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Abstract

The existence of false paths represents a significant

and computationally complex problem in the timing

analysis of combinational and sequential circuits. In this

paper we describe Propositional Satisfiability based

algorithms for timing analysis, which introduce signifi-

cant performance improvements over existing proce-

dures. In particular, we address the problems of circuit

delay computation and path delay validation, describing

algorithms and providing experimental results for both

problems.

1 Introduction

Recent years have seen an ever increasing need for
more accurate delay estimation methodologies in digital
circuits, in particular due to the decisive role that delay
estimation plays in determining limiting operating clock
frequencies. A key problem associated with circuit delay
estimation is the existence of false paths, which cause
straightforward and efficient topological path analysis
procedures to yield potentially conservative circuit delay
estimates. In contrast with topological delay estimation,
solving the false path problem is computationally hard,
being an NP-complete problem [7]. Research work on
false paths has been extensive and several promising
modeling and algorithmic approaches have been pro-
posed [1, 2, 4, 5, 7-9, 10, 12].

The purpose of this paper is to propose improve-
ments to Propositional Satisfiability based algorithms for
Timing Analysis. In particular we address the problems
of circuit delay computation and path delay validation.
We identify drawbacks in existing algorithms and pro-
pose solutions to these drawbacks. Comprehensive
experimental evaluation of the proposed algorithms indi-
cates significant performance gains over existing a pro-
cedures.

The paper is organized as follows. We start by intro-
ducing a few definitions related with combinational cir-
cuits and the false path problem and with the
propositional satisfiability problem. In Section 3 we
present the SAT-based model for path sensitization and
illustrate the application of the model on a simple exam-
ple. Afterwards, we describe algorithms for circuit delay
computation and path delay validation. Section 5
includes preliminary experimental results for both algo-
rithms. Finally, we conclude the paper with ideas and
directions for future research work on timing analysis of
combinational circuits.

2 Definitions

In the following we shall assume a combinational
circuit C, with PI primary inputs, PO primary outputs,
composed of simple gates (AND, NAND, OR, NOR,
NOT), where for a circuit node f, c(f) denotes the con-
trolling logic value of f and nc(f) denotes the non-con-
trolling logic value of f. For each circuit node f, FI(f)
denotes the fanin nodes of f and FO(f) denotes the fanout
nodes of f. The delay between the fanin node g of a cir-
cuit node f and f is denoted by d(g,f). A complete path
(or simply a path) in a circuit is a sequence of nodes con-
necting a primary input to a primary output. A partial
path denotes a connected sequence of nodes within a
path.

With respect to Propositional Satisfiability (SAT),
the following definitions apply. A conjunctive normal
form (CNF) formula  on n binary variables
is the conjunction (AND) of m clauses  each
of which is the disjunction (OR) of one or more literals,
where a literal is the occurrence of a variable or its com-
plement. A CNF formula  denotes a unique n-variable
Boolean function  and each of its clauses
corresponds to an implicate of f. The satisfiability prob-
lem is concerned with finding an assignment to the argu-
ments of  that makes the function equal to 1
or proving that the function is equal to the constant 0.

3 Path Sensitization Model

In this section we detail a SAT-based model that is
used for solving the problems of circuit delay computa-
tion and path delay validation.

The conditions under which signals propagate from
the primary inputs to the primary outputs in a combina-
tional circuit are generally referred to as path sensitiza-
tion conditions. Path sensitization conditions depend on
the model of operation assumed for the circuit, in partic-
ular the different forms of stimuli on the primary inputs,
and the waveform model assumed at each node in the
circuit. Even though detailed and precise models can be
considered, we shall restrict ourselves to floating mode
operation [4], under which all nodes are assumed to
undergo a single known transition, from an initial
unknown value to a final stable known value. Most crite-
ria defined under floating mode operation are conserva-
tive (e.g. viability [7] and the exact criterion under
floating mode operation [4]), thus overestimating the
actual circuit delay in some situations. Nevertheless, as
shown in [7], viability and floating mode sensitization
are robust, thus providing upper bounds on the circuit
delay under the bounded gate delay model (i.e. assuming
each gate delay is within some interval [0, dmax]) [7-9].
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A characterization of different sensitization criteria
for floating-mode operation for simple gates, under the
assumption of single path sensitization, is illustrated in
Figure 1 (which is adapted from [12]), and identifies log-
ical and temporal constraints on the side inputs to each
node x in a path. τ(x) denotes the propagation delay of a
signal transition to node x along a given path. The side
inputs values can either be controlling (c) or non-con-
trolling (nc). Symbol C indicates that a given circuit
node value is unknown and may experience changes in
time. A more detailed description of each criterion can
be found in [4, 7, 12].

The conditions associated with each path sensitiza-
tion criterion can easily be captured using Propositional
Satisfiability [8, 12]. Basically, the objective is to define
conditions under which a given circuit node can stabilize
at a given time instant.

Definition 1. We define the Boolean function
such that  if and only if circuit node f stabi-
lizes at a time greater than or equal to t when input vec-
tor c is applied to the primary inputs.

As a result, for a given circuit delay ∆ and consider-
ing the set of primary outputs PO, we have the condi-
tion,

(1)

for some input vector c. If there exists at least one path
with delay ∆ that is sensitizable under the path sensitiza-
tion model assumed, then condition (1) must be satisfi-
able. Moreover, different sensitization criteria can be
captured with different definitions of [12].

Given the interpretation of viability for simple gates
in Figure 1-b and considering a straightforward generali-
zation for multiple paths with the same path delay val-
ues, we have the following conditions for a given circuit
node f to stabilize at a time no earlier than a given delay t
for some input vector c:

1. At least one fanin node g of f, with delay
between g and f, must stabilize at a time no earlier than

. This condition permits the existence of
multiply sensitized partial paths.

2. Furthermore, either a fanin node assumes a non-
controlling value or it stabilizes at a time no earlier
than , thus being passive regarding
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Figure 1: A characterization of path sensitization criteria
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propagating a signal transition from g to f. Formally,
we have,

(2)

which is basically equivalent to the condition originally
proposed in [8]. Furthermore, observe that each function

 can be viewed as a node in a combinational cir-
cuit. Given T. Larrabee’s well-known mapping [6] from
circuits into CNF formulas, and from conditions (1) and
(2), it is straightforward to generate a CNF formula for
capturing the sensitization conditions for all paths with
delay no smaller than a given threshold delay ∆. It can
easily be concluded that the CNF formula size is polyno-
mial in the number of  functions considered [8,
12]. Finally, we note that other sensitization criteria can
also be captured using SAT [12].

As an example, let us consider the circuit in Figure
2. Assuming a unit-delay model (each gate has delay 1),
the longest topological path delay of the circuit is 3. In
order to decide whether 3 is the critical delay in the cir-
cuit, we create the associated instance of SAT specified
by conditions (1) and (2).

We start by noting that only two complete paths,
- - -  and - - -  have topological delay
equal to 3. Hence, by applying expression (2) to all the
nodes contained in these two paths we obtain . From
this formula the equivalent circuit, representing

, can be derived, as shown in Figure 3. For this
particular example it can easily be concluded that the
condition  is unsatisfiable, and so the critical
delay cannot be 3. Clearly this process is iterated until a
satisfiable set of conditions is found for a given circuit
delay value.

The critical path delay of a circuit, , is defined
as the largest delay value of a path in a circuit along
which a signal transition is able to propagate, under a
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Figure 2: An example circuit
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chosen path sensitization model, from the primary input
to the primary output, for a given primary input vector.
Basically the critical path delay corresponds to the larg-
est value of for which  is satisfiable.

4 Timing Analysis Algorithms

In this section we describe two algorithms used in
the timing analysis of digital circuits. We start with cir-
cuit delay computation, for the identification of the criti-
cal path delay, and then describe a path delay validation
algorithm, with potential application in early prototype
and design validation.

4.1  Circuit Delay Computation

The computation of the critical path delay is defined
as the circuit delay computation problem. Our proposed
algorithm for solving this problem is shown in Figure 4,
and it follows the ideas described in [12].

Starting from the longest topological path delay, and
for each target delay , a CNF formula  is
created, which includes the clauses created by the func-
tions FunctionalClauses and TimingClauses. These
two functions capture, respectively, the circuit’s function
and the path sensitization constraints. Procedure SAT-
Solve is then used to evaluate the satisfiability of the
CNF formula. If it is satisfiable then the critical delay of
the circuit has been identified, otherwise we proceed to
the next primary output path delay pair (which is deter-
mined by GetNextDelay, using one of the strategies sug-
gested in the next section).

4.2  Delay Stepping Strategies

A key procedure in the circuit delay computation
algorithm is the stepping of target path delays. In general
delay stepping plays a crucial role in the overall effi-
ciency of the algorithm, since it determines the number
of iterations of the algorithm to be executed.

The most simple delay stepping strategy is to
change the target delay by the least delay unit at each
iteration of the algorithm. Consequently,  is contin-
uously decreased by 1 delay fraction (that corresponds
to the smallest delay variation possible, given a pre-
defined precision). Although the computation of  is
immediate, this kind of strategy can result in an enor-
mous number of iterations, specially for circuits with a
large number of false paths, where the critical delay is
much smaller than the topological delay, or whenever
precise delay models are assumed.

Moreover, it is clear that not all path delays are pos-
sible on each primary output. Hence, instead of decreas-
ing  in a fractional step basis we can analyze the
circuit topology and get the next topological delay

∆
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CircuitDelayComputation ( )
{

( , ) = LongestTopologicalPathDelay( );
do {

 = FunctionalClauses( , );
 = TimingClauses( , , );

status = SATSolve( );
( , ) = GetNextDelay( , , );

} while (status==UNSAT and >0)
return ; // returned value is

}
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Figure 4: The circuit delay computation algorithm
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present at the specified primary output. This is called the
next delay stepping strategy, because the delay step is
determined by the next topological delay present at a
given primary output. For circuits with few path delays,
this strategy can yield a reduction in the number of itera-
tions, with a small increase in the time necessary to com-
pute . However, for circuits with a large number of
paths, where there exists an almost continuous delay dis-
tribution, this strategy rapidly becomes as inefficient has
the previous one, thus taking significantly more time to
compute .

To overcome the limitations of the two previous
strategies, we can use dynamic stepping. In this strategy
the delay step is dynamically adjusted, according to cer-
tain criteria, but is independent of the circuit topology
(no next delay computation is performed). For a given
primary output, we first perform timing analysis with

. If this instance is unsatisfiable, then we
round  to the nearest multiple of 0.5. Afterwards,
we iteratively decrease  by 0.5 until we find a satis-
fiable instance. Now  is a tight upper bound (i.e
error < 0.5) of the critical delay. Next, we decrease
by 0.1 until we get an unsatisfiable instance. The delay
of the last satisfiable instance is the critical delay with an
accuracy of one decimal place. To determine the second
decimal place we use the exact same procedure, but we
multiply the delay steps by 0.1. Hence, the delays we
obtain have a precision of two decimal places. Clearly,
this procedure can easily be extended to compute delays
with any required precision. Note that, in order to use
dynamic stepping with the algorithm shown in Figure 4,
we must associate search state data with each PO, that
will allow us to check each PO search state (direction of
the search and decimal places already identified). This
search state data is used and updated by GetNextDelay
and is also used in the stopping condition of the main
loop.

4.3  Path Delay Validation

Often the circuit designer is only interested in
checking whether signal delays at some output meet cer-
tain timing constraints, usually imposed by the system
where a design is integrated. The purpose of the path
delay validation problem is to check whether, for a spe-
cific circuit output, a given delay  is an upper
bound on the largest propagation delay to that output.

The procedure shown in Figure 5 evaluates whether
, given an output  of a circuit . If this

constraint is satisfied it returns True, otherwise it returns
False. If  then clearly , since

. When  we must perform path
sensitization for . If the result is satisfiable then

, otherwise .

5 Experimental Results

The algorithms described in the previous sections
were build on top of a SAT solver [11], and run on the
ISCAS’85 benchmark circuits [3]. These circuits were
mapped using the standard-cell library ECPD07 (ES2/
Atmel) and the parasitics of the interconnect were
extracted. The gate and interconnect delays (with a pre-
cision of two decimal places) were obtained combining
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the information provided by the extraction and the IC
databook, in a simple delay model, described in [12].
The results for circuit delay computation are shown in
Table 1, whereas results for path delay validation on a
single primary output are shown in Table 2.

As can be concluded from Table 1, the selection of
the delay stepping strategy significantly affects the over-
all efficiency of the algorithm. From the results it is clear
that dynamic stepping leads to significantly better run-
ning times.

For the path validation algorithm, and depending on
the required upper bound ( ) we need, at most, to
solve one SAT instance for each circuit, which will allow
us to check whether , even if .
In Table 2 we have results for this algorithm, using two
sample values for ,  and , respec-

PathDelayValidation ( , , )
{

 = LongestTopologicalPathDelay( , );
if ( ) {

 = FunctionalClauses( , );
 = TimingClauses( , , );

status = SATSolve( );
if (status==SAT)

return False;
}
return True;

}
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Figure 5: The path delay validation algorithm

Circuit LTP
Fraction delay Next delay Dynamic

Iter CPU Iter CPU Iter CPU

C432 20.20 19.90 31 2.98 26 8.17 30 4.71

C499 16.67 16.64 4 0.13 2 0.08 21 0.91

C880 18.59 18.59 1 0.05 1 0.06 1 0.05

C1355 22.38 21.97 82 9.68 31 8.65 23 10.59

C1908 32.44 29.68 1079 892.84 667 2420.83 52 33.89

C2670 40.31 38.62 220 141.22 133 1363.06 15 36.91

C3540 45.19 43.10 515 2496.68 — — 17 196.43

C5315 58.57 57.36 129 34.82 49 300.51 16 9.44

C6288 73.82 73.06 140 5091.82 — — 10 789.57

C7552 38.57 36.39 325 232.99 143 1846.51 33 37.12

CSA.16.4 36.00 20.10 7489 282.65 283 13.33 170 7.00

CSA.32.4 72.84 28.54 46680 8859.46 9178 3339.78 976 327.71

CBP.12.2 22.65 13.94 3417 400.62 1018 186.52 97 25.87

CBP.16.4 25.84 16.52 4418 304.33 608 60.28 105 10.26

CLA.16 21.68 21.65 4 0.26 4 0.26 6 0.73

Table 1: Delay stepping results for delay computation

∆

Circuit LTP CPU CPU

C432 20.20 19.90 16.16 3.21 18.18 4.32

C499 16.67 16.64 13.31 0.07 14.98 0.06

C880 18.59 18.59 14.87 0.34 16.73 0.26

C1355 22.38 21.97 17.90 6.43 20.13 3.72

C1908 32.44 29.68 24.06 47.06 27.06 5.69

C2670 40.31 38.62 32.25 182.04 36.28 33.16

C3540 45.19 43.10 36.15 — 40.67 143.38

C5315 58.57 57.36 46.86 141.18 52.71 17.11

C6288 73.82 73.06 59.06 — 66.44 —

C7552 38.57 36.39 29.71 53.32 33.43 13.09

CSA.16.4 36.00 20.10 27.33 0.04 30.74 0.03

CSA.32.4 72.84 28.54 55.92 0.24 62.91 0.12

CBP.12.2 22.65 13.94 17.58 0.18 19.77 0.08

CBP.16.4 25.84 16.52 20.12 0.11 22.64 0.06

CLA.16 21.68 21.65 17.34 0.16 19.51 0.20

Table 2: Statistics for path delay validation using viability
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tively. As can be concluded, path delay validation is in
general easier to solve than circuit delay computation,
and so potentially preferable by circuit designers in the
early stages of a design.

6 Conclusions

In this paper we present satisfiability-based timing
analysis algorithms for circuit delay computation and for
path delay validation. For the circuit delay computation
algorithm the critical delay of a circuit is computed by
iteratively solving a sequence of instances of proposi-
tional satisfiability. Three delay stepping strategies were
considered: fractional delay stepping, next delay step-
ping and dynamic stepping. The dynamic stepping pro-
vides by far the most efficient and robust results. For the
path delay validation algorithm, an upper bound on the
critical delay of a circuit is tested, by performing, at
most, one satisfiability check. This algorithm allows
straightforward validation of timing constraints by cir-
cuit designers.

Future research work mainly consists of improving
the efficiency of the underlying SAT engine by taking
into account structural information about the circuit.
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