travel time durations are determined in (3.6h).

Constraints (3.6i)–(3.6n) state the domains of the variables.

The model stated in (3.6) is non-linear. The objective is quadratic as it contains the

term W k
v · Ak

v = 1
2
(Ak

v)
2. Next to that, (3.6e) and (3.6h) contain one or two minimums.

For our computations, we linearise the objective and reformulate (3.6e) and (3.6h). For the
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linearisation, we define Qv,v′ as the periodic time difference between events v and v′, i.e.,

Qv,v′ = πv′ − πv + Tαv,v′ . (3.7)

Then we can replace (3.6e) by the restrictions

Ak
v ≤ Qv′,v ∀ k ∈ OD, v′ ∈ V k \ {v} (3.8a)
∑

v∈V k

Ak
v = T. ∀ k ∈ OD (3.8b)

The first restriction represents the minimum and the second ensures that all time differences

add up to T . Note that the latter is already a valid restriction in (3.6).

In order to linearise (3.6h), we introduce new binary variables zkv,v′,r, denoting if passen-

gers for OD-pair k ∈ OD, arriving before event v use route r, starting with event v′. We refer

to Appendix A for details. For the linearisation of the objective, we introduce new variables

xkv,d, denoting whether Ak
v ≥ d or not. For the details, we refer again to Appendix A.

The model stated in this section determines a timetable that minimizes the total per-

ceived travel time of all passengers. No synchronisation constraints are added to the model,

instead, the objective is designed such that the optimal spread of trains over time is deter-

mined.

4 Solution approach

For real-life instances, even for networks of small size, the size and nature of the models easily

exceed the capabilities of commercial solvers to find good solutions. Also due to the complex

nature of the models, we do not expect to solve the models to optimality in a reasonable

amount of time.

In this section we present the approach that we use in our experiments in order to find

good solutions in reasonable time. First of all, we set a time limit TL. Secondly, we can

simplify our SPOT model in various ways. These simplifications are described in Section 4.1.

Third, we use a heuristic method to generate a feasible starting solution, which is described

in more detail in Section 4.2.

4.1 Reduced versions of SPOT

In this section we discuss some simplifications to the SPOT problem, which lead to a reduced

model size and therefore possibly speed up the solution process. These can be used as heuristic

approaches towards solving the full SPOT model.

The first two simplifications use a subset of the OD-pairs instead of the full set. In
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the first simplification, we consider only passengers with a direct travel option. Note that

passengers from this set do not need to travel directly if a better connection is available for

them.

The second simplification is motivated by the observation that in practice, the distribu-

tion of OD-pair sizes is very skewed: only a few OD-pairs are very large and cover a large

part of the passengers. We expect that the timetable largely depends on the large OD-pairs,

and that including the remaining OD-pairs would only lead to some minor changes to the

timetable. To choose a subset of OD-pairs, we introduce a parameter λ ∈ [0, 100]. We then

include the OD-pairs which are largest in passenger size such that in total at least λ% of the

passengers is included. If λ is small enough, only a few OD-pairs are included, while a large

part of passengers is taken into account.

The third simplification is to require in the model that passengers always take the first

relevant train leaving from the station: in that case they are not allowed to wait for a later

departure. Note that also in this simplification, the order of trains departing from a station

is not fixed. The intuition is that for the majority of the passengers, waiting for a later train

is in general not beneficial. Therefore, we expect this to be a simplification that does not

sacrifice much in terms of quality of the solution, while still reducing the complexity of the

model significantly. To implement this simplification, the first minimum in (3.6h) is taken

over v′ ∈ {v} instead of v′ ∈ V k. Equivalently, we take could zkv,v′,r = 0 if v 6= v′ in (A.7).

As a fourth possible simplification, we choose to include only direct routes and do not

allow for transfers. To achieve this, one could set the penalty γt to a very large value, thus

allowing transfers, but making them very expensive. We chose to reduce the sets Rk
v′ , such

that it includes only direct routes. This implies that OD-pairs for who no direct travel option

exists cannot be included.

4.2 Heuristic generation of a starting solution

In this section we describe a heuristic approach to solve the integer program for the SPOT

problem. When trying to solve SPOT to optimality, the heuristically generated solution can

be used as starting solution for the IP solver and in this way, help to speed up the solution

procedure.

In order to state our approach, we first group the variables of the integer programming
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model for SPOT into the following sets:

Π = {πv : v ∈ V } (4.1a)

P = {pij : (i, j) ∈ A} (4.1b)

A =
{

αv,v′ : k ∈ OD, v ∈ V k, v′ ∈ V k \ {v}
}

(4.1c)

X =
{

xkv,d : k ∈ OD, v ∈ V k, d = 1, 2, . . . , T
}

(4.1d)

Z =
{

zkv,v′,r : k ∈ OD, v ∈ V k, v′ ∈ V k, r ∈ Rk
v′

}

. (4.1e)

The first two sets contain variables that relate to the timetable itself. The variables in the

set A are used to determine time differences between two events correctly. Finally, the sets

X and Z are introduced in the linearisation of our model, and are related to the passenger

routing.

To generate a good starting solution, we consecutively solve partial relaxations of the

SPOT model, as outlined below. Since for all steps we require that the variables in the sets Π

and P are integer, the timetabling constraints (3.6b), (3.6c), (3.6l), and (3.6m) are fulfilled.

Thus, in each step, we find a feasible timetable.

Note that as soon as a timetable is fixed, it is possible to evaluate it according to objective

function (3.6a). To this end, for each OD-pair we compute the lengths Y k
v of perceived-travel-

time-minimal routes from each relevant departure event v ∈ V k to the destination by solving

a shortest path problem. Furthermore, we order the relevant departure events, and thus

compute the time difference between πv and the departure time of the previous departure,

Ak
v , as well as the average waiting time for these passenger W k

v = Ak
v/2. This allows us to

compute the objective value of the timetable as specified in (3.6a).

We evaluate each timetable generated in the solution as described in (3.6a). The best

solution according to this evaluation is stored as the incumbent and only replaced when a

better solution is found.

The steps of the heuristic are detailed below. To give a quick overview, Table 1 displays

for each step what type the variables are in that step, i.e., whether they are continuous (R)

or integer (Z) or mixed.

Each step is solved with a time limit, that is based on the overall time limit TL. Fur-

thermore, the solution for each step is used as a warm start for the next step. The heuristic

is a variant on the ‘Relax-and-Fix’ heuristic, as explained in Belvaux et al. [1998], Wolsey

[1998].

1. In the first step, a solution is found that is feasible with respect to all timetabling

constraints. Therefore, we relax all variables to continuous variables, except for the

timetabling related variables, i.e., those in Π and P. This model is solved to optimality,

14



Step Π P A X Z Target gap (%)

1 Z Z R R R 0.0
2 Z Z Z and R R R 1.0
3 Z Z Z and R R R 1.0
4 Fixed Fixed Fixed Z Z 0.0

Table 1: Overview of the integrality of variables in the heuristic

or until a time limit of TL/10 is reached.

2. In this step, we improve the time differences between trains to get a better passenger

routing, by changing a subset A′ of the variables in A into integers, which we initialize

as A′ = ∅.

In order to determine this set, we check for each pair of trains t1 and t2 whether their

geographical routes overlap. If so, let v1, v2 ∈ Π be the departure events of trains t1

and t2, respectively, at their first shared station. Then A′ = A′ ∪ {αv1,v2 , αv2,v1}.

We change all variables in A′ into integers and set A = A \ A′ and A′ = ∅. Then we

re-optimise with a time limit of TL/10 or until an optimality gap of 1.0% is reached.

3. In the previous step, a part of the α variables is changed into integers, but the majority

is still continuous. In this step we iteratively change the remaining variables in A into

integers, using a ‘most-fractional’ rule, i.e., we start by changing these variables of

which the value in the incumbent solution is closest to 0.5.

In each iteration of this step, we define the set of variables that are to be changed to

integers as

A′ = {α ∈ A | 0.05 ≤ val(α) ≤ 0.95} . (4.2)

Here, val(α) denotes the value this variable α attains in the incumbent solution.

Again, we change the nature of all variables in A′ to integers, we set A = A \ A′,

A′ = ∅ and re-optimise with a time limit of TL/10 or until an optimality gap of 1.0%

is reached. This is continued until |A′| ≤ 50, in which case we set A′ = A in order

to limit the number of iterations. Furthermore, this ensures that after these loops all

α-variables have integer values.

4. In this step, we fix all variables in Π, P and A to the value they attain in the incumbent

solution (according to the evaluation with all OD-pairs). Next, we change all variables

in X and Z to integers and reoptimise this model to optimality.

In order to better understand the heuristic, we highlight the rationale behind it. As

headway constraints are not considered, the timetabling part is relatively easy in our model.
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Therefore we first find a timetable that is feasible with respect to the timetabling constraints,

and include the passenger routing part only as a continuous relaxation. As this is a relatively

easy task, we try to find an optimal solution here. This can however lead to a bad timetable,

as the time differences between events can be determined incorrectly, due to the continuous

nature of the variables in A. Therefore, in the next steps we try to improve this.

First, we determine where train lines meet for the first time. By making the corre-

sponding variables integer, we aim at better spreading different train lines over time. The

expectation here is that by changing only a few variables to integers, a good gain in terms of

quality can be obtained, without making it too difficult. The places where train lines meet

are these places where frequencies on the tracks can change and therefore the expectation is

that these are crucial decisions. The next step turns the remaining variables into integers.

By experiments we found that the majority of the variables in A is close to integer, and that

the remaining variables are generally rather close to 0.5. Therefore we select these variables

that have 0.05 ≤ val(α) ≤ 0.95. Iteratively these variables are changed to integers. When

there are not many variables left, we change the remaining variables into integers in order to

limit the number of iterations needed. Finally, for the best found timetable, we determine

the best routing and the heuristic finishes.

5 Computational Results

In this section, we apply our approach to two instances based on the network operated by

Netherlands Railways which we describe in Section 5.1. We use these instances to compu-

tationally evaluate the use of a heuristic starting solution in Section 5.2.1 and to investigate

the effect of solving restricted versions of our model in Section 5.2.2. In the case studies in

Section 5.3 we look more in detail into the solutions created by the SPOT model, discuss our

findings, giving some insights on how our approach can be used in strategic railway planning.

In all experiments we discretise time to minutes and use a period length of one hour,

i.e., T = 60.

For the perceived travel time, values for adaption time and transfer penalty have to be

set (γw and γt). According to De Keizer et al. [2015], the resistance for a transfer depends

on many factors, but on average a penalty of 23 minutes (including 2 minutes of transfer

time) is appropriate. We use a minimum of 3 minutes for a transfer, so we chose to use

a value of γt = 20 in our models. We want to put emphasis on the regularity of trains to

reduce adaption time, but not over-stress it because it already appears in the objective as a

quadratic term, so we use γw = 3.

In our implementation and when reporting objective values in this section, we only

report the ‘additional time’. That means, we subtract constant terms from the objective
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function to improve numerical stability. For trip time, that implies that we subtract the

minimal duration of the shortest possible trip for that OD-pair. If some OD-pair needs at

least one transfer, we subtract a penalty, and only penalize additional transfers. Finally, for

the constant for the adaption time, we assume that departure events are spread evenly over

time, which leads to the lowest possible adaption time, and subtract the corresponding value

for the adaption time. This also explains why we do not report relative gaps. If we do not

subtract the constant terms, all gaps would be relatively small. In our experiments, the lower

bound is often close to zero and hence relative gaps are very large.

Our computations are carried out on a machine with an Intel Xeon Silver 4110 2.10Ghz

processor and with 96 GB of RAM installed. The integer programs are solved by Cplex 12.9.0

under default settings, using up to 15 parallel threads.

5.1 Instances

The instances that we use in this study are real-life instances of Netherlands Railways (NS),

the largest operator of passenger trains in the Netherlands. The first instance is the so-called

‘A2-corridor’, a network that contains 5 Intercity lines, that all share part of their route. The

second instance is the 2019 Intercity network of Netherlands Railways (NS). In the remainder

of this section, we describe the two instances in more detail.

5.1.1 A2 corridor

The first instance we consider in our study contains the so called ‘A2-corridor’, which is the

part of the Dutch railway network between Eindhoven (Ehv) and Amsterdam Centraal (Ehv).

The line plan for this instance is shown in Figure 2a. The used abbreviations for the stations

are mentioned mentioned in Table 2.

Abbreviation Name Abbreviation Name

Ah Arnhem Mt Maastricht
Amr Alkmaar Nm Nijmegen
Asb Amsterdam Bijlmer ArenA Sgn Schagen
Asd Amsterdam Centraal Shl Schiphol
Ehv Eindhoven Std Sittard
Hdr Den Helder Ut Utrecht Centraal
Hrl Heerlen Vl Venlo
Ht ’s Hertogenbosch

Table 2: Abbreviations of the stations

The instance consists of 5 train lines, each with a frequency of 2 trains per hour in both

directions, leading to 20 trains in total. The blue and green lines serve the whole corridor,
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Figure 2: Overview of the used instances

i.e., between Ehv and Asd, whereas the orange line only serves Asd - Ut, and the red line

only serves Ut - Ehv. The lime line does not serve the corridor itself, but it is important in

this instance to determine good frequencies on the remainder of the network that is not part

of the corridor itself.

The reason to study this instance is that the ‘A2-corridor’ has very high passenger

numbers and it has been subject to intensive study in practice recently, since Intercity-

frequencies increased from four to six trains per hour here. In Asd and Ehv, four of the six

trains continue to Amr and Std, respectively. This raises the question what the headway

times should be between consecutive trains, both on the corridor itself and on the remainder

of the network. As an example, if the headway times between all consecutive trains on the

corridor is 10 minutes upon arrival in Ehv, and trains do not get additional dwell time there,

the pattern between Ehv and Std will be irregular, headway times alternate between 10 and

20 minutes. In order to get a more regular pattern, trains would have to get a longer dwell

time in Ehv. We study these kind of situations to find out what is the best solution from a

perspective of total perceived passenger travel time.

In this instance, we consider only OD-pairs that travel either in the southbound or the

northbound direction, and not in both directions. For example, OD-pairs Nm to Ehv and
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vice versa are not considered, as they would have to travel via Ut. In total the network has 34

relevant stations and we consider 891 OD-pairs. The average number of routes per OD-pair

is 6.3, with a maximum of 24 routes. The Event-Activity Network contains 1344 events and

1700 activities, of which 376 are transfer activities.

5.1.2 Intercity network

As second instance, we consider the 2019 Intercity Network of NS. In this network, there

are many OD-pairs without a direct connection. We thus expect that arrival and departure

times at important transfer stations will be influenced by the need to make good transfer

connections for these passengers. The network includes 95 stations and 76 trains in total.

The geographical network is depicted in Figure 2b. There are 8870 OD-pairs.

The corresponding event-activity network contains 3816 events and 6578 activities, 2442

of which are transfer activities. On average, each OD-pair has 11.8 travel options, with a

maximum of 280 possible options.

It is interesting to observe that when we consider passengers with a direct travel option

only (compare Section 5.2.2), only 1960 OD-pairs remain, but these cover 79.1% of the

passengers. In that case, 1760 of the transfer activities are not needed, which makes the

model simpler to solve. But even in this case, 682 transfer activities are kept, since it may

be beneficial for the passengers to transfer, even if there is a direct connection available.

5.2 Evaluation of the solution approach

In this section, we evaluate our solution approach. In Section 5.2.1 we evaluate computa-

tionally the benefit of generating a heuristic starting solution instead of a cold start. In

Section 5.2.2 we explore the effects of solving several restricted versions of the SPOT model

on the quality of the timetable.

5.2.1 The benefit of generating a starting solution

To evaluate the benefits of using a starting solution, we compare running times of the lin-

earised SPOT model, with and without starting solution. We do this on three different cases:

the A2-corridor instances, the intercity network instance with OD-pairs which have a direct

travel option, and the intercity network instance with all OD-pairs.

For generating a starting solution, we set λ = 30, i.e., at least 30% of the passengers in

the network are included. Given the distribution of the OD-pair sizes (only a few OD-pairs

account for a large portion of the passengers) and after performing several tests, this turned

out to be a reasonable number to use for this purpose. This leads to including only a small

subset of the OD-pairs in the model, while still ensuring that a large portion of the passengers

is covered. We then employ the heuristic procedure described in Section 4.2.
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To guide the search when no heuristic starting solution is generated, we first spend 20%

of the allotted time on a model where all dwell times are set to their lower bound. The

remaining 80% of the time is spent on solving the full model.

For the A2-corridor, we set a total time limit of 2 hour for the computations. For the

Intercity case, we set a total time limit of 10 hours.

The results of our computations are shown by means of convergence plots in Figure 3.

The horizontal axes display time in seconds on a logarithmic scale. Note that the heuristic

solves a strongly restricted problem with a subset of the passengers, and therefore the ob-

jective values of the heuristic and the objective value of the full model cannot be compared.

Therefore, every time a new timetable is found in the solving process, its objective value

(3.6a) is evaluated based on the full set of OD-pairs, in the way described in Section 4.2.

Figure 3 plots these evaluation values over time.

In the convergence plots, each individual plot displays six lines. The dashed red line

corresponds to the evaluation value of the timetables found by the heuristic. As this model

has incomplete information and is a partial relaxation, not every timetable is necessarily

an improvement over the previously found timetable and therefore the dashed red line is not

monotonically decreasing. In fact, every time the solver restarts in a new step of the heuristic,

it may find an arbitrarily bad timetable, thus causing the peaks in the dashed red line. The

evaluation value of the best timetable found so far is shown by the solid red line. The points

in time in which a better timetable (according to the evaluation value based on all OD-pairs)

is found is indicated by a circle. Once the heuristic finishes, it is fed to the linearised SPOT

model as a starting solution. From that point on, a lower bound is available, which is shown

as a dash-dotted red line.

To indicate how much time is consumed for the different steps of the heuristic, we indicate

the time taken by the different steps in Figure 3 by means of shaded bars. Each bar displays

the step of the heuristic as well. As the third step iteratively changes a subset of the α

variables, we also display the iteration number, i.e., 3-2 denotes step 3, iteration 2. Only a

few iterations are needed to turn all α variables into integers. Step 4 is not displayed because

this interval is too short to be visible on the logarithmic time scale we use. More details on

how much time is spent on each step can be found in Table 3. This table also displays the

number of OD-pairs used for the heuristic, and its percentage of the total number of OD-pairs

in the instance.

For the solution process without starting solution, the dotted blue line displays the

objective value according to the solver. Note that here we do not use a relaxation nor restrict

to a subset of the passengers. However, it still is possible that in intermediate solutions, the

chosen passenger routes are suboptimal for the chosen timetable. The solid blue lines shows

the evaluation value of the timetable found. We observe that in the beginning, there can be
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(b) IC network, only direct passengers

Figure 3: Convergence plots for the comparison of solution approaches. Red lines display
the heuristic approach, blue the standard approach. Solid line: best solution found so far.
Dash-dotted line: lower bound. Dashed red line: Current objective value. Dashed blue line:
Objective value according to solver.

21



100 101 102 103 104 105
0

1,000

2,000

3,000

4,000

5,000

6,000

1 2 3-1 3-
2

3-
3

re
m
ai
n
d
er

Time (sec)

E
va
lu
at
io
n
va
lu
e

(c) IC network with all passengers

Figure 3: Convergence plots for comparison of solution approaches. (cont.)

quite a difference between objective value reported by the solved and evaluation value, but

soon better routes are found and the objective value reported by the solver decreases. The

blue dash-dotted line displays the lower bound according to the solver.

Characteristics of the solutions and solving process are reported in Table 4. For each

instance, the left column displays the objective values after the time limit has passed, for the

case where a heuristic starting solution is used. It shows the value of the heuristic solution,

the value of the final solution, and a lower bound (provided by CPLEX). The right columns

displays the values for solving the model without warm-start, and shows the final objective

value and lower bound.

We see in Figure 3 and Table 4 that in all three cases, better solutions are found when

generating a heuristic starting solution first. Even stronger, the heuristic finds a good solu-

tion, before the full model finds the first feasible solution.

5.2.2 Solving reduced versions of SPOT

In the previous section, we motivated the use of a two-stage approach: generate a heuristic

start solution, then use this to warm-start the linearised SPOT model. In this section, we

follow the two-stage approach, and experiment with solving different reduced versions of

SPOT in the second stage. The rationale behind this is that on the one hand, within the

same time limit, we may be able to get closer to optimality when working on a reduced
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A2-corridor
Intercity network

only direct
Intercity network

all OD pairs

# OD-pairs 17 (1.9%) 55 (2.8%) 70 (0.8%)

Time (s):
- Step 1 1 14 108
- Step 2 4 342 978
- Step 3-1 19 3613 3616
- Step 3-2 55 3620 3611
- Step 3-3 - 3606 2882
- Step 4 0 1 1
- Total: 79 11195 11195

Table 3: Details about the heuristic procedure

With heuristic No heuristic

Instance: A2-corridor

Heuristic objective value: 131.6
Final objective value 131.6 411.5
Lower bound 19.4 19.1

Instance: IC network - direct passengers

Heuristic objective value: 784.6
Final objective value 728.3 1041.2
Lower bound 118.4 123.1

Instance: IC network - all passengers

Heuristic objective value: 1440.6
Final objective value 1440.6 3364.1
Lower bound 98.5 98.9

Table 4: Comparison between using a heuristic starting solution or not

problem version. On the other hand, we hope that when reducing in the ’right’ way, little

relevant information is lost, such that the timetable we find is good when evaluated for the

full problem.

To reduce the model, we experiment with four different parameters: (1) We take only

passenger who have a direct travel option (only Direct), or all passengers (all OD); (2) We

take λ ∈ {95, 99, 100}, i.e., we restrict the number of passengers that we take into account; (3)

We either allow passengers to transfer (trans) or not (noTrans); (4) We either force passengers

to take the first departing train (noWait), or let them wait for a later train (wait). See also

Section 4.1 for detailed explanations of the simplifications.

Note that we do take these parameters already into account when constructing the

heuristic starting solution. E.g., when we do not consider OD-pairs with transfer options

(only Direct), only these are considered in the heuristic.

In the following we compare the evaluation values for our approach under different pa-

23



rameter setting on the Intercity network instance. We chose this instance because this is the

most difficult instance to find good solutions for. In order to properly compare the resulting

timetables, we have evaluated each of them considering all passengers with full route choice.

The corresponding evaluation values are displayed in Figure 4.
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Figure 4: Evaluation values for Intercity network for different parameter settings

Note that when including all OD pairs, but not allowing transfers, this leads to many

OD-pairs not having a transfer option in the model. Therefore, we leave out these situations.

As can be seen in this figure, no single parameter choice seems to lead to clearly superior

results. As a tendency, in this instance it appears that the combination of ’noWait’ and

’Trans’, i.e., forcing passengers to take the first train that is leaving, and allowing transfers,

leads to lower objective values. A possible explanation for this is that the cases in which

waiting at the origin station is beneficial will be very limited, especially since we are looking

at an Intercity network in which trains run at the same speed. The option ’noWait’ hence

leads to a smaller model without sacrificing much in terms of quality. Next to this, transfer

options can significantly improve route choices and providing them seems to be relevant. As

for the passenger sets to include in the model, it seems that excluding the smallest OD-pairs

can indeed lead to better results, since they will have minor influence on the overall quality

of the timetable. However, the difference between the solutions found with the different

parameter settings is very small, and we have not tested the different parameter settings on

different instances, therefore we have to be very careful in our conclusion.
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5.3 Case studies

In this section, we look into the solutions that our approach finds in more detail. In Sec-

tion 5.3.1 we focus on the A2-corridor and demonstrate the trade-offs that our model is able

to make, between additional dwell times and regularity of train service. In Section 5.3.2 we

demonstrate how our method makes choices regarding transfer connections between trains

on the intercity network.

5.3.1 Balancing regularity and dwell times

We illustrate the outcome of our approach on the A2-corridor instance in more detail. Specif-

ically, we focus on what happens at the two locations Asd and Ehv where frequencies change

from six to four trains per hour. Remember that, when passing from the corridor with

frequency six to the part pf the network with frequency four, if the trains arrive with 10

minutes headway time between each pair of consecutive trains and no additional dwell time

at the station is allowed, the headway times will be irregular outside the corridor, alternat-

ing between 10 and 20 minutes. If we want the patterns to be regular both on and off the

corridor, additional dwell times are required at Asd and Ehv, in order to make the transition

between the different frequencies. In order to shed light on the trade-offs at different values

of adaption time, we visualize two timetables for the A2-corridor. To find the first one, we

ran our solution approach for different values of parameter γw, which relates the perceived

duration of adaption time to in-train time. In the first situation γw = 3, thus adaption time

is considered to be less pleasant than being in the train itself. This will put a higher emphasis

on the regularity of trains. In the second situation γw = 1, thus adaption time is valued equal

to in-train time.

Time space diagrams of the timetables we found for both situations are shown in Figure 5.

Time is shown on the horizontal axis, distance on the vertical axis, where also the relevant

stations are shown. Each train line is plotted with a different color. More detailed timetables

for the stations Asd and Ehv are shown in Tables 5 and 6. Interesting to note is that the arrival

pattern in Asd with γw = 1 is perfectly regular, all headway times between consecutive trains

are exactly 10 minutes. However, when continuing towards Amr, the pattern is becomes very

irregular, as there is no additional dwell time added, and the headway times now alternate

between 10 and 20 minutes. Also in Figure 5b, this irregularity is clearly visible. With

γw = 3, the irregularity north of Asd is reduced to headway times of 13 and 17 minutes. In

this case the headway times on the corridor are no longer equal and vary between 8 and 13

minutes.

The arrival headways at Ehv are fairly regular, they vary between 9 and 11 minutes,

for both values of adaption time. Also here, departure headways are not perfectly regular.

Instead, for γw = 3, they are even as large as 21 minutes, which is larger than the departure
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γw = 3 γw = 1

From To Arrival Departure Arrival Departure

Mt Amr :07 :09 :14 :16
Hrl Asd :16 - :04 -
Nm Hdr :24 :26 :24 :26
Mt Amr :37 :39 :44 :46
Hrl Asd :46 - :34 -
Nm Hdr :54 :56 :54 :56

Table 5: Timetable for northbound trains at Asd

γw = 3 γw = 1

From To Arrival Departure Arrival Departure

Shl Vl :10 - :10 -
Asd Hrl :20 :21 :20 :21
Amr Mt :29 :30 :31 :32
Shl Vl :40 - :40 -
Asd Hrl :50 :51 :50 :51
Amr Mt :59 :00 :01 :02

Table 6: Timetable for southbound trains at Ehv

headways at Asd. This clearly shows that in this case, the emphasis lies on reducing waiting

times for passengers already in the train, and not on reducing adaption time for boarding

passengers at Asd and subsequent stations.

Interesting to note in Figure 5, is what happens around Ut, for both values of γw. The

red line comes from Ehv, and goes towards Shl, it hence leaves the corridor at Ut. At Ut,

the orange line, coming from Nm, enters the corridor to guarantee the six train per hour

frequency again. Interestingly, in both timetables the orange line departs at Ut around the

same time that the red line enters, i.e., in the regular pattern that is present in the corridor,

these two lines replace each other.

This instance clearly shows that trade-offs are made between regularity on the corridor

and on the branches on the one hand, and additional dwell times at border stations at the

other hand. It shows that the value of regularity and the value of short waiting and transfer

times depend on the relative value of adaption time versus in-train time γw.
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(a) γw = 3 (b) γw = 1

Figure 5: Time space diagrams for Hdr to Mt.
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5.3.2 Insights on the Intercity network

The Intercity network of Netherlands Railways contains many train lines that are linked to

each other, because they share part of their route and because they can offer good connections.

We have analysed the timetable that was evaluated best in Section 5.2.2 (that is, the one

found for parameter setting ’only Direct’, λ = 95%, ’trans’, ’noWait’) to demonstrate how

our method can be used to generate insights on the desired timetable. For the purpose of this

paper, we analyse the timetable at two different stations, namely Leiden (Ledn) and Zwolle

(Zl).

Leiden (Ledn) This station is located in the western part of the Netherlands and can be

reached from four different directions, which are Haarlem (Hlm), Schiphol (Shl), The Hague

(Gvc) and Rotterdam (Rtd). Figure 6 displays a schematic overview of the line plan around

Ledn. Each of the neighbouring stations is displayed, and a coloured line indicates a train

line serving this station twice per hour per direction. As can be seen, there are direct trains

between each of the northern stations and each of the southern stations. The timetable of

the southbound trains is detailed in Table 7.

Ledn

Hlm Shl

Gvc Rtd

Figure 6: Network at Ledn

From Arrive To Depart

Shl :00 Gvc :01
Hlm :02 Rtd :03
Hlm :16 Gvc :17
Shl :18 Rtd :19
Shl :30 Gvc :31
Hlm :32 Rtd :33
Hlm :46 Gvc :47
Shl :48 Rtd :49

Table 7: Timetable for southbound trains at Ledn

Two interesting things are worth noting here. First of all, the trains depart from Ledn

two minutes apart from each other, and in a fixed order: the trains towards Gvc depart first.

Furthermore, all dwell times at Ledn are exactly 1 minute, i.e., no dwell times is prolonged.
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Therefore, the trains need to arrive in Ledn following an alternating pattern. They arrive in

groups of two, but in subsequent groups, the order is reversed: In the first group, first the

train from Shl arrives, and after that the train from Hlm, while for the second group this

order is reversed. However, passengers from the first train always have a transfer connection

to the second train of exactly 3 minutes. That means, in the first group of trains, passengers

from Shl can travel quickly to Rtd and Gvc, while passengers from Hlm towards Gvc have

to wait much longer. In the next group of trains, this order is reversed, now passengers from

Shl to Gvc have to wait.

Secondly, the headway times between trains on a leg of this network are never exactly 15

minutes. For the trains coming from Hlm and for the trains towards Gvc and Rtd, it varies

between 14 and 16 minutes. For the trains coming from Shl, headway times are even as large

as 18 minutes. This illustrates that regularity is not a necessary condition for optimality.

Zwolle (Zl) Even though this station is situated in the less-populated northern part of the

country, it is a crucial station in the network as all trains going further north have to pass

Zl. Secondly, trains come and go in four main directions, Groningen (Gn), Leeuwarden (Lw),

Amersfoort (Amf) and Lelystad (Lls). The relevant directions in this Intercity network are

displayed in Figure 7. It is a similar situation to the Leiden station. However, in Zl, the

frequency of the lines is only one train per hour. In Table 8, the arrival and departure times

of the trains in the southbound direction are shown.

Zl

Lw Gn

Lls Amf

Figure 7: Network at Zl

From Arrive To Depart

Gn :28 Lls :29
Lw :30 Amf :32
Gn :57 Amf :02
Lw :59 Lls :00

Table 8: Timetable for southbound trains at Zl

The trains arrive in Zl in two groups, approximately at :00, or approximately at :30,

with the train from Gn arriving earlier than the train from Lw in both cases. The train from

Gn to Lls arrives in Zl at :28. Passengers can either stay in their train and continue towards
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Lls, or transfer to the train to Amf, leaving at :32. In contrast, the passengers in the train

from Lw to Amf do not have a connection to Lls and should take the direct train half an hour

later. However, half an hour later, the dwell time of the train coming from Gn is prolonged,

so now passengers can actually transfer between both trains. Note that, so far, we have seen

few cases in which dwell time was prolonged. However, in this case, a slightly prolonged dwell

time of the train in Gn to Amf can greatly reduce the travel time for passengers fron Lw

to Amf, as they would have to wait approximately 30 minutes for their transfer connection

otherwise. In the timetable at Ledn, we have not seen these prolonged dwell times, as this

would be less beneficial there due to the higher frequencies.

The above discussion indicates how SPOT can be used to design timetables, and give valuable

insights in the strategic timetabling phase. We observe that in Ledn and Zl, the solution is

often close to regular, but that exceptions from these patterns can improve the timetables in

some cases. This implies that we may overlook good timetables, when imposing regularity

constraints. Especially in Ledn, we see that these irregular patterns allow the alternating

order of trains, and in turn the alternating connections between trains.

Secondly, we see that for some stations longer dwell times are good to ensure transfers,

especially if the alternative for missing the transfer would be a long waiting time, when

frequencies are low.

6 Conclusions and further research

In this paper we introduce the Strategic Passenger Oriented Timetabling (SPOT) problem.

This problem aims at finding a timetable pattern which is optimal for passengers, explicitly

including adaption time into the perceived passenger travel time. In our approach to solve the

SPOT problem, we formulate a quadratic integer program. We linearise it and we propose

and test an approach for solving it. We have shown in our case studies, how the solutions

generated by the SPOT model can be used to learn about desirable patterns at key points of

the network.

Due to the strategic nature of the problem at hand, we formulate the SPOT problem

without including headway constraints, so that the underlying timetabling problem is rela-

tively simple. However, the inclusion of adaption time in the model formulation leads to a

quadratic objective, making the model harder to solve again. We achieve improvement with

respect to the solution time by warm-starting the model with a heuristically achieved solu-

tion. Still, in none of our instances we were able to prove optimality of the solution found,

with a lower bound far off the best solution found. It may be promising to investigate further

solution methods, possibly working directly on the quadratic formulation of the program.

Most timetabling models for the tactical planning phase do not include adaption time
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into the perceived travel time, thus implicitly assuming that passengers will fully adapt to

the timetable and not suffer from inconveniently placed departure times. To overcome this

questionable assumption, the SPOT model could also be applied to a setting that includes

headway constraints in the PESP model. However, we expect that these will make the

model even harder to solve. In addition, our current model formulation uses the assumption

that passengers arrive uniformly distributed over the period for the definition of passenger

groups and average waiting times. To include more detailed passenger information that may

become available when entering the tactical or operational planning phase, different modeling

approaches may be needed.

A different idea on how to move towards the tactical planning phase is to consider the

timetable obtained with SPOT as an ideal timetable, and adjust it, where needed, to make

it ’fit’ with infrastructure requirements. A method to do this is currently under research.

31



A Linearisation

The SPOT model in (3.6) contains a quadratic objective and has several minimums in the

constraints. In Section 3.2, constraints (3.6e) is linearised. In this section, we linearise the

remainder of the model.

A.1 Objective

The objective function (3.6a) is a quadratic function. Using that W k
v = Ak

v/2, the objective

can be written as

Minimize
∑

k∈OD

dk
T

∑

v∈V k

γw
2

(

Ak
v

)2

+Ak
v · Y

k
v . (A.1)

We linearise this expression by writing Ak
v as a sum of binary variables, defined as

xkv,d =

{

1 if Ak
v ≥ d

0 otherwise
∀ k ∈ OD, v ∈ V k, d ∈ {1, . . . , T}. (A.2)

For a stronger formulation, we can impose the additional restrictions that

xkv,d ≤ xkv,d−1 ∀ k ∈ OD, v ∈ V k, d ∈ {2, . . . , T}. (A.3)

Using these new variables, we can write

Ak
v =

T
∑

d=1

xkv,d,
(

Ak
v

)2

=
T
∑

d=1

(2d− 1) · xkv,d. (A.4)

Substituting this in (A.1) results in a multiplication of binary variables xkv,d by bounded

variables Y k
v . This can be resolved by introducing new variables Rk

v,d = Y k
v · xkv,d. The

objective then becomes to minimize

∑

k∈OD

dk
T

∑

v∈V k

T
∑

d=1

[γw
2
(2d− 1) · xkv,d +Rk

v,d

]

, (A.5)

and additional restrictions have to be added to correctly determine the value for Rk
v,d:

Rk
v,d ≤ ukv · x

k
v,d (A.6a)

Rk
v,d ≥ lkv · x

k
v,d (A.6b)

Rk
v,d ≤ Y k

v − lkv ·
(

1− xkv,d

)

(A.6c)

Rk
v,d ≥ Y k

v − ukv ·
(

1− xkv,d

)

, (A.6d)
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where lkv and ukv are the lowest and highest possible values for Y k
v respectively.

A.2 Minimums

Constraints (3.6e) and (3.6h) both contain a minimum, which we can linearise. (3.6e) is

already linearised in Section 3.2. Constraints (3.6h) are replaced by the following set of

restrictions for every k ∈ OD and every v ∈ V k:

Y k
v ≤ Yr + γw ·Qv,v′ ∀ v′ ∈ V k, r ∈ Rk

v′ (A.7a)

Y k
v ≥ Yr + γw ·Qv,v′ −Mk

v ·
(

1− zkv,v′,r

)

∀ v′ ∈ V k, r ∈ Rk
v′ (A.7b)

∑

v′∈V k

∑

r∈Rk

v′

zkv,v′,r = 1. (A.7c)

We introduced new binary variables zkv,v′,r, which correspond to the route that is chosen.

That means, if zkv,v′,r = 1, passengers wait from event v to v′ (which can be the same), and

take route r, starting at v′. For computational stability, the newly introduced constants

Mk
v have to be chosen as small as possible, but still large enough to make the second set of

constraints redundant if zv,v′,r = 0, i.e., we can take

Mk
v = γw · T + max

r∈Rk

{

Y r

}

− max
r∈Rk

{Y r} , (A.8)

where Yr, Yr denote the highest and lowest possible value for the variable Yr respectively.

As we are minimizing the perceived passenger travel time, we can exclude the newly

introduced constraints (A.6a), (A.6c) and (A.7a) in order to reduce the model size.

To summarize, in the linearisation we take several steps. First of all, the objective (3.6a) is

replaced by (A.5). Here, additional variables xkv,d and Rk
v,d are introduced, with additional

restrictions (A.3), (A.6b) and (A.6d). Secondly, the minima are replaced by linear restrictions.

First of all, for notational reasons we defined Qv,v′ in (3.7). By using this, we replace (3.6e)

by (3.8), and (3.6h) by (A.7b)–(A.7c).
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B List of symbols

This appendix summarizes all notation used in the paper.

Sets

V The set of events (indexed by v, i or j)
A The set of activities (indexed by a or (i, j))
OD The set of all OD-pairs (indexed by k)
R The set of all routes (indexed by r)
Rk The set of routes for OD-pair k (indexed by r)
V k The set of departure events for OD-pair K (indexed by v or v′)

Constants

T The cycle period
dk The number of passengers for OD-pair k ∈ OD
γw The objective coefficient for adaption time
γt The penalty for using a transfer

Variables

πv The timing of event v ∈ V
pij Amodulo parameter used for the shift from one cycle period to another, for activity

(i, j) ∈ A
yij The duration of activity (i, j) ∈ A
Yr The duration of route r ∈ R
Ak

v The number of minutes before event v, in which no other departure event for
OD-pair k takes place

W k
v The expected waiting time for passenger for OD-pair k, for who event v is the first

departure event
Y k
v The perceived travel time for passengers of OD-pair k, from the timing of event v

onwards
αv,v′ An integer variable ensuring the correct determination of the time difference be-

tween event v and v′

Qv,v′ The time difference between event v and v′

xtv,d A linearisation variable, indicating whether Ak
v ≥ d or not

zkv,v′,r A linearisation variable, indicating which route is chosen

Rk
v,d A linearisation variable, replacing Y k

v · xkv,d

Table 9: List of variables for the (linearised) SPOT model
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in Periodic Timetabling: A SAT approach. In M. Goerigk and R. Werneck, editors,

16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization,

and Systems (ATMOS 2016), volume 54 of OpenAccess Series in Informatics (OASIcs),

35



pages 3:1–3:15, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum für Infor-

matik. doi: 10.4230/OASIcs.ATMOS.2016.3. URL http://drops.dagstuhl.de/opus/

volltexte/2016/6527.
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A. Schöbel. An eigenmodel for iterative line planning, timetabling and vehicle scheduling in

public transportation. Transportation Research Part C: Emerging Technologies, 74:348 –

365, 2017. ISSN 0968-090X. doi: https://doi.org/10.1016/j.trc.2016.11.018.

P. Serafini and W. Ukovich. A mathematical model for periodic scheduling problems. SIAM

Journal on Discrete Mathematics, 2(4):550–581, 1989. doi: 10.1137/0402049.

M. Siebert. Integration of routing and timetabling in public transportation. MSc thesis,

Georg-August-Universität Göttingen, 2011.

M. Siebert and M. Goerigk. An experimental comparison of periodic timetabling models.

Computers & Operations Research, 40(10):2251 – 2259, 2013. ISSN 0305-0548. doi: https:

//doi.org/10.1016/j.cor.2013.04.002.

38

http://num.math.uni-goettingen.de/preprints/files/2018-17.pdf
http://num.math.uni-goettingen.de/preprints/files/2018-17.pdf


Y. Wang, T. Tang, B. Ning, T. J. van den Boom, and B. D. Schutter. Passenger-demands-

oriented train scheduling for an urban rail transit network. Transportation Research Part

C: Emerging Technologies, 60:1–23, 2015. ISSN 0968-090X. doi: https://doi.org/10.1016/

j.trc.2015.07.012.

J. Warmerdam. Specificaties trans toedeler. Technical report, QQQ Delft, 2004.

L. Wolsey. Integer Programming. Wiley Series in Discrete Mathematics and Optimiza-

tion. Wiley, 1998. ISBN 9780471283669. URL https://books.google.nl/books?id=

x7RvQgAACAAJ.

J. Yin, L. Yang, T. Tang, Z. Gao, and B. Ran. Dynamic passenger demand oriented metro

train scheduling with energy-efficiency and waiting time minimization: Mixed-integer linear

programming approaches. Transportation Research Part B: Methodological, 97:182–213,

2017. ISSN 0191-2615. doi: https://doi.org/10.1016/j.trb.2017.01.001.

Y. Zhu, B. Mao, Y. Bai, and S. Chen. A bi-level model for single-line rail timetable design

with consideration of demand and capacity. Transportation Research Part C: Emerging

Technologies, 85:211–233, 2017. ISSN 0968-090X. doi: https://doi.org/10.1016/j.trc.2017.

09.002.

39

https://books.google.nl/books?id=x7RvQgAACAAJ
https://books.google.nl/books?id=x7RvQgAACAAJ

	Introduction
	Related Work
	Strategic timetabling
	Periodic Timetabling
	Timetabling and passenger routing

	Problem Definition and Integer Programming Model
	Notation and Terminology
	Periodic timetabling
	Passenger routing

	Mathematical Program

	Solution approach
	Reduced versions of SPOT
	Heuristic generation of a starting solution

	Computational Results
	Instances
	A2 corridor
	Intercity network

	Evaluation of the solution approach
	The benefit of generating a starting solution
	Solving reduced versions of SPOT

	Case studies
	Balancing regularity and dwell times
	Insights on the Intercity network


	Conclusions and further research
	Linearisation
	Objective
	Minimums

	List of symbols
	References

