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Abstract 
Building Automation Systems (BAS), alternatively known as Building Management Systems (BMS), which 

centralise the management of building services, are often connected to corporate networks and are routinely 

accessed remotely for operational management and emergency purposes. The protocols used in BAS, in 

particular BACnet, were not designed with security as a primary requirement, thus the majority of systems 

operate with sub-standard or non-existent security implementations. As intrusion is thus likely easy to achieve, 

intrusion detection systems should be put in place to ensure they can be detected and mitigated. Existing 

intrusion detection systems typically deal only with known threats (signature-based approaches) or suffer from a 

high false positive rate (anomaly-based approaches). In this paper we present an overview of the problem space 

with respect to BAS, and suggest that state aware machine learning techniques could be used to discover threats 

that comprise a collection of legitimate commands. We provide a first step showing that the concept can be used 

to detect an attack where legitimate write commands being sent in rapid succession may cause system failure. 

We capture the state as a ‘time since last write’ event and use a basic artificial neural network classifier to 
detect attacks.  
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INTRODUCTION 

The purpose of a building is to provide safety, security and comfort for workers, systems and goods which 

occupy the building. The use of building automation systems (BAS) allows the collective tuning of each building 

service, such as energy, Heating, Ventilation and Air Conditioning (HVAC), water and access control through 

one centralised system. With the potential to operate and manage multiple buildings from a central location 

(Heaton, 2015), BAS are increasingly being connected to corporate networks, and ultimately the Internet. 

Providing operability between historically serial based networking and existing communication cables, a number 

of open source BAS protocols are designed to operate on many physical media. One such protocol is BACnet, 

developed by the American Society of Heating, Refrigeration and Air-conditioning Engineers (ASHRAE), and 

released in 1995 as ASHRAE standard 135 (SSPC-135, 2015) and ISO standard 16 484-5 in 2003 (Hersent, 

Boswarthick & Elloumi, 2012). BACnet is widely used in government, industry and businesses around Australia 

for building management. This usage is expected to grow, especially with the development of the Internet of 

Things (IoT), making securing and protecting BACnet a critical problem 

A difficulty faced in securing BAS, exemplified by BACnet, is the ability to detect legitimate commands which, 

when sent in a specific pattern, manifest as a cyber-physical attack. This paper introduces a proof of concept 

method of detecting a BACnet specific legitimate command attack chain using time based analysis of network 

traffic. The remainder of the paper discusses Building Automation Security, in particular the application and 

shortcomings of intrusion detection systems for BACnet. Network traffic classification schemes are presented, 

with artificial neural networks identified as a suitable method of detecting the given problem space. A software 

based simulation was deployed, with a number of experiments conducted for proof of concept testing against a 

generated dataset. An ANN was used as a classifier for this attack chain, with the results in regards to efficiency 

and effectiveness discussed. The paper concludes with what these results mean, and an overview of future work 

related to this research. 

RELATED WORK 

Similar to the evolution of computing, security was not an original function of building automation systems. 

High levels of trust are placed in the users and the devices, due to the previously segregated and obscure nature 
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of the systems (Novak, Treytl & Palensky, 2007; Celeda, Krejci & Krmicek, 2012). As noted by Johnstone 

(2009), systems are engineered for function, not security. This is a significant problem in an era where the 

Internet of Things is a reality. Heterogeneous connected devices need to be secure. Much like the advancement 

of other service-based systems, BAS were not designed with security as a paramount requirement. Early security 

of these systems revolved around isolationism through physical security and obscure proprietary protocols 

(Kastner, Neugschwandtner, Soucek & Newman, 2005). While these measures were acceptable when 

automation systems were not interconnected, this is not the case now and new approaches are needed. Peacock 

and Johnstone (2014) have highlighted the need for security in BMS, especially in BACnet systems. It is 

possible that an approach based on machine learning may be the way forward. Johnstone and Woodward (2012) 

had success with an ANN approach in a different security domain. Peacock and Johnstone (2014) concluded that 

modelling known attacks in a test bed BACnet controlled BAS network to generate malicious network traffic is a 

critical first step. In addition to this malicious traffic, normal operating traffic should also be recorded for 

baseline purposes to apply machine learning algorithms to traffic classification. 

BACNET SECURITY 

Of the three major open protocols (BACnet, KNX and LONworks), the BACnet standard has adapted the most 

to retrofit security techniques, defining the BACnet security service (BSS), a network layer security 

implementation. BSS applies encryption to each frame; implementations pre 2009 used DES-56, with an update 

to the standard in 2008 changing the default encryption algorithm to AES256. BACnet can provide integrity with 

Hashed Message Authentication Codes (HMAC), using SHA256 or MD5 for key. Encryption is not the only 

answer for BACnet security, with authentication of devices also of importance. Source authentication is 

implemented in BACnet as a device object identification number, however announcements of device numbers 

are peer based, meaning any device in the BACnet can request another devices ID, and any device can respond 

with an ID. As noted in (Holmberg, 2003; Celeda et al., 2012), this behaviour can be exploited, allowing any 

device in BACnet to be spoofed as another device can claim to have the requested device ID. While the BSS is 

defined in the standard as Addendum g, BSS is not widely implemented, with Newman (2013) stating “no 
company has yet implemented it in a commercially available product” Newman (2013, p. 44). Additionally, 
Newman (2013) suggests that BACnet/IP could be secured using IP security solutions, such as IPsec, TLS, or 

Kerberos. Given the vulnerabilities in these implementations, particularly TLS (Moller, Duong & Kotowicz, 

2014); there remain significant security issues in BACnet.  

INTRUSION DETECTION SYSTEM APPROACHES IN AUTOMATION AND 

CONTROL SYSTEMS  

Intrusion Detection Systems (IDSs) in BAS is an immature topic area, with limited research and 

implementations (Kastner et al., 2005; Krejci, Celeda & Dobrovolny, 2012). Granzer and Kastner (2010) note 

that adaptation of IDS would be a useful complement with other security measures in BAS, particularly where 

authentication through encryption would have an impact on the availability of the BAS. In regards to the types of 

IDS implementations, Granzer and Kastner (2010) note that signature based IDSs would be inappropriate for 

BAS due to the increased overhead on the system for managing and storing signatures. Rather, Granzer and 

Kastner (2010) identify anomaly based IDS as a more appropriate solution, perhaps due to the changes in BAS 

network traffic over time of day, week and season Kaur, Tonejc, Wendzel and Meier (2015), Krejci et al. (2012), 

and the ability to tune anomaly based IDSs to these patterns. Application of anomaly detection in BACnet has 

been previously undertaken by Celeda et al. (2012), using a volume based entropy technique against BACnet 

flows developed in their previous work (Krejci et al., 2012). Analysis is conducted against network flows 

captured from a university network, with 3 classes of BACnet attack derived from Holmberg (2003) search for, 

namely, device spoofing, device discovery denial of service (DoS) and write-property attacks. No attacks were 

identified in the dataset, with write-properties not exhibiting a discernible pattern in the flow based approach.  
In contrast, a range of ICS based IDS have been implemented (Cheung et al., 2007; Lin, Slagell, Di Martino, 

Kalbarczyk & Iyer, 2013; Dussel et al., 2010). Skopik, Friedberg and Fiedler (2014) states “All modern control 

systems are deploying IDSs as the threats against these systems increase”. A limitation of ICS based IDS, 
highlighted by Cheminod, Durante and Valenzano (2013) is evaluation of the performance impact of deployed 

IDS. Nader, Honeine and Beauseroy (2013) identify, the limited datasets of ICS systems in critical states hinders 

state based IDS research, as developing IDSs to determine when critical states occur would be more effective if 

critical state network captures can be identified. Previous work to overcome the lack of critical state datasets was 

conducted by Carcano et al. (2011), implementing an ICS IDS using state diagrams to model critical states. In 

addition to critical state analysis, Carcano, Fovino, Masera and Trombetta (2010) identified detecting chains of 

legitimate commands which manifest as malicious events is of interest; with an attempt conducted using network 
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flow analysis against Modbus traffic sets. The difficulty faced with the proposed approach by Carcano et al. 

(2011) is the signature based method of the IDS, with previous identification of critical states, and mapping of 

known legitimate commands which can cause malicious actions to signatures.  

There are limited examples of BACnet specific network attacks, with the majority driven by the BACnet wide 

area threat assessment (Holmberg, 2003). Given that other cyber-physical systems, such as Modbus have known 

attacks, it was theorised that applying the principles of these known attack types to BAS could reveal attack 

classes. The example selected was a water-hammer attack, a threat against pipelines, whereby a valve is closed 

suddenly causing a shockwave of force back through the pipe. In this context, closing the valve is a normal 

action of the system, which can have an unintended effect dependent on the time the valve is closed. Similarly in 

electrical motor fans, altering the fan speed is a normal process for temperature modulation in HVAC, however 

drastic or consistent fan speed changes over a short period of time can cause damage to the motor drive, or the 

fan shaft (Stanford III, 2011). Manipulation of the fan speed settings occurs in BACnet through writing assigned 

values to properties, from a BACnet controller. This is an identified attack class from (Holmberg, 2003; Celeda 

et al., 2012), namely write-property attack. Detecting these types of legitimate commands which have 

unintended consequences is a network traffic classification issue, which previously implemented BACnet IDS 

systems have not been tested for (Celeda et al., 2012).  

NETWORK TRAFFIC CLASSIFICATION  

Intrusion Detection Systems (IDSs) essentially solve a classification problem. A frame is presented and is 

classed as either safe or unsafe depending on some predefined rule(s) or application of artificial intelligence 

techniques. IDSs conventionally use some form of signature detection to match incoming frames with known 

problems (malformed packets, embedded trojans etc.). This approach works well when the attacks can be 

predetermined and profiled (thus providing signatures). When the problem space is less well-structured, such an 

approach lacks flexibility, which calls for an alternative that can detect “unknown unknowns”.  Traditionally, 
computers attempting to solve such problems have not performed well. Computers calculate bounded problems 

swiftly, but do not do well at drawing inferences from incomplete data.  

Rumelhart and McClelland (1986) contend that “In our view, people are smarter than today’s computers because 
the brain employs a basic computational architecture that is more suitable to deal with a central aspect of the 

natural information processing tasks that people are so good at” Therefore, an approach based on the structure of 
the human brain might be successful in solving this type of problem. A common approach is the Artificial 

Neural Network (ANN), which attempts to mimic the processing model of a brain, where neural synapses are 

summed, limited by an activation function to prevent overload. There are several other machine learning 

algorithms that solve classification problems, including Support Vector Machines and approaches based on 

Bayesian probability, however we chose ANNs as the most well-established approach. A neuron in an ANN 

consists of a node that has (potentially) multiple inputs and one output. The node activates the output if the sum 

of the inputs reaches a predefined value, this value being defined by an activation function, which can be binary, 

but need not be so. Each input can have individual weights assigned to it and it is not unusual to have a bias 

parameter added to the summation as shown in (1) and (2).  
(1) 

𝑠𝑗 = ∑  𝑛
𝑖=1 𝑤𝑖𝑥𝑖 

(2) 𝑜𝑗 = 𝜙(𝑠𝑗 + 𝑏𝑖𝑗) 𝑤ℎ𝑒𝑟𝑒: 𝑜𝑗 = Output 𝑗 𝑏𝑖𝑗 = Bias factor applied to node 𝑠𝑗 of (1) 𝜙 = The activation function 

 

When a neuron is located in the output layer the local gradient is calculated by using equation (3). When a 
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neuron is located in the hidden layer, we use equation (4) to calculate the gradient.  

(3) 𝛿𝑗 = 𝑒𝑗𝜙𝑗′(𝑠𝑗) 

(4) 𝛿𝑗 = − ∂ℰ∂𝑦𝑗 𝜙𝑗′(𝑠𝑗) 

𝑤ℎ𝑒𝑟𝑒: 
Neuron 𝑗 is hidden  𝑒 = error term  

We can map the logic of this single node to a network consisting of many nodes in three layers, an input layer, a 

middle (hidden) layer and an output layer, the latter of which defines the solution space. There are many ANN 

algorithms of varying efficacy, depending on the problem domain being addressed. One of the most popular is 

the Backpropagation algorithm, which works by providing feedback to prior nodes in the network and thus 

improving learning and subsequent classification. Backpropagation is computationally efficient and simple to 

compute as noted by Haykin (2009)  

EXPERIMENTAL ENVIRONMENT  

Simulation was chosen as the method of data collection, due to the limitation of available BACnet data sources, 

and the proof of concept nature of the research. Additionally, due to attacks being executed for network capture, 

a live system was not appropriate. The software used for simulation included the SCADA Engine BACnet 

device simulator 2.0 running on a Windows XP service pack 2 virtual machine(‘BACnet Device Simulator 2.0’, 
2009), and a Ubuntu 13.04 virtual machine, running the Open source BACnet Stack ver 0.8.2 (Karg, 2015). The 

virtual machines were hosted on a Macbook Pro 2015, with OS X 10.10.5, 16Gb of memory and 2.9GHz i5 

processor. The topology of the simulation environment is shown as Figure 1, Scadaengine was used for the 

simulated temperature sensor and fan, while the BACnet stack acted as the controller, receiving temperature 

readings from the simulated temperature sensor, and sending fan speed commands to the simulated fan.  

 
Figure 1: Network Topology of simulated BACnet HVAC environment 

The simulated scenario was that of a simplistic partial HVAC system, using 1 temperature sensor, 1 fan and 1 

HVAC controller communicating between the two devices. In accordance with HVAC design practices, fan 

speed changes occurred at a minimum 15 second interval, to replicate time delays present to prevent fan drive 

damage Stanford III (2011) A dormant threat in the controller pseudo-randomly interacted with the fan, sending 
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legitimate fan speed change commands in quick succession of each other, with the intent to cause physical 

damage to the fan.  

The data set generated contained 3 hours of BACnet simulated data, equating to 25000 frames. Pre-processing of 

the data involved removing all but the write frames, which were paired into events, resulting in 1000 write 

events. This pre-processing of the network traffic was implemented to replicate a real-time IDS, whereby non-

matching frames would be discarded. The time difference (∆t) between same frames (writes) are the events of 
interest as we are attempting to detect a subtle attack whereby all frames are legitimate commands. The first 500 

events were used to train an ANN (a backpropagation algorithm defined by 1-4) and the second 500 to test 

effectiveness of the trained ANN in classifying previously unseen events. The hardware used for ANN analysis 

was a Macbook Pro, with OS X (10.9.2) configured with 16Gb of memory and a 2.2GHz i7 processor.  

RESULTS  

The ANN was optimised through testing the number of iterations, the number of hidden layers and the learning 

rate. Testing began with a simple three-layer network (i.e., a single hidden layer). The results were encouraging, 

with a training time of 6.349 seconds and a classification accuracy of 90.4% against the test data set, with a 

classification time of 0.005 seconds. The ANN was then extended to four layers (i.e., an input layer, two hidden 

layers and an output layer). In this ANN, the training time was 5.718 seconds with a classification accuracy of 

100.0% (classification time 0.006 sec.). With three hidden layers, the training time was 2.059 seconds and had a 

classification accuracy of 100.0% (classification time 0.007 sec.). Figure 2 shows that both three and five hidden 

layers appear to be optimal, the classification time is longer for five hidden layers. (0.008 sec.).  

 

 
Figure 2: Number of hidden layers compared to the training time 

Given that Backpropagation is a gradient descent method, it is possible for the ANN to not perform well if it 

does not converge on the global error maximum. We examined the error rate as illustrated in Figure 3 to ensure 

that the ANN was not being trapped in a local (non-optimal) minimum. Table 1 shows that the training time for 

the ANN increases linearly with the number of iterations, this is not an issue provided training time is not the 

rate determining step. There was a 10% decrease in classification accuracy when the learning rate was varied 

from 1.0 to 0.1. The learning rate is a measure of the size of the step taken down the gradient, so large values of 

learning rate correspond to smaller steps (which would be more accurate, but take longer to converge).  
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Figure 3: Error convergence in the ANN. 

Table 1: Iterations of the ANN vs. Training Time of the Network. 

 

 

CONCLUSION AND FUTURE WORK  

We provide a novel solution to one proof of concept attack against BACnet devices, through the use of ANN 

classification of time differences between frames of the same type. Though drawing general conclusions based 

on this preliminary work would be premature, it does indicate that taking into account specific aspects of the 

system state, in this case the time since the last write event, can help in detection of specific types of threats that 

BACnet devices and in general BAS face. By considering the context and threat model we have concluded that 

the time since the last write event is the relevant state information. Without considering this, the machine 

learning failed to find the attack; the critical information was hidden amongst the noise. By making the state 

explicit the machine learning perfectly captures the attack. The critical state information that we consider here is 

relatively simple requiring only the time since the last write event. With more complex BAS more complex 

classes of attack and thus more complex critical state models could be conducted. For example for the action 

‘open window’ relevant context may include ‘windy outside’ and ‘door open’. Correct critical state modelling 
will be key for creating a successful detection engine. While considering a general attack model and 

corresponding potentially critical states of the system is more specific than trying to learn without any attacker 

model (which, as our results support, will simply not work) yet still a lot more general than a signature (or other 

blacklisting heuristic) for detecting attacks. We conclude that, while still being limited, our results support that 

state-based intrusion detection is a promising line to pursue.  

Future work will thus try to take our promising preliminary results and extend them to fully validate state-based 

intrusion detection as a suitable approach for the BAS domain. The ANN approach used in this paper only aimed 

at showing the possibility to distinguish the attacks from the normal traffic. It does not necessarily reflect the 

best approach for an intrusion detection system. In future work we will look at different anomaly detection 

mechanisms considering key intrusion detection requirements, for example, the ability to understand alerts, so 

called white-box approaches as promoted by Costante, den Hartog, Petkovic, Etalle and Pechenizkiy (2014) and 

the potential for live system data analysis. We will also increase the relevance of the experiments by expanding 

to a larger data set, with a larger simulated BACnet. Further classes of attacks which could be detected using this 

approach will be investigated, along with corresponding critical state information needed. Also legitimate 

command attacks applied against other similar protocols, such as Modbus, Siemens S7 and Zigbee will be 

considered.  
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