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Abstract—Memory accesses form an important source of
timing unpredictability. Timing analysis of real-time embedded
software thus requires bounding the time for memory accesses.
Multiprocessing, a popular approach for performance enhance-
ment, opens up the opportunity for concurrent execution.
However due to contention for any shared memory by different
processing cores, memory access behavior becomes more un-
predictable, and hence harder to analyze. In this paper, we de-
velop a timing analysis method for concurrent software running
on multi-cores with a shared instruction cache. Communication
across tasks is by message passing where the message mailboxes
are accessed via interrupt service routines. We do not handle
data cache, shared memory synchronization and code sharing
across tasks. Our method progressively improves the lifetime
estimates of tasks that execute concurrently on multiple cores,
in order to estimate potential conflicts in the shared cache.
Possible conflicts arising from overlapping task lifetimes are
accounted for in the hit-miss classification of accesses to the
shared cache, to provide safe execution time bounds. We show
that our method produces lower worst-case response time
(WCRT) estimates than existing shared-cache analysis on a
real-world embedded application.

I. INTRODUCTION

Static analysis of programs to give guarantees about exe-

cution time is a difficult problem. For sequential programs,

it involves finding the longest feasible path in the program’s

control flow graph while considering the timing effects of

the underlying processing element. For concurrent programs,

we also need to consider the time spent due to interaction

and resource contention among the program threads.

What makes static timing analysis difficult? Clearly it is

the variation in the execution time of a program due to

different inputs, different interaction patterns (for concurrent

programs) and different micro-architectural states. These

variations manifest in different ways, one of the major

variations being the time for memory accesses. Due to the

presence of caches in processing elements, a certain memory

access may be cache hit or miss in different instances of its

execution. Moreover, if caches are shared across processing

elements (as in shared cache multi-cores), one program

thread may have constructive or destructive effect on another

in terms of cache hits/misses. This makes the timing analysis

of concurrent programs running on shared-cache multi-cores

a challenging problem. We address this problem in our work.

Our system model consists of a concurrent program vi-

sualized as a graph, each node of which is a Message
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Figure 1. A simple MSC and a mapping of its processes to cores.

Sequence Chart or MSC [1]. MSC is a modeling notation

that emphasizes the inter-process interaction, allowing us to

exploit its structure in our timing analysis. The individual

processes in the MSC appear as vertical lines. Interactions

between the processes are shown as horizontal arrows across

vertical lines. The computation blocks within a process are

shown as “tasks” on the vertical lines. Figure 1 shows a

simple MSC with five processes (Main, Health Monitoring

etc.) executing the tasks main1, . . . ,main4, hm etc. Note

that an MSC denotes a labeled partial order of tasks.
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Figure 2. A multi-core architecture with shared cache.

Our system architecture consists of a multi-core where the

individual processes in the program (the vertical lines of the

MSCs) are mapped to the different cores (see Figure 1). With

such a mapping, an MSC provides a natural specification of

interactions among the processes in a concurrent program

running on multi-cores. As multi-cores are increasingly

adopted in high-performance embedded systems, the on-chip

cache hierarchy becomes more complex. We consider an

architecture where each processor core has private first-level

(L1) cache. However, a second-level (L2) cache is shared

across the processor cores (see Figure 2).



Certainly, the analysis effort required for capturing the

timing effects in the presence of a shared cache is complex,

as memory contention across the multiple cores significantly

affects the shared cache behavior. In particular, accesses to

the L2 cache originating from different cores may conflict

with each other. Thus, isolated cache analysis of each task

that does not account for these conflicts will not safely bound

the execution time of the task.

Contributions: In this paper, we develop a worst-case

response time (WCRT) analysis of concurrent programs,

where the concurrent execution of the tasks are analyzed to

bound the shared cache interferences. Our method advances

the state-of-the-art in shared cache multi-core timing anal-

ysis [23] in several ways. First of all, our iterative analysis

estimates which tasks (running on two different cores) can

have overlapping lifetimes. If two tasks cannot overlap, they

cannot affect each other in terms of conflict misses and thus

we can reduce the number of estimated conflict misses in

the shared cache. This leads to improved timing estimates.

Moreover, we consider set-associative caches in our analysis

as opposed to only direct mapped caches and this creates

additional opportunities for improving the timing estimation.

In summary, we develop a timing analysis method for shared

cache multi-cores that enhances the state-of-the-art.

Assumptions: Our analysis framework has the follow-

ing assumptions.

• Data Cache: We only handle the instruction memory

hierarchy in this work. We do not model the data cache.

We assume that the data memory references do not

interfere in any way with the L1 and L2 instruction

caches modeled by us.

• Cache Architecture: We consider Least Recently Used

(LRU) cache replacement policy for set-associative

caches. The L2 cache block size is assumed to be larger

than or equal to the L1 cache block size. Finally, we

are analyzing non-inclusive multi-level caches [7].

• Other architectural features: We only consider architec-

tures without timing anomalies caused by interactions

between caches and other architecture features.

• Shared code across tasks: We assume that the tasks do

not share any common code. In case two tasks share a

function f — we create two separate copies of function

f , one for each task. This is because we do not handle

constructive effects of shared cache in this work.

• Inter-task communication: In our framework, the tasks

communicate with each other through message passing

via mailboxes. The tasks deposit or receive messages

from the mailbox through interrupt service routines

(ISR). Exclusive access to the mailbox is ensured by

disabling interrupts within ISR. A task waiting on a

message is notified by the ISR once the message is

available in the mailbox. Finally, we assume that there

is no overflow in any mailbox, that is, mailboxes are

of unbounded length.

II. SYSTEM MODEL AND ARCHITECTURE

In this section, we give some background on Message

Sequence Charts (MSCs) and Message Sequence Graphs

(MSGs) — our system model for describing concurrent

programs. In doing so, we also introduce our case study with

which we have validated our approach. We conclude this

section by detailing our system architecture — the platform

on which the concurrent application is executed.

A. Message Sequence Charts

A Message Sequence Chart (MSC) [1] is a variant of an

UML sequence diagram with a formal semantics. Figure 1

shows a simple MSC with five processes (vertical lines). It

is in fact drawn from our DEBIE case study, which models

the controller for a space debris management system. The

five processes are mapped on to four cores. Each process

is mapped to a unique core, but several processes may

be mapped to the same core (e.g., Health-monitoring and

Telecommand processes are mapped to core 2 in Figure

1). Each process executes a sequence of “tasks” shown via

shaded rectangles (e.g., main1, hm, tc are tasks in Figure

1). Each task is an arbitrary (but terminating) sequential

program in our setting and we assume there is no code

sharing across the tasks.

Semantically, an MSC denotes a set of tasks and pre-

scribes a partial order over these tasks. This partial order is

the transitive closure of (a) the total order of the tasks in each

process (time flows from top to bottom in each process), and

(b) the ordering imposed by the send-receive of each mes-

sage (the send of a message must happen before its receive).

Thus in Figure 1, the tasks in the Main process execute

in the sequence main1, main2, main3, main4. Also, due

to message send-receive ordering, the task main1 happens

before the task hm. However, the partial ordering of the

MSC allows tasks hm and tc to execute concurrently.

We assume that our concurrent program is executed in

a static priority-driven non-preemptive fashion. Thus, each

process in an MSC is assigned a unique static priority. The

priority of a task is the priority of the process it belongs to.

If more than one processes are mapped to a processor core,

and there are several tasks contending for execution on the

core (such as the tasks hm and tc on core 2 in Figure 1),

we choose the higher priority task for execution. However,

once a task starts execution, it is allowed to complete without

preemption from higher priority tasks.

B. Message Sequence Graph

A Message Sequence Graph (MSG) is a finite graph where

each node is described by an MSC. Multiple outgoing edges

from a node in the MSG represent a choice, so that exactly

one of the destination charts will be executed in succession.

While an MSC describes a single scenario in the system

execution, an MSG describes the control flow between these
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Figure 3. DEBIE Case Study. Different colors are used to show the
mapping of the processes to different processor cores.

scenarios, allowing us to form a complete specification of

the application.

To complete the description of MSG, we need to give

a meaning to MSC concatenation. That is, if M1, M2 are

nodes (denoting MSCs) in an MSG, what is the meaning of

the execution sequence M1, M2, M1, M2, . . .? We stipulate

that for a concatenation of two MSCs say M1 ◦ M2, all

tasks in M1 must happen before any task in M2. In other

words, it is as if the participating processes synchronize or

hand-shake at the end of an MSC. In MSC literature, it is

popularly known as synchronous concatenation [3].

C. DEBIE Case Study

Our case study consists of DEBIE-I DPU Software [6],

an in-situ space debris monitoring instrument developed by

Space Systems Finland Ltd. The DEBIE instrument utilizes

up to four sensor units to detect particle impacts on the

spacecraft. As the system starts up, it performs resets based

on the condition that precedes the boot. After initializations,

the system enters the Standby state, where health monitoring

functions and housekeeping checks are performed. It may

then go into the Acquisition mode, where each particle

impact will trigger a series of measurements, and the data

are classified and logged for further transmission to the

ground station. In this mode too, the Health Monitoring

process continues to periodically monitor the health of the

instrument and to run housekeeping checks.

The MSG for the DEBIE case study (with different colors

used to show the mapping of the processes to different

processor cores) is shown in Figure 3. This MSG is acyclic.

For MSGs with cycles, the number of times each cycle can

be executed needs to be bounded for worst-case response

time analysis.

D. System Architecture

The generic multi-core architecture we target here is quite

representative of the current generation multi-core systems

as shown in Figure 2. Each core on chip has its own

private L1 instruction cache and a shared L2 cache that

accommodates instructions from all the cores. In this work,

our focus is on instruction memory accesses and we do not

model the data cache. We assume that the data memory

references do not interfere in any way with the L1 and L2

instruction caches modeled by us (they could be serviced

from a separate data cache that we do not model).

Each cache can be either direct-mapped or set-associative.

In this paper, we consider Least Recently Used (LRU)

cache replacement policy for set-associative caches. Also,

we consider architectures without timing anomalies caused

by interactions between caches and other architecture fea-

tures. The L2 cache block size is assumed to be larger

than or equal to the L1 cache block size. Finally, we are

analyzing non-inclusive multi-level caches [7]. Even though

we consider two levels of caches here, our approach can

be easily extended to handle more levels of cache hierarchy

using the same propagation principle from L1 cache to L2

cache presented in this paper.

III. ANALYSIS FRAMEWORK

In this section, we present an overview of our timing

analysis framework for concurrent applications running on

a multi-core architecture with shared caches. For ease of

illustration, we will throughout use the example of a 2-

core architecture. However, our method is easily scalable to

any number of cores as will be shown in the experimental

evaluation. As we are analyzing a concurrent application, our

goal is to estimate the Worst Case Response Time (WCRT)

of the application.

Figure 4 shows the workflow of our timing analysis

framework. First, we perform the L1 cache hit/miss analysis

for each task mapped to each core independently. As we



assume a non-preemptive system, we can safely analyze

the cache effect of each task separately even if multiple

tasks are mapped to the same processor core. For preemptive

systems, we need to include cache-related preemption delay

analysis ([9], [22], [15], [18]) in our framework.

The filter at each core ensures that only the memory

accesses that miss in the L1 cache are analyzed at the L2

cache level. Again, we first analyze the L2 cache behavior

for each task in each core independently assuming that there

is no conflict from the tasks in the other cores. Clearly, this

part of the analysis does not model any multi-core aspects

and we do not propose any new innovations here. Indeed,

we employ the multi-level non-inclusive instruction cache

modeling proposed recently [7] for intra-core analysis.
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Figure 4. Our Analysis Framework

The main challenge in safe and accurate execution time

analysis of a concurrent application is the detection of

conflicts for shared resources. In our target platform, we

are modeling one such shared resource: the L2 cache. A

first approach to model the conflicts for L2 cache blocks

among the cores is the following. Let T be the task running

on core 1 and T ′ be the task running on core 2. Also let

M1, . . . ,MX (M ′

1
, . . . ,M ′

Y ) be the set of memory blocks

of thread T (T ′) mapped to a particular cache set C in

the shared L2 cache. Then we simply deduce that all the

accesses to memory blocks M1, . . . ,MX and M ′

1
, . . . ,M ′

Y

will be misses in L2 cache. Indeed, this is the approach

followed by the only shared L2 cache analysis proposed in

the literature [23].

A closer look reveals that there are multiple opportunities

to improve the conflict analysis. The first and foremost is

to estimate and exploit the lifetime information for each

task in the system, which will be discussed in detail in the

following. If the lifetimes of the tasks T and T ′ (mapped

to core 1 and core 2, respectively) are completely disjoint,

then they cannot replace each other’s memory blocks in the

shared cache. In other words, we can completely bypass

shared cache conflict analysis among such tasks.

The difficulty lies in identifying the tasks with disjoint

lifetimes. It is easy to recognize that the partial order

prescribed by our MSC model of the concurrent application

automatically implies disjoint lifetimes for some tasks. How-

ever, accurate timing analysis demands us to look beyond

this partial order and identify additional pairs of tasks that

can potentially execute concurrently according to the partial

order, but whose lifetimes do not overlap (see Section

III-A for an example). Towards this end, we estimate a

conservative lifetime for each task by exploiting the Best

Case Execution Time (BCET) and Worst Case Execution

Time (WCET) of each task along with the structure of the

MSC model. Still the problem is not solved as the task

lifetime (i.e., BCET and WCET estimation) depends on

the L2 cache access times of the memory references. To

overcome this cyclic dependency between the task lifetime

analysis and the conflict analysis for shared L2 cache, we

propose an iterative solution.

The first step of this iterative process is the conflict

analysis. This step estimates the additional cache misses

incurred in the L2 cache due to inter-core conflicts. In the

first iteration, conflict analysis assumes very preliminary

task interference information — all the tasks (except those

excluded by MSC partial order) that can potentially execute

concurrently will indeed execute concurrently. However,

from the second iteration onwards, it refines the conflicts

based on task lifetime estimation obtained as a by-product of

WCRT analysis component. Given the memory access times

from both L1 and L2 caches, WCRT analysis first computes

the execution time bounds of every task, represented as a

range. These values are used to compute the total response

time of all the tasks considering dependencies. The WCRT

analysis also infers the interference relations among tasks:

tasks with disjoint execution intervals are known to be non-

interfering, and it can be guaranteed that their memory

references will not conflict in the shared cache. If the task

interference has changed from the previous iteration, the

modified task interference information is presented to the

conflict analysis component for another round of analysis.

Otherwise, the iterative analysis terminates and returns the

WCRT estimate. Note the feedback loop in Figure 4 that

allows us to improve the lifetime bounds with each iteration

of the analysis.

A. Illustration

We illustrate our iterative analysis framework on the MSC

depicted in Figure 1. Initially, the only information available

are (1) the dependency specified in the model, and (2) the

mapping of tasks to cores. Two tasks t, t′ are known not to

interfere if either (1) t′ depends on t as per the MSC partial
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(c) Interference graph after first round of analysis(b) Task lifetimes determined in first round of analysis

Figure 5. The working of our shared-cache analysis technique on the example given in Figure 1

order, or (2) t and t′ are mapped to the same core (by virtue

of the non-preemptive execution).

We can thus sketch the initial interference relations among

tasks in an interference graph as shown in Figure 5(a).

Each node of the graph represents a task, and an edge

between two nodes signifies potential conflict between the

tasks represented by the nodes. This is the input to the cache

conflict analysis component (Figure 4), which then accounts

for the perceived inter-task conflicts and accordingly adjusts

L2 cache access time of conflicting memory blocks.

In the next step, we compute BCET and WCET values

for each task. These values are used in the WCRT analysis

to determine task lifetimes. Figure 5(b) visualizes the task

lifetimes after the analysis for this particular example. Here,

time is depicted as progressing from top to bottom, and the

duration of task execution is shown as vertical bar stretching

from the time it starts to the time it completes. The overlap

between the lifetimes of two tasks signifies the potential

that they may execute concurrently and may conflict in the

shared cache. Conversely, the absence of overlap in these

inferred lifetimes tells us that some tasks are well separated

(e.g., aq and tc) so that it is impossible for them to conflict

in the shared cache. For instance, here tc starts later than

hm on the same core, and thus has to wait until hm finishes

execution. By that time, most of the other tasks have finished

their execution and will not conflict with tc. Based on

this information, our knowledge of task interaction can be

refined into the interference graph shown in Figure 5(c).

This information is fed back as input to the cache conflict

analysis, where some of the previously assumed evictions in

the shared cache can now be safely ruled out.

Our analysis proceeds in this manner iteratively. The ini-

tial conservative assumption of task interferences is refined

over the iterations. In the next section, we provide detailed

description of the analysis components and show that our

iterative analysis is guaranteed to terminate.

IV. ANALYSIS COMPONENTS

The first step of our analysis framework is the independent

cache analysis for each core (see Figure 4). As mentioned

before, we use the multi-level non-inclusive cache analysis

proposed by Hardy and Puaut [7] for this step. However,

some background on this intra-core analysis is required

to appreciate our shared cache conflict analysis technique.

Hence, in the next subsection, we provide a quick overview

of the intra-core cache analysis.

A. Intra-Core Cache Analysis

The intra-core cache analysis step employs abstract inter-

pretation method [21] at both L1 and L2 cache levels. The

additional step for multi-level caches is the filter function

(see Figure 4) that eliminates the L1 cache hits from

accessing the L2 cache. The L1 cache analysis computes the

three different abstract cache states (ACS) at every program

point within a task [21]. In this paper, we consider LRU

replacement policy, but the cache analysis can be extended

for other replacement polices as shown in [8].

• Must Analysis: It determines the set of all memory

blocks that are guaranteed to be present in the cache

at a given program point. This analysis uses abstract

cache states where the position of a memory block is

an upper bound of its age.

• May Analysis: It determines the set of all memory

blocks that may be present in the cache at a given

program point.

• Persistence Analysis: This analysis is used to improve

the classification of memory references. It collects the

set of all memory blocks that are never evicted from

the cache after the first reference.

The analysis results can be used to classify the memory

blocks in the following manner.

• Always Hit (AH): If a memory block is present in the

ACS corresponding to must analysis, its references will

always result in cache hits.

• Always Miss (AM): If a memory block is not present in

the ACS corresponding to may analysis, its references

are guaranteed to be cache misses.

• Persistent (PS): If a memory block is guaranteed never

to be evicted from the cache, it can be classified as



persistent where the second and all further executions

of the memory reference will always be cache hits.

• Not Classified (NC): The memory reference cannot be

classified as either AH, AM, or PS.

For a Persistent (PS) memory block, we further classify

it as Always Miss (AM) for its first reference and Always

Hit (AH) for the rest of the references. Once the memory

blocks have been classified at L1 cache level, we proceed to

analyze them at L2 cache level. But before that, we need to

apply the filter function that eliminates L1 cache hits from

further consideration [7]. The filter function is shown below.

L1 Classification L2 Access

Always Hit (AH) Never (N)

Always Miss (AM) Always (A)

Not Classified (NC) Uncertain (U)

A reference classified as always hit will never access L2

cache (“Never”) whereas a reference classified as always

miss will always access L2 cache (“Always”). The more

complicated scenario is with the non-classified references.

[7] has shown that it is unsafe to assume that a non-classified

reference will always access L2 cache. Instead, its status is

set to “Uncertain” and we consider both the scenarios (L2

access and no L2 access) in our analysis for such references.

The intra-core L2 cache analysis is identical to L1 cache

analysis except that (a) a reference with “Never” tag is

ignored, i.e., it does not update abstract cache states, and (b)

a reference r with “Uncertain” tag creates two abstract cache

states (one updated with r and the other one not updated with

r) that are “joined” together.

B. L2 Cache Conflict Analysis

Shared L2 cache conflict analysis is the central component

of our framework. It takes in two inputs, namely the task

interference graph (see Figure 5) generated by the WCRT

analysis step and the abstract cache states plus the classifi-

cation corresponding to L2 cache analysis for each task in

each core. The goal of this step is to identify all potential

conflicts among the memory blocks from the different cores

due to sharing of the L2 cache.

Let T be a task executing on core 1 that can potentially

conflict with the set of tasks T ′ executing on core 2 accord-

ing to the task interference graph. Now let us investigate

the impact of the L2 memory accesses of T ′ on the L2

cache hit/miss status of the memory blocks of T . First, we

notice that if a memory reference of T ′ is always hit in the

L1 cache, it does not touch the L2 cache. Such memory

references will not have any impact on task T . So we are

only concerned with the memory references of T ′ that are

guaranteed to access the L2 cache (“Always”) or may access

the L2 cache (“Uncertain”). For each cache set C in the L2

cache, we collect the set of unique memory blocks M(C)
of T ′ that map to cache set C and can potentially access

the L2 cache (i.e., tagged with “Always” or “Uncertain”).

If a memory block m of task T has been classified

as “Always Miss” or “Non-Classified” for L2 cache, the

impact of interfering task set T ′ cannot downgrade this

classification. Hence, we only need to consider the memory

blocks of task T that have been classified as “Always Hit”

for L2 cache. Let m be one such memory block and it maps

to cache set C. If M(C) 6= ∅, then the memory accesses

from interfering tasks can potentially evict m from the L2

cache. So we change the classification of m from “Always

Hit” to “Non-Classified”. Note that actual task interaction at

runtime will determine whether the eviction indeed occurs.

Thus the access is regarded as “Non-Classified” rather than

“Always Miss”.

Task T Task T

m0

m1

Age: 1

2

Non-Classified m0

m1

Age: 1

2

Always hit

Always hitNon-Classified

m23

4

Non-Classified 3

4

m2 Non-Classified

Without optimization With optimization

Total number of conflicting memory blocks from other tasks |M(C)| = 2.g y | ( )|

Figure 6. An example of 4-way set associative L2 cache. The abstract
cache state of task T for cache set C at a program point during must

analysis is shown. Memory blocks are converted to either “Always Hit”
or “Non-Classified” according to their ages and the number of conflicting
memory blocks from interfering tasks.

Optimization for Set-Associativity: In the discussion

so far, we blindly converted each “Always Hit” reference to

“Non-Classified” if there are potential memory accesses to

the same cache set from the other interfering tasks. However,

for set-associative caches, we can perform more accurate

conflict analysis. Again, let m be a memory reference of

task T at program point p that has been classified as “Always

Hit” in the L2 cache and it maps to cache set C. Clearly, m
is present in the abstract cache state (ACS) at program point

p corresponding to must analysis. Let age(m) be the age of

reference m in the ACS of must analysis. The definition

of ACS implies that m should stay in the cache for at least

(N −age(m)) unique memory block references to cache set

C where N is the associativity of the cache [21]. Thus, if

|M(C)| ≤ N−age(m), memory block m cannot be evicted

from the L2 cache by interfering tasks. In this case, we

should keep the classification of m as “Always Hit”. Figure

6 shows an example. Memory blocks m0 and m1 are kept

as “Always Hit” because the number of conflicting memory

blocks from interfering tasks (M(C) = 2) are not enough

to evict them. However, memory block m2 is converted to

“Non-Classified” due to its old age.

C. WCRT Analysis

In this step, we take the results of the cache analysis at

all levels to determine the BCET and WCET of all tasks.



Table I presents how we deduce the latency of a reference

r in the best and worst case given its classification at L1

and L2. Here, hitL denotes the latency of a hit at cache

level L, which consists of (1) the total delay for cache tag

comparison at all levels l : 1 . . . L, and (2) the latency to

bring the content from level L cache to the processing core.

missL2, the L2 miss latency, consists of (1) the total delay

for cache tag comparison at L1 and L2 caches, and (2) the

latency to access the reference from the main memory and

bring it to the processing core.

Table I
ACCESS LATENCY OF A REFERENCE IN BEST CASE AND WORST CASE

GIVEN ITS CLASSIFICATIONS

L1 cache L2 cache Access latency
Best-case Worst-case

AH – hitL1 hitL1

AM AH hitL2 hitL2

AM AM missL2 missL2

AM NC hitL2 missL2

NC AH hitL1 hitL2

NC AM hitL1 missL2

NC NC hitL1 missL2

Note that an NC reference is interpreted as hits in the

best case, and as misses in the worst case. We assume an

architecture free from timing anomaly so that we can assign

miss latency to an NC reference in the worst case. Having

determined the latency of each reference, we can compute

the best-case and worst-case latency of each basic block by

summing up all incurred latencies. A shortest (longest) path

search is then applied to obtain the BCET (WCET) of the

whole task [19].

In order to compute the WCRT of MSG, we need to

know the time interval of each task. The task ordering

within a node (denoting an MSC) of the MSG model

is given by the partial order of the corresponding MSC.

The task ordering across nodes of the MSG model are

captured by the directed edges in the MSG. Given a task t,

we use four variables EarliestReady[t], LatestReady[t],
EarliestF inish[t], and LatestF inish[t] to represent its

execution time information. Given a task t, its execution in-

terval is from EarliestReady[t] to LatestF inish[t]. These

notations are explained below:

• EarliestReady[t]/LatestReady[t]: earliest/latest time

when all of t’s predecessors have completed execution.

• EarliestF inish[t]/LatestF inish[t]: earliest/latest

time when task t finishes its execution.

• separated(t, u): If tasks t and u do not have any depen-

dencies and their execution interval do not overlap or if

tasks t and u have dependencies, then separated(t, u)
is assigned true; otherwise it is assigned false.

In a non-preemptive system, EarliestF inish[t] =
EarliestReady[t] + BCET [t]. Also, task t is ready only

after all its predecessors have completed execution, that is,

EarliestReady[t] = maxu∈P (EarliestF inish[u]), where

P is the set of predecessors of task t. For a task t without

any predecessor EarliestReady[t] = 0.

However, latest finish time of a task is not only affected

by its predecessors but also its peers (non-separated tasks

on the same core). For task t, we define

St
peers = {t′|¬separated[t′, t]∧ t′, t are on the same core}

In other words, St
peers is the set of tasks whose execution

interfere with task t on the same core. Let P be the set of

predecessors of task t. Then we have

LatestReady[t] = maxu∈P (LatestF inish[u])
LatestF inish[t] = LatestReady[t] + WCET [t]

+
∑

t′∈St
peers

WCET [t′]

However, the change of latest times of tasks may

lead to different interference scenario (i.e., separated[., .]
may change), which might change the latest finish times.

Thus, latest finish times are estimated iteratively until the

separated[., .] do not change. separated[t, u] is initialized

to false if tasks t and u do not have any dependency and true

otherwise. When iterative process terminates, we are able to

derive the final application WCRT as

WCRT = maxt LatestF inish(t)
− mint′ EarliestReady(t′)

that is, the duration from the earliest start time of any task

until the latest completion time of any task. Note that this

iterative process within WCRT analysis is different from the

iterative process shown in Figure 4.

A by-product of WCRT analysis is the set of tasks that

can potentially conflict in L2 cache, that is, tasks whose

execution intervals (from EarliestReady to LatestF inish)

overlap. This information, if different from the previous

iteration, will be fed back to the cache conflict analysis to

refine the classification for L2 accesses.

D. Termination Guarantee

Now we proceed to prove that the iterative L2 cache

conflict analysis framework shown in Figure 4 terminates.

Theorem IV.1. For any task t, its BCET and Ear-

liestReady[t] do not change across different iterations of L2

cache conflict and WCRT analysis.

Proof: Our level 2 cache conflict analysis only consid-

ers the memory blocks classified as “Always Hit” for L2

cache. Some of these memory blocks might be changed to

“Non-Classified” due to interference from conflicting tasks

while others remain as “Always Hit”. An “Always Hit”

memory block in L2 cache should have “Always Miss” or

“Non-Classified” status in L1 cache. According to Table I, a

memory block classified as L1 “Always Miss” is considered

as L2 cache hit in the best case irrespective of whether

is it AH or NC in L2 cache. Similarly, a “Non-classified”



memory block in L1 is considered as L1 cache hit in the best

case irrespective of its classification in the L2 cache. Hence,

L2 cache conflict analysis cannot reduce the best case access

time of a memory reference and hence a task’s BCET does

not change across different iterations of our analysis.

We prove that EarlistReady[t] does not change

through contradiction. Let us assume that for a task t,

its EarlistReady[t] changes. This must be due to a

change in its predecessors’s EarliestReady[t] because a

task’s BCET remains unchanged. Proceeding backwards,

EarliestReady[src] must have changed where src is

a task without any predecessor, contradicting the fact

that EarliestReady[src] = 0. Hence, for a task t its

EarliestReady[t] does not change.

Theorem IV.2. Task interferences monotonically decrease

(strictly decrease or remain the same) across different iter-

ations of our analysis framework.

Proof: We prove by induction on number of iterations.

Base Case: In the first iteration, tasks are assumed to

conflict with all the tasks on other cores (except those

excluded by partial order). This is the worst case task

interference scenario. Thus, the task interferences of the

second iteration definitely monotonically decrease compared

to the first iteration.

Induction Step: We need to show that the task interferences

monotonically decrease from iteration n to iteration n + 1
assuming that the task interferences monotonically decrease

from iteration n−1 to n. We prove by contradiction. Assume

two tasks i and j do not interfere at iteration n, but interfere

at iteration n + 1. There are two cases.

• EarliestReady[j] ≥ LatestF inish[i] at iteration n,

but EarliestReady[j] < LatestF inish[i] at iteration

n + 1. This implies that LatestF inish[i] at iteration

n + 1 increases because EarliestReady[j] remains

unchanged across iterations according to Theorem IV.1.

LatesteF inish[i] at iteration n+1 can increase due to

three reasons: (a) at iteration n + 1, the WCET of task

i itself increases; (b) the WCET of some tasks which

task i depends on directly or indirectly increases; and

(c) the WCET of some tasks increases as a result of

which either the number of peers of task i (|Si
peers|)

increases or the WCET of a peer of task i increases. In

summary, at least one task’s WCET is increased. The

WCET increase at iteration n+1 of some task implies

that more memory blocks are changed from “Always

Hit” to “Non-Classified” due to the task interference

increase at iteration n. However, this contradicts with

the assumption that task interferences monotonically

decrease at iteration n.

• EarliestReady[i] ≥ LatestF inish[j] at iteration n,

but EarliestReady[i] < LatestF inish[j] at iteration

n + 1. The proof is symmetric to the first case.

As task interferences decrease monotonically across iter-

ations, the analysis must terminate.

V. RELATED WORK

There have been a lot of research efforts in modeling

cache behavior for WCET estimation in single-core systems.

A widely adopted technique is the abstract interpretation

([2], [21]) which also forms the foundation to the framework

presented in this paper. Mueller [14] extends the technique

for multi-level cache analysis; Hardy and Puaut [7] further

adjust the method with a crucial observation to produce safe

estimates for set-associative caches. Other proposed methods

that attempt exact classification of memory accesses for

private caches include data-flow analysis [14], integer linear

programming [12] and symbolic execution [13].

Cache analysis for multi-tasking systems mostly re-

volves around a metric called cache-related preempted delay

(CRPD), which quantifies the impact of cache sharing on

the execution time of tasks in a preemptive environment.

CRPD analysis typically computes cache access footprint of

both the preempted and preempting tasks ([9], [22], [15]).

The intersection then determines cache misses incurred by

the preempted task upon resuming execution due to conflict

in the cache. Multiple process activations and preemption

scenarios can be taken into account, as in [18]. A different

perspective in [20] considers WCRT analysis for customized

cache, specifically the prioritized cache, which reduces inter-

task cache interference.

In multiprocessing systems, tasks in different cores may

execute in parallel while sharing memory space in the

cache hierarchy. Due to the complexity involved in static

analysis of multiprocessors, time-critical systems often opt

not to exploit multiprocessing, while non-critical systems

generally utilize measurement-based performance analysis.

Tools for estimating cache access time are presented, among

others, in [17], [5] and [10]. It has also been proposed to

perform static scheduling of memory accesses so that they

can be factored in to achieve reliable WCET analysis on

multiprocessors [16].

The only technique in literature that has addressed inter-

core shared-cache analysis so far is the one proposed by

Yan and Zhang [23]. Their approach accounts for inter-core

cache contention by detecting accesses across cores which

map to the same set in the shared cache. They treat all tasks

executing in a different core than the one under consideration

as potential conflicts regardless of their actual execution time

frames; thus the resulting estimate is highly pessimistic. We

also note that their work has not addressed the problem

with multi-level cache analysis observed by [7] (a “non-

classified” access in L1 cache cannot be safely assumed

to always access L2 cache in the worst case) and will be

prone to unsafe estimation when applied to set-associative

caches. This concern, however, is orthogonal to the issues

arising from cache sharing. Our proposed analysis is able



Table II
CHARACTERISTICS AND SETTINGS OF THE DEBIE BENCHMARK

MSC Task Codesize (bytes) Core

1 boot main 3,200 1

2 pwr main1 9,456 1

pwr main2 3,472 1

pwr class 1,648 4

3 wr main1 3,408 1

wr main2 5,952 1

wr class 1,648 4

4 rcs main 3,400 1

5 rwd main 3,400 1

6 init main1 320 1

init main2 376 1

init main3 376 1

init main4 376 1

init health 5,224 2

init telecm 4,408 2

init acqui 200 4

init hit 616 4

7 sby health1 16,992 2

sby health2 448 2

sby telecm 23,288 2

sby su1 6,512 4

sby su2 4,392 4

sby su3 1,320 4

8 acq health1 16,992 2

acq health2 448 2

acq telecm 23,288 2

acq acqui1 3,136 4

acq acqui2 3,024 4

acq telemt 3,768 3

acq class 3,064 4

acq hit 8,016 4

acq su0 2,536 4

acq su1 6,512 4

acq su2 4,392 4

acq su3 1,320 4
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Figure 7. Code size distribution of DEBIE benchmark.

to obtain improved estimates by exploiting the knowledge

about interaction among tasks in the multiprocessor.

VI. ESTIMATION RESULTS

Setup: We compile our benchmark for SimpleScalar

PISA (Portable ISA) instruction set [4] — a MIPS like in-

struction set architecture. The individual tasks are compiled

into SimpleScalar PISA compliant binaries, and their control

flow graphs (CFGs) are extracted as input to the cache

analysis framework. The cache analysis framework is built

on top of the open-source WCET analysis tool Chronos [11].

Details of the tasks in the DEBIE benchmark and their code-

sizes appear in Figure 7 and Table II. The table also shows

the mapping of the tasks to the processor cores in a system

with four cores.

As we are modeling the cache, we assume a simple

in-order processor with unit-latency for all data memory

references. We perform all experiments on a 3GHz Pentium

4 CPU with 2GB memory.

Our analysis produces the WCRT result when the iterative

work flow as shown in Figure 4 terminates. The estimate pro-

duced after the first iteration assumes that any pair of tasks

assigned to different cores may execute concurrently and

evict each other’s content from the shared cache. This value

is essentially the estimation result following Yan-Zhang’s

technique [23] — the only available shared-cache analysis

method in the literature (see Section V). The improvement in

WCRT estimation accuracy due to our proposed analysis is

demonstrated by comparing this value to the final estimation

result of our technique.

Comparison with Yan-Zhang’s method: Yan-Zhang’s

analysis [23] is restricted to direct mapped cache. Thus, to

make a fair comparison, we first configure both L1 and L2

as direct mapped caches. Figure 8(a) shows the comparison

of the estimated WCRT between Yan-Zhang’s analysis and

ours on varying number of cores. The size of L1 cache

is 2KB bytes with 16-byte block size. The L2 cache has

32-byte block size. The L2 cache size is doubled with the

doubling of the number of cores. We assume 1 cycle latency

for L1 hit, 10 cycle latency for L1 cache misses and 100

cycle latency for L2 cache misses. When only one core is

employed, the tasks execute non-preemptively without any

interference. Thus the two methods produce the exact same

estimated WCRT. In the 2-core and 4-core settings where

task interferences become significant to the analysis, our

method achieves up to 15% more accuracy over Yan-Zhang’s

method.

As tasks are distributed on more cores, the parallelization

of task execution may reduce overall runtime. But at the

same time, the concurrency gives rise to inter-core L2

cache content evictions that contribute to an increase in

task runtime. In this particular experiment, we observe that

the WCRT value can increase (1-core to 2-core) as well as

decrease (2-core to 4-core) with increasing number of cores.

In Figure 8(b), we compare the number of inter-core

cache evictions estimated by both methods for the same

configurations as in Figure 8(a). When only one core is

employed, there is no inter-core evictions for both methods.

For multi-core systems, due to the accurate task interference,

the number of inter-core evictions of our method are much

smaller than Yan-Zhang’s method as shown in Figure 8(b).

This explains the WCRT improvement in Figure 8(a).

Set associative caches: Our method is able to handle

set-associative caches accurately by taking into account

the age of the memory blocks. Figure 8(c) compares the

estimated WCRT with and without the optimization for set-

associativity (see Section IV-B) in a 2-core system. Without
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Figure 8. Comparison between Yan-Zhang’s method and our method and the improvement of set associativity optimization.
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Figure 9. Comparison of estimated WCRT between Yan-Zhang’s method
and our method for varying L1 and L2 cache sizes.

the optimization, all the “Always Hit” accesses are turned

into “Non-Classified” accesses as long as there are conflicts

from other cores, regardless of the memory blocks’ age.

Here, L1 cache is configured as 2KB direct mapped cache

with 16-byte block size and L2 cache is configured as a

32KB set-associative cache with 32-byte block size, but

varied associativity (1, 2, 4, 8). As shown in Figure 8(c),

when associativity is set to 1 (direct mapped cache), there

is no gain from the optimization. However, for associativity
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Figure 10. Runtime of our iterative analysis.

≥ 2, the estimated WCRT is improved significantly with the

optimization.

Sensitivity to L1 cache size: Figure 9(a) shows the

comparison of the estimated WCRT on a 2-core system

where L1 cache size is varied but L2 cache size is kept

as constant. Again both L1 and L2 caches are configured as

direct mapped caches due to the limitation of Yan-Zhang’s

analysis. Our method is able to filter out evictions among

tasks with separated lifetimes and achieves up to 20% more

accuracy over Yan-Zhang’s method.

Sensitivity to L2 cache size: Figure 9(b) shows the com-

parison of the estimated WCRT on a 2-core system where

L2 cache size is varied but L1 cache size is kept as constant.

Here too, both L1 and L2 caches are configured as direct

mapped caches. We observe slightly larger improvement as

we increase the L2 cache size. In general, more space in

L2 cache reduces inter-task conflicts. Without refined task

interference information, however, there can be significant

pessimism in estimating inter-core evictions, which limits

the benefit of the larger space in the perspective of Yan-

Zhang’s analysis. As a result, our analysis is able to achieve

lower WCRT estimates as compared to Yan-Zhang’s method.

Scalability: Finally, Figure 10 sketches the runtime of

our complete iterative analysis (L2 cache and WCRT analy-

sis) for various configurations. It takes less than 30 seconds

to complete our analysis for any considered settings.



VII. CONCLUDING REMARKS

We have presented a worst-case response time (WCRT)

analysis of concurrent programs running on shared cache

multi-cores. Our concurrent programs are captured as graphs

of Message Sequence Charts (MSCs) where the MSCs

capture ordering of computation tasks across processes. Our

timing analysis iteratively identifies tasks whose lifetimes

are disjoint and uses this information to rule out cache

conflicts between certain task pairs in the shared cache. Our

analysis obtains lower WCRT estimates than existing shared-

cache analysis methods on a real-world application.

In future, we are planning to extend the work in several

directions. This will also amount to relaxing or removing

the restrictions in our current analysis framework, namely

- (i) handling of data caches, (ii) handling cache replace-

ment policies other than LRU, (iii) directly capturing the

constructive effect of shared code (such as libraries) across

tasks, and (iv) allowing tasks to communicate via message

passing as well as shared memory.
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