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Abstract
Ciliated protists are ideal material for studying the origin and evolution of sex, because of their nuclear dimorphism (contain-
ing both germline micronucleus and somatic macronucleus in the same cytoplasm), special sexual processes (conjugation 
and autogamy), and high diversity of mating-type systems. However, the study of sexual process is limited to only a few 
species, due to the difficulties in inducing or observing conjugation. In the present study, we investigate the conjugation 
process in Paramecium multimicronucleatum: (1) of the three prezygotic divisions, all micronuclei undergo the first two 
divisions (meiosis I, II), while a variable number of nuclei undergo the third division (mitosis); (2) the synkaryon divides 
three times after fertilization, giving rise to eight products that differentiate into four macronuclear anlagen and four micro-
nuclei; (3) cells restore the vegetative stage after two successive cell fissions during which the macronuclear anlagen are 
distributed into daughter cells without division, while micronuclei divide mitotically; (4) the parental macronucleus begins 
to fragment following the first meiotic division and finally degenerates completely; (5) the entire process takes about 110 h, 
of which about 85 h are required for macronuclear development. In addition, we describe for the first time the process of 
genomic exclusion occurring between amicronucleate and micronucleate cells of P. multimicronucleatum, during which the 
micronucleate cell contributes a pronucleus to the amicronucleate cell, resulting in both exconjugants being homozygotes. 
These results provide new insights into the diversity of sexual processes and lay an important cytological basis for future 
in-depth studies of mating systems in ciliates.
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Introduction

The origin and maintenance of sex are regarded as “queen 
of problems in evolutionary biology” (Bell 1982): almost all 
eukaryotes, from uni- to pluricellular organisms engage in 
sex, a composite process including the formation of haploid 
gametes through meiosis, followed by the fusion of these 
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gametes (fertilization). According to the eukaryotic fossil 
record, sex first appeared about two billion years ago in 
the single-celled common ancestor of eukaryotes (Zimmer 
2009). In this context, ciliates represent excellent experi-
mental models for studying the origin of sex: they are one 
of the most morphologically diverse and highly differen-
tiated group among single-celled eukaryotic microorgan-
isms and have been used as models for numerous studies in 
cell biology, genetics, genomics, and origin and evolution 
of eukaryotes (Cech 1985; Cheng et al. 2019; Greider and 
Blackburn 1985; Montagnes et al. 2012; Wang et al. 2021; 
Zhao et al. 2020). In addition, they share a special sexual 
process, known as conjugation (genetic recombination and 
nuclear reorganization occur without cell fusion), and a high 
diversity of mating-type (equivalent to gender) systems (Gao 
et al. 2020; Gong et al. 2020; Jiang et al. 2019; Orias et al. 
2017; Phadke and Zufall 2009).

Ciliates constitute a morphologically and ecologically 
diverse lineage (Chi et al. 2021; Duan et al. 2021; Lynn 
2008; Ma et al. 2021) that contains both the germline micro-
nucleus (MIC) and somatic macronucleus (MAC) within the 
single cell (Sheng et al. 2020; Xu et al. 2021; Zhao et al. 
2021; Zheng et al. 2021). The MIC is diploid and transcrip-
tionally silent during the vegetative stage, while the MAC is 
generally polyploid and transcriptionally active, determining 
the cell’s phenotype (Butler et al. 1984; Prescott 1994; Swart 
et al. 2013). Ciliates usually reproduce asexually by binary 
fission when cells are in good environments, while they enter 
the sexual process under stressed conditions (e.g., starva-
tion). During asexual reproduction, the MAC divides ami-
totically and the MIC divides mitotically (Katz 2001). In the 
sexual process of conjugation (Fig. 1L), the MIC undergoes 
meiosis to form migratory and stationary (gametic) pronu-
clei, and then, the migratory pronucleus exchanges and fuses 
with the mating partner’s stationary pronucleus to form the 
synkaryon. The new MIC and MAC are differentiated from 
the mitotic products of the synkaryon, while the parental 
MAC is gradually fragmented and degraded (Raikov 1972, 
1982). During the development of the new MAC, large-scale 
genome rearrangements occur, including DNA elimination, 
chromosome fragmentation, telomere addition, gene amplifi-
cation, etc. (Angeleska et al. 2007; Chen et al. 2019; Li et al. 
2021; Nowacki et al. 2008; Prescott 1994).

In addition to the ‘regular’ conjugation, some abnor-
mal forms of conjugation occur. The abnormal conjuga-
tion between cells with defective MICs (or amicronucle-
ate cells) and cells with functional diploid MICs is called 
genomic exclusion. This type of abnormal conjugation was 
first observed in Tetrahymena thermophila (Allen 1967) and 
then reported in Euplotes raikovi (Gong et al. 2020). In these 
two species, the nuclear events during conjugation are very 
different. In any case, the amicronucleate cells, which are 
responsible for the abnormal cytogenetic events, represent 

a valuable genetic tool for some genetic applications, e.g., 
construction of homozygous strains (Allen 1967).

Difficulties in inducing or observing conjugation have 
limited the study of sexual processes to a restricted num-
ber of ciliate species. As important model ciliates, species 
of Paramecium are among the most studied, especially to 
assess mechanisms of the sexual process and mating-type 
determination (Orias et al. 2017; Phadke and Zufall 2009; 
Singh et al. 2014). However, conjugation has been studied 
for only one-third of the Paramecium species. Furthermore, 
many of the investigations date back to the middle of the 
last century and were carried out with equipment and meth-
ods that have now been superseded by modern approaches 
(Fokin et al. 2001; Jankowski 1972). Here, we use such 
modern approaches to examine a common species of Para-
mecium, and in doing so, we provide new insights into the 
sexual processes of ciliates.

Paramecium multimicronucleatum Powers and Mitchel, 
1910 is one of the earliest isolates of this genus. The pres-
ence of mating types in P. multimicronucleatum was 
reported by Giese (1957), and a circadian rhythm of mating-
type reversals was then revealed in some strains (Barnett 
1966; Giese 1957), attracting the attention of many research-
ers. The cytology of conjugation in P. multimicronucleatum 
were described by Landis (1925) and Barnett (1964), but 
the description of conjugation by the two researchers dif-
fers. To rectify this, here, we report a detailed description 
of the nuclear events and their timing during conjugation. 
We also, for the first time, describe genomic exclusion in P. 
multimicronucleatum, which occurs between amicronucleate 
cells (recently identified and stabilized in our laboratory) 
and normal micronucleate cells. These results clarify the 
process of conjugation in P. multimicronucleatum and pro-
vide important data for future in-depth studies of the various 
mating systems in ciliates.

Results

Initiation of conjugation and prezygotic divisions

The two P. multimicronucleatum strains (dFura23 and 
dFura24), which were of complementary mating type, were 
used to study conjugation (Fig. 1). Once starved cells (see 
“Materials and methods” section) were mixed, they imme-
diately began to form mating pairs (Fig. 1E, K), with a con-
jugation rate around 85%. Mating pairs gather in the bottom 
of petri dish forming visible clumps, suitable for obtaining 
samples of abundant synchronous conjugants. This initial 
mixing time was taken as time 0 of the process.

The two cells in the mating pair typically have either two 
or three micronuclei (MICs), so we use this nuclear pat-
tern (one cell with two MICs and one with three MICs) to 
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describe the process. At the beginning of conjugation, the 
morphology of both the macronucleus (MAC) and the MICs 
remain unchanged (Fig. 2A). Then, the MICs enlarge and 
elongate gradually, to enter the "crescent stage" of the first 

prezygotic division (meiosis I) (Fig. 2B–D). This initial step 
is about 5.5 h, followed by the "crescent stage" of the MICs 
which lasts about 1.5 h. Subsequently, the MICs enter the 
metaphase of meiosis I, during which the entire nucleus is 

Fig. 1  Paramecium multimicronucleatum in  vivo (A–G), after silver 
carbonate impregnation (H, I), and after fluorescence staining by 
Hoechst 33342 and acridine orange (J, K). A Schematic diagram of 
ventral view of a typical cell; arrows mark the two contractile vacu-
oles. B–E Ventral views of different individuals (B–D) and a conju-
gated pair (E) observed in bright field (C) or differential interference 
contrast (DIC; B, D, E) showing the buccal field (arrows) and con-
tractile vacuoles (arrowheads or red circle). F Details of a contractile 
vacuoles and collecting canals (arrows) observed by DIC. G Spindle-
shaped extrusomes (arrows) beneath the pellicle observed by DIC. 

H, I Ventral and dorsal views of the same individual showing the 
ciliature after silver carbonate impregnation; arrow marks the buc-
cal field. J A vegetative cell showing the macronucleus and micro-
nuclei (arrowheads) after fluorescence staining by Hoechst 33342 
and acridine orange. K A conjugated pair showing the macronucleus 
and micronuclei (arrowheads) after fluorescence staining by Hoechst 
33342 and acridine orange. L A simplified diagram of conjugation 
process in ciliates. CV contractile vacuole; Ma macronucleus. Scale 
bars = 100 μm
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typically fusiform and MIC chromosomes are arranged on 
the equatorial plate (Fig. 2E). After another 2.5 h, the MICs 
conclude the first meiotic division, resulting in four or six 
nuclear products (Fig. 2F).

The four–six haploid nuclei then enter the second 
meiotic division (the second prezygotic division), which 
lasts about 0.5 h with the production of eight or 12 nuclei 
(Fig. 2G). Variable numbers of these nuclei (we observed 
up to six nuclei) presumably possess the potential to pro-
duce functional pronuclei. At least one of these nuclei 

divides again by mitosis (third prezygotic division), which 
takes about 0.5 h. In the next 0.5 h, the mitotic products 
near paroral cone remain as the migratory and stationary 
pronuclei, while the others become pyknotic and eventu-
ally disappear (Fig. 2H, I).

Synkaryon formation

Fertilization occurred when the migratory pronucleus 
migrates from one cell to the other and fuses with the 

Fig. 2  Prezygotic divisions and synkaryon formation in Paramecium 
multimicronucleatum after fluorescence staining by Hoechst 33342 
and acridine orange. A In conjugation pairs formed just after mix-
ing (time 0), the morphology of MAC and MICs does not change. 
B MICs are enlarged. C MICs elongate into fusiform shape. D The 
“crescent” stage in prophase of meiosis I. E Metaphase of meio-
sis I: chromosomes are arranged neatly on the equatorial plate. The 
degeneration of MAC starts to be observed. F The end of anaphase 
I of meiosis I: chromosomes have been gathered to cell bipolar to 
a large extent. G Telophase of meiosis II, after which 12/8 nuclear 

products are produced. H, I Variable number of MICs undergoes the 
third prezygotic division (mitosis) and the rest degenerates. J Nuclear 
products of the third prezygotic division near the paroral cone remain 
as migratory and stationary pronuclei. K The exchange of migratory 
pronuclei is completed, and they are going to fuse with the stationary 
one. L The migratory and stationary pronuclei fuse to form synkar-
yon and prepare for the first postzygotic division. Orange arrowhead: 
MIC and its products of prezygotic divisions before the formation of 
synkaryon. Red double arrowheads: synkaryon. White arrow: degen-
erating nucleus. Scale bar = 80 μm
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stationary pronucleus to form the synkaryon (Fig. 2J–L). 
This step, from the formation of gametic pronuclei to their 
fusion in the synkaryon, takes about 0.5 h.

Postzygotic divisions

After fertilization, the synkaryon divides mitotically twice to 
form four nuclear products in each cell (Fig. 3A, B). The two 
conjugants separate after the second postzygotic division 
(Fig. 3C). In each exconjugant cell, the four nuclear prod-
ucts divide again to form eight nuclei. During this division 
step, the cell swells and assumes a round and larger shape 
for about 0.5 h (Fig. 3D). Subsequently, the eight nuclei in 
each cell differentiate into four MAC anlagen and four MIC 
anlagen (Fig. 3E). The MAC anlagen swell gradually during 
the development, and early on they are recognizable as they 
contain a poorly stained central area and numerous deep 
stained dots (Fig. 3F, G).

When the development of the MAC anlagen is well 
under way, about 36 h after mixing (Fig. 3G), refeeding 

is necessary for conjugation to continue. After about 84 h 
after instigating conjugation, the cell undergoes the first 
binary fission. While the four MAC anlagen distribute 
equally into the two daughter cells, the four MICs divide 
mitotically, so that each daughter cell receives four prod-
ucts of MICs’ division (Fig. 3H). The fragments of paren-
tal MAC (distinguished from MAC anlagen by their darker 
color) are randomly and passively distributed into the two 
daughter cells. Subsequently, the four MICs divide con-
comitantly with the second binary fission. At the end, each 
daughter cell contains one MAC anlagen and four MIC 
(Fig. 3I, J), and it then looks like a typical vegetative cell, 
although some fragments of the parental MAC are still 
present.

When cells divide by binary fission, the new MAC and 
MICs undergo amitosis and mitosis, respectively, while the 
remaining fragments of parental MAC gradually disappear. 
After several rounds of binary fission, some cells may lose 
copies of the MICs, resulting in various number of MICs in 
different individuals (Fig. 3K).

Fig. 3  Nuclear events of postzygotic and cell divisions in Parame-
cium multimicronucleatum after fluorescence staining by Hoechst 
33342 and acridine orange. A The first postzygotic division ends, 
and there are two products in each conjugant. B The second postzy-
gotic division ends, and there are four products in each conjugant. 
C Four products of the second postzygotic division are entering to 
the third postzygotic division and conjugant pair separates after the 
second postzygotic division. D The third postzygotic division ends, 
and there are eight products in each conjugant. The cell inflates 
to be round shape for a while. E–G Eight nuclear products in each 

exconjugant differentiate into four MAC anlagen and four MIC anla-
gen. H After the first cell division, there are two MAC anlagen and 
four MIC anlagen in each exconjugant. I After the second cell divi-
sion, there are one MAC anlagen and four visible MIC anlagen in 
each exconjugant. Some fragments of parental MAC remain at this 
stage. J, K Cells have been recovered into the vegetative stage. Red 
arrowhead: nuclear products of synkaryon. Red double arrowheads: 
MAC or MAC anlagen. Orange arrow: MIC or MIC anlagen. Scale 
bar = 80 μm
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Fate of the parental MAC

The parental MAC starts to disintegrate following metaphase 
of the first meiotic division (Fig. 2E). At the end of the third 
prezygotic division, the shape of the parental MAC changes 
from a leaf form into a tangle of cords (Fig. 2H, I). After 
the second postzygotic division, when the two cell part-
ners separate, the parental MAC starts to break into many 
rounded or slightly prolonged fragments of diverse dimen-
sions (Fig. 3C). With the development of the MAC anlagen, 
these fragments become irregular and finally disappear.

Cytogenetics of genomic exclusion

When amicronucleate and normal cells conjugated, the 
MICs in the normal cell (dFura24) perform the three 
prezygotic divisions leading to the production of migra-
tory and stationary pronuclei (Fig. 4). Then, the migra-
tory pronucleus moves from the normal micronucleate 
conjugant to the amicronucleate one, and no fertilization 
occurs; the result of this is that each exconjugant contains 
a haploid gametic nucleus (Fig. 4L). We speculate that 
micronuclear diploidy is then restored following transfer 
of the haploid gametic nucleus, but we have not been able 
to observe the details of this: possibly diploidy is restored 

Fig. 4  Nuclear events before postzygotic divisions of genomic exclu-
sion occurring between amicronucleate and micronucleate cells in 
Paramecium multimicronucleatum (after fluorescence staining by 
Hoechst 33342 and acridine orange). A–K Three prezygotic divisions 
(miosis I, miosis II, and mitosis) only occur in the micronucleate 
cell, as in normal conjugation shown in Fig. 2. L The micronucleate 

conjugant gives rise to migratory and stationary haploid nuclei, and 
the migratory one migrates to the amicronucleate conjugant. Orange 
arrowhead: MIC and its products of prezygotic divisions before the 
formation of new diploid nucleus. White arrow: degenerating nuclei. 
Scale bar = 80 μm
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in both conjugants by endoreplication; alternatively, the 
haploid nucleus undergoes another round of mitosis and 
then fuses to restore diploidy. Regardless, of the details, 
the separation of the conjugants and the process of postzy-
gotic divisions are the same as the normal conjugation, as 
shown in Fig. 3.

Discussion

Nuclear events during conjugation in Paramecium 
multimicronucleatum

Our results provide evidence that the nuclear events occur-
ring during conjugation between P. multimicronucleatum 
cells of strains dFura23 and dFura24 include three prezy-
gotic micronuclear (MIC) divisions (meiosis I, meiosis 
II, and mitosis), three postzygotic synkaryon divisions, 
and two successive cell fissions. The whole process takes 
about 110 h (Fig. 5).

A description of the nuclear events in P. multimicronu-
cleatum conjugation was first reported by Landis (1925). 
According to Landis, the sexual process includes three 

prezygotic MIC divisions (meiosis I, meiosis II, and mito-
sis), six postzygotic nuclear divisions, and two successive 
cell fissions. Our observations support only in part the previ-
ously described process. The main differences include: (1) 
the number of nuclei that presumably possess the potential 
to produce functional pronuclei is four according to Landis 
(1925), while we found that it was variable (one to six); (2) 
our observations of the postzygotic nuclear divisions dif-
fered from those previously reported. Landis (1925) reported 
seven of the eight synkaryon products of the third postzy-
gotic division degrade, and the surviving one divides twice 
more, resulting in four products that differentiate into two 
MIC and two macronuclear (MAC) anlagen; then, each MIC 
and MAC anlage divides again before the first cell division. 
Conversely, our observations show that the eight synkaryon 
products of the third postzygotic divisions differentiate 
directly into four MIC and four MAC anlagen before the 
first cell division. There are at least two arguments support-
ing our finding. First, no degeneration of zygotic nuclear 
products was observed in samples collected every half hour 
from the third postzygotic division. For this analysis, the 
combined acridine orange (AO) and Hoechst 33342 (HO) 
staining was used, as it allows recognition of the degraded 

Fig. 5  Morphology and timing of nuclear events during conjugation in Paramecium multimicronucleatum 
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(turquoise) and the non-degraded (blue) nuclei (Fig. 2H, I 
and Fig. 4I, J). Second, the stage with “two MIC and two 
MAC anlagen” was never observed in the present work. 
After the third postzygotic division, there is only about 1 h 
before the invisible differentiation of MIC and MAC anla-
gen, and no division of these anlagen was observed in our 
work. Conversely, all exconjugants have four MIC and four 
MAC anlagen (Fig. 3D, E), which clearly come from the 
initial differentiation of the nuclear products of the third 
postzygotic division.

The cytology of conjugation in P. multimicronucleatum was 
also reported by Barnett (1964), who described that only the 

nucleus in the paroral cone undergoes the third prezygotic divi-
sion. Although only one nucleus divides at this stage in most 
Paramecium species whose conjugation have been described 
(Fokin et al. 2001; with the exception of P. jenningsi (original 
data, unpublished) and P. nephridiatum (Jankowski 1961)) 
(Fig. 6), our study indicates that in P. multimicronucleatum, 
this number is not always one. These different observations 
could be attributed to errors due to the limitations of experi-
mental conditions, such as the presence of food vacuoles or 
maternal MAC fragments which can obscure some nuclear 
products (Barnett 1964). Other explanations for the differ-
ence could be attributed to some variation in the conjugation 

Fig. 6  Different patterns of nuclear events during conjugation in 
Paramecium species and phylogenetic tree based on SSU rRNA 
gene sequences. A P. multimicronucleatum, from the present study; 
B P. duboscqui (Watanabe et al. 1996), P. polycaryum (Diller 1958), 
and P. woodruffi (Fokin et al. 2001); C P. nephridiatum (Jankowski 
1961); D P. aurelia complex (Diller 1936; Fokin et al. 2001; Sonne-
born 1938); E P. jenningsi (original data, unpublished); F P. calkinsi 
(Nakata 1956); G P. schewiakoffi (Fokin et al. 2001); H P. bursaria 
(Wichterman 1948); I P. caudatum (Yang et  al. 2007); J P. putri-
num (Jankowski 1972). K Maximum-likelihood (ML) tree of the 

genus Paramecium based on SSU rRNA gene sequences. Frontonia 
magna (FJ876953), F. mengi (FJ875141), and F. sinica (KJ475308) 
were used as outgroup species. Numbers at nodes represent the boot-
strap values of ML out of 1000 replicates and posterior probability of 
Bayesian analysis (BI). The scale bar corresponds to one substitution 
per 100 nucleotide positions. Triangle: separation of the conjugants. 
Arrow: exchange of migratory pronuclei. Box: daughter cell after cell 
division. Asterisk: more than two pronuclei could appear (Fokin et al. 
2001; Jankowski 1961)
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process among different strains, or they are in fact different 
species due to the wrong species identification.

Comparison of the nuclear events 
during conjugation in different Paramecium species

MAC and MIC development during conjugation in Parame-
cium has been studied for over 100 years (Hamburger 1904; 
Jankowski 1972; Watanabe et al. 1996). By comparing the 
conjugation process in different Paramecium species, three 
key points emerge; each of these is outlined below.

First, despite that the number of MIC varies among spe-
cies, there are always three prezygotic divisions. All the 
MICs undergo the first and the second prezygotic divisions, 
while only one selected nucleus (or several nuclei in P. 
multimicronucleatum and P. jenningsi) undergoes the third 
prezygotic division. The only exception to this scheme is 
represented by P. bursaria (Fig. 6H), as only one nucleus is 
selected at the end of each division to complete the process 
(Wichterman 1948).

Second, there are some diversities among species in the 
patterns of postzygotic nuclear divisions and the following 
cell divisions. Our observations suggest that the diversities 
in the number of postzygotic and cell divisions, as well as 
the number of offspring individuals, depend mainly on the 
number of MICs in vegetative cells and nuclear products 
degraded after each division. Before MIC and MAC dif-
ferentiation, there are generally three rounds of synkaryon 
divisions, exceptionally four in P. nephridiatum (Fig. 6C) 
(Jankowski 1961), and two in P. tetraurelia (Fig. 6D) (Diller 
1936; Sonneborn 1938) and P. schewiakoffi (Fig. 6G) (Fokin 
et al. 2001). The number of degenerating nuclei after each 
synkaryon division also varies among species. For P. 
nephridiatum (Fig.  6C) (Jankowski 1961), P. jenningsi 
(Fig. 6E) (original data, unpublished), P. calkinsi (Fig. 6F) 
(Nakata 1956), and P. bursaria (Fig. 6H) (Wichterman 
1948), one product of the first postzygotic division degrades. 
One product of the second synkaryon division degenerates in 
P. schewiakoffi (Fig. 6G) (Fokin et al. 2001), while three of 
the eight products after the third synkaryon division degen-
erate in P. caudatum (Fig. 6I) (Yang et al. 2007) and P. 
putrinum (Fig. 6J) (Jankowski 1972). For other species, no 
degeneration occurs for the postzygotic division products. 
As a result of postzygotic divisions and degeneration, cells 
have to divide one or two times to recover to the vegetative 
stage.

Third, exconjugant cells separate at three different time 
points, for example: (i) after the first postzygotic division 
in P. tetraurelia (Diller 1936; Fokin et al. 2001; Sonneborn 
1938), P. woodruffi (Jankowski 1961), and P. duboscqui 
(Watanabe et al. 1996); (ii) after the second postzygotic divi-
sion in P. multimicronucleatum; and (iii) after the fourth 

postzygotic division in P. nephridiatum (Fokin et al. 2001; 
Jankowski 1961).

The identified variations in the conjugation process 
among different Paramecium species are not directly related 
to evolution within the genus, as shown by mapping these 
variations into the phylogenetic tree based on SSU rRNA 
gene sequence (Fig. 6). For instance, species with the same 
pattern of mating pair separation do not cluster together, 
indicating that time points of mating pair separation may 
be a species-specific character. According to the present 
and previous analysis (Fokin et  al. 2001), we conclude 
that the different patterns of nuclear events in Paramecium 
have evolved independently and do not reflect phylogenetic 
relationships, a phenomenon known as mosaic evolution or 
evolutionary heterochrony (Corliss 1975; Fokin et al. 2001; 
Jankowski 1972; Raikov 1982).

Genomic exclusion in ciliates

Genomic exclusion was originally described in Tetrahy-
mena thermophila (Allen 1967). In this species, genomic 
exclusion comprises two rounds of conjugation. In the first 
round, the mating pairs separate prematurely, following 
unidirectional exchange of a gametic pronucleus from the 
micronucleate cell to the defective partner, giving rise to 
the exconjugants with homozygous MIC and their original 
MAC (heterokaryons). The exconjugants are therefore sexu-
ally mature and can enter into the second round of conjuga-
tion, which proceeds normally and gives rise to cells that 
are whole-genome homozygotes. An abnormal conjugation 
between amicronucleate and micronucleate cells was also 
reported in Euplotes raikovi (Gong et al. 2020). However, 
in E. raikovi, the micronucleate partner does not exchange 
the gametic pronucleus with the defective one. Instead, the 
migratory pronucleus fuses with the stationary one in the 
same cell to generate the synkaryon, and after conjugation, 
the amicronucleate cell remains without MIC.

Genomic exclusion thus represents an ideal method for 
obtaining homozygotes which is essential for studying the 
function of alleles, much easier and faster than the tradi-
tional ways. However, amicronucleate or MIC defective cells 
are essential for this process. Amicronucleate cells can be 
collected from the wild or have been obtained from Oxy-
tricha hymenostoma, P. caudatum, P. tetraurelia, P. jen-
ningsi, T. thermophila, E. rakovi, Pseudourostyla levis, and 
Stylonychia lemnae using micropipetting, nitrosoguanidine 
mutagenesis, or other methods (Allen 1967; Ammermann 
et al. 1989; Dawson 1919; Gong et al. 2020; Landis 1920; 
Mikami 1979; Ng SF 1989; Takahashi and Suhama 1991). 
We are confident that the new and stable amicronucleate 
cell line established from the wild-type strain dFura23 of 
P. multimicronucleatum syngen 2 will find applications to 
study the biology of Paramecium.
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Materials and methods

Cell culture, conjugation induction, and cell staining

Mating-type complementary strains dFura23 and dFura24 
of Paramecium multimicronucleatum syngen 2 were kindly 
supplied by Professor Masahiro FUJISHIMA at Yamaguchi 
University (http:// nbrpc ms. nig. ac. jp/ param ecium/ strai n/? 
lang= en). A stable amicronucleate strain of P. multimicro-
nucleatum syngen 2 spontaneously arose in our monoclonal 
cultures of the wild-type strain dFura23 under normal cul-
ture conditions and was then isolated.

The ciliates were cultured in 5% fresh lettuce juice that 
was diluted with modified Dryl solution using  KH2PO4 
instead of  NaH2PO4 (KDS) (Dryl 1959; Yang et al. 2007), 
inoculated with the bacterium Klebsiella pneumoniae. Cili-
ates used in the analysis are in a state of mild starvation; 
their conjugative activity lasts for about 48 h after the culture 
medium becomes clear (i.e., with very few bacteria).

Cells of different mating types start to form mating pairs 
within a minute after mixing, so the mixing time was con-
sidered as the time 0. Cell samples were then collected every 
30 min or 1 h and then stained with Hoechst 33342 (HO) 
(Beyotime Institute of Biotechnology, Jiangsu, China) and 
acridine orange (AO) (Shanghai Chemical Reagent Co., 
Ltd., Shanghai, China) (Yang et al. 2007). For every 100 μl 
of cell suspensions, 1.8 μl Hoechst 33342 (HO, 2 mg/ml) 
and 0.8 μl acridine orange (AO, 100 μg/ml) were used. The 
mixtures were incubated at 25 ± 1 °C for 20 min, and cells 
were observed under a “ZEISS AXIO Imager D2” fluores-
cence microscope, equipped with an Axiocam 506 camera 
for photographic documentation. For each time point, 30–50 
mating pairs were recorded (Gong et al. 2020; Jiang et al. 
2019).

DNA extraction, PCR amplification, and sequencing

Genomic DNA was extracted using  MagAttract® HMW 
DNA Kit (QIAGEN, Germany, Cat. No.: 67563) following 
the manuals. The sequence of the small subunit ribosomal 
RNA (SSU rRNA) gene was obtained by amplification with 
universal primers 18SF (5′-AAC CTG GTTG ATC CTG 
CCAGT-3′) and 18SR (5′-TGA TCC TTC TGC AGG TTC 
ACC TAC -3′) (Jerome et al. 1996; Medlin et al. 1988) using 
 Q5® Hot Start High-Fidelity DNA Polymerase (New Eng-
land BioLabs, USA). The PCR products were sequenced 
bidirectionally by Tsingke Biological Technology Company 
(Qingdao, China).

Phylogenetic analyses

Phylogenetic analyses were performed using SSU rRNA 
gene of P. multimicronucleatum strain dFura23 and other 
17 SSU rRNA gene sequences which were obtained from 
GenBank (accession number as shown in Fig. 6). Sequences 
were aligned using the GUIDANCE2 Server (http:// guida 
nce. tau. ac. il/) with default parameters (Sela et al. 2015). 
The alignment was manually modified using BioEdit v.7.0.1 
(Hall 1999), resulting in a matrix of 18 taxa with 1660 nucle-
otide sites. Both maximum-likelihood (ML) and Bayesian 
inference (BI) analyses were performed in CIPRES Science 
Gateway (http:// www. phylo. org/ sub_ secti ons/ portal). The 
ML tree was constructed using RAxML-HPC2 on XSEDE 
v.8.2.12 with the GTRGAMMA model and 1000 boot-
strap replicates, while the BI analysis was performed using 
MrBayes on XSEDE v.3.2.6 with the GTR + I + G model 
which was selected by MrModeltest v.2.0 (Nylander 2004; 
Stamatakis 2014). Markov chain Monte Carlo (MCMC) 
simulations were run for  106 generations with a frequency of 
100 generations and a burn-in of  104 trees. Tree topologies 
were visualized with MEGA v.7.0.26 (Kumar et al. 2016).
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