
Timing Analysis of Keystrokes and Timing Attacks on SSH
�

Dawn Xiaodong Song David Wagner Xuqing Tian

University of California, Berkeley

Abstract

SSH is designed to provide a secure channel between

two hosts. Despite the encryption and authentication

mechanisms it uses, SSH has two weakness: First, the

transmitted packets are padded only to an eight-byte

boundary (if a block cipher is in use), which reveals the

approximate size of the original data. Second, in inter-

active mode, every individual keystroke that a user types

is sent to the remote machine in a separate IP packet im-

mediately after the key is pressed, which leaks the inter-

keystroke timing information of users’ typing. In this

paper, we show how these seemingly minor weaknesses

result in serious security risks.

First we show that even very simple statistical tech-

niques suffice to reveal sensitive information such as the

length of users’ passwords or even root passwords. More

importantly, we further show that by using more ad-

vanced statistical techniques on timing information col-

lected from the network, the eavesdropper can learn sig-

nificant information about what users type in SSH ses-

sions. In particular, we perform a statistical study of

users’ typing patterns and show that these patterns re-

veal information about the keys typed. By developing a

Hidden Markov Model and our key sequence prediction

algorithm, we can predict key sequences from the inter-

keystroke timings. We further develop an attacker sys-

tem, Herbivore , which tries to learn users’ passwords by

monitoring SSH sessions. By collecting timing informa-

tion on the network, Herbivore can speed up exhaustive

search for passwords by a factor of 50. We also propose

some countermeasures.

In general our results apply not only to SSH, but also

to a general class of protocols for encrypting interactive

traffic. We show that timing leaks open a new set of

security risks, and hence caution must be taken when

designing this type of protocol.

✁
This research was supported in part by the Defense Advanced Re-

search Projects Agency under DARPA contract N6601-99-28913 (un-

der supervision of the Space and Naval Warfare Systems Center San

Diego) and by the National Science foundation under grants FD99-

79852 and CCR-0093337.

1 Introduction

Just a few years ago, people commonly used astonish-

ingly insecure networking applications such as tel-
net, rlogin, or ftp, which simply pass all confi-

dential information, including users’ passwords, in the

clear over the network. This situation was aggravated

through broadcast-based networks that were commonly

used (e.g., Ethernet) which allowed a malicious user to

eavesdrop on the network and to collect all communi-

cated information [CB94, GS96].

Fortunately, many users and system administrators have

become aware of this issue and have taken counter-

measures. To curb eavesdroppers, security researchers

designed the Secure Shell (SSH), which offers an en-

crypted channel between the two hosts and strong au-

thentication of both the remote host and the user [Ylö96,

SSL01, YKS
✂

00b]. Today, SSH is quite popular, and it

has largely replaced telnet and rlogin.

Many users believe that they are secure against eaves-

droppers if they use SSH. Unfortunately, in this paper

we show that despite state-of-the-art encryption tech-

niques and advanced password authentication protocols

[YKS
✂

00a], SSH connections can still leak significant

information about sensitive data such as users’ pass-

words. This problem is particularly serious because it

means users may have a false confidence of security

when they use SSH.

In particular we identify that two seemingly minor weak-

nesses of SSH lead to serious security risks. First, the

transmitted packets are padded only to an eight-byte

boundary (if a block cipher is in use). Therefore an

eavesdropper can easily learn the approximate length of

the original data. Second, in interactive mode, every

individual keystroke that a user types is sent to the re-

mote machine in a separate IP packet immediately af-

ter the key is pressed (except for some meta keys such

Shift or Ctrl). We show in the paper that this prop-

erty can enable the eavesdropper to learn the exact length

of users’ passwords. More importantly, as we have veri-

fied, the time it takes the operating system to send out the

packet after the key press is in general negligible com-

paring to the inter-keystroke timing. Hence an eaves-

dropper can learn the precise inter-keystroke timings of

users’ typing from the arrival times of packets.

Experience shows that users’ typing follows stable pat-

terns1. Many researchers have proposed to use the du-

ration of key strokes and latencies between key strokes

as a biometric for user authentication [GLPS80, UW85,

LW88, LWU89, JG90, BSH90, MR97, RLCM98,

MRW99]. A more challenging question which has not

yet been addressed in the literature is whether we can

use timing information about key strokes to infer the key

sequences being typed. If we can, can we estimate quan-

titatively how many bits of information are revealed by

the timing information? Experience seems to indicate

that the timing information of keystrokes reveals some

information about the key sequences being typed. For

example, we might have all experienced that the elapsed

time between typing the two letters “er” can be much

smaller than between typing “qz”. This observation is

particularly relevant to security. Since as we show the

attacker can get precise inter-keystroke timings of users’

typing in a SSH session by recording the packet arrival

times, if the attacker can infer what users type from the

inter-keystroke timings, then he could learn what users

type in a SSH session from the packet arrival times.

In this paper we study users’ keyboard dynamics and

show that the timing information of keystrokes does leak

information about the key sequences typed. Through

more detailed analysis we show that the timing informa-

tion leaks about 1 bit of information about the content

per keystroke pair. Because the entropy of passwords

is only 4–8 bits per character, this 1 bit per keystroke

pair information can reveal significant information about

the content typed. In order to use inter-keystroke tim-

ings to infer keystroke sequences, we build a Hidden

Markov Model and develop a n-Viterbi algorithm for the

keystroke sequence inference. To evaluate the effective-

ness of the attack, we further build an attacker system,

Herbivore, which monitors the network and collects tim-

ing information about keystrokes of users’ passwords.

Herbivore then uses our key sequence prediction algo-

rithm for password prediction. Our experiments show

that, for passwords that are chosen uniformly at random

with length of 7 to 8 characters, Herbivore can reduce the

cost of password cracking by a factor of 50 and hence

speed up exhaustive search dramatically. We also pro-

pose some countermeasures to mitigate the problem.

We emphasize that the attacks described in this paper are

a general issue for any protocol that encrypts interactive

traffic. For concreteness, we study primarily SSH, but

these issues affect not only SSH 1 and SSH 2, but also

1In this paper we only consider users who are familiar with key-

board typing and use touch typing.

any other protocol for encrypting typed data.

The outline of this paper is as follows. In Section 2

we discuss in more details about the vulnerabilities

of SSH and various simple techniques an attacker can

use to learn sensitive information such as the length

of users’ passwords and the inter-keystroke timings of

users’ passwords typed. In Section 3 we present our

statistical study on users’ typing patterns and show that

inter-keystroke timings reveal about 1 bit of information

per keystroke pair. In Section 4 we describe how we can

infer key sequences using a Hidden Markov Model and

a n-Viterbi algorithm. In Section 5 we describe the de-

sign, development and evaluation of an attacker system,

Herbivore, which learns users’ passwords by monitoring

SSH sessions. We propose countermeasures to prevent

these attacks in Section 7, and conclude in Section 8.

2 Eavesdropping SSH

The Secure Shell SSH [SSL01, YKS
✂

00b] is used to en-

crypt the communication link between a local host and a

remote machine. Despite the use of strong cryptographic

algorithms, SSH still leaks information in two ways:

✄ First, the transmitted packets are padded only to an

eight-byte boundary (if a block cipher is in use),

which leaks the approximate size of the original

data.

✄ Second, in interactive mode, every individual

keystroke that a user types is sent to the remote

machine in a separate IP packet immediately after

the key is pressed (except for some meta keys such

Shift or Ctrl). Because the time it takes the op-

erating system to send out the packet after the key

press is in general negligible comparing to the inter-

keystroke timing (as we have verified), this also

enables an eavesdropper to learn the precise inter-

keystroke timings of users’ typing from the arrival

times of packets.

The first weakness poses some obvious security risks.

For example, when one logs into a remote site R in

SSH, all the characters of the initial login password

are batched up, padded to an eight-byte boundary if a

block cipher is in use, encrypted, and transmitted to R.

Due to the way padding is done, an eavesdropper can

learn one bit of information on the initial login pass-

word, namely, whether it is at least 7 characters long

or not. The second weakness can lead to some potential

anonymity risks since, as many researchers have found

previously, inter-keystroke timings can reveal the iden-

SSH

Server B

Client

Host A "s"

20

"u"

20

20 20

20

28

Return

"Password: "

20 20 20 20 20

"i" "a""J""u""l" Return

20

N

Prompt
time

time

Figure 1: The traffic signature associated with running SU in a SSH session. The numbers in the figure are the size

(in bytes) of the corresponding packet payloads.

tity of the user [GLPS80, UW85, LW88, LWU89, JG90,

BSH90, MR97, RLCM98, MRW99].

In this section, we show that several simple and practical

attacks exploiting these two weaknesses. In particular,

an attacker can identify which transmitted packets corre-

spond to keystrokes of sensitive data such as passwords

in a SSH session. Using this information, the attacker

can easily find out the exact length of users’ passwords

and even the precise inter-keystroke timings of the typed

passwords. Learning the exact length of users’ pass-

words allows eavesdroppers to target users with short

passwords. Learning the inter-keystroke timing infor-

mation of the typed passwords allows eavesdroppers to

infer the content of the passwords as we will show in

Section 3 and 4.

Traffic Signature Attack We can often exploit prop-

erties of applications to identify which packets corre-

spond to the typing of a password. Consider, for in-

stance, the SU command. Assume the user has already

established a SSH connection from local host A to re-

mote host B. When the user types the command SU
in the established SSH connection A ☎ B, we obtain a

peculiar traffic signature as shown in Figure 1. If the

SSH session uses SSH 1.x2 and a block cipher such

as DES for the encryption [NBS77, NIS99], as is com-

mon, then the local host A sends three 20-byte pack-

ets: “s”, “u”, “Return”. The remote host B echoes the

“s” and “u” in two 20-byte packets and sends a 28-byte

packet for the “Password: ” prompt. Then A sends 20-

byte packets, one for each of the password characters,

without receiving any echo data packets. B then sends

some final packets containing the root prompt if SU suc-

ceeds, otherwise some failure messages. Thus by check-

ing the traffic against this “su” signature, the attacker

can identify when the user issues the SU command and

2The attack also works when ssh 2.x is in use. Only the packet

sizes are slightly different.

hence learn which packets correspond to the password

keystrokes. Note that similar techniques can be used to

identify when users type passwords to authenticate to

other applications such as PGP [Zim95] in a SSH ses-

sion.

Multi-User Attack Even more powerful attacks exist

when the attacker also has an account on the remote

machine where the user is logging into through SSH.

For example, the process status command ps can list

all the processes running on a system. This allows the

attacker to observe each command that any user is run-

ning. Again, if the user is running any command that re-

quires a password input (such as su or pgp) the attacker

can identify the packets corresponding to the password

keystrokes.

Nested SSH Attack Assume the user has already es-

tablished a SSH session between the local host A and

remote host B. Then the user wants to open another SSH
session from B to another remote host C as shown in Fig-

ure 2. In this case, the user’s password for C is transmit-

ted, one keystroke at a time, across the SSH-encrypted

link A ☎ B from the user to B, even though the SSH
client on machine B patiently waits for all characters of

the password before it sends them all in one packet to

host C for authentication (as designed in the SSH proto-

col [YKS
✆

00a]). It is easy to identify such a nested SSH
connection using techniques developed by Zhang and

Paxson [ZP00b, ZP00a]. Hence in this case the eaves-

dropper can easily identify the packets corresponding to

the user’s password on link A ☎ B, and from this learn

the length and the inter-keystroke timings of the users’

password on host C.

Adversary

CA

B

eavesdrop

pa
ss

w
or

d SSH2

SSH1

passw
ord

Figure 2: The nested SSH attack.

3 Statistical Analysis of Inter-keystroke

Timings

As a first study towards inferring key sequences from

timing information, we develop techniques for statistical

analysis of the inter-keystroke timings. In this section,

we first describe how we collect training data and show

some simple timing characteristics of character pairs.

We then show how we model the inter-keystroke timing

of a given character pair as a Gaussian distribution. We

then describe how to estimate quantitatively the amount

of information about the character pair that one can learn

using the inter-keystroke timing information. Denote the

set of character pairs of interest as Q, and let
✝
Q

✝
denote

the cardinality of the set Q.

3.1 Data Collection

The two keystrokes of a pair of characters ✞ ka ✟ kb ✠ gen-

erates four events: the press of ka, the release of ka, the

press of kb, and the release of kb. However, because

only key presses (not key releases) trigger packet trans-

mission, an eavesdropper can only learn timing informa-

tion about the key-press events. Since the main focus of

our study is in the scenario where an adversary learns

timing information on keystrokes by simply monitoring

the network, we focus only on key-press events. The

time difference between two key presses is called the la-

tency between the two keystrokes. We also use the term

inter-keystroke timing to refer to the latency between two

keystrokes.

In order to characterize how much information is leaked

by inter-keystroke timings, we have performed a number

of empirical tests to measure the typing patterns of real

users. Because passwords are probably the most sen-

sitive data that a user will ever type, we focus only on

information revealed about passwords (rather than other

forms of interactive traffic).

Our focus on passwords creates many challenges. Pass-

words are entered very differently from other text: pass-

words are typed frequently enough that, for many users,

the keystroke pattern is memorized and often typed al-

most without conscious thought. Furthermore, well-

chosen passwords should be random and have little or

no structure (for instance, they should not be based on

dictionary words). As a consequence, naive measure-

ments of keystroke timings will not be representative of

how users type passwords unless great care is taken in

the design of the experimental methodology.

Our experimental methodology is carefully designed to

address these issues. Due to security and privacy consid-

erations, we chose not to gather data on real passwords;

therefore, we have chosen a data collection procedure

intended to mimic how users type real passwords. A

conservative method is to pick a random password for

the user (where each character of the password is cho-

sen uniformly at random from a set of 10 letter keys and

5 number keys, independently of all other characters in

the password), have the user practice typing this pass-

word many times without collecting any measurements,

and then measure inter-keystroke timing information on

this password once the user has had a chance to practice

it at length.

However, we found that, when the goal is to try to

identify potentially relevant timing properties (rather

than verify conjectured properties), this conservative ap-

proach is inefficient. In particular, users typically type

passwords in groups of 3–4 characters, with fairly long

pauses between each group. This distorts the digraph

statistics for the pair of characters that spans the group

boundary and artificially inflates the variance of our

measurements. As a result we would need to collect

a great deal of data for many random passwords be-

fore this effect would average out. In addition, it takes

quite a while for users to become familiar with long ran-

dom passwords. This makes the conservative approach a

rather blunt tool for understanding inter-keystroke statis-

tics.

Fortunately, there is a less costly way to gather inter-

keystroke timing statistics: we gather training data on

each pair of characters ✞ ka ✟ kb ✠ as typed in isolation. We

pick a character pair and ask the user to type this pair 30–

40 times, returning to the home row each time between

repetitions. For each user, we repeat this for many pos-

sible pairs (142 pairs, in our experiments) and we gather

data on inter-keystroke timings for each such pair. We

collected the latency of each character pair measurement

and computed the mean value and the standard devia-

tion. In our experience, this gives better results.

0 100 200 300
0

5

10

15

Inter−keystroke Timing for v−o (milliseconds)

F
re

q
u

e
n

c
y

0 100 200 300
0

5

10

15

Inter−keystroke Timing for v−b (milliseconds)

F
re

q
u

e
n

c
y

Figure 3: The distribution of inter-keystroke timings for two sample character pairs.

As an example, Figure 3 shows the latency histogram

of two sample character pairs. The left model corre-

sponds to the latency between the pair ✞ v, o ✠ , and the

right model corresponds to ✞ v, b ✠ . We can see that the

latency between ✞ v, o ✠ is clearly shorter than the la-

tency between ✞ v, b ✠ , and the latency distributions of

these two sample character pairs are almost entirely non-

overlapping.

The optimized data collection approach gives us a more

efficient way to study fine-grained details of inter-

keystroke statistics without requiring collecting an enor-

mous amount of data. We used data collected in this way

to quickly identify plausible conjectures, develop poten-

tial attacks, and to train our attack models. As far as

we are aware, collecting data on keystroke pairs in iso-

lation does not seem to bias the data in any obvious way.

Nonetheless, we also validate all our results using the

conservative measurement method (see Section 5).

3.2 Simple Timing Characteristics

Next, we divide the test character pairs into five cate-

gories, based on whether they are typed using the same

hand, the same finger, and whether they involve a num-

ber key:

✄ Two letter keys typed with alternating hands, i.e.,

one with left hand and one with right hand;

✄ Two characters containing one letter key and one

number key typed with alternating hands;

✄ Two letter keys, both typed with the same hand but

with two different fingers;

✄ Two letter keys typed with the same finger of the

same hand;

✄ Two characters containing one letter key and one

number key, both typed with the same hand.

Figure 4 shows the histogram of latency distribution of

character pairs for each category. We split the whole la-

tency range into six bins as shown in the x-axis. Within

each category, we put each character pair into the cor-

responding bin if its mean latency value is within the

range of the bin. Each bar in the histogram of a cate-

gory represents the ratio of the number of character pairs

in the associated bin over the total number of character

pairs in the category.3 We can see that all the character

pairs that are typed using two different hands take less

than 150 milliseconds, while pairs typed using the same

hand and particularly the same finger take substantially

longer. Character pairs that alternate between one letter

key and one number key, but are typed using the same

3Hence the sum of all bars within one category is 1.

< 100 100-150 150-200 200-250 250-300 > 300

Latency (milliseconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

io
 o

f
ch

ar
ac

te
r

p
ai

rs

Two letter keys, alternating hands

A letter and a number, alternating hands

Two letters, same hand, different fingers

Two letters, same finger

A letter and a number, same hand

Histogram of the latency of character pairs

Figure 4: Inter-keystroke timings for character pairs in five different categories. Note that some bars at some positions

disappear because the corresponding height is zero.

hand, take the longest time to type. This is simply be-

cause two hands offer a certain amount of parallelism,

while character pairs typed with one hand require a cer-

tain degree of sequential movements and hence tend to

take longer. This is especially obvious in the case of one

letter and one number pairs typed using one hand. They

in general require more hand movement and hence the

longest time.4

So, if the attacker observes a character pair typed with

latency more than 150 milliseconds, he can guess with

high probability of success that the character pair is not

typed using two different hands and hence can infer

about 1 bit of information about the content of the char-

acter pair. Because the 142 character pairs are formed

from randomly selected letter keys and number keys,

they seem likely to form a representative sample of the

whole keyboard. Hence this simple classification ex-

tends to the whole keyboard, and already indicates that

the inter-keystroke timing leaks substantial information

about what is typed.

The properties described above are unlikely to be ex-

haustive. For instance, earlier work on timing attacks

on multi-user machines suggested that inter-keystroke

timings may additionally reveal which characters in the

4Note that here we only consider users that use touch typing.

password are upper-case [Tro98].

3.3 Gaussian Modeling

From the plot of the latency distribution of a given char-

acter pair, such as the ones shown in Figure 3, we can see

that the latency between the two key strokes of a given

character pair forms a Gaussian-like unimodal distribu-

tion. Hence a natural assumption (which is confirmed

by our empirical observations) is that the probability of

the latency y between two keystrokes of a character pair

q ✡ Q, Pr ☛ y ✝ q☞ , forms a univariate Gaussian distribution✌ ✞ µq ✟ σq ✠ , meaning

Pr ☛ y ✝ q☞✎✍ 1✏
2πσq

e ✑
✒
y✓ µq ✔ 2

2σ2
q ✟

where µq is the mean value of the latency for character

pair q and σq is the standard deviation. Given a set of

training data ✕ ✞ qi ✟ yi ✠✗✖ 1 ✘ i ✘ N , where qi is the i-th charac-

ter pair and yi is the corresponding latency in the data

collection, we can derive the parameters ✕ ✞ µq ✟ σq ✠✗✖ q ✙ Q

based on maximum likelihood estimation, i.e., we com-

pute the mean and the standard deviation for each char-

acter pair.

Figure 5 shows the estimated Gaussian models of the la-

tencies of the 142 character pairs. Our empirical result

0 50 100 150 200 250 300 350 400
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Latency (millisecond)

P
ro

b
a
b
ili

ty

Figure 5: Estimated Gaussian distributions of all 142

character pairs collected from a user.

0 50 100 150 200 250 300
4

4.5

5

5.5

6

6.5

7

Latency (milliseconds)

E
n
tr

o
p
y
 (

b
it
s
)

(a) Entropy of character pairs given a latency obser-

vation

0 50 100 150 200 250 300
0.5

1

1.5

2

2.5

3

3.5

Latency (milliseconds)

In
fo

rm
a
ti
o
n
 G

a
in

 (
b
it
s
)

(b) Information gain induced by a latency observation

Figure 6: Entropy and information gain as a function of

the inter-keystroke latency.

shows that most of the latencies of the character pairs

lie between 50 and 250 milliseconds. The average of

the standard deviation of the 142 character pairs is about

30 milliseconds. The graph also indicates that the la-

tency distributions of the character pairs severely over-

lap, which means the inference of character pairs using

just latency information is a challenging task.

3.4 Information Gain Estimation

We would like to estimate quantitatively how much

information the latency information reveals about the

character pairs typed. This will be an upper bound

of how much information an attacker can extract from

the timing information using any particular method.

We estimate it by computing the information gain in-

duced by the latency information. If we select a char-

acter pair uniformly at random from the character-

pair space, and if the attacker does not get any addi-

tional information, the entropy of the probability dis-

tribution of character pairs to the attacker is H0 ☛ q☞✚✍✛ ∑q ✙ Q Pr ☛ q☞ log2 Pr ☛ q☞✜✍ log2

✝
Q
✝✣✢

If the attacker learns

the latency y0 between the two keystrokes of the char-

acter pair, the estimated entropy of the probability dis-

tribution of character pairs to the attacker is H1 ☛ q ✝ y ✍
y0 ☞✤✍ ✛ ∑q ✙ Q Pr ☛ q ✝ y0 ☞ log2 Pr ☛ q ✝ y0 ☞ ✟ where Pr ☛ q ✝ y0 ☞✥✍

Pr ✦ y0 ✧ q★✪✩ Pr ✦ q★
∑q✫ Q Pr ✦ y0 ✧ q★✪✩ Pr ✦ q★ ✟ and Pr ☛ y0

✝
q☞ is computed using the

Gaussian distribution obtained in the parameter estima-

tion phase in the previous subsection. The information

gain induced by the observation of latency y0 is the dif-

ference between the two entropies, H0 ☛ q☞ ✛ H1 ☛ q ✝ y ✍ y0 ☞ ✢
Using the parameter estimation of the 142 character

pairs obtained in the previous section, we can compute

H1 ☛ q ✝ y ✍ y0 ☞ and H0 ☛ q☞ ✛ H1 ☛ q ✝ y ✍ y0 ☞ as shown in Fig-

ure 6(a) and Figure 6(b).

The estimated information gain, also called mutual in-

formation, is I ☛ q;y☞✬✍ H0 ☛ q☞ ✛ H1 ☛ q ✝ y☞✭✍ H0 ☛ q☞ ✛ Pr ☛ y0 ☞✯✮
H1 ☛ q ✝ y ✍ y0 ☞ dy0 ✟ where Pr ☛ y0 ☞✰✍ ∑q ✙ Q Pr ☛ y0

✝
q☞ Pr ☛ q☞ ✢

From the numerical computation we obtain I ☛ q;y☞✱✍ 1
✢
2.

This means the estimated information gain available

from latency information is about 1
✢
2 bits per charac-

ter pair when the character pair has uniform distribution.

Hence the attacker could potentially extract 1
✢
2 bits of

information per character pair by using the latency in-

formation in this case. Because the character pairs in

our experiments are selected uniformly at random from

all letter and number keys, we expect that they will be

representative of the whole keyboard. Intuitively, Fig-

ure 5 is a sufficiently-large random sampling of a much

denser graph containing the latency distributions of all

possible character pairs. More detailed analysis shows

that the estimated information gain computed using 142

sample character pairs is a good estimate of the infor-

mation gain when the character-pair space includes all

letter and number character pairs. This estimate is com-

parable to the back-of-the-envelope calculation in Sec-

tion 3.2 based on our classification into five categories

of keystroke pairs.

Because the entropy of written English is so low (about

0.6–1.3 bits per character [Sha50]), the 1
✢
2-bit informa-

tion gain per character pair leaked through the latency in-

formation seems to be significant. 5 For example, we can

expect that users’ PGP passphrases will often contain

only 1 bit of entropy per character. Hence the latency in-

formation may reveal significant information about PGP

passphrases.

The information gain curve in Figure 6(b) shows a con-

vex shape. Note that latencies greater than 175 millisec-

onds are relatively rare; however, whenever we see such

a long time between keystrokes, we learn a lot of in-

formation about what was typed, because there are not

many possibilities that would lead to such a large la-

tency. The character pairs that take longer than 175

milliseconds to type are mostly pairs containing number

keys or pairs typed with one finger. Hence this analysis

suggests that passwords containing number keys or char-

acter pairs that are typed with one finger are particularly

vulnerable to such timing attacks.

Another interesting observation is that the mean of the

standard deviations of the character pairs is only about

30 milliseconds as shown in our experiments, while the

standard deviation of round-trip time on the Internet in

many cases is less than 10 milliseconds [Bel93]. There-

fore even when the attacker is far from the SSH client

host, he can still get sufficiently-precise inter-keystroke

timing information. This makes the timing attack even

more severe.

4 Inferring Character Sequences From

Inter-Keystroke Timing Information

In this section, we describe how we can infer charac-

ter sequences using the latency information. In partic-

ular, we model the relationship of latencies and charac-

ter sequences as a Hidden Markov Model [RN95]. We

extend the standard Viterbi algorithm to an n-Viterbi al-

gorithm that outputs the n most likely candidate char-

acter sequences. We further estimate how many bits of

information about the real character sequence this algo-

5Note that the 1 ✲ 2-bit information gain is estimated for the case of

randomly selected passwords where the sequence of characters have

a uniform distribution. However, this is not the case for texts. More

careful calculation is needed to estimate the information gain in the

case of natual text.

rithm extracts from the latency information and show it

is nearly optimal.

4.1 Hidden Markov Model

In general, a Markov Model is a way of describing a

finite-state stochastic process with the property that the

probability of transitioning from the current state to an-

other state depends only on the current state, not on any

prior state of the process [RN95]. In a Hidden Markov

Model (HMM), the current state of the process cannot be

directly observed. Instead, some outputs from the state

are observed, and the probability distribution of possible

outputs given the state is dependent only on the state.

Using a HMM, one can infer information about the prior

path the process has taken from the sequence of observed

outputs of the states, and efficient algorithms are known

for working with HMM’s. Because of this, HMM’s have

been widely used in areas such as speech recognition and

text modeling.

In our setting, we consider each character pair of inter-

est as a hidden (non-observable) state, and the latency

between the two keystrokes of the character pair as the

output observation from the character-pair state. Each

state corresponds to a pair of characters, so that the typ-

ing of a character sequence K0 ✟ ✢✳✢✗✢ ✟ KT , is a process that

goes through T states, q1 ✟ ✢✗✢✳✢ ✟ qT , where qt ✞ 1 ✴ t ✴ T ✠
represents the t-th character pair ✞ Kt ✑ 1 ✟ Kt ✠ typed. Let

yt ✞ 1 ✴ t ✴ T ✠ denote the observed latency of state qt .

Then we model the typing of a character sequence as a

HMM. This means we make two assumptions. First, the

probability of transition from the current state to another

state is only dependent on the current state, not on the

prior path of the process. If the character sequence is a

password chosen uniformly at random, this assumption

obviously holds. In the case of text, this assumption does

not hold strictly but experience in speech recognition

and text modeling shows that some extensions to HMM

still work well [RN95]. Second, the probability distri-

bution of the latency observation is only dependent on

the current character pair and not on any previous char-

acters in the sequence. This assumption might hold for

some cases and not for other cases where the typing of

previous characters changes the position of the hand and

influences the typing of later character pairs. However,

making this assumption makes our analysis and infer-

ence algorithm much simpler and still gives good results

as shown from the experiments. Hence, we use a HMM

to model the typing of character sequences as shown in

Figure 7.

As in the previous section, we assume the set of possi-

ble character pairs is Q, hence the set of possible states

in the HMM is Q. We assume that the probability of

y 1

q
1

t=1

y
2

q 2

t=2

y 3

q 3

t=3

y T

q T

t=T

✵✶✵✷✵✸✵✷✵✷✵

Figure 7: A representation of a trace of a HMM. Each vertical slice represents a time step. In each time slice, the

top node qt is a variable representing a character pair, and the bottom node yt is the observable variable denoting the

latency between the two keystrokes.

the latency y of a character pair q, Pr ☛ y ✝ q☞ (q ✡ Q), is a

Gaussian distribution
✌ ✞ µq ✟ σq ✠ , where the parameters✕ ✞ µq ✟ σq ✠✹✖ q ✙ Q are obtained using the maximum likeli-

hood estimation.

4.2 The n-Viterbi Algorithm for Character Se-
quence Inference

Given an observation ✺y ✍ ✞ y1 ✟ y2 ✟ ✢✳✢✗✢ ✟ yT ✠ , a sequence of

latencies of some character sequence from a user’s typ-

ing, we would like to infer the real character sequence

that the user has typed. For each possible character se-

quence ✺q ✍ ✞ q1 ✟ q2 ✟ ✢✗✢✳✢ ✟ qT ✠ , we can compute how likely

the character sequence is given the observation, namely

Pr ☛ ✺q ✝ ✺y☞ ✢ The probability Pr ☛ ✺q ✝ ✺y☞ essentially gives a rank-

ing for the candidate character sequence ✺q: the higher

Pr ☛ ✺q ✝ ✺y☞ is, the more likely ✺q is the real character se-

quence. We use ✺q ✻ to denote the most-likely sequence,

which is the sequence that corresponds to the highest

value of Pr ☛✼✺q ✝ ✺y☞ for all possible ✺q with regard to a given✺y.

The Viterbi algorithm is widely used in solving the most

likely sequence of states given a sequence of observation

in HMM problems [RN95]. An naive way of computing✺q ✻ would compute Pr ☛✼✺q ✝ ✺y☞ for all possible ✺q, and hence

requires O ✞ ✝ Q ✝
T ✠ running time. The Viterbi algorithm

uses dynamic programming for a running time complex-

ity O ✞ ✝ Q ✝
2T ✠ .

In our setting, because the latency distributions of dif-

ferent character pairs highly overlap, the probability that

the most likely sequence is the right sequence will be

very low. Hence, instead of just computing the most

likely sequence, we need to compute the n most likely

sequences and hope the real sequence will be in the n

most likely sequences with high probability for n greater

than a certain threshold. Hence we extend the standard

Viterbi algorithm to n-Viterbi algorithm to output the

n most-likely sequences with running time complexity

O ✞ n ✝ Q ✝
2T ✠ . We give a detailed description of the n-

Viterbi algorithm in Appendix A.

4.3 How to Estimate the Effectiveness of the n-
Viterbi Algorithm

We would like to estimate how big the threshold n has to

be such that the real character sequence will be among

the n most-likely sequences with sufficiently high prob-

ability. In an experiment if the real character sequence

appears in the n most-likely sequences, we say the exper-

iment is a success with regard to the threshold n, other-

wise, a failure. The probability of such defined success

is a function of n. It is easy to see that the function is

monotonically increasing with regard to n. If for a small

n, the success probability is already high, this means the

algorithm is very effective because it filters out most of

the sequences and hence one only needs to try a small

set of candidates before finding the real sequence. On

the other hand, if we need a high threshold of n to get a

sufficiently high success probability, then the algorithm

is less effective: one would need to try many more can-

didates before finding the real sequence. Note that from

Section 3.4 we see that the timing information reveals

about 1
✢
2 bits of information per character pair. For

the case of a random password of length T ✽ 1, which

forms T consecutive character pairs, the latency infor-

mation could reveal approximately 1
✢
2T bits of infor-

mation about the real password sequence. Hence this is

an upper bound on the effectiveness of the algorithm to

infer character sequences using latency information. We

would like to estimate how close our algorithm is com-

pared to the upper bound.

First, we look at the simple case when T ✍ 1. Given a

latency observation y of a character pair q, we compute

the probability Pr ☛ q✾ ✝ y☞ ✟ q✾✿✡ Q ✟ and select the n most-

likely character pairs Φ ✍❀✕ q j1
✟ ✢✳✢✳✢ ✟ q jn ✖ . We would like

to compute the probability that the real character pair q

is in the set Φ over all possible values of y. To simplify

0 20 40 60 80 100 120 140
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold n

P
ro

b
a
b
ili

ty
 o

f
S

u
c
c
e
s
s

Probability of Success vs. Threshold n

s.d. = 25
s.d. = 30
s.d. =35

Figure 8: The probability that the n-Viterbi algorithm

outputs the correct password before the first n guesses,

graphed as a function of n.

the numerical computation, we approximate the result

by assuming that all the Gaussian distributions have the

same standard deviation σ . This is a good approxima-

tion of the real experiment: as we see in the Figure 5,

most keypairs have a standard deviation between 25–35

milliseconds.

Figure 8 graphs the probability that the real character

pair appears within the n most-likely character pairs

against the threshold n. The top curve is when σ ✍ 25,

the middle curve is when σ ✍ 30, and the bottom curve

is when σ ✍ 35
✢

Using the middle curve, we get that

when n ✍ 70 the probability of success is 90%, mean-

ing that with 90% probability, the real character pair

appears in the 70 most-likely sequences output by the

n-Viterbi algorithm. Let’s denote such a threshold cor-

responding to the 90% success probability as n ✻ . Thus

log2 ✞ ✝ Q ✝❂❁
n ✻ ✠ ✍ 1 is the approximate number of bits of

information per character pair the algorithm extracts.

Note that from the previous section we see that the la-

tency information reveals about 1
✢
2 bits of information

per character pair. Hence our n-Viterbi algorithm is near-

optimal.

In the case of uniformly randomly chosen passwords of

length T ✽ 1, the number of bits of information the algo-

rithm can extract is approximately T ✮ log2 ✞ ✝ Q ✝❂❁
n ✻ ✠❄❃ T ,

which is close to the optimal value 1
✢
2T bits.

5 Building Herbivore and Timing Attacks

on SSH

To evaluate the effectiveness of our timing attacks to

SSH, we build an attacker program that we call Herbi-

vore. In this section, we describe the experiment results

CA

B

eavesdrop

pa
ss

w
or

d SSH2passw
ord

SSH1

Herbivore

HMM

nViterbi

Candidate Passwords

Figure 9: The Herbivore architecture.

of using Herbivore to learn users’ passwords.

5.1 Herbivore Preying for Passwords

We built an attacker engine Herbivore as shown in Fig-

ure 9. It monitors the network and collects the arrival

times of packets. Using the technique described in Sec-

tion 2, Herbivore infers which packets correspond to the

user’s SSH passwords when the user opens an SSH ses-

sion to another host within an established SSH connec-

tion. Herbivore then measures the inter-arrival times be-

tween packets containing the password characters and

uses our n-Viterbi algorithm to generate a list of candi-

date passwords. The candidate passwords are sorted in

decreasing order of the probability Pr ☛✼✺q ✝
y☞ , and in our

experiments we record the position of the real password

in the candidate list. We report the position of the pass-

word as a percentage, so with m possible passwords in

total, if the real password appears at position u in the or-

dered candidate list, we say the real password appears at

the top 100u
m

%. This gives a natural way to quantify the

effectiveness of our approach.

5.2 Optimization for Long Character Se-
quences

The complexity of the n-Viterbi algorithm is linear in the

number n of candidates it outputs. As the length of the

password grows, the space of possible passwords grows

exponentially. If the n-Viterbi algorithm can only rule

out a constant fraction of the password space, n would

also grow exponentially as the password length grows.

Hence the algorithm might be inefficient when the pass-

word is long. In particular, we observed that memory

usage can grow substantially for longer passwords.

Also, and more importantly, we observed in the experi-

ments that users tend to type long passwords in segments

of 3 to 5 letters and pause between the segments. If we

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

Test Number

R
a
n
k
in

g
 P

e
rc

e
n
ta

g
e
 o

f
th

e
 c

o
rr

e
c
t
a
n
s
w

e
r

in
 o

u
tp

u
t
lis

t
(%

)

Figure 10: The percentage of the password space tried

by Herbivore in 10 tests before finding the right pass-

word.

use the timing between the segments for the prediction,

it might bias our predictions since typically such pauses

are noticeably longer than most other inter-keystroke la-

tencies. Fortunately, this large difference means that

pauses between groups of password characters can be

clearly identified before we apply the n-Viterbi algo-

rithm.

Hence to reduce the bias and to reduce the memory re-

quirements of the algorithm, we break the timing infor-

mation of the password into segments containing 3 or 4

latency intervals. We use each segment to form a HMM

and then at the end combine the result from different

segments to form the candidate password ordering.

5.3 Experimental Results for Password Infer-
ence for a Single User

We measure the effectiveness of our n-Viterbi algorithm

at cracking passwords through empirical measurements.

In our experiment, we use training data compiled from

isolated keypairs to train the HMM. Then, we pick a ran-

dom password for the user. We have the user use this

password to authenticate to another SSH session within

an established SSH session as shown in Figure 9, and

we apply our n-Viterbi algorithm to simulate an attack

on this password. Note that we have the test user type

the password many times before the test to ensure famil-

iarity with the password, and we try to deduce the user’s

password using training data from the same user.

All passwords are selected uniformly at random from the

character space as in the experiment in Section 3, so they

contain no structure. Recovering such passwords is the

hardest case for the attacker, so if timing analysis can re-

cover information in such a scenario, we can expect that

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

E
la

p
s
e
d
 T

im
e
 (

m
ill

is
e
c
o
n
d
)

Key Pair

Figure 11: A comparison of two users’ typing patterns.

The “diamond” symbols show the mean values of the

latencies of one user, with an error-bar indicating one

standard deviation. The “x” symbol indicates the mean

values of the latencies of another user.

timing analysis will be an even greater threat in settings

where passwords are chosen less carefully.

We performed tests for 10 different passwords, each of

length 8. Figure 10 shows the percentage of the positions

of the real password in the ordered candidate lists output

by the n-Viterbi algorithm. For example, 0
✢
3% means

that the real password appeared at the top 0
✢
3% position

in the output candidate list. These experiments indicate

that on average the real password is located within the

top 2
✢
7% of the candidate ranking list. The median po-

sition is about 1%, so about half the time the password

will be in the top 1% of the list of candidates produced

by our n-Viterbi algorithm. Therefore, in order to crack

the password, Herbivore only needs to test 1
❁
50 times as

many passwords as brute-force search, on average.

The 50 ❅ reduction in workfactor compared to exhaus-

tive search corresponds to a total of 5
✢
7 bits of infor-

mation learned per password using the latency informa-

tion. This is close to the information gain analysis in

Sections 3 and 4, which predicted a gain of about 1 bit

per keystroke pair: recall that the passwords in this test

are of length 8, so each password contains 7 keystroke

pairs. We attribute the difference to minor variation be-

tween the distributions of inter-keystroke timings in ran-

dom passwords and the distribution of timings for char-

acter pairs typed in isolation.

For ease of testing, our experiments were on passwords

with a reduced set of possible characters. However, we

can expect these results to carry over to passwords cho-

sen from the full set of possible characters. Assuming

that the information gain available from inter-keystroke

timing information is about 1 bit per character pair even

Training Test Test Cases

Set Set Password 1 Password 2 Password 3 Password 4 Password 5

User 1 User 1 15
✢
6% 0

✢
7% 2

✢
0% 1

✢
3% 1

✢
6%

User 1 User 2 62
✢
3% 15

✢
2% 7

✢
0% 14

✢
8% 0

✢
3%

User 1 User 3 6
✢
4% N/A 1

✢
8% 3

✢
1% 4

✢
2%

User 1 User 4 1
✢
9% 31

✢
4% 1

✢
1% 0

✢
1% 28

✢
8%

User 2 User 1 4
✢
9% 1

✢
3% 1

✢
6% 12

✢
3% 3

✢
1%

User 2 User 2 30
✢
8% 15

✢
0% 2

✢
8% 3

✢
7% 2

✢
9%

User 2 User 3 4
✢
7% N/A 5

✢
3% 6

✢
7% 38

✢
4%

User 2 User 4 0
✢
7% 16

✢
8% 3

✢
9% 0

✢
6% 5

✢
4%

Table 1: Success rates for password inference with multiple users. The numbers are the percentage of the search

space the attacker has to search before he finds the right password.

when we extend to the whole keyboard, we expect to

see this 50 times reduction in workfactor for passwords

of length 7–8 even when the passwords are chosen ran-

domly from all letter and number keys. This 50 ❅ reduc-

tion can make password cracking more practical. For

example, for a password containing randomly-selected

lower-case letter keys and number keys, without timing

information, the attacker would need to try 368
❁
2 candi-

date passwords on average before he finds the right one.

Benchmarks indicate that a 840 MHz Pentium III can

check about 250 ✟ 000 candidate passwords per second

in a off-line dictionary attack. Thus, exhaustive search

would take about 65 PC-days to crack a password com-

posed of randomly-selected lower-case letter keys and

number keys. If the attacker uses the timing informa-

tion, the computation can be done in 1
✢
3 days, which

makes the crack 50 ❅ more practical.

5.4 Experimental Results for Password Infer-
ence for Multiple Users

One potential weakness in our simulations is that real-

world attackers might not be able to get as much training

data from the victim for the statistical analysis as we had

available in our experiments. However, we argue next

that this is unlikely to pose an effective defense against

timing attacks: there are other ways that attackers can

obtain the training data required for the attack.

One simple observation is that the attacker can easily get

his own typing statistics, or the typing statistics of a co-

conspirator. Hence it is important to evaluate how well

the password inference techniques perform when using

one person’s typing statistics to infer passwords typed

by another person.

In this experiment, we collected the typing statistics of

two users, User 1 and User 2. An interesting result is

that 75% of the character pairs take about the same la-

tency to type for both two users: in other words, the dif-

ference between the average latencies of the two users

for such character pairs is smaller than one standard de-

viation. Similarly, the simple timing characteristics re-

ported in Section 3.2—e.g., keypairs typed with alter-

nate pairs tend to have much lower inter-keystroke la-

tency than keypairs typed with the same hand—were

observed to be essentially user-independent. This sug-

gests that typing statistics have a large component that is

common across a broad user population and which thus

can be exploited by attackers even in the absence of any

training data from the victim.

To test this hypothesis further, we had four users (includ-

ing User 1 and 2, from our previous experiments) type

the same set of five randomly-selected passwords. Pass-

words 1 and 2 have length 8. Passwords 3 and 4 have

length 7, and password 5 has length 6. Herbivore then

runs the n-Viterbi algorithm using the typing statistics

from User 1 and 2 to infer passwords typed by the four

test users separately. Table 1 shows the percentage posi-

tion of the real passwords occurred in the output candi-

date ranking list, which is the percentage of the password

space the attacker has to search before he finds the right

password. User 3 did not type Password 2 so the entry is

not available.

This experiment shows several interesting results:

✄ Unsurprisingly, inferring a user’s password can in

general be done somewhat more effectively if one

uses training data from the same user rather than

training data from other users.

✄ The distance between the typing statistics of two

users can vary significantly according to how one

chooses the pair of users. A user Ua’s typing pat-

tern might be more similar to user Ub’s than to user

Uc’s. Thus it can give better results to use Ub’s

training data than Uc’s training data to infer pass-

words typed by Ua. In this experiment, it shows

that in general using User 1’s training data gives a

better result to infer passwords typed by User 3 than

using User 2’s training data. And User 2’s training

data gives a better inference for passwords typed by

User 4 than User 1’s training data.

✄ Most importantly, this experiment shows that train-

ing data from one user can be successfully applied

to infer passwords typed by another user. Hence the

attack can be effective even when the attacker does

not have typing statistics from the victim.

5.5 Extensions

We expect that Herbivore could also be used to infer in-

formation about text or commands that users type. The

entropy of written English is very low (about 0.6–1.3

bits per character [Sha50]) in comparison to the amount

of information leaked by inter-keystroke timings (about

1 bit of information per key pair; see Section 3). How-

ever, mounting such an attack would appear to require

better models of written text [RN95]. In any case, we

have not studied such a scenario in our experiments, and

we leave this for future work.

6 Related Work

Timing analysis has previously been used by Kocher

to attack cryptosystems [Koc95]. Trostle exploited a

similar idea, showing how a malicious user on a multi-

user workstation can gain information about other users’

passwords using CPU timings [Tro98]. We expect our

Hidden Markov Model techniques might find applica-

tions in Trostle’s threat model as well.

Most recently, other researchers have independently

pointed out the possibility of timing attacks on SSH
[DS01]. Some of their observations reveal additional

weaknesses in SSH: For instance, they noted that the

SSH 1.x protocol reveals the exact length of pass-

words, because ciphertexts contain a length field sent

in the clear (SSH 2 does not have this problem); they

discussed how to deal with the presence of backspace

characters; and, they initiated an investigation of the im-

pact of timing attacks on other session data (such as shell

commands typed in the SSH session).

7 Countermeasures

Although SSH provides an encrypted and authenticated

link between the local host and the remote machine,

an eavesdropper can still learn information about typed

keystrokes due to two weaknesses of SSH. First, every

individual keystroke that a user types is sent to the re-

mote machine in an individual IP packet (except for meta

keys such as Shift and Ctrl); second, as soon as

command output is available on the remote machine, it

is sent to the local host in one or multiple IP packets,

leaking information on the approximate size of the out-

put. We have shown in this paper how these seemingly

minor weaknesses lead to severe real-world attacks.

Note that in our traffic signature attack, the attacker can

tell that the user is typing passwords because there are

no echo packets. So one way to fix this problem is that

when the server detects that the echo mode is turned off,

the server can return dummy packets that will be ignored

by the client when it receives keystroke packets from the

client. This fix can reduce the effectiveness of the traffic

signature attack but could fail in other attacks such as our

nested SSH attack where the attacker can guess when the

user is typing his password by simply monitoring the

network connections. This fix does not prevent inter-

keystroke timing information, though.

To prevent the attacks, we need to prevent the leakage of

the timing information of the keystrokes. One naive ap-

proach might be to modify SSH so that upon receiving a

keystroke with latency less than η milliseconds from the

previous keystroke, the program will delay the packet by

a random amount of up to η milliseconds. Because our

experiment indicates that the spectrum of the latency be-

tween two keystrokes of continuous typing is between

0–500 milliseconds, we could set η ✍ 500 for example,

and such a random delay would randomize the timing

information of the keystrokes. Such a random delay im-

poses an overhead of about 250 milliseconds on average.

Unfortunately, if the attacker can monitor the same user

login many times and compute the average of the laten-

cies of the password sequences, he can reduce the effec-

tiveness of the randomized noise. For example, if the

attacker can get the timing information of a user’s SSH
authentication for 50 times, the noise contributed by the

random delay is only about 20–40 milliseconds. So we

should not use this method.

A better way to prevent leakage of inter-keystroke tim-

ing information is to send traffic at a constant rate of

λ packets per second when the link is active. Choos-

ing λ presents a tradeoff between usability and over-

head: Increasing λ reduces the dummy traffic but cause

longer latency for the user. Assume, for example, that

we set λ ✍ 50 milliseconds. Since the latency between

two keystrokes is usually greater than 50 milliseconds

and the network delay is already at least in the tens

of milliseconds, this may be a reasonable tradeoff be-

tween communication overhead and additional delay. In

such a scenario, the SSH client would always send a

data packet every 50 milliseconds. Assuming 64 byte

packets (40 bytes for IP and TCP headers, and 24 bytes

for SSH data), the communication overhead is 1280

bytes/second, which can even fit in low-bandwidth con-

nections, such as modem connections. If no real data

needs to be sent, the client will send dummy traffic

which the remote machine ignores.6 If the user types

multiple keys in a single time period, the keystrokes are

buffered and sent together in the next scheduled packet.

While this method prevents the eavesdropper from learn-

ing timing information about keystrokes typed at the

client side, it does not prevent information leakage from

the size of response packets from the remote machine.

Hence the server side would also need to send response

traffic at a constant packet rate similar to the client side.

8 Conclusion

In this paper, we identified several serious security risks

in SSH due to two weaknesses of SSH: First, the trans-

mitted packets are padded only to an eight-byte bound-

ary (if a block cipher is in use), which reveals the ap-

proximate size of the original data. Second, in interac-

tive mode, every individual keystroke that a user types

is sent to the remote machine in a separate IP packet

immediately after the key is pressed (except for some

meta keys such Shift or Ctrl), which leaks the inter-

keystroke timings of users’ typing. We showed that these

two weaknesses reveal a surprising amount of informa-

tion on passwords and other text typed over SSH ses-

sions (about 1 bit of information per character pair in

the case of randomly chosen passwords). This suggests

that SSH is not as secure as commonly believed.

The lessons we learned and the techniques we developed

in this paper apply to a general class of protocols that

aim to provide secure channels between machines. We

show that timing information opens a new set of risks,

and we recommend that developers take care when de-

signing these types of protocols.

Acknowledgement

We would like to thank Adrian Perrig for his great help

through all phases of the project. We are indebted to

Kris Hildrum, Doantam Phan and Robert Johnson for

their help in the testing phase. We would also like to

thank Eric Xing for discussions on statistical techniques.

6If after a certain timeout (e.g., 10λ) there is still no real data to

send, the client can consider the current link is inactive and stop send-

ing dummy traffic until it has data to send again. The timeout period

provides a tradeoff between security and efficiency.

Finally we would like to thank Nikita Borisov, Mon-

ica Chew, Kris Hildrum, Robert Johnson, and Solar De-

signer for their helpful comments on the paper.

References

[Bel93] Steven M. Bellovin. Packets found on an internet.

Computer Communications Review, 23(3):26–

31, July 1993.

[BSH90] S. Bleha, C. Slivinksy, and B. Hussein.

Computer-access security systems using

keystrokes dynamics. In IEEE Transactions

on Pattern Analysis and Machine Intelligence

PAMI-12, volume 12, December 1990.

[CB94] William R. Cheswick and Steven M. Bellovin.

Firewalls and Internet Security – Repelling the

Wily Hacker. Professional Computing Series.

Addison-Wesley, 1994. ISBN 0-201-63357-4.

[DS01] Solar Designer and Dug Song. Passive analysis

of SSH (secure shell) traffic. Openwall advisory

OW-003, March 2001.

[GLPS80] R. Gaines, W. Lisowski, S. Press, and N. Shapiro.

Authentication by keystroke timing: Some pre-

liminary results. Technical Report Rand report

R-256-NSF, Rand corporation, 1980.

[GS96] Simson Garfinkel and Gene Spafford. Practical

UNIX & Internet Security. O’Reilly & Asso-

ciates, 1996.

[JG90] Rick Joyce and Gopal Gupta. Identity authenti-

cation based on keystroke latencies. Communi-

cations of the ACM, 33(2):168 – 176, February

1990.

[Koc95] P. Kocher. Cryptanalysis of Diffie-Hellman,

RSA, DSS, and other cryptosystems using tim-

ing attacks. In Advances in cryptology, CRYPTO

’95, pages 171–183. Springer-Verlag, 1995.

[LW88] G. Leggett and J. Williams. Verifying identity via

keystroke characteristics. International Journal

of Man-Machine Studies, 28(1):67–76, 1988.

[LWU89] G. Leggett, J. Williams, and D. Umphress. Veri-

fication of user identity via keystroke characteris-

tics. Human Factors in Management Information

Systems, 1989.

[MR97] Fabian Monrose and Avi Rubin. Authentication

via keystroke dynamics. In Proceedings of the

4th ACM Conference on Computer and Commu-

nications Security, pages 48–56, April 1997.

[MRW99] F. Monrose, M. K. Reiter, and S. Wetzel. Pass-

word hardening based on keystroke dynamics. In

Proceedings of the 6th ACM Conference on Com-

puter and Communications Security, November

1999.

[NBS77] National Bureau of Standards. Specification for

the Data Encryption Standard. Federal Informa-

tion Processing Standards Publication 46 (FIPS

PUB 46), January 1977.

[NIS99] U. S. National Institute of Standards and

Technology (NIST). Data Encryption Standard

(DES). Draft Federal Information Processing

Standards Publication 46-3 (FIPS PUB 46-3),

January 1999.

[RLCM98] J. A. Robinson, V. M. Liang, J. A. Chambers, and

C. L. MacKenzie. Computer user verification us-

ing login string keystroke dynamics. IEEE Trans-

actions on System, Man, and Cybernetics, 28(2),

1998.

[RN95] Stuart Russell and Peter Norvig. Artificial Intelli-

gence, A modern approach. Prentice Hall, 1995.

[Sha50] Claude E. Shannon. Prediction and Entropy of

Printed English. Bell Sys. Tech. J (3), 1950.

[SSL01] IETF Secure Shell Working Group (SECSH).

http://www.ietf.org/html.
charters/secsh-charter.html, 2001.

[Tro98] Jonathan Trostle. Timing attacks against trusted

path. In IEEE Symposium on Security and Pri-

vacy, 1998.

[UW85] D. Umphress and J. Williams. Identity veri-

fication through keyboard characteristics. In-

ternational Journal of Man-Machine Studies,

23(3):263–273, 1985.

[YKS❆ 00a] T. Ylönen, T. Kivinen, M. Saarinen, T. Rinne,

and S. Lehtinen. SSH authentication protocol.

Internet Draft, Internet Engineering Task Force,

May 2000. Work in progress.

[YKS❆ 00b] T. Ylönen, T. Kivinen, M. Saarinen, T. Rinne,

and S. Lehtinen. SSH protocol architecture. In-

ternet Draft, Internet Engineering Task Force,

May 2000. Work in progress.

[Ylö96] Tatu Ylönen. SSH – Secure Login Connections

over the Internet. In Sixth USENIX Security Sym-

posium, San Jose, California, July 1996.

[Zim95] Philip R. Zimmermann. The Official PGP User’s

Guide. MIT Press, Cambridge, MA, USA, 1995.

ISBN 0-262-74017-6.

[ZP00a] Yin Zhang and Vern Paxson. Detecting back-

doors. In Proc. of 9th USENIX Security Sympo-

sium, August 2000.

[ZP00b] Yin Zhang and Vern Paxson. Detecting stepping

stones. In Proc. of 9th USENIX Security Sympo-

sium, August 2000.

A The n-Viterbi Algorithm

The Viterbi algorithm is widely used in solving HMM

problems. Given an observation ❇ y1 ❈✳❉✳❉✳❉❊❈ yT ❋ of a HMM,

the Viterbi algorithm inductively computes the most

likely sequence ❇ q1 ❈ q2 ❈✳❉✗❉✳❉●❈ qt ❋ that generated the obser-

vation for each t ❍ 1 ❈ 2 ❈✳❉✗❉✳❉✳❈ T . Let S ❇ qt ❋ be the most

likely sequence at time t that ends with state qt , with

corresponding posterior probability V ❇ qt ❋ . The Viterbi

algorithm starts with

S ❇ q1 ❋ ❍ q1 and V ❇ q1 ❋ ❍ Pr ■ q1 ❏ y1 ❑▲❈
and computes

V ❇ qt ❋ ❍ max
qt ▼ 1

Pr ■ yt ❏ qt ❑ Pr ■ qt ❏ qt ◆ 1 ❑ V ❇ qt ◆ 1 ❋
Then we let qt ◆ 1 be the state that maximizes the above

expression and define S ❇ qt ❋ to be S ❇ qt ◆ 1 ❋ ❏ qt . The final

result of the Viterbi algorithm returns the most likely se-

quence of a given sequence of observations.

We extend the Viterbi algorithm to the n-Viterbi algo-

rithm, which returns the n most likely sequences given

a sequence of observations. Figure 12 shows a diagram

of the n-Viterbi algorithm. At each time slice t, we asso-

ciate a list with each possible state node that keeps track

of the n most likely sequences that lead to the state at

that time slice.

Let Sn ❇ qt ❋ denote the set of the n most likely sequences

ending with state qt at time t, with corresponding pos-

terior probabilities V n ❇ qt ❋ . At time t ❍ 1, we initialize

the n-Viterbi algorithm in the same way as the Viterbi

algorithm,

Sn ❇ q1 ❋ ❍P❖ q1 ◗ and V n ❇ q1 ❋ ❍ Pr ■ q1 ❏ y1 ❑▲❉
For time t, we let

V n ❇ qt ❋ ❍ nmax ❖ Pr ■ yt ❏ qt ❑ Pr ■ qt ❏ qt ◆ 1 ❑ v
: qt ◆ 1 ❘ Q ❈ v ❘ V n ❇ qt ◆ 1 ❋ ◗

where nmax denotes the set of the n largest values. We

let Sn ❇ qt ❋ be the set n highest-probability sequences cor-

responding to the choice of V n ❇ qt ❋ above.

Except for the first and the second step, at each time

slice, for each possible state, we need to go through

n ❙ ❏ Q ❏ possibilities and compute the n most likely se-

quences that lead to that state at that time slice. Hence

the complexity of n-Viterbi algorithm is O ❇ n ❏ Q ❏ 2T ❋ .

q
S

q 2 q 2

q
1

q
1

q
S

q
1

q 2

q
S

q
S

q 2

q
1

t=1 t=2 t=3 t=T

1

2

n

... ...

1

2

n

... ...

1

2

n

... ...

1

2

n

... ...

1

2

n

... ...

1

2

n

... ...

1

2

n

... ...

1

2

n

... ...

1

2

n

... ...

1

1

1

.
.
.

.
.
.

.
.
.

. .
 .

 .
 .

.

. .
 .

 .
 .

.

. .
 .

 .
 .

.

. .
 .

 .
 .

.

Figure 12: A pictorial representation of the n-Viterbi Algorithm. Each vertical slice represents a time step, and each

node represents a possible state at a particular time slice. The list associated with each node stores the n most likely

sequences ending with that state up to that time slice.

