
Journal of Cryptographic Engineering (2021) 11:369–397

https://doi.org/10.1007/s13389-020-00254-3

REGULAR PAPER

Timing attacks and local timing attacks against Barrett’s modular
multiplication algorithm

Johannes Mittmann
1
·Werner Schindler

1

Received: 19 May 2020 / Accepted: 20 December 2020 / Published online: 3 February 2021

© The Author(s) 2021

Abstract

Montgomery’s and Barrett’s modular multiplication algorithms are widely used in modular exponentiation algorithms, e.g. to

compute RSA or ECC operations. While Montgomery’s multiplication algorithm has been studied extensively in the literature

and many side-channel attacks have been detected, to our best knowledge no thorough analysis exists for Barrett’s multiplica-

tion algorithm. This article closes this gap. For both Montgomery’s and Barrett’s multiplication algorithm, differences of the

execution times are caused by conditional integer subtractions, so-called extra reductions. Barrett’s multiplication algorithm

allows even two extra reductions, and this feature increases the mathematical difficulties significantly. We formulate and

analyse a two-dimensional Markov process, from which we deduce relevant stochastic properties of Barrett’s multiplica-

tion algorithm within modular exponentiation algorithms. This allows to transfer the timing attacks and local timing attacks

(where a second side-channel attack exhibits the execution times of the particular modular squarings and multiplications)

on Montgomery’s multiplication algorithm to attacks on Barrett’s algorithm. However, there are also differences. Barrett’s

multiplication algorithm requires additional attack substeps, and the attack efficiency is much more sensitive to variations of

the parameters. We treat timing attacks on RSA with CRT, on RSA without CRT, and on Diffie–Hellman, as well as local

timing attacks against these algorithms in the presence of basis blinding. Experiments confirm our theoretical results.

Keywords Timing attacks · Local timing attacks · Barrett modular multiplication · RSA · RSA-CRT · Diffie–Hellman ·
Stochastic modelling · Statistical decision theory

1 Introduction

In his famous pioneer paper [19], Kocher introduced timing

analysis. Two years later, [13] presented a timing attack on

an early version of the Cascade chip. Both papers attacked

unprotected RSA implementations which did not apply the

Chinese remainder theorem (CRT). While in [19], the exe-

cution times of the particular modular multiplications and

squarings are at least approximately normally distributed,

this is not the case for the implementation in [13] since the

Cascade chip applied the wide-spread Montgomery multipli-

cation algorithm [21]. Due to conditional integer subtractions

(so-called extra reductions), the execution times can only

B Werner Schindler

werner.schindler@bsi.bund.de

Johannes Mittmann

johannes.mittmann@bsi.bund.de

1 Bundesamt für Sicherheit in der Informationstechnik (BSI),

Godesberger Allee 185–189, 53175 Bonn, Germany

attain two values, and the probability whether an extra

reduction occurs depends on the preceding Montgomery

operations within the modular exponentiation. This fact

caused substantial additional mathematical difficulties.

In [24], the random behaviour of the occurrence of extra

reductions within a modular exponentiation was studied. The

random extra reductions were modelled by a non-stationary

time-discrete stochastic process. The analysis of this stochas-

tic process (combined with an efficient error detection and

correction strategy) allowed to drastically reduce the sample

size, i.e. the number of timing measurements, namely from

200,000 to 300,000 [13] down to 5000 [28].

The analysis of the above-mentioned stochastic process

turned out to be very fruitful also beyond this attack sce-

nario. First, the insights into the probabilistic nature of the

occurrence of extra reductions within modular exponentia-

tions enabled the development of a completely new timing

attack against RSA with CRT and Montgomery’s multiplica-

tion algorithm [22]. This attack was extended to an attack on

the sliding-window-based RSA implementation in OpenSSL

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13389-020-00254-3&domain=pdf
http://orcid.org/0000-0002-3073-0106

370 Journal of Cryptographic Engineering (2021) 11:369–397

v.0.9.7b [8], which caused a patch. The efficiency of this

attack (in terms of the sample size) was increased by a factor

of ≈ 10 in [3]. Years later, it was shown that exponent blind-

ing (cf. [19], Sect. 10) does not suffice to prevent this type of

timing attack [26,27].

Moreover, in [2,14,23] local timing attacks were consid-

ered. There, a side-channel attack (e.g. a power attack or an

instruction cache attack) is carried out first, which yields the

execution times of the particular Montgomery operations.

This plus of information (compared to ‘pure’ timing attacks)

allows to overcome basis blinding (a.k.a. message blinding,

cf. [19], Sect. 10), and the attack works against both RSA

with CRT and RSA without CRT. We mention that [2] led to

a patch of OpenSSL v.0.9.7e.

Barrett’s (modular) multiplication algorithm (a.k.a. Bar-

rett reduction) [4] is a well-known alternative to Mont-

gomery’s algorithm. It is described in several standard

manuals covering RSA, Diffie–Hellman (DH) or elliptic

curve cryptosystems (e.g. [10,20]). The efficiency (e.g. run-

ning time) of Barrett’s algorithm compared to Montgomery’s

algorithm has been analysed for both software implementa-

tions [6] and hardware implementations [18]. However, to our

knowledge, there do not exist thorough security evaluations

of Barrett’s multiplication algorithm. In this paper, we close

this gap. For the sake of comparison with previous work on

Montgomery’s algorithm, we focus again on RSA with and

without CRT. In addition, we cover static DH, which can be

handled almost identically to RSA without CRT.

Similar to Montgomery’s algorithm, timing differences

in Barrett’s multiplication algorithm are caused by con-

ditional subtractions (so-called extra reductions), which

suggests to apply similar mathematical methods. However,

for Barrett’s algorithm, the mathematical challenges are sig-

nificantly greater. One reason is that more than one extra

reduction may occur. In particular, in place of a stochastic

process over {0, 1}, a two-dimensional Markov process over

[0, 1) × {0, 1, 2} has to be analysed and understood. Again,

probabilities can be expressed by multidimensional integrals

over [0, 1)ℓ, but the integrands are less suitable for explicit

computations than in the Montgomery case. This causes addi-

tional numerical difficulties in particular for the local attacks,

where ℓ is usually very large. Our results show many parallels

to the Montgomery case, and after suitable modifications, all

the known attacks on Montgomery’s algorithm can be trans-

ferred to Barrett’s multiplication algorithm. However, there

are also significant differences. First of all, for Barrett’s mul-

tiplication algorithm the attack efficiency is very sensitive to

deviations of the modulus (i.e. of the RSA primes p1 and p2

if the CRT is applied), and attacks on RSA with CRT require

additional attack steps.

The paper is organized as follows: in Sect. 2, we study

the stochastic behaviour of the execution times of Barrett’s

multiplication algorithm in the context of the square & multi-

ply exponentiation algorithm. We develop, prove and collect

results, which will be needed later to perform the attacks. In

Sect. 3, properties of Montgomery’s and Barrett’s multipli-

cation algorithms are compared, and furthermore, a variant

of Barrett’s algorithm is investigated. In Sect. 4, the par-

ticular attacks are described and analysed, while Sect. 5

provides experimental results which confirm the theoretical

considerations. Interesting in its own right is also an efficient

look-ahead strategy. Finally, Sect. 6 discusses countermea-

sures.

2 Stochastic modelling of modular
exponentiation

In this section, we analyse the stochastic timing behaviour

of modular exponentiation algorithms when Barrett’s multi-

plication is applied. We consider a basic version of Barrett’s

multiplication algorithm (cf. Algorithm 1). The slightly opti-

mized version of this algorithm due to Barrett [4] will be

discussed in Sect. 3.2.2 (cf. Algorithm 5), where we show

that the same analysis applies, albeit with additional algorith-

mic noise. Since we assume that Steps 1 to 3 of Algorithm 1

run in constant time for fixed modulus length and base (see

Justification of Assumption 2 in Sect. 3.2.1), we focus on

the stochastic behaviour of the number of extra reductions

in Algorithm 1. This knowledge will be needed in Sect. 4

when we consider concrete attacks. In Sect. 2.1, we investi-

gate the Barrett’s multiplication algorithm in isolation, and

in Sect. 2.2, we use our results to study the square & mul-

tiply exponentiation algorithm if Barrett’s multiplication is

applied. This approach can be transferred to table-based

exponentiation algorithms. Finally, we aim at equivalent

results, which are already known for Montgomery’s mul-

tiplication algorithm. We reach this goal, but the technical

difficulties are significantly larger than they are for Mont-

gomery’s multiplication algorithm (cf. Sect. 3.1). In Sect. 2.3,

we summarize the facts that are relevant for the attacks in

Sect. 4. This allows to skip the technical Sects. 2.1 and 2.2

during the first reading of this paper.

2.1 Barrett’s modular multiplication algorithm

In this subsection, we study the basic version of Barrett’s

modular multiplication algorithm (cf. Algorithm 1).

Definition 1 Let N := {0, 1, . . . }. For M ∈ N≥2, let ZM :=
{0, 1, . . . , M − 1}. Given x ∈ Z, we denote by x mod M

the unique integer in ZM congruent to x modulo M , i.e.

x mod M = x − ⌊x/M⌋M . We define the fractional part

of a real number x ∈ R by {x} := x − ⌊x⌋ ∈ [0, 1).

Let M ∈ N≥2 be a modulus of length k = ⌊logb M⌋+1 in

base b ∈ N≥2, i.e. we have bk−1 ≤ M ≤ bk−1. The multipli-

123

Journal of Cryptographic Engineering (2021) 11:369–397 371

cation modulo M of two integers x, y ∈ ZM can be computed

by an integer multiplication, followed by a modular reduc-

tion. The resulting remainder is r := (x · y) mod M =
z − q M , where z := xy and q := ⌊z/M⌋. The computation

of q is the most expensive part, because it involves an integer

division. The idea of Barrett’s multiplication algorithm is to

approximate q by

q̃:=
⌊

⌊z/bk−1⌋ · ⌊b2k/M⌋
bk+1

⌋
�

⌊
(z/bk−1) · (b2k/M)

bk+1

⌋
=q.

If the integer reciprocal μ := ⌊b2k/M⌋ of M has been pre-

computed and if b is a power of 2, then q̃ can be computed

using only multiplications and bit shifts, which on common

computer architectures are cheaper operations than divisions.

From q̃ an approximation r̃ := z − q̃ M of r can be obtained.

Since q̃ can be smaller than q, it may be necessary to correct

r̃ by some conditional subtractions of M , which we call extra

reductions. This leads to Algorithm 1.

Barrett showed that at most two extra reductions are

required in Algorithm 1. The following lemma provides an

exact characterization of the number of extra reductions and

is at the heart of our subsequent analysis. In particular, the

lemma identifies two important constants α ∈ [0, 1) and

β ∈ (b−1, 1] associated with M and b.

Lemma 1 On input x, y ∈ ZM , the number of extra reduc-

tions carried out in Algorithm 1 is

⌈
α

x

M

y

M
+ β

{
xy

bk−1

}
−

{
xy

M

}⌉
∈ Z3, (1)

where

α := (M2/b2k){b2k/M} ∈ [0, 1) and

β := ⌊b2k/M⌋/bk+1 ∈ (b−1, 1].

Proof Set z := xy, q := ⌊z/M⌋, and q̃ := ⌊⌊z/bk−1⌋μ/bk+1⌋.

Since z mod M = z − q M , the number of extra reductions

is

q − q̃ =
⌊

z

M

⌋
−

⌊⌊
z

bk−1

⌋
μ

bk+1

⌋

=
⌈⌊

z

M

⌋
−

⌊
z

bk−1

⌋
μ

bk+1

⌉

=
⌈(

z

M
−

{
z

M

})
−

(
z

bk−1
−

{
z

bk−1

})
μ

bk+1

⌉

=
⌈

z

b2k

(
b2k

M
− μ

)
+

{
z

bk−1

}
μ

bk+1
−

{
z

M

}⌉

=
⌈

z

b2k

{
b2k

M

}
+

{
z

bk−1

}
μ

bk+1
−

{
z

M

}⌉

=
⌈
α

z

M2
+ β

{
z

bk−1

}
−

{
z

M

}⌉
.

Since α, β ∈ [0, 1], this number of extra reductions is in

{0, 1, 2}. Finally, we note that ⌊b2k/M⌋ ≥ ⌊b2k/(bk −1)⌋ ≥
bk + 1, hence β > b−1. ⊓⊔

Remark 1 Note that α = 0 if and only if M divides b2k . In

order to exclude this corner case (which is not relevant to our

applications anyway), we assume α > 0 for the remainder

of this paper. Typically, b = 2ws for some word size ws ≥ 1

and α = 0 can only happen if M is a power of two, and then,

modular multiplication is easy anyway. More special cases

of α and β will be discussed in Sect. 3.2.3.

We first study the distribution of the number of extra reduc-

tions which are needed in Algorithm 1 for random inputs.

To this end, we introduce the following stochastic model.

Random variables are denoted by capital letters, and realiza-

tions of these random variables (i.e. values taken on by these

random variables) are denoted with the corresponding small

letters.

Stochastic Model 1 Let s, t ∈ [0, 1). We define the random

variable

R(s, t) :=
⌈
αst + βU − V

⌉
, (2)

where U , V are independent, uniformly distributed random

variables on [0, 1).

A realization r of R(s, t) expresses the random quantity

of extra reductions which is required in Algorithm 1 for

normalized inputs x/M, y/M ∈ M−1
ZM within a small

neighbourhood of s and t in [0, 1).

123

372 Journal of Cryptographic Engineering (2021) 11:369–397

Justification of Stochastic Model 1: Assume that N (s) and

N (t) are small neighbourhoods of s and t in [0, 1), respec-

tively. Let smin, s′ ∈ N (s) ∩ M−1
ZM such that smin is

minimal. Analogously, let tmin, t ′ ∈ N (t) ∩ M−1
ZM such

that tmin is minimal. Then, there are m, n ∈ Z such that

s′ = smin + m/M and t ′ = tmin + n/M . Then, x ′ :=
Ms′, xmin := Msmin, y′ := Mt ′, ymin := Mtmin are inte-

gers in ZM such that

x ′y′ − xmin ymin ≡ mymin + nxmin + mn (mod M).

The integers m and n assume values in

{
0, . . . , |N (s) ∩ M−1

ZM | − 1
}

and
{
0, . . . , |N (t) ∩ M−1

ZM | − 1
}
,

respectively. For cryptographically relevant modulus sizes,

these numbers are very large so that one may assume that

the admissible terms {(mymin + nxmin + mn) mod M} are

essentially uniformly distributed on ZM , justifying the model

assumption that the random variable V is uniformly dis-

tributed on [0, 1). The assumptions on the uniformity of U

and the independence of U and V have analogous justifica-

tions. ⊓⊔

Remark 2 (i) In Stochastic Model 1 and Stochastic Model 2,

we follow a strategy which has been very successful in

the analysis of Montgomery’s multiplication algorithm.

Of course, the number of extra reductions needed for

a particular computation (xy) mod M is deterministic.

On the other hand, by Lemma 1 the number of extra

reductions only depends on the fact whether in (1) the

sum within the brackets ⌈·⌉ is contained in (−1, 0], (0, 1]
or (1, 2). We exploit the fact that concerning the number

of extra reductions x, x ′ ∈ ZM have similar stochastic

properties if |x/M−x ′/M | is small in R. Furthermore, for

moduli M that are used in cryptography even very small

intervals in [0, 1) contain a gigantic number of elements

of ZM/M .

(ii) For extremely small input x or y of Algorithm 1, Stochas-

tic Model 1 may not apply. In particular, if one of the

inputs x, y is 0 or 1, the integer product x · y is already

reduced modulo M ; hence, q̃ = 0 and no extra reductions

occur (cf. Remark 4).

Definition 2 For x ∈ R, we write (x)+ := max{0, x}. More-

over, we set (x)0
+ := 1{x≥0} and (x)n

+ := ((x)+)n for

n ∈ N>0.

Lemma 2 Let s, t ∈ [0, 1).

(i) The term (an)−1(ax + b)n
+ is an antiderivative of (ax +

b)n−1
+ for all a, b ∈ R with a �= 0 and all n ∈ N>0.

(ii) Let B([0, 1)) be the Borel σ -algebra on [0, 1). For r ∈
Z3 and B ∈ B([0, 1)), we have

Pr
(
R(s, t) ≤ r , V ∈ B

)

= β−1

∫

B

(
(r−αst+v)+ − (r − αst − β + v)+

)
dv.

(iii) For r ∈ Z3, we have

Pr
(
R(s, t) ≤ r

)

= (2β)−1
(
−(r − αst)2

+ + (r − αst − β)2
+

+ (r − αst + 1)2
+ − (r − αst − β + 1)2

+
)
.

(iv) We have E
(
R(s, t)

)
= αst + β/2.

(v) We have Var
(
R(s, t)

)
= αst + β/2 − (αst + β/2)2 +

β−1(αst + β − 1)2
+.

Proof For assertion (i), see, for example, [9]. Now let r ∈ Z3

and v ∈ [0, 1). By (2), we have

Pr
(
R(s, t) ≤ r | V = v

)

=
∫ 1

0

1{αst+βu−v≤r}du

=
∫ 1

0

(r − αst − βu + v)0
+du

= β−1
(
(r − αst + v)+ − (r − αst − β + v)+

)
.

Now let B ∈ B([0, 1)). Since V is uniformly distributed on

[0, 1), we obtain

Pr
(
R(s, t) ≤ r , V ∈ B

)

=
∫

B

Pr
(
R(s, t) ≤ r | V = v

)
dv

= β−1

∫

B

(
(r − αst + v)+ − (r − αst − β + v)+

)
dv.

Setting B = [0, 1), we get

Pr
(
R(s, t) ≤ r

)

= β−1

∫ 1

0

(
(r − αst + v)+ − (r − αst − β + v)+

)
dv

= (2β)−1
(
−(r − αst)2

+ + (r − αst − β)2
+

+ (r − αst + 1)2
+ − (r − αst − β + 1)2

+
)
.

Distinguishing the cases αst + β ≤ 1 and αst + β > 1,

the expectation and variance of R(s, t) can be determined by

careful but elementary computations. ⊓⊔

Lemma 3 Let S be a uniformly distributed random variable

on [0, 1) and let t ∈ (0, 1).

123

Journal of Cryptographic Engineering (2021) 11:369–397 373

(i) For r ∈ Z3, we have

Pr
(
R(S, t) ≤ r

)

= (6αβt)−1
(
−(r)3

+ + (r − αt)3
+ + (r − β)3

+

+ (r + 1)3
+ − (r − αt − β)3

+ − (r − αt + 1)3
+

− (r − β + 1)3
+ + (r − αt − β + 1)3

+
)
.

(ii) We have E
(
R(S, t)

)
= αt/2 + β/2.

(iii) We have Var
(
R(S, t)

)
= αt/2 +β/2 − (αt/2 +β/2)2 +

(3αβt)−1(αt + β − 1)3
+.

Proof Let r ∈ Z3. We have

Pr
(
R(S, t) ≤ r

)
=

∫ 1

0

Pr
(
R(s, t) ≤ r

)
ds.

By Lemma 2 (iii), we obtain

Pr
(
R(S, t) ≤ r

)

= (2β)−1

∫ 1

0

(
−(r − αst)2

+ + (r − αst − β)2
+

+ (r − αst + 1)2
+ − (r − αst − β + 1)2

+
)
ds

= (6αβt)−1
(
−(r)3

+ + (r − αt)3
+ + (r − β)3

+

+ (r + 1)3
+ − (r − αt − β)3

+ − (r − αt + 1)3
+

− (r − β + 1)3
+ + (r − αt − β + 1)3

+
)
.

Distinguishing the cases αt + β ≤ 1 and αt + β > 1, the

expectation and variance of R(S, t) can be determined by

careful but elementary computations. ⊓⊔

Lemma 4 Let S be a uniformly distributed random variable

on [0, 1).

(i) For r ∈ Z3, we have

Pr
(
R(S, S) ≤ r

)

= (30α1/2β)−1
(
−15r2 min{α, (r)+}1/2

+ 10r min{α, (r)+}3/2

− 3 min{α, (r)+}5/2

+ 15(r − β)2 min{α, (r − β)+}1/2

− 10(r − β) min{α, (r − β)+}3/2

+ 3 min{α, (r − β)+}5/2

+ 15(r + 1)2 min{α, (r + 1)+}1/2

− 10(r + 1) min{α, (r + 1)+}3/2

+ 3 min{α, (r + 1)+}5/2

− 15(r − β + 1)2 min{α, (r − β + 1)+}1/2

+ 10(r − β + 1) min{α, (r − β + 1)+}3/2

− 3 min{α, (r − β + 1)+}5/2
)
.

(ii) We have E
(
R(S, S)

)
= α/3 + β/2.

(iii) If α +β ≤ 1, then Var
(
R(S, S)

)
= α/3 +β/2 − (α/3 +

β/2)2. If α + β > 1, then Var
(
R(S, S)

)
= α/3 + β/2 −

(α/3 + β/2)2 + (15β)−1
(
15(1 − β)2 − 10α(1 − β) +

3α2
)
− 8(15α1/2β)−1(1 − β)5/2.

Proof Let r ∈ Z3. We have

Pr
(
R(S, S) ≤ r

)
=

∫ 1

0

Pr
(
R(s, s) ≤ r

)
ds.

By Lemma 2 (iii), we obtain

Pr
(
R(S, S) ≤ r

)

= (2β)−1

∫ 1

0

(
−(r − αs2)2

+ + (r − αs2 − β)2
+

+ (r − αs2 + 1)2
+ − (r − αs2 − β + 1)2

+
)
ds.

For c ∈ {r , r − β, r + 1, r − β + 1}, we have

∫ 1

0

(c − αs2)2
+ = (15α1/2)−1

(
15c2 min{α, (c)+}1/2

−10c min{α, (c)+}3/2 + 3 min{α, (c)+}5/2
)
.

This implies (i). Distinguishing the cases α + β ≤ 1 and

α + β > 1, the expectation and variance of R(S, S) can be

determined by careful but elementary computations. ⊓⊔

The number of extra reductions in Barrett’s multiplication

algorithm depends decisively on the parameters α and β. In

Table 1, we illustrate this phenomenon with several numeri-

cal examples.

Remark 3 (i) For a random modulus M that is uniformly

distributed on {bk−1, . . . , bk − 1}, the parameters (α, β)

can be modelled as realizations of the random vector

(A, B) := (X2Y , (bX)−1), where X and Y denote inde-

pendent random variables that are uniformly distributed

on [b−1, 1) and [0, 1), respectively. We have

E(A) =
1

2

1

1 − b−1

∫ 1

b−1
x2dx =

1

6
(1 + b−1 + b−2),

E(B) =
b−1

1 − b−1

∫ 1

b−1
x−1dx =

log(b)

b − 1
.

For example, we get α ≈ 0.29 and β ≈ 0.69 on average

if b = 2.

(ii) By (2), two extra reductions can only occur if α +β > 1

and the probability of this event increases for larger sums

123

374 Journal of Cryptographic Engineering (2021) 11:369–397

α + β. This sum can be bounded by

b−1 < α + β ≤
M2

b2k
+

bk−1

M
< 1 + b−1,

in particular α and β cannot attain their individual

maxima simultaneously. For b = 2, we numerically

determined Pr(A + B > 1) ≈ 0.5, which means that

two extra reductions do occur for roughly one half of the

moduli in this case.

(iii) Although the probability of two extra reductions can be

very small or even 0, it does not simplify the stochastic

representations (2) and (3) in Stochastic Model 1 and

Stochastic Model 2. In particular, it does not simplify the

analysis unless α ≈ 0 or β ≈ 0 (cf. Sect. 3.2.3).

(iv) Although the impact of the extra reductions in terms of

running time efficiency is only marginal for both Barrett’s

multiplication algorithm and Montgomery’s multiplica-

tion algorithm, extra reductions are the source of several

side-channel attacks (cf. Sect. 4).

2.2 Modular exponentiation (square andmultiply
algorithms)

Now we consider the left-to-right binary exponentiation

algorithm (see Algorithm 2), where modular squarings and

multiplications are performed using Barrett’s algorithm (see

Algorithm 1). Our goal is to define and analyse a stochastic

process which allows to study the stochastic behaviour of the

execution time of Algorithm 2. Sect. 2.2 provides a sequence

of technical lemmata which be needed later.

Definition 3 Let d ∈ N>0. The binary representation of d is

denoted by (dℓ−1, . . . , d0)2 with dℓ−1 = 1 and ℓ is called

bit-length of d. The Hamming weight of d is defined as

ham(d) := d0 + · · · + dℓ−1.

Let y ∈ ZM be an input basis of Algorithm 2. We denote

the intermediate values computed in the course of Algo-

rithm 2 by x0, x1, . . . ∈ ZM and associate the sequence of

squaring and multiplication operations with a stringO1O2 · · ·
over the alphabet {S,M}. For the sake of defining an infi-

nite stochastic process, we assume that Algorithm 2 may

run forever; hence, x0, x1, . . . is an infinite sequence and

O1O2 · · · ∈ {S,M}ω. Consequently, we have x0 = y and

xn+1 =
{

x2
n mod M, ifOn+1 = S,

(xn · y) mod M, ifOn+1 = M,

for all n ∈ N. Note that O1O2 · · · does not contain the sub-

string MM. We will refer to strings O1O2 · · · without substring

MM as operation sequences.

Note that the square and multiply algorithm applied to

an exponent d corresponds to a particular finite (d-specific)

operation sequence O1O2 · · ·Oℓ+ham(d)−2, where ℓ is the bit-

length of d.

Stochastic Model 2 Let t ∈ [0, 1) and let O1O2 · · · ∈ {S,M}ω
be an operation sequence. We define a stochastic process

(Sn, Rn)n∈N on the state space S := [0, 1) × Z3 as follows.

Let S0, S1, . . . be independent random variables on [0, 1).

The random variable S0 is uniformly distributed in N (s0) ∩
M−1

ZM , where N (s0) is a small neighbourhood of s0 =
y/M . Further, the random variables S1, S2, . . . are uniformly

distributed random variables on [0, 1), while R0 is arbitrary

(e.g. R0 = 0), and for n ∈ N we define

Rn+1 :=
{⌈

αS2
n + βUn+1 − Sn+1

⌉
, ifOn+1 = S,⌈

αSn t + βUn+1 − Sn+1

⌉
, ifOn+1 = M,

(3)

where U1, U2, . . . are independent, uniformly distributed

random variables on [0, 1).

The value t represents a normalized input y/M of

Algorithm 2, realizations s0, s1, . . . of S0, S1, . . . repre-

sent the normalized intermediate values x0/M, x1/M, . . . ∈
M−1

ZM , and a realization rn+1 of Rn+1 represents the num-

ber of extra reductions which are necessary to compute xn+1

from xn (and, additionally, from y if On+1 = M).

Justificationof StochasticModel 2: This follows from the jus-

tification of Stochastic Model 1 by observing that, for inputs

x, y ∈ ZM of Algorithm 1, the term {xy/M} in (1) equals the

normalized value
(
(xy) mod M

)
/M of the product modulo

M . As in Stochastic Model 1, we first conclude that U1 and

S1 are uniformly distributed on [0, 1). It follows by induc-

tion that S2, S3, . . . are uniformly distributed on [0, 1), and

S0, S1, S2, . . . are independent. ⊓⊔

Remark 4 Remark 2 (ii) applies to the stochastic Stochastic

Model 2 as well. In Sect. 4.3, we will adjust the stochastic

process (Sn, Rn)n∈N to a table-based exponentiation algo-

rithm (fixed window exponentiation), where multiplications

by 1 occur frequently. Multiplications by 1 will therefore be

handled separately.

Lemma 5 Let λ be the Lebesgue measure on the Borel σ -

algebra B([0, 1)), let η be the counting measure on the

power set P(Z3) (i.e. η(0) = η(1) = η(2) = 1), and

let λ ⊗ η be the product measure on the product σ -algebra

B([0, 1)) ⊗ P(Z3).

(i) The stochastic process (Sn, Rn)n∈N is a non-homogeneous

Markov process on S .

(ii) The random vector (Sn, Rn) has a density fn(sn, rn) with

respect to λ ⊗ η.

123

Journal of Cryptographic Engineering (2021) 11:369–397 375

Table 1 Numerical examples for the probabilities of extra reductions

in Algorithm 1 for parameters α, β of several moduli M with base

b = 2. Here, S and T denote independent random variables that are

uniformly distributed on [0, 1). We consider the cases of multiplication

of a random input with a fixed input (with normalized value t = 0.9

and t = 0.7), squaring of a random input, and multiplication of two

random inputs

α β α + β Pr
(
R(S, t = 0.9) = r

)
Pr

(
R(S, t = 0.7) = r

)
Pr

(
R(S, S) = r

)
Pr

(
R(S, T) = r

)

r = 0 r = 1 r = 2 r = 0 r = 1 r = 2 r = 0 r = 1 r = 2 r = 0 r = 1 r = 2

0.01 0.50 0.51 0.75 0.25 0.0 0.75 0.25 0.0 0.75 0.25 0.0 0.75 0.25 0.0

0.29 0.69 0.98 0.52 0.48 0.0 0.55 0.45 0.0 0.56 0.44 0.0 0.58 0.42 0.0

0.25 1.0 1.25 0.40 0.59 0.0082 0.42 0.58 0.0049 0.42 0.57 0.0061 0.44 0.55 0.0033

0.69 0.56 1.25 0.41 0.58 0.0028 0.48 0.52 0.0 0.49 0.50 0.0035 0.55 0.45 0.00066

0.99 0.50 1.49 0.33 0.65 0.023 0.41 0.59 0.0036 0.44 0.54 0.021 0.51 0.49 0.0056

(iii) For B ∈ B([0, 1)), rn+1 ∈ Z3, and fixed (sn, rn) ∈ S ,

we have

Pr(Sn+1 ∈ B, Rn+1 = rn+1 | Sn = sn , Rn = rn)

=
∫

B×{rn+1}
hn+1(sn+1, r | sn)dsn+1dη(r)

=
∫

B
hn+1(sn+1, rn+1 | sn)dsn+1,

where the conditional density is given by

hn+1(sn+1, rn+1 | sn)

= β−1
(
(rn+1 − αs2

n + sn+1)+

− (rn+1 − αs2
n + sn+1 − β)+

− (rn+1 − αs2
n + sn+1 − 1)+

+ (rn+1 − αs2
n + sn+1 − β − 1)+

)

if On+1 = S (i.e. the (n + 1)-th operation is squaring)

and

hn+1(sn+1, rn+1 | sn)

= β−1
(
(rn+1 − αsn t + sn+1)+

− (rn+1 − αsn t + sn+1 − β)+

− (rn+1 − αsn t + sn+1 − 1)+

+ (rn+1 − αsn t + sn+1 − β − 1)+
)

ifOn+1 = M (i.e. the (n+1)-th operation is multiplication

by y).

In particular, the conditional density hn+1(sn+1, rn+1 |
sn) does not depend on rn . (This justifies the omission of

rn from the list of arguments.)

Proof Assertion (i) is an immediate consequence of the defi-

nition of Stochastic Model 2. To show (ii), let C ⊆ [0, 1)×Z3

be a (λ ⊗ η)-zero set. Then, C =
⋃

j∈Z3
B j × { j} (disjoint

union) for measurable λ-zero sets B0, B1 and B2. Hence,

λ(Bu) = 0 for Bu := B0 ∪ B1 ∪ B2. Finally, we get

Pr((Sn, Rn) ∈ C) ≤ Pr((Sn, Rn) ∈ Bu × Z3)

= Pr(Sn ∈ Bu) = λ(Bu) = 0.

This shows that the pushforward measure of (Sn, Rn) is

absolutely continuous with respect to λ ⊗ η; therefore,

assertion (ii) follows from the Radon–Nikodym theorem.

Assertion (iii) follows from Lemma 2 (ii) with (v, r) =
(sn+1, rn+1) and (s, t) = (sn, sn) (if On+1 = S) or (s, t) =
(sn, t) (if On+1 = M) and V = Sn+1. ⊓⊔

Lemma 6 (i) For rn+1 ∈ Z3, we have

Pr(Rn+1 = rn+1)

=
∫

[0,1)×Z3

(∫ 1

0

hn+1(sn+1, rn+1 | sn)dsn+1

)

fn(sn, rn)dsndη(rn)

=
∫ 1

0

(∫ 1

0

hn+1(sn+1, rn+1 | sn)dsn+1

)
dsn .

In particular, the distribution of Rn+1 does not depend

on n but only on the operation type On+1 ∈ {S,M}.
(ii) There exist real numbers μS, μM, σ

2
S
, σ 2

M
∈ R such that

E(Rn+1) = μOn+1 and Var(Rn+1) = σ 2
On+1

for all n ∈ N.

In particular, we have

μS = α/3 + β/2,

μM = αt/2 + β/2,
(4)

σ 2
S

= α/3 + β/2 − (α/3 + β/2)2, if α + β ≤ 1,

σ 2
S

= α/3 + β/2 − (α/3 + β/2)2

+ (15β)−1
(
15(1 − β)2 − 10α(1 − β) + 3α2

)

− 8(15α1/2β)−1(1 − β)5/2, if α + β > 1,

(5)

σ 2
M

= αt/2 + β/2 − (αt/2 + β/2)2

+ (3αβt)−1(αt + β − 1)3
+.

(6)

123

376 Journal of Cryptographic Engineering (2021) 11:369–397

The expectation μM is strictly monotonously increasing

in t = y/M.

Proof Let rn+1 ∈ Z3. Since

Pr(Rn+1 = rn+1)

= Pr
(
(Sn, Rn)∈S , (Sn+1, Rn+1)∈[0, 1)×{rn+1}

)
,

the first equation of assertion (i) follows from Lemma 5. The

second equation of (i) follows from the fact that

2∑

r=0

fn(sn, r) = 1 for all sn ∈ [0, 1),

because Sn is uniformly distributed on [0, 1). Assertion (ii) is

an immediate consequence of (i). The formulae (4), (5), and

(6) follow from Lemma 4 (ii), Lemma 3 (ii), Lemma 4 (iii),

and Lemma 3 (iii). The final assertion of (ii) is obvious since

α > 0. ⊓⊔

Definition 4 A sequence X1, X2, . . . of random variables is

called m-dependent if the random vectors (X1, . . . , Xu) and

(Xv, . . . , Xn) are independent for all 1 ≤ u < v ≤ n with

v − u > m.

Lemma 7 (i) For rn+1, . . . , rn+u ∈ Z3, we have

Pr(Rn+1 = rn+1, . . . , Rn+u = rn+u)

=
∫

[0,1)×Z3

(∫ 1

0

(
· · ·

∫ 1

0

hn+u(sn+u, rn+u | sn+u−1)dsn+u · · ·
)

hn+1(sn+1, rn+1 | sn)dsn+1

)
fn(sn, rn)dsndη(rn)

=
∫ 1

0

(∫ 1

0

(
· · ·

∫ 1

0

hn+u(sn+u, rn+u | sn+u−1)dsn+u · · ·
)

hn+1(sn+1, rn+1 | sn)dsn+1

)
dsn .

In particular, the joint distribution of Rn+1, . . . , Rn+u

does not depend on n but only on the operation types

On+1, . . . ,On+u ∈ {S,M}.
(ii) There exist real numbers covSS, covSM, covMS ∈ R such

that Cov(Rn, Rn+1) = covOnOn+1 for all n ∈ N>0.

(iii) The sequence R1, R2, . . . is 1-dependent. In particular,

we have Cov(Rn, Rn+s) = 0 for all s ≥ 2.

Proof Let rn+1, . . . , rn+u ∈ Z3. Then,

Pr(Rn+1 = rn+1, . . . , Rn+u = rn+u)

= Pr
(
(Sn, Rn) ∈ S ,

(Sn+i , Rn+i) ∈ [0, 1) × {rn+i } for i = 1, . . . , u
)

and assertion (i) follows from Lemma 5, Lemma 6 (i), and

the Ionescu–Tulcea theorem. Assertion (ii) is an immediate

consequence of (i). To prove (iii), let 1 ≤ u < v ≤ n such

that v − u > 1, let r1, . . . , ru, rv, . . . , rn ∈ Z3, and define

the events

E1 :=
{
(S0, R0) ∈ S

}
,

E2 :=
{
(Si , Ri) ∈ [0, 1) × {ri } for i = 1, . . . , u

}
,

E3 :=
{
(Sv−1, Rv−1) ∈ S

}
,

E4 :=
{
(Si , Ri) ∈ [0, 1) × {ri } for i = v, . . . , n

}
.

Using the Markov property of (Sn, Rn)n∈N and (i), we obtain

Pr(R1 = r1, . . . , Ru = ru, Rv = rv, . . . , Rn = rn)

= Pr(E1, E2, E3, E4)

= Pr(E1, E2) · Pr(E3 | E1, E2) · Pr(E4 | E1, E2, E3)

= Pr(E1, E2) · 1 · Pr(E4 | E3)

= Pr(E1, E2) · Pr(E3, E4) · Pr(E3)
−1

= Pr(E1, E2) · Pr(E3, E4)

= Pr(R1=r1, . . . , Ru=ru) · Pr(Rv=rv, . . . , Rn=rn);

hence, (R1, . . . , Ru) and (Rv, . . . , Rn) are independent. We

conclude that R1, R2, . . . is a 1-dependent sequence. ⊓⊔

Definition 5 The normal distribution with mean μ and vari-

ance σ 2 is denoted by N (μ, σ 2), and

Φ(x) := (2π)−1/2

∫ x

−∞
e−t2/2dt

is the cumulative distribution function of N (0, 1).

For strings x, y ∈ {S,M}∗, we denote by #x (y) ∈ N the

number of occurrences of x in y.

Below we will use the following version of the central limit

theorem for m-dependent random variables due to Hoeffding

& Robbins.

Lemma 8 (Cf. [17, Theorem 1]) Let X1, X2, . . . be an m-

dependent sequence of random variables such that E(X i) =
0 and E(|X i |3) is uniformly bounded for all i ∈ N>0. For i ∈
N>0 define Ai := Var(X i+m)+2

∑m
j=1 Cov(X i+m− j , X i+m).

If the limit A := limu→∞ u−1
∑u

h=1 Ai+h exists uniformly

for all i ∈ N, then (X1 + · · · + Xs)/
√

s has the limiting

distribution N (0, A) as s → ∞.

Lemma 9 Let O1O2 · · · ∈ {S,M}ω be an operation sequence

such that the limit

ρ := lim
u→∞

#M(Oi+1 · · ·Oi+u)

u
(7)

123

Journal of Cryptographic Engineering (2021) 11:369–397 377

exists uniformly for all i ∈ N and define

A := ρ · σ 2
M

+ (1 − ρ) · σ 2
S

+ 2ρ · covMS +2ρ · covSM

+ (2 − 4ρ) · covSS .

Then, lims→∞ Var(Rn+1 + · · · + Rn+s)/s = A and

Rn+1 + · · · + Rn+s − E(Rn+1 + · · · + Rn+s)√
s

has the limiting distribution N (0, A).

Proof Let R′
i := Ri − E(Ri) for all i ∈ N>0. Then,

R′
1, R′

2, . . . is a 1-dependent sequence of random variables

with E(R′
i) = 0 and E(|R′

i |3) ≤ 23 = 8 for all i . Define

Ai := Var(R′
i+1) + 2 Cov(R′

i , R′
i+1). For x ∈ {S,M}∗ and

0 ≤ i ≤ j , we set #
i, j
x := #x (Oi · · ·O j). With this notation,

we have

u∑

h=1

Ai+h = #
i+2,i+u+1
M σ 2

M
+ #

i+2,i+u+1
S σ 2

S

+ 2#
i+1,i+u+1
MS covMS +2#

i+1,i+u+1
SM covSM

+ 2#
i+1,i+u+1
SS covSS .

Using the identities

#
i+1,i+u+1
MS = #

i+1,i+u
M ,

#
i+2,i+u+1
S = u − #

i+2,i+u+1
M ,

#
i+1,i+u+1
SM = #

i+2,i+u+1
M ,

#
i+1,i+u+1
SS = u − 1 − #

i+1,i+u
M − #

i+2,i+u+1
M ,

we obtain

u∑

h=1

Ai+h = #
i+2,i+u+1
M σ 2

M
+ (u − #

i+2,i+u+1
M)σ 2

S

+ 2#
i+1,i+u
M covMS +2#

i+2,i+u+1
M covSM

+ 2(u − 1 − #
i+2,i+u+1
M − #

i+1,i+u
M) covSS .

As u → ∞, the ratio #
i+1,i+u
M /u converges to ρ uniformly

for all i by assumption; therefore, u−1
∑u

h=1 Ai+h converges

to A uniformly for all i . Since

Var(R′
n+1 + · · ·+ R′

n+s) = Var(R′
n+1)+

s∑

h=1

An+h − An+s,

Var(R′
n+1 + · · · + R′

n+s)/s converges to A as s → ∞.

Finally, (R′
n+1+· · ·+R′

n+s)/
√

s has the limiting distribution

N (0, A) by Lemma 8. ⊓⊔

We note that for random operation sequences O1O2 · · ·
(corresponding to random exponents with independent and

unbiased bits), the convergence of (7) is not uniform

with probability 1. However, for any given finite oper-

ation sequence On+1 · · ·On+s we may construct an infi-

nite sequence O1O2 · · · with subsequence On+1 · · ·On+s for

which convergence of (7) is uniform and ρ ≈ #M(On+1 · · ·
On+s)/s. Therefore, if s is sufficiently large, it is reasonable

to assume that the normal approximation

Pr

(
Rn+1 + · · · + Rn+s − E(Rn+1 + · · · + Rn+s)√

Var(Rn+1 + · · · + Rn+s)
≤ x

)

≈ Φ(x)

(8)

is appropriate. We mention that in our experiments in

Sect. 5.1 approximation (8) is applied and leads to successful

attacks.

2.3 Summary of the relevant facts

In this section, we studied the random behaviour of the num-

ber of extra reductions when Barrett’s modular multiplication

algorithm is used within the square and multiply exponenti-

ation algorithm. In Sect. 4.3, we generalize this approach to

table-based exponentiation algorithms.

We defined a stochastic process (Sn, Rn)n∈N. The random

variable Sn represents the (random) normalized intermediate

value (= intermediate value divided by the modulus M) in

Algorithm 2 after the n-th Barrett operation, and the random

variable Rn represents the (random) number of extra reduc-

tions needed for the n-th Barrett operation.

Algorithm 1 needs 0, 1 or 2 extra reductions. The stochas-

tic process (Sn, Rn)n∈N is a non-homogeneous Markov chain

on the state space S = [0, 1) × Z3. The projection onto

the first component gives independent random variables

S1, S2, . . ., which are uniformly distributed on the unit inter-

val [0, 1). However, we are interested in the stochastic

process R1, R2, . . . on Z3, which is more difficult to analyse.

In particular, E(Rn) and Var(Rn) depend on the operation

type On of the n-th Barrett operation (multiplication M or

squaring S), while the covariances Cov(Rn, Rn+1) depend

on the operation types of the n-th and the (n + 1)-th Bar-

rett operation (SM, MS or SS). The formulae (4), (5) and

(6) provide explicit formulae for the expectations and the

variances, while Lemma 7 (i), (ii) explains how to compute

the covariances. Further, the stochastic process (Rn)n∈N≥1

is 1-dependent. In particular, a version of the central limit

theorem for dependent random variables can be applied to

approximate the distribution of standardized finite sums (cf.

(8)).

123

378 Journal of Cryptographic Engineering (2021) 11:369–397

3 Montgomerymultiplication versus Barrett
multiplication

In Sect. 3.1, we briefly treat Montgomery’s multiplication

algorithm (MM) [21] and summarize relevant stochastic

properties. This is because in Sect. 4 we consider the question

whether the (known) pure and local timing attacks against

Montgomery’s multiplication algorithm can be transferred

to implementations that apply Barrett’s algorithm.

3.1 Montgomery’s multiplication algorithm in a
nutshell

Montgomery’s multiplication algorithm is widely used to

compute modular exponentiations because it transfers mod-

ulo operations and divisions to moduli and divisors, which

are powers of 2.

For an odd modulus M (e.g. an RSA modulus or a prime),

the integer R := 2t > M is called Montgomery’s constant,

and R−1 ∈ ZM denotes its multiplicative inverse modulo M .

Moreover, M∗ ∈ ZR satisfies the integer equation R R−1 −
M M∗ = 1. Montgomery’s algorithm computes

(a, b) �→ MM(a, b; M) := abR−1 mod M

with a version of Algorithm 3. Here, ws denotes the word

size of the arithmetic operations (typically, depending on

the platform ws ∈ {8, 16, 32, 64}), which divides the expo-

nent t . Further, r = 2ws, so that R = rv with v = t/ws.

In Algorithm 3, the operands x, y and s are expressed

in the r -adic representation. That is, x = (xv−1, ..., x0)r ,

y = (yv−1, ..., y0)r and s = (sv−1, ..., s0)r with r = 2ws.

Finally, m∗ = M∗ mod r . After Step 3 the intermediate value

s ≡ abR−1 (mod M) and s ∈ [0, 2M). The instruction

s := s − M in Step 4, called ‘extra reduction’ (ER), is car-

ried out iff s ∈ [M, 2M). This conditional integer subtraction

is responsible for timing differences, and thus is the source

of side channel attacks.

Assumption 1 (Montgomery modular multiplication) For

fixed modulus M and fixed Montgomery constant R,

Time
(
MM(a, b; M)

)
∈

{
c, c+cER

}
for all a, b ∈ ZM , (9)

which means that an MM operation costs time c if no ER is

needed, and cER equals the time for an ER. (The constants c

and cER depend on the concrete implementation.)

Justification of Assumption 1: (See [26], Remark 1, for a

comprehensive analysis.) For known-input attacks (with

more or less randomly chosen inputs), Assumption 1 should

usually be valid. An exception is pure timing attacks on

RSA with CRT implementations in old versions of OpenSSL

[3,7], cf. Sect. 4.2. The reason is that OpenSSL applies dif-

ferent subroutines to compute the for-loop in Algorithm 3,

depending on whether x and y have identical word size or

not. The before-mentioned timing attacks on RSA with CRT

are adaptive chosen input attacks, and during the attack cer-

tain MM-operands become smaller and smaller. This feature

makes the attack to some degree more complicated but does

not prevent it because new sources for timing differences

occur. RSA implementations on smart cards and microcon-

trollers usually should not care about word lengths (and meet

Assumption 1 in any case) because in normal use operands

with different word size rarely occur so that an optimization

of this case seems to be useless. ⊓⊔
In the following, we summarize some well-known funda-

mental stochastic properties of Montgomery’s multiplication

algorithm, or more precisely, on the distribution of random

extra reductions within a modular exponentiation algorithm.

Their knowledge is needed to develop (effective and efficient)

pure or local timing attacks [3,7,22–28].

We interpret the normalized intermediate values of Algo-

rithm 4 as realizations of random variables S0, S1, With

the same arguments as in Sect. 2.2 (for Barrett’s multi-

plication), one concludes that for Algorithm 4 the random

variables S1, S2, . . . are iid uniformly distributed on [0, 1).

We set wi = 1 if the i-th Montgomery operation requires

123

Journal of Cryptographic Engineering (2021) 11:369–397 379

an ER and wi = 0 otherwise. We interpret the values

w1, w2, . . . as realizations of {0, 1}-valued random variables

W1, W2,

Interestingly, it does not depend on the word size ws

whether an ER is necessary but only on (a, b, M, R). This

allows to consider the case ws = t (i.e. v = 1) when

analysing the stochastic behaviour of the random variables

Wi in modular exponentiation algorithms. In particular, the

computation of MM(a, b; M) requires an ER iff

MM(a, b, M)

M
<

a

M

b

M

M

R
. (10)

This observation allows to express the random variable Wi

in terms of Si−1 and Si . For Algorithm 4, this implies

Wi =

⎧
⎨
⎩

1{Si <Si−1
ỹ
M

M
R

} if the i − th op. is mult. by ỹ,

1{Si <S2
i−1

M
R

} if the i − th op. is squaring.
(11)

The random variables W1, W2, . . . have interesting prop-

erties which are similar to those of R1, R2, In particular,

they are neither stationary distributed nor independent but 1-

dependent and under weak assumption they fulfil a version

of the central limit theorem for dependent random vari-

ables. Relation (11) allows to represent joint probabilities

Pr(Wi = wi , . . . , Wi+k−1 = wi+k−1) as integrals over the

(k + 1)-dimensional unit cube. We just note that

Pr(Wi = 1) =
{

ỹ
2R

if the i − th op. is mult. by ỹ,
M
3R

if the i − th op. is squaring.
(12)

3.2 A closer look at Barrett’s multiplication
algorithm

In this subsection, we develop and justify equivalents to

Assumption 1 for two (different) Barrett multiplication algo-

rithms (Algorithm 1 and Algorithm 5). Therefrom, we deduce

stochastic representations, which describe the random timing

behaviour of modular exponentiations y �→ yd mod M .

3.2.1 Modular exponentiation with Algorithm 1

At first we formulate an equivalent to Assumption 1.

Assumption 2 (Barrett modular multiplication) For fixed

modulus M ,

Time
(
BM(a, b; M)

)
∈

{
c, c + cER, c + 2cER

}
(13)

for all a, b ∈ ZM , which means that a Barrett multiplication

(BM) costs time c if no ER is needed, and cER equals the time

for one ER. (The constants c and cER depend on the concrete

implementation.)

Justification of Assumption 2: The justification of Assump-

tion 2 is rather similar to the justification of Assumption 1 in

Sect. 3.1. In Line 1 of Algorithm 1, x, y ∈ ZM are multiplied

in Z, and in Line 2 the rounding off brackets ⌊·⌋ are simple

shift operations if b equals 2 or a suitable power of two (e.g.

b = 2ws, where ws denotes the word size of the underly-

ing arithmetic). For known-input attacks (with more or less

randomly chosen inputs), and for smart cards and microcon-

trollers in general it is reasonable to assume that the Lines 1–3

cost identical time for all x, y ∈ ZM and, consequently, that

Assumption 1 is valid. Exceptions may exist for adaptive

chosen input timing attacks on RSA implementations (cf.

Sect. 4.2) on PCs, which use large general libraries. Even

then it seems to be very likely that (as for Montgomery’s

multiplication algorithm) such optimizations allow timing

attacks anyway. ⊓⊔
This leads to the following stochastic representation of the

(random) timing of a modular exponentiation yd mod M if

it is calculated with Algorithm 2.

Algorithm 2 & Algorithm 1:

Time(yd mod M) = tset + (ℓ + ham(d) − 2)c

+ (R1 + · · · + Rℓ+ham(d)−2)cER + N . (14)

Here, the ‘setup-time’ tset summarizes the time needed for

all operations that are not part of Algorithm 1, e.g. the time

needed for input and output and maybe for the computation of

the constant μ (if not stored). The random variable N quan-

tifies the ‘timing noise’. This includes measurement errors

and possible deviations from Assumption 2. We assume that

N ∼ N (0, σ 2). We allow σ 2 = 0, which means ’no noise’

(i.e. N ≡ 0), while a nonzero expectation E(N) is ‘moved’

to tset. The data-dependent timing differences are quantified

by the stochastic process R1, R2, . . . , Rℓ+ham(d)−2, which is

thoroughly analysed in Sect. 2. Recall that the distribution of

this stochastic process depends on the secret exponent d and

on the ratio t = y/M .

Remark 5 (i) Without blinding mechanisms Time(yd mod

M) is identical for repeated executions with the same

basis y if we neglect possible measurement errors. At

first sight, the stochastic representation (14) may be sur-

prising but the stochastic process R1, R2, . . . describes

the random timing behaviour for bases y′ ∈ ZM whose

ratio y′/M is close to t = y/M (cf. Stochastic Model 1).

(ii) A similar stochastic representation exists for table-based

exponentiation algorithms, see Sect. 4.3.

3.2.2 Modular exponentiation with Algorithm 5

Algorithm 5 is a modification of Algorithm 1 containing an

optimization which was already proposed by Barrett [4]. Its

Lines 3-6 substitute Line 3 of Algorithm 1. We may assume

123

380 Journal of Cryptographic Engineering (2021) 11:369–397

b = 2ws > 2, where ws is the word size of the integer arith-

metic (typically,ws ∈ {8, 16, 32, 64}). Line 3 of Algorithm 1

computes a multiplication q̃ · M of two integers, which are in

the order of bk , and a subtraction of two integers, which are

in the order of b2k . In contrast, Line 3 of Algorithm 5 only

requires a modular multiplication (q̃ · M) mod 2ws(k+1), the

subtraction of two integers in the order of bk+1 and Line 5

possibly one addition by bk+1.

After Line 6 of Algorithm 5, r ≡ z−(q̃ · M) (mod bk+1),

and further 0 ≤ r < bk+1. Since ⌊logb M⌋ ≤ logb M <

k = ⌊logb M⌋ + 1, we have bk−1 ≤ M < bk , hence

3M < 3bk ≤ bk+1. By Lemma 1, the values r after Line 3 of

Algorithm 1 and r after Line 6 of Algorithm 5 thus coincide,

which means that the number of extra reductions is the same

for both algorithms. If cadd denotes the time needed for an

addition of bk+1 in Line 5 of Algorithm 5, this leads to an

equivalent of Assumption 2.

Assumption 3 (Barrett modular multiplication, optimized)

For fixed modulus M ,

Time
(
BM(a, b; M)

)
∈

{
c, c + cER, c + 2cER,

c + cadd, c + cER + cadd, c + 2cER + cadd

} (15)

for all a, b ∈ ZM , which means that a Barrett multiplication

(BM) with Algorithm 5 (without extra reductions or an extra

addition by bk+1) costs time c, while cER and cadd equal the

time for one ER or for an addition by bk+1, respectively. (The

constants c, cER and cadd depend on the concrete implementa-

tion.) When implemented on the same platform, the constant

c in (15) should be smaller than in (13).

Justification of Assumption 3: The justification is rather sim-

ilar to that of Assumption 2. The relevant arguments have

already been discussed at the beginning of this subsection.

This also concerns the general expositions to the impact

of possible optimizations of the integer multiplication algo-

rithm. ⊓⊔
The if-condition in Line 4 of Algorithm 5 introduces an

additional source of timing variability, which has to be anal-

ysed. We have already explained that this if-condition does

not affect the number of extra reductions. Next, we determine

the probability of an extra addition by bk+1.

Let x, y ∈ ZM and let z = x · y. We denote by ra the

number of extra additions by bk+1 in the computation of

z mod M . Obviously, ra = 1 iff z mod bk+1 < q̃ M mod

bk+1 (and ra = 0 otherwise), or equivalently, when dividing

both terms by bk+1,

ra = 1 iff

{
z

bk+1

}
<

{
q̃ M

bk+1

}
. (16)

Next, we derive a more convenient characterization of (16).

Let γ := M/bk+1 ∈ (0, b−1). We have

q̃ M

bk+1
=

⌊⌊
z

bk−1

⌋
⌊b2k/M⌋

bk+1

⌋
M

bk+1

=
⌊

z

bk−1

⌋
⌊b2k/M⌋

bk+1

M

bk+1
−

{⌊
z

bk−1

⌋
⌊b2k/M⌋

bk+1

}
M

bk+1

=
z

bk−1

⌊b2k/M⌋
bk+1

M

bk+1
−

{
z

bk−1

}
⌊b2k/M⌋

bk+1

M

bk+1

− γ

{
β

⌊
z

bk−1

⌋}

=
z

bk−1

b2k/M − {b2k/M}
bk+1

M

bk+1
− βγ

{
z

bk−1

}

− γ

{
β

⌊
z

bk−1

⌋}

=
z

bk+1
−

z

M2

M2

b2k

{
b2k

M

}
M

bk+1
− βγ

{
z

bk−1

}

− γ

{
β

⌊
z

bk−1

⌋}

=
z

bk+1
− αγ

z

M2
− βγ

{
z

bk−1

}
− γ

{
β

⌊
z

bk−1

⌋}
.

Since 0 ≤ αγ (z/M2) + βγ {z/bk−1} + γ {β⌊z/bk−1⌋} ≤
3γ < 3/b ≤ 1, we can rewrite characterization (16) as

ra = 1 iff
{

z

bk+1

}
< αγ

z

M2
+ βγ

{
z

bk−1

}
+ γ

{
β

⌊
z

bk−1

⌋}
.

(17)

Our aim is to develop a stochastic model for the extra addi-

tion. We start with a closer inspection of the right-hand side

of (17). Let z = (z2k−1, . . . , z0)b be the b-ary representation

123

Journal of Cryptographic Engineering (2021) 11:369–397 381

of z, where leading zero digits are permitted. Then,

u′ :=
{
z/bk+1

}
= (0.zk, . . . , z0)b,

v1 := z/M2 = (z2k−1, . . . , z0)b/M2,

v2 :=
{
z/bk−1

}
= (0.zk−2, . . . , z0)b, and

v3 :=
{
β⌊z/bk−1⌋

}

=
{
⌊b2k/M⌋(0.z2k−1, . . . , zk−1)b

}
.

(18)

We now assume that Algorithm 5 is applied in the modular

exponentiation algorithm Algorithm 2. In analogy to the extra

reductions, we interpret the number of extra additions by

bk+1 in the (n + 1)-th Barrett operation, denoted by ra;n+1,

as a realization of a {0, 1}-valued random variable Ra;n+1. In

particular, (x ·y) mod M either represents a squaring (x = y)

or a multiplication of the intermediate value x by the basis

y, respectively.

As in Stochastic Model 2, we model v1 = (xy)/M2 as

a realization of S2
n (squaring) or Sn t (multiplication by the

basis y) with t = y/M , respectively, and v2 as a realization

of the random variable Un+1 which is uniformly distributed

on [0, 1). With the same argumentation as for v2, we model

u′
n+1 := u′ = {xy/bk+1} as a realization of a random vari-

able U ′
n+1 that is uniformly distributed on [0, 1).

It remains to analyse v3. Let for the moment (ak, . . . , a0)b

be the b-ary representation of ⌊b2k/M⌋ (note that we have

bk ≤ ⌊b2k/M⌋ < bk+1 since we excluded the corner case

M = bk−1) and a−1 = a−2 = 0. Then,

v3 =
{ k∑

j=0

a j b
j

k+1∑

i=1

z2k−i b
−i

}

=
{ k−1∑

h=−k−1

bh
∑

j−i=h

a j z2k−i

}

≈
{ −1∑

h=−3

bh
∑

j−i=h

a j z2k−i

}

=
∑k+1

i=1

(∑−1
h=−3 ai+hb3+h

)
z2k−i mod b3

b3
.

(19)

We model vn+1 := v3 as a realization of a random variable

Vn+1 that is uniformly distributed on [0, 1).

By (18) and (19), the values u′, v1, v2 and v3 essen-

tially depend on zk (resp., on (zk, zk−1) if ws is small), on

the most significant digits of z in the b-ary representation,

on zk−2 (resp. on (zk−2, zk−3) if ws is small) and on the

weighted sum of the b-ary digits z2k−1, . . . , zk−1, respec-

tively. This justifies the assumption that the random variables

U ′
n+1, Sn, Un+1, Vn+1 (essentially) behave as if they were

independent.

We could extend the non-homogeneous Markov chain

(Sn, Rn)n∈N on the state space [0, 1) × Z3 from Sect. 2 to

a non-homogeneous Markov chain (Sn, Rn, Ra;n)n∈N on the

state space [0, 1)× Z3 × Z2. Its analysis is analogous to that

in Sect. 2 but more complicated in detail. Since for typical

word sizes w the impact of the extra additions on the execu-

tion time is by an order of magnitude smaller than the impact

of the extra reductions (due to the factor γ , cf. (20) and (21)),

we do not elaborate on this issue. We only mention that

Pr(Ra;n+1 = 1)

= Pr(U ′
n+1 < αγ S2

n + βγUn+1 + γ Vn+1) (20)

=
∫

[0,1)3
Pr(U ′

n+1 < αγ s2
n + βγ un+1 + γ vn+1)

dvn+1dun+1dsn

=
∫

[0,1)3
(αγ s2

n + βγ un+1 + γ vn+1)dvn+1dun+1dsn

= αγ/3 + βγ/2 + γ /2 =: μa,S, ifOn+1 = S,

and analogously

Pr(Ra;n+1 = 1)

= Pr(U ′
n+1 < αγ Sn t + βγUn+1 + γ Vn+1) (21)

= αγ t/2 + βγ/2 + γ /2 =: μa,M, ifOn+1 = M.

For the reason mentioned above, we treat the extra additions

as noise. Equation (22) is the equivalent to (14) for the modi-

fied version of Barrett’s multiplication algorithm. We use the

same notation as in (14).

Algorithm 2 & Algorithm 5:

Time(yd mod M) = t∗set + (ℓ + ham(d) − 2)c

+ (R1 + · · · + Rℓ+ham(d)−2)cER + N∗, (22)

with t∗set = tset + (μa,S(ℓ − 1) + μa,M(ham(d) − 1))cadd

and N∗ ∼ N (0, (μa,S(1 − μa,S)(ℓ − 1) + μa,M(1 −
μa,M)(ham(d)−1))c2

add+σ 2). The expected time for all extra

additions has been moved to the setup time, and the variance

became part of N∗. While the formula for the expectation is

exact, we used a coarse approximation for the variance which

neglects any dependencies. We just mention that Rn+1 and

Ra;n+1 are positively correlated. This follows from the fact

that apart from the factor γ the terms ‘αγ S2
n ’, ‘αγ Sn t’, and

‘βγUn+1’ in (20) and (21) coincide with terms in (3) and

since Ra;n+1 and Rn+1 are both ‘large’ if the corresponding

terms in (20), (21) and (3) are ‘large’.

Remark 6 (i) The stochastic representations (14) and (22)

are essentially identical although (22) has slightly larger

noise.

(ii) The ratio cadd/cER depends on the implementation.

123

382 Journal of Cryptographic Engineering (2021) 11:369–397

3.2.3 Special values for˛ andˇ

The stochastic behaviour of the Barrett multiplication algo-

rithm depends on α and β. In particular, α has significant

impact on most of the attacks discussed in Sect. 4. In this

subsection, we briefly analyse the extreme cases α ≈ 0 and

β ≈ 0.

The condition k = ⌊logb M⌋ + 1 (cf. Algorithm 1 and

Algorithm 5) implies bk−1 ≤ M < bk . Now assume that

bk/2 < M < bk , which is typically fulfilled if the modulus

M has ‘maximum length’ (e.g. 1024 or 2048 bits). Then,

0 ≤ β =
⌊b2k/M⌋

bk+1
≤

2bk

bk+1
=

2

b
. (23)

If b = 2ws with ws ≫ 1 (e.g. ws ≥ 16), then β ≈ 0. In

this case, one may neglect the term ‘βU ’ in (2), accepting a

slight inaccuracy of the stochastic model.

Going the next step, cancelling ‘βUn+1’ in (3) simpli-

fies Stochastic Model 2 as (3) can be rewritten as Rn+1 =
1{Sn+1<αS2

n } and Rn+1 = 1{Sn+1<αSn t}, respectively. This

representation is equivalent to the Montgomery case (11),

simplifying the computation of the variances, covariances

and the probabilities in Lemma 7 (i) considerably (as for the

Montgomery multiplication). The Barrett-specific features

and difficulties yet remain.

Now assume that bk−1 ≤ M < 2bk−1. Then,

0 ≤ α =
M2

b2k

{
b2k

M

}
≤

M2

b2k
<

4

b2
. (24)

If again b = 2ws with ws ≫ 1, e.g. ws ≥ 8, then α ≈ 0. As

above we may neglect the terms ‘αst’ in (2) and analogously

‘αS2
n ’, resp. ‘αSn t’, in (3), which yields the representation

Rn+1 = 1{Sn+1<βUn+1}. Consequently, R1, R2, . . . are iid

{0, 1}-valued random variables with Pr(R j = 1) = β/2,

while β ≈ 0 is quite likely the case α ≈ 0 should occur

rarely because the bit length of the modulus would be slightly

larger than a power of b = 2ws.

More generally, let us assume that bk−1 ≤ 2w′
bk−1 ≤

M < 2w′+1bk−1 ≤ bk for some w′ ∈ {0, . . . ,ws − 1}. With

the same strategy as in (23) and (24), we conclude

0 ≤ α <
(2w′+1bk−1)2

b2k
=

(
2w′+1

b

)2

and

0 ≤ β ≤
bk/(2w′

bk−1)

bk+1
=

1

2w′ .

The impact of α ≈ 0 and β ≈ 0 on the attacks in Sect. 4

will be discussed in Sect. 4.4.

3.3 A short summary

The stochastic process R1, R2, . . . is the equivalent to

W1, W2, . . . (Montgomery multiplication). Both stochastic

processes are 1-dependent. Hence, it is reasonable to assume

that attacks on Montgomery’s multiplication algorithm can

be transferred to implementations which use Barrett’s multi-

plication algorithm. In Sect. 4, we will see that this is indeed

the case.

However, for Barrett’s multiplication algorithm additional

problems arise. In particular, there is no equivalent to the

characterization (10), which allows to directly analyse the

stochastic process W1, W2, . . . For Barrett’s algorithm, a

‘detour’ to the two-dimensional Markov process (Si , Ri)i∈N

is necessary. Moreover, for Montgomery’s multiplication

algorithm, the respective integrals can be computed much

easier than for Barrett’s algorithm since simple closed for-

mulae exist. If β ≈ 0, the evaluation of the integrals becomes

easier (as for Montgomery’s algorithm), and if α ≈ 0, the

computations become absolutely simple. For CRT imple-

mentations, the parameter estimation is more difficult for

Barrett’s multiplication algorithm than for Montgomery’s

algorithm. We return to these issues in Sect. 4.

4 Timing attacks against Barrett’s modular
multiplication

The conditional extra reduction in Montgomery’s multi-

plication algorithm is the source of many timing attacks

and local timing attacks [2,3,7,13,14,22–24,26–29]. Some

of them even work in the presence of particular blinding

mechanisms. When applied to modular exponentiation, the

stochastic representations of the execution times are similar

for Montgomery’s and Barrett’s multiplication algorithms.

The analysis of Barrett’s algorithm, however, is mathemat-

ically more challenging as explained in Sects. 2 and 3. In

Sects. 4.1 to 4.3, we transfer attacks on Montgomery’s mul-

tiplication algorithm to attacks on Barrett’s multiplication

algorithm, where we assume that the ‘basic’ Algorithm 1

is applied. We point out that our attacks can be adjusted to

Algorithm 5 (cf. Sect. 3.2.2).

4.1 Timing attacks on RSAwithout CRT and on DH

In this subsection, we assume that M is an RSA modulus

or the modulus of a DH-group (i.e. a subgroup of F
∗
M) and

that yd mod M is computed with Algorithm 2, where d =
(dℓ−1, . . . , d0)2 is a secret exponent. Blinding techniques are

not applied. We transfer the attack from Sect. 6 in [24] to

Barrett’s multiplication algorithm and extend it by a look-

ahead strategy.

123

Journal of Cryptographic Engineering (2021) 11:369–397 383

The attacker (or evaluator) measures the execution times

t j = Time(yd
j mod M) for j = 1, . . . , N for known bases

y j . The t j may be noisy (cf. (14)). Moreover, we assume that

the attacker knows (or has estimated) c and cER. (Sect. 6 in

[29] explains a guessing procedure for Montgomery’s mul-

tiplication algorithm.) In a pre-step, the sum ℓ+ ham(d) can

be estimated in a straight-forward way. We may assume that

the attacker knows ℓ and thus also ham(d). (If necessary

the attack could be restarted with different candidates for

ℓ. However, apart from its end the attack is robust against

small deviations from the correct value ℓ.) At the begin-

ning, the attacker subtracts the data-independent terms tset

and (ℓ + ham(d) − 2)c from the timings t j and divides the

differences by cER, yielding the ‘discretized’ execution times

td,1, . . . , td,N .

The attack strategy is to guess subsequently the exponent

bits dℓ−1 = 1, dℓ−2, For the moment we assume that the

guesses d̃ℓ−1 = 1, d̃ℓ−2, . . . , d̃k+1 have been correct. Now

we focus on the guessing procedure of the exponent bit dk .

Currently, Algorithm 2 ‘halts’ before the if-statement (for

i = k) so that k squarings and m (calculated from ham(d)

and the guesses d̃ℓ−1, . . . , d̃k+1) multiplications still have

to be carried out. On the basis of the previous guesses, the

attacker computes the intermediate values x j , and the number

of extra reductions needed for the squarings and multiplica-

tions executed so far are subtracted from the td, j , yielding

the discretized remaining execution times tdrem, j . In terms of

random variables, this reads

Tdrem, j = Rℓ+ham(d)−k−m−1, j +· · ·+ Rℓ+ham(d)−2, j + Nd, j

for 1 ≤ j ≤ N with Nd, j ∼ N (0, σ 2/c2
ER). Recall that

the distribution of those Ri , which belong to multiplications,

depends on the basis y j ; see, for example, the stochastic

representation (3).

To optimize our guessing strategy, we apply statistical

decision theory. We point the interested reader to [25], Sect. 2,

where statistical decision theory is introduced in a nutshell

and the presented results are tailored to side-channel anal-

ysis. In the following, := {0, 1} denotes the parameter

space, where θ ∈ corresponds to the hypothesis dk = θ .

We may assume that the probability that the exponent bit

dk equals θ is approximately 0.5. (In the case of RSA, d0 = 1

and for indices k close to ⌈log2(n)⌉ the exponent bits may

be biased.) More formally, if we view dk, dk−1, . . . as real-

izations of iid uniformly {0, 1}-distributed random variables

Zk, Zk−1, . . . we obtain the a priori distribution

η(θ) = Pr(Zk = θ | ham(dk, . . . , d0) = m)

=
(

k + 1 − m

k + 1

)1−θ(
m

k + 1

)θ

.
(25)

To guess the next exponent bit dk , we employ a look-ahead

strategy. For look-ahead depth λ ∈ N≥1, the decision for

exponent bit dk is based on information obtained from the

next λ exponent bits. As the attacker knows the intermediate

value x j (of sample j), he is able to determine the number

of extra reductions needed to process the λ exponent bits

dk, . . . , dk−λ+1 for each of the 2λ admissible values ρ =
(ρ0, . . . , ρλ−1) ∈ {0, 1}λ. This yields the discretized time

needed to process the left-over exponent bits dk−λ, . . . , d0,

which is fictional except for the correct vector ρ.

In this subsection, tρ, j denotes the number of extra reduc-

tions required to process the next λ exponent bits for the basis

y j if (dk, . . . , dk−λ+1) = ρ. For these computations, λ mod-

ular squarings and ham(ρ) modular multiplications by y j are

performed. Furthermore, tdrem, j − tρ, j may be viewed as a

realization of

Rℓ+ham(d)−k−m+λ+ham(ρ)−1, j +· · ·+ Rℓ+ham(d)−2, j + Nd, j .

By (8), Lemma 6 (ii), and Lemma 7 (ii), (iii), this random

variable is approximately N (eρ, j , vρ, j)-distributed where

eρ, j := (k − λ)μS + (m − ham(ρ))μM, j and

vρ, j := (k − λ)σ 2
S

+ (m − ham(ρ))σ 2
M, j

+ 2(m − ham(ρ))(covMS, j + covSM, j)

+ 2(k − λ − m + ham(ρ) − 1) covSS

+ Var(Nd, j).

(26)

We define the observation space Ω := (Ω ′)N consisting of

vectors ω = (ω1, . . . , ωN) of timing observations

ω j =
(
tdrem, j , (tρ, j)ρ∈{0,1}λ

)
∈ Ω ′ := R × N

2λ

(27)

for 1 ≤ j ≤ N . For the remainder of this subsection, we

denote the Lebesgue density ofN (eρ, j , vρ, j)by fρ, j (·). The

joint distribution of all N traces is given by the product den-

sity fρ,1(·) · · · fρ,N (·) with the arguments tdrem,1 − tρ,1, . . . ,

tdrem,N − tρ,N . For λ = 1 we have ρ = ρ0 = θ , and

for hypothesis dk = θ the distribution of the discretized

computation time needed for the left-over exponent bits

dk−λ, dk−λ−1, . . . has the product density
∏N

j=1 fθ, j (·).
If λ > 1, the situation is more complicated. More pre-

cisely, for hypothesis θ ∈ the distribution of the left-over

time is given by a convex combination of normal distributions

with density f θ : Ω → R given by

f θ (ω) =
∑

ρ∈{0,1}λ :
ρ0=θ

μρ

N∏

j=1

fρ, j (tdrem, j − tρ, j), (28)

123

384 Journal of Cryptographic Engineering (2021) 11:369–397

where the coefficients μρ are given by

μρ = Pr
(
Zk−1 = ρ1, . . . , Zk−λ+1 = ρλ−1 |
ham(dk−1, . . . , d0) = m − ρ0

)

=
λ−1∏

i=1

Pr
(
Zk−i = ρi |

ham(dk−i , . . . , d0) = m − ham(ρ0, . . . , ρi−1)
)

=
λ−1∏

i=1

(
k + 1 − i − (m − ham(ρ0, . . . , ρi−1))

k + 1 − i

)1−ρi

·
(

m − ham(ρ0, . . . , ρi−1)

k + 1 − i

)ρi

.

(29)

Finally, we choose A = as the set of alternatives and

consider the loss function

s : × A → R≥0, s(θ, a) = 1{θ �=a},

i.e. we penalize the wrong decisions (‘0’ instead of ‘1’, ‘1’

instead of ‘0’) equally since all forthcoming guesses then are

useless. We obtain the following optimal decision strategy

for look-ahead depth λ.

Decision Strategy 1 (Guessing dk) Let ω = (ω1, . . . , ωN)

be a vector of N timing observations ω j ∈ Ω ′ as in (27).

Then, the indicator function

τ(ω) := 1{
f 0(ω)/ f 1(ω)≤η(1)/η(0)

} (30)

is an optimal strategy (Bayes strategy) against the a priori

distribution η.

Proof We interpret ω1, ω2, . . . ωN as realizations of indepen-

dent random vectors X j := (Tdrem, j , (Tρ, j)ρ∈{0,1}λ) with

values in Ω ′ for 1 ≤ j ≤ N , which has already been

assumed when (28) was developed. We denote by μ the

product of the Lebesgue measure on R and the counting

measure on N
2λ

. We equip Ω ′ with the product σ -algebra

B(R) ⊗ P(N2λ
). Then, μ is a σ -finite measure on Ω ′,

and the N -fold product measure μN = μ ⊗ · · · ⊗ μ is

σ -finite on the observation space Ω = Ω ′ × · · · × Ω ′.
Note that Pr((Tρ, j)ρ∈{0,1}λ = (tρ, j)ρ∈{0,1}λ) is independent

of (dk, . . . , dk−λ+1) and thus in particular independent of dk .

Furthermore, this probability is > 0 because all alternatives

ρ are principally possible. Define C j := R×
∏

ρ∈{0,1}λ{tρ, j }
and C :=

∏N
j=1 C j ⊆ Ω . (Here,

∏
denotes the Cartesian

product of sets.) If dk = θ , then the conditional probability

distribution of (X1, . . . , X N) given C is f θ · μN . Thus, all

conditions of Theorem 1 (iii) in [25] are fulfilled, and this

completes the proof. ⊓⊔

For look-ahead depth λ = 1, Decision Strategy 1 is essen-

tially equivalent to Theorem 6.5 (i) in [24].

Remark 7 All decisions after a wrong bit guess are use-

less because then the attacker computes wrong intermediate

values x ′
1, . . . , x ′

N and therefore values t ′
ρ, j that are not corre-

lated to the correct number of extra reductions tρ, j . However,

the situation is not symmetric in 0 and 1 because for dk = 0

one uncorrelated term and for dk = 1 two uncorrelated terms

are subtracted. In [28] (look-ahead depth λ = 1) for Mont-

gomery’s multiplication algorithm, an efficient three-option

error detection and correction strategy was developed, which

allowed to reduce the number of attack traces by ≈ 40%. We

do not develop an equivalent strategy for Barrett’s multipli-

cation algorithm but apply a dynamic look-ahead strategy.

This is much more efficient as we will see in Sect. 5.1. To

the best of our knowledge, this look-ahead strategy is new if

we ignore the fact that the idea was very roughly sketched in

[24], Remark 4.1.

4.2 Timing attacks on RSAwith CRT

The references [3,7,22] introduce and analyse or improve

timing attacks on RSA implementations which use the CRT

and Montgomery’s multiplication algorithm, including the

square & multiply exponentiation algorithm and table-based

exponentiation algorithms. Even more, these attacks can be

extended to implementations which are protected by expo-

nent blinding [26,27].

Unless stated otherwise, we assume in this subsection that

RSA with CRT applies Algorithm 6 with Barrett’s multipli-

cation (Algorithm 1). Let n = p1 p2 be an RSA modulus, let

d be a secret exponent, and let y ∈ Zn be a basis. We set

y(i) := y mod pi and d(i) := d mod (pi − 1) for i = 1, 2.

For y ∈ Zn let T (y) := Time(yd mod n).

Let ν := ⌊log2 n⌋ + 1 be the bit-length of n. We may

assume that p1, p2 have bit-length ≈ ν/2 and that d(1), d(2)

123

Journal of Cryptographic Engineering (2021) 11:369–397 385

have Hamming weight ≈ ν/4. From (4), we obtain

E(T (y)) ≈ tset + 2c

(
ν

2
+

ν

4

)
+ cER

ν

2

∑

i=1,2

(
αi

3
+

βi

2

)

+ cER
ν

4

∑

i=1,2

(
αi ti

2
+

βi

2

)
,

(31)

where ti := y(i)/pi . Now assume that 0 < u1 < u2 < n

with u2 − u1 ≪ p1, p2. Three cases are possible:

Case A: {u1 + 1, . . . , u2} does not contain a multiple of p1

or p2.

Case Bi : {u1 + 1, . . . , u2} contains a multiple of pi , but not

of p3−i .

Case C: {u1 +1, . . . , u2} contains a multiple of both p1 and

p2.

By (31), we conclude

E(T (u2) − T (u1)) = E(T (u2)) − E(T (u1))

≈

⎧
⎪⎨
⎪⎩

0 in Case A,

− 1
8
ναi cER in Case Bi ,

− 1
8
ν(α1 + α2)cER in Case C,

(32)

because if pi is in {u1 + 1, . . . , u2}, then

ti,2 := (u2 mod pi)/pi ≈ 0 and

ti,1 := (u1 mod pi)/pi ≈ 1.

For RSA without CRT, the parameters α and β can eas-

ily be calculated, while for RSA with CRT, the parameters

α1, α2, β1, β2 are unknown and thus need to be estimated.

We note that

β1β2 =
⌊

b2k

p1

⌋
·
⌊

b2k

p2

⌋
b−(2k+2) ≈

b2k−2

n
. (33)

The parameter βi is not sensitive against small deviations

of pi and could be approximated by ⌊b2k/pi⌋/bk+1 ≈
bk−1/pi ≈ bk−1/

√
n ∈ (0, 1). However, this estimate can

be improved at the end of attack phase 1 below because

then more precise information on p1 and p2 is available. We

mention that in the context of this timing attack the knowl-

edge of β1 and β2 is only relevant to estimate Var(T (y)),

which allows to determine an appropriate sample size for

the attack steps. Unlike βi , the second term {b2k/pi } of

αi = (p2
i /b2k){b2k/pi } and thus αi is very sensitive against

deviations of pi since pi ≪ b2k .

In the remainder of this subsection, we assume p1 < p2 <

2p1, i.e. that p1, p2 have bit-length ℓ ≈ ν/2. It follows that

the interval I1 :=
(√

n/2,
√

n
)

contains p1 but no multi-

ple of p2 and the interval I2 :=
(√

n,
√

2n
)

contains p2 but

no multiple of p1. (In the general case, we would have to

guess r ∈ N≥2 such that (r − 1)p1 < p2 < r p1. Then,

I1 :=
(√

n/r ,
√

n/(r − 1)
)

contains p1 but no multiple of

p2 and I2 :=
(√

(r − 1)n,
√

rn
)

contains p2 but no mul-

tiple of p1.) Let u′
0 := ⌈

√
n/2⌉ < u′

1 < . . . < u′
h :=

⌊
√

n⌋ be approximately equidistant integers in I1 and let

u′′
0 := ⌈

√
n⌉ < u′′

1 < . . . < u′′
h := ⌊

√
2n⌋ be approxi-

mately equidistant integers in I2, where h ∈ N is a small

constant (say h = 4). Further, define

MeanTime(u, N) :=
1

N

N∑

j=1

T (u + j). (34)

The goal of attack phase 1 is to identify j ′, j ′′ such that

p1 ∈ [u′
j ′−1

, u′
j ′] and p2 ∈ [u′′

j ′′−1
, u′′

j ′′]. The selection of j ′

and j ′′ follows from the quantitative interpretation of (32).

If αi is small but α3−i is significantly larger, the decision (for

j ′, resp., for j ′′) in attack phase 1 might be incorrect, but this

is of minor importance since attack phase 2 searches p3−i

anyway. If both α1 and α2 are small, the efficiency of the

attack is low anyway. To be on the safe side one then may

repeat phase 1 with larger sample size N1. Moreover, (33)

allows to check the selection of j ′ and j ′′.

Attack Phase 1

(1) Select an appropriate integer N1.

(2) For j = 1, . . . , h, compute

δ′
j ← MeanTime(u′

j−1, N1) − MeanTime(u′
j , N1) and

δ′′
j ← MeanTime(u′′

j−1, N1) − MeanTime(u′′
j , N1).

(3) Set j ′ ← arg max1≤ j≤h{δ′
j } and j ′′ ← arg max1≤ j≤h{δ′′

j }.
(The attacker believes that p1 ∈ [u′

j ′−1
, u′

j ′] and p2 ∈
[u′′

j ′′−1
, u′′

j ′′].)
(4) Set α̃1 ← 8δ′

j ′/(νcER) and α̃2 ← 8δ′′
j ′′/(νcER) (esti-

mates for α1 and α2).

(5) Set β̃1 ← 2bk−1/(u′
j ′−1

+u′
j ′) and β̃2 ← 2bk−1/(u′′

j ′′−1
+

u′′
j ′′) (estimates for β1 and β2).

Attack Phase 2

(1) If α̃1 > α̃2, then set i ← 1, u1 ← u′
j ′−1

, and u2 ← u′
j ′ ;

else set i ← 2, u1 ← u′′
j ′′−1

, and u2 ← u′′
j ′′ . (Attack

phase 2 searches for pi iff α̃i > α̃3−i . This prime is

assumed to be contained in [u1, u2].)
(2) Select N2 (depending on α̃i and Varα̃1 ,̃α2,β̃1,β̃2

(T (u))).

123

386 Journal of Cryptographic Engineering (2021) 11:369–397

(3) While log2(u2 − u1) > ℓ/2 − 6, do the following:

(a) Set u3 ← ⌊(u1 + u2)/2⌋.

(b) If

MeanTime(u2, N2) − MeanTime(u3, N2)

> − 1
16

να̃i cER,

then set u2 ← u3 (the attacker believes that Case A

is correct); else set u1 ← u3 (the attacker believes

that Case Bi is correct).

The decision rule follows from (32) (Case A vs. Case Bi).

After phase 2 more than half of the upper bits of u1 and

u2 coincide, which yields more than half of the upper bits

of pi (more precisely, ≈ ℓ/2 + 6). This enables attack

phase 3.

Attack Phase 3

(1) Compute pi with Coppersmith’s algorithm [11].

Of course, all decisions in attack phase 2 (including the

initial choice of u1 and u2) need to be correct. However, it is

very easy to verify from time to time whether all decisions

in attack phase 2 have been correct so far, or equivalently,

whether the current interval (u1, u2) indeed contains pi .

If

MeanTime(u2 + N2, N2) − MeanTime(u3 + N2, N2)

< − 1
16

να̃cER,

this confirms the assumption that (u1, u2) contains pi , and

(u1, u2) is called a ‘confirmed interval’, but if not, one com-

putes MeanTime(u2+2N2, N2)−MeanTime(u3+2N2, N2).

If this difference is < − 1
16

να̃cER, then (u1, u2) becomes a

confirmed interval. Otherwise, the attack goes back to the

preceding confirmed interval (u1;c, u2;c) and restarts with

values in the neighbourhood of u1;c and u2;c, which have

not been used before when the attack already was at this

stage.

Remark 8 (i) Similarities to Montgomery’s multiplication

algorithm. By (4), the expected number of extra reduc-

tions needed for a multiplication by yi := y mod pi is

an affine function in ti = yi/pi . (For Montgomery’s mul-

tiplication algorithm, it is a linear function in (y R mod

pi)/pi , cf. (12).) As for Montgomery’s multiplication

algorithm, (31) allows to decide whether an interval con-

tains a prime p1 or p2 and finally to factorize the RSA

modulus n.

(ii) Differences to Montgomery’s multiplication algorithm.

If y1 < pi < y2, the expectation E(T (y1) − T (y2)) is

linear in αi , which is very sensitive to variations in pi .

Consequently, the attack efficiency may be very different

whether the attacker targets p1 or p2. This is unlike to

Montgomery’s multiplication algorithm where the cor-

responding expectation is linear in pi/R ≈
√

n/R. As

a consequence, attack phase 1 is very different in both

cases, depending on whether the targeted implementation

applies Barrett’s or Montgomery’s multiplication algo-

rithm.

It should be noted that this timing attack against Bar-

rett’s multiplication algorithm can be adapted to fixed

window exponentiation and sliding window exponentiation

and also works against exponent blinding. For table-based

methods, the timing difference in (32) gets smaller, while

exponent blinding causes large algorithmic noise. In both

cases, the parameters N1 and N2 must be selected con-

siderably larger, which of course lowers the efficiency

of the timing attack. This is rather similar to timing

attacks on Montgomery’s multiplication algorithm [26,

27].

4.3 Local timing attacks

Unlike for the ‘pure’ timing attacks discussed in Sects. 4.1

and 4.2, we assume that a potential attacker is not only

able to measure the overall execution time but also the

timing for each squaring and multiplication, which means

that he knows the number of extra reductions. This may

be achieved by power measurements. In [2], an instruction

cache attack was applied against Montgomery’s multiplica-

tion algorithm. The task of a spy process was to realize when

a particular routine from the BIGNUM library is applied,

which is only used to calculate the extra reduction. This

approach may not be applicable against Barrett’s multipli-

cation algorithm because here more than one extra reduction

is possible.

In this subsection, we assume that fixed window expo-

nentiation is applied where basis blinding (introduced in

[19], Sect. 10, a.k.a. message blinding) is a applied as

a security measure. Algorithm 7 updates the blinding

values to prevent an attacker from calibrating an attack

to fixed blinding values. Our attack works against RSA

without CRT and against RSA with CRT as well. The

papers [1,2,14,23] consider several modular exponentia-

tion algorithms with Montgomery’s multiplication algo-

rithm.

123

Journal of Cryptographic Engineering (2021) 11:369–397 387

4.3.1 RSA without CRT and DH

In this subsection, we assume that yd mod M is com-

puted with Algorithm 7. The exponentiation phase starts

in Step 6. Analogously to Algorithm 2 (left-to-right expo-

nentiation), the exponentiation phase of Algorithm 7 can

be described by a sequence of operations O1,O2, . . . with

O j ∈ {S,M0, . . . ,M2w−1}, where Mθ stands for a multiplica-

tion by the table entry uθ . Since one multiplication by some

table entry u j follows each w squarings, it remains to guess

the operations O j(w+1) ∈ {M0, . . . ,M2w−1} for j = 1, 2,

As for Algorithm 2, the exponentiation phase can be

described by a stochastic process (Sn, Rn)n∈N on the state

space [0, 1) × Z3, where S0 models Step 6 in Algorithm 7,

i.e. S0 = 0. Again, this is a Markov process. However, there

are some peculiarities: First of all, S0 = . . . = Sw are iden-

tical and correspond to the initialization x := 1 and to the

first w squarings. We may assume that Sw+1, Sw+2, . . . are

uniformly distributed on [0, 1). However, if O j(w+1) = M0

(multiplication by u0 = 1), then S j(w+1)−1 = S j(w+1).

The sequence Sw+1, Sw+2, . . . with those duplicate variables

removed is iid uniformly distributed on [0, 1). In partic-

ular, Remark 2 (ii) allows to identify the j ′s for which

O j(w+1) = M0 (multiplication by 1). Consequently, we define

Rw+1 := 0 (multiplication by x = 1) and R j(w+1) := 0 for

all j ≥ 2 with O j(w+1) = M0 (multiplication by u0 = 1).

Since Rw+1 = 0, the attacker has to guess the operation

Ow+1 ∈ {M0, . . . ,M2w−1} by exhaustive search, which costs

at most 2w trials. From now on we focus on the operations

O2(w+1),O3(w+1), . . .

Lemma 10 Let j ≥ 2. For θ ∈ {1, . . . , 2w − 1}, we have

Prθ (R j(w+1) = r j(w+1))

=
∫ 1

0

(∫ 1

0

h[θ](s j(w+1), r j(w+1) | s j(w+1)−1)ds j(w+1)

)

ds j(w+1)−1.

(35)

The conditional density h[θ](sn+1, rn+1 | sn) is defined like

hn+1 in Lemma 5 (iii) with On+1 = M and (sn+1, sn, t)

replaced by (s j(w+1), s j(w+1)−1, t[θ] = s′
θ). Here, Prθ

denotes the probability under the hypothesis θ , i.e. under

the assumption O j(w+1) = Mθ . Further, we have

Pr0(R j(w+1) = 0) = 1. (36)

Proof Equation (35) follows from Lemma 6 (i) with M = Mθ

and equation (36) holds by definition. ⊓⊔

However, the attacker does not know the ratios t1, . . . , t2w−1

and in Sect. 4.3.2, additionally, not even the moduli p1

and p2. Anyway, the table initialization phase is the source

of our attack since the attacker knows the type of opera-

tions. In analogy to the exponentiation phase, we formulate

a stochastic process (S′
j , R′

j)1≤ j≤2w−1 on the state space

[0, 1) × Z3, where S′
j corresponds to the normalized table

entry t j := u j/M . This again defines a two-dimensional

Markov process, and S′
1, . . . , S′

2w−1 are iid uniformly dis-

tributed on [0, 1). This leads to Lemma 11.

Lemma 11 Let j ≥ 2.

(i) For θ ∈ {1, . . . , 2w − 1}, we have

Prθ (R′
2 = r ′

2, . . . , R′
2w−1 = r ′

2w−1, R j(w+1) = r j(w+1))

=
∫ 1

0

∫ 1

0

h∗(s′
2, r ′

2 | s′
1) · · ·

∫ 1

0

h∗(s′
2w−1, r ′

2w−1 | s′
2w−2)

∫ 1

0

∫ 1

0

h[θ](s j(w+1), r j(w+1) | s j(w+1)−1)

ds j(w+1)ds j(w+1)−1ds′
2w−1ds′

2w−2 · · · ds′
2ds′

1.

(37)

123

388 Journal of Cryptographic Engineering (2021) 11:369–397

For j = 1, . . . , 2w − 2, the function h∗(s j+1, r j+1 | s j)

is defined like hn+1 for On+1 = M in Lemma 5 (iii) with

(s′
j+1, s′

j , t1 = s′
1) in place of (sn+1, sn, t).

(ii) For θ ∈ {0, . . . , 2w − 1}, we have

Prθ (R′
2 = r ′

2, . . . , R′
2w−1 = r ′

2w−1, R j(w+1) = r j(w+1))

=
∫ 1

0

∫ 1

0

h∗(s′
2, r ′

2 | s′
1) · · ·

∫ 1

0

h∗(s′
2w−1, r ′

2w−1 | s′
2w−2)

Prθ (R j(w+1) = r j(w+1))ds′
2w−1ds′

2w−2 . . . ds′
2ds′

1.

(38)

Proof The random variables S′
1, . . . , S′

2w−1, S j(w+1)−1, S j(w+1)

are iid uniformly distributed on [0, 1) for θ > 0. If θ = 0,

then S j(w+1)−1 = S j(w+1), but this property holds for

S′
1, . . . , S′

2w−1, S j(w+1)−1. For j = 1 . . . , 2w − 2 and

for given r ′
j+1, the conditional densities h∗(s′

j+1, r ′
j+1 |

s′
j) quantify the dependency on the ‘history’ (remem-

ber that S′
1, . . . , S′

2w−1 is a Markov process). Similarly,

h[θ](s j(w+1), r j(w+1) | s j(w+1)−1) quantifies the dependency

on the ‘history’. As in the proof of Lemma 7 (i), equation

(37) follows from the Ionescu–Tulcea theorem. Evaluating

the integrals with respect to s j(w+1)−1 and s j(w+1) proves

(38) for θ > 0. For θ = 0, it is obvious because R′
j(w+1)

does not depend on S′
1, . . . , S′

j(w+1)−1. ⊓⊔

Decision Strategy 2 Let j ≥ 2 and assume that the attacker

has observed N samples of extra reduction vectors

(r ′
2,k, . . . , r ′

2w−1,k, r j(w+1),k) for 1 ≤ k ≤ N .

Then, the optimal decision strategy is to decide forO j(w+1) =
Mθ∗ , where

θ∗ := arg maxθ∈{0,...,2w−1}

N∏

k=1

Prθ
(
R′

2,k = r ′
2,k, . . . ,

R′
2w−1,k = r ′

2w−1,k, R j(w+1),k = r j(w+1),k

)
.

(39)

Proof All θ ∈ {0, . . . , 2w − 1} are equally likely, and each

false decision is equally harmful. Hence, the optimal decision

strategy is given by the maximum likelihood estimator, which

follows, for example, from Theorem 1 (i) in [25]. The extra

reduction vectors

(R′
2,1, . . . , R′

2w−1,1, R j(w+1),1), . . .

. . . , (R′
2,N , . . . , R′

2w−1,N , R j(w+1),N)

may be considered to be independent, which yields (39). For-

mula (39) combines both cases θ = 0 and θ �= 0. ⊓⊔

Remark 9 (i) Similarities to Montgomery’s multiplication

algorithm. For both Barrett’s and Montgomery’s mul-

tiplication algorithm, the joint probabilities can be

expressed by integrals over high-dimensional unit cubes.

In both cases, the type of the first multiplication (opera-

tion w + 1) has to be guessed exhaustively.

(ii) Differences to Montgomery’s multiplication algorithm.

For Barrett’s multiplication algorithm, these integrals are

(2w + 1)-dimensional, while for Montgomery’s algo-

rithm, they are (2w + 2)-dimensional. This is due to the

pre-operation (cf. Algorithm 4, Step 1).

4.3.2 RSA with CRT

In this subsection, we assume that yd mod n is computed

with Algorithm 8. Algorithm 8 calls Algorithm 7 twice,

which applies basis blinding. (Alternatively, the basis blind-

ing could also be moved to a pre-step 0 and to Step 6 in

Algorithm 8, but this would not affect the attack.) Here,

the situation for the attacker is even less favourable than

in Sect. 4.3.1 because not only the blinded basis and thus

the table entries are unknown but also the moduli p1 and

p2. However, apart from additional technical difficulties our

attack still applies.

We first note that it suffices to recover d(1) or d(2). In

fact, if x = yd mod n, then gcd(x − yd(i) mod n, n) = pi

for i = 1, 2 (cf. [2], eq. (1)). If necessary, the attacker may

construct such a pair, e.g. by setting y = x ′e mod n and

x = x ′ for some x ′ ∈ Zn .

The plan is to apply the attack method from the pre-

ceding subsection to the modular exponentiation mod p1

or mod p2. First, similarly as in Sect. 4.2, we estimate

α1, β1, α2, β2. To estimate αi and βi we consider all k′
S

squar-

ings in the modular exponentiation mod pi , beginning with

operation w + 2. We neglect all multiplications by 1, which

can be identified by the fact that no extra reductions can occur,

so that k′
M

relevant multiplications remain. Counting the extra

reductions in the relevant squarings and multiplications over

all N exponentiations give numbers nS and nM, respectively.

We may assume that for θ > 0 the normalized table entries

behave like realizations of iid random variables, which are

uniformly distributed on [0, 1). Thus, we may assume that

the average of all normalized table entries over all N samples

is ≈ 0.5. From (4), we thus conclude

nS ≈ Nk′
S

(
αi

3
+

βi

2

)
and nM ≈ Nk′

M

(
αi

4
+

βi

2

)
.

(40)

Replacing ≈ by = and solving the linear equations provides

estimates α̃i and β̃i for αi and βi . The attacker focuses on

the exponentiation mod p1 iff α̃1 > α̃2.

123

Journal of Cryptographic Engineering (2021) 11:369–397 389

Remark 10 (i) Similarities to Montgomery’s multiplication

algorithm. As for Montgomery’s multiplication algo-

rithm, the attack remains feasible if the CRT is applied.

(ii) Differences to Montgomery’s multiplication algorithm.

Unlike for Montgomery’s multiplication algorithm, the

choice, whether the modular exponentiation mod p1 or

mod p2 is attacked, may have significant impact on the

attack’s efficiency. This is similar to the situation in

Sect. 4.2.

4.4 ˛ ≈ 0,ˇ ≈ 0, Algorithm 5: impact on the attack
efficiency

In Sect. 3.2.3, we mentioned that α ≈ 0 and β ≈ 0 may

occur if b = 2ws ≫ 2, e.g. for ws = 8, 16, 32, 64. While

β ≈ 0 is quite likely, α ≈ 0 is certainly possible but very

unusual. For both special cases, the necessary computations

become considerably easier.

For β ≈ 0, all before-mentioned attacks remain feasi-

ble. The attacks in Sect. 4.2 and Sect. 4.3 exploit differences

between multiplications with different factors, which are

caused by different α-values. As β ≈ 0, this reduces the part

of the variances that does not depend on the particular fac-

tor. Hence, β ≈ 0 there leads to even more efficient attacks,

while this has little relevance for the attack in Sect. 4.1. If

α ≈ 0 the {0, 1}-valued random variables R1, R2, . . . are

iid distributed with Pr(R j = 1) = β/2, and thus, only the

timing attack in Sect. 4.1 remains feasible.

In Sect. 3.2.2, we have shown that in Algorithm 5 extra

additions are rather rare and thus can be treated like noise.

For the timing attacks in Sect. 4.1 and Sect. 4.2, this effect

slightly increases the variance and thus also the sample size.

If cadd �≈ cER in the local timing attacks in Sect. 4.3, the extra

additions can be detected yielding to the same situation as

for Algorithm 1. If cadd ≈ cER, we occasionally get a wrong

number of extra reductions, which may slightly increase the

sample size. (As already pointed out in Sect. 3.2.3 for β ≈ 0,

the situation is rather similar to Montgomery’s multiplication

algorithm.)

5 Experiments

In this section, we report experimental results for the attacks

presented in Sect. 4. In each experiment, we used simulations

of the exponentiation algorithms returning the exact number

of extra reductions needed by the multiplications and squar-

ings, either cumulative (pure timing attacks) or per operation

(local timing attacks). This represents the ideal (noise-free)

case (accurate timing measurement, no time noise by other

operations). Of course, non-ideal scenarios would require

larger sample sizes.

We performed timing attacks on RSA without CRT and

on Diffie–Hellman exemplarily on 512-bit RSA moduli and

on a 3072-bit DH group, and for RSA with CRT, we con-

sidered 1024-bit moduli and 3072-bit moduli. Finally, we

carried out local timing attacks on 512-bit RSA moduli and

on a 3072-bit DH group. Our experiments confirmed the the-

oretical results. Of course, 512-bit RSA moduli have not been

secure for many years, and also 1024-bit RSA is no longer

state-of-the-art. These choices yet allow direct comparisons

to results from previous papers on Montgomery’s multipli-

cation algorithm which considered these modulus sizes.

We primarily report on experiments using Barrett’s mul-

tiplication algorithm with base b = 2, but in the respective

subsections, we also explain how the results change when a

more common base b = 2ws for ws ≥ 8 is used. The case

b = 2 is usually less favourable for the attacker in terms of

efficiency and represents a worst-case analysis in this sense.

Mathematically, it is also the most challenging case as it

requires the most general stochastic model.

The experiments were implemented using the Julia pro-

gramming language [5] with the Nemo algebra package [15].

5.1 Timing attacks on RSAwithout CRT and on DH

We implemented the timing attack with the look-ahead strat-

egy as presented in Sect. 4.1.

Since our simulations are noise-free, we set Var(Nd, j) :=
0 in (26). For simplicity, in (26) we approximated the

covariances covMS, j , covSM, j and covSS by the empirical

covariances of suitable samples generated from Stochastic

Model 2. For instance, covMS, j can be approximated using

samples from

Rn =
⌈
αSn−1t j + βUn − Sn

⌉
,

Rn+1 =
⌈
αS2

n + βUn+1 − Sn+1

⌉
,

where t j := y j/M is the normalized basis of the j-th timing

sample. (Recall that the random variables Sn−1, Sn, Un and

Un+1 are iid uniformly distributed on [0, 1).) Furthermore,

the n-th and the (n +1)-th Barrett operations correspond to a

multiplication by the basis and a squaring, respectively. We

point out that Lemma 7 (i) would theoretically allow an exact

computation of these covariances since Cov(Rn, Rn+1) =
E(Rn Rn+1) − E(Rn) E(Rn+1) and

E(Rn Rn+1) =
∑

1≤i, j≤2

i j Pr(Rn = i, Rn+1 = j).

In order to make the attack more efficient, we chose the

look-ahead depth λ dynamically during the attack. Our strat-

egy is based on the observation that when Decision Strategy 1

fails for the first time, the decisions usually are close, i.e.

123

390 Journal of Cryptographic Engineering (2021) 11:369–397

using the notation of Sect. 4.1,

|η(0) f 0(ω) − η(1) f 1(ω)|

is small. Close decisions happen mostly at the beginning of

the attack when the number of remaining exponent bits k

is large (if Var(Nd, j) ≈ 0, then the variance vρ, j in (26)

decreases (essentially) linearly in k) or if the number N of

timing samples is insufficient. For each decision, we gradu-

ally incremented the look-ahead depth λ starting from 1 until

either the heuristic condition

∣∣η(0) f 0(ω) − η(1) f 1(ω)
∣∣ ≥ 3 · log2

(
1 + N/k

)

was fulfilled or we reached some maximum look-ahead depth

λmax.

For simplicity, we assumed in our experiments that we

know the bit-length and Hamming weight of the secret expo-

nent (cf. Sect. 4.1).

For the first experiment, we used Diffie–Hellman group

dhe3072 defined in Appendix A.2 of RFC 7919 [16]. This

reference recommends to use this group with secret expo-

nents of bit-length at least 275. The 3072-bit modulus of this

group has Barrett parameters α ≈ 0.63 and β ≈ 0.5 for

the base b = 2 we used. The results of the experiment are

reported in Table 2. For each sample size N and maximum

look-ahead depth λmax given in the table, we conducted 100

trials of the timing attack. For each trial, a 275-bit secret

exponent and N input bases were chosen independently at

random.

Table 2 shows that in terms of the sample size the applied

(dynamic) look-ahead strategy is much more efficient than

the constant look-ahead strategy λ = 1.

For the second experiment, we considered RSA with 512-

bit moduli and again used Barrett’s multiplication with base

b = 2. Of course, factoring 512-bit RSA moduli has been

an easy task for many years, but this choice allows a direct

comparison with the results on Montgomery’s multiplica-

tion algorithm in [28]. The results of these experiments are

reported in Table 3. For each sample size N and maximum

look-ahead depth λmax given in the table, we conducted 100

trials of the timing attack. For each trial, a 512-bit RSA-

modulus and N input bases were chosen independently at

random. Since we chose e := 65537 as public exponents,

the secret exponents were ensured to be of bit-length near

512 as well.

Reference [28] treats 512-bit RSA moduli, the square and

multiply algorithm and Montgomery’s multiplication algo-

rithm. In our terminology, [28] applies the optimal decision

strategy for the constant look-ahead strategy λ = 1. For the

sample size N = 5000 (for N = 7000, for N = 9000), simu-

lations yielded success probabilities of 12% (55%, 95%). The

results in Table 3 underline that the efficiency of the attacks on

Barrett’s and on Montgomery’s multiplication algorithm is

rather similar for λ = 1. Moreover, in [28] also so-called real-

life attacks were conducted where the timings were gained

from emulations of the Cascade chip (see [28], Remark 4).

For the above-mentioned sample sizes, the real-life attack

was successful in 15%, 40% or 72% of the trials. In [28], fur-

ther experiments were conducted where the optimal decision

strategy was combined with an error detection and correction

strategy. There already N = 5000 led to success rates of 85%

(simulation) and 74% (real-world attack). This improved the

efficiency of the original attack on the Cascade chip in [13] by

a factor ≈ 50. We refer the interested reader to [28], Table 1

and Table 2, for further experimental results.

This error detection and correction strategy can be

adjusted to Barrett’s multiplication algorithm, and for λ = 1

this should also increase the attack efficiency (in terms of

N) considerably. Of course, one might combine this error

detection and correction strategy with our look-ahead strat-

egy. We do not expect a significant improvement because

the look-ahead strategy treats suspicious (‘close’) decisions

with particular prudence (by enlarging λ). However, the other

way round the look-ahead strategy can be applied to Mont-

gomery’s multiplication algorithm as well and should yield

similar improvements.

Decision Strategy 1 considers the remaining execution

time and the following λ exponent bits. Since the variance of

the remaining execution time vρ, j (26) is approximately lin-

ear in the number of exponent bits, wrong decisions should

essentially occur in the beginning of the attack. This obser-

vation suggests a coarse rule of thumb to extrapolate the

necessary sample size to different exponent lengths: When

the exponent length increases from ℓ1 to ℓ2, the sample size N

should increase by factor ≈ ℓ2/ℓ1. The experimental results

in Table 2 and Table 3 are in line with this formula, cf. the

results for N = 1000 (Table 2) and N = 2000 (Table 3), for

instance.

Our experiments showed the interesting feature that unlike

for the attacks in Sects. 5.2 and 5.3, the parameters α and

β only play a small role for the efficiency, at least under

optimal conditions when no additional noise occurs. Qual-

itatively, this feature can be explained as follows: Decision

Strategy 1 essentially exploits the fact that the variances of

the 2λ (hypothetical) remaining execution times should be

the smaller the more of the left-hand bits of the λ-bit win-

dow are correct. Large (resp., small) α, β imply large (resp.,

small) variances and differences of variances. In the pres-

ence of additional noise large α, β should favour the attack

efficiency because then the relative impact of the additional

noise on the variance is smaller.

We repeated some of the experiments in Tables 2 and 3

for base b = 28 and obtained comparable success rates.

123

Journal of Cryptographic Engineering (2021) 11:369–397 391

Table 2 Timing attack on

Diffie–Hellman group

dhe3072 with 275-bit secret

exponents (base b = 2)

Sample size Success rate (in %)

N λmax : 1 2 3 4 5 6 7 8 9 10

400 0 0 0 0 0 1 2 1 1 4

600 0 0 1 2 12 13 21 41 39 50

800 0 0 5 23 37 54 74 73 75 83

1000 0 0 31 42 65 82 83 88 93 91

1200 0 11 37 72 88 89 94 97 98 100

1400 3 32 69 89 95 94 100 99 99 99

Table 3 Timing attack on

512-bit RSA without CRT (base

b = 2)

Sample size Success rate (in %)

N λmax : 1 2 3 4 5 6 7 8 9 10

1000 0 0 0 0 0 0 2 8 8 12

1500 0 0 0 8 18 32 50 63 71 77

2000 0 0 15 37 62 80 84 93 97 92

2500 0 7 40 74 91 89 97 98 100 97

3000 0 25 66 87 96 98 100 100 98 99

3500 0 49 80 98 100 99 99 98 100 99

5000 17 89 100

7000 66 99

9000 89 100

5.2 Timing attacks on RSAwith CRT

We implemented the timing attack presented in Sect. 4.2

(RSA with CRT, square & multiply algorithm).

The efficiency of the attack depends on the Barrett parame-

tersα1, α2, β1, β2 of the RSA-primes p1, p2. The valueαi :=
max{α1, α2} (which is estimated in attack phase 1) deter-

mines the ‘size’ of useful information (‘signal’), whereas the

values α3−i , β1, β2 determine the size of unwanted ‘algo-

rithmic noise’ for the attack. We use αmax := max{α1, α2}
and β := (β1 + β2)/2 as simple measures for the amount of

signal and algorithmic noise, respectively.

The results of our experiments are reported in Table 4 and

Table 5 for RSA moduli of bit-size ν := 1024 (allowing a

comparison with [22]) and ν := 3072, respectively. We used

Barrett’s multiplication algorithm with base b = 2 and RSA

primes of bit-size ν/2. Each row of the table represents an

experiment consisting of 100 trials. For each trial, we used

rejection sampling to generate an RSA modulus such that

αmax and β are contained in the given intervals.

In attack phase 1, we divided the initial intervals contain-

ing p1 and p2 into h := 4 subintervals each and chose a

sample size of N1 := 32. For attack phase 2, we estimated

the sample size N2 as follows. For an interval [u3, u2], we

consider Δ := T (u2)− T (u3) as random variable. Then, we

have Var(Δ) ≈ (vi,3 + vi,2 + v3−i,3 + v3−i,2)c
2
ER, where the

second indices equal the index of the corresponding value

u j . More precisely,

vi, j :=
ν

2
varS,αi ,βi

+
ν

4
varM,ti, j ,αi ,βi

+2

(
ν

4
covSS,αi ,βi

+
ν

4
covMS,ti, j ,αi ,βi

+
ν

4
covSM,ti, j ,αi ,βi

)

and ti, j := (u j mod pi)/pi . Plugging in the estimates

α̃1, α̃2, β̃1, β̃2

from attack phase 1 as well as t̃i,3 ≈ 1, t̃i,2 = 0, and t̃3−i,3 =
t̃3−i,2 ≈ 1 (worst case), we obtain an approximate upper

bound σ̃ 2
Δ,i for Var(Δ) (holding for both Case A and Case

Bi). Let γ denote the probability that

MeanTime(u2, N2) − MeanTime(u3, N2) > −
1

16
να̃i cER,

although pi ∈ [u3, u2]. Each difference T (u2 + j)− T (u1 +
j) may be viewed as a realization of the difference of two

normally distributed random variables, and thus, the error

probability γ is approximately

Φ

(
−

1

16
να̃i cER/(̃σΔ,i/

√
N2)

)
.

123

392 Journal of Cryptographic Engineering (2021) 11:369–397

Table 4 Timing attack on

1024-bit RSA with CRT (base

b = 2, γ = 2−8 in (41))

Signal Alg. noise Sample sizes Errors Success

αmax β Ñ2 N 2 Ñtotal N total E total (in %)

[0.0,0.2] [0.65, 0.80] 72.5 124.71 24226.5 46566.76 1.26 62

[0.50, 0.65] 59 101.14 18851.5 33270.86 0.78 64

[0.2,0.4] [0.65, 0.80] 15 18.19 4878 5882.48 0.53 97

[0.50, 0.65] 15 17.80 4624 5630.72 0.41 86

[0.4,0.6] [0.65, 0.80] 6 6.40 2171 2168.31 0.39 98

[0.50, 0.65] 6 6.20 1973 2149.02 0.44 98

[0.6,0.8] [0.65, 0.80] 3 3.37 1200 1241.42 0.21 100

[0.50, 0.65] 3 3.31 1101 1240.08 0.25 99

[0.8,1.0] [0.65, 0.80] 2 2.06 830 874.54 0.20 94

[0.50, 0.65] 2 2.06 830 864.67 0.13 100

[0.0,1.0] [0.50, 0.80] 6 25.28 1973 9244.66 0.51 93

Table 5 Timing attack on

3072-bit RSA with CRT (base

b = 2, γ = 2−9 in (41))

Signal Alg. noise Sample sizes Errors Success

αmax β Ñ2 N 2 Ñtotal N total E total (in %)

[0.0,0.2] [0.65, 0.80] 29 57.52 27103 49030.68 0.80 69

[0.50, 0.65] 26.5 40.58 23444.5 34818.14 0.74 76

[0.2,0.4] [0.65, 0.80] 7 7.34 5877.5 6431.51 0.60 92

[0.50, 0.65] 6 6.87 5082 6008.79 0.50 94

[0.4,0.6] [0.65, 0.80] 3 2.79 2685 2582.59 0.33 100

[0.50, 0.65] 3 2.73 2685 2499.22 0.21 99

[0.6,0.8] [0.65, 0.80] 2 1.53 1886 1525.63 0.22 100

[0.50, 0.65] 2 1.54 1884 1530.20 0.18 100

[0.8,1.0] [0.65, 0.80] 1 1.00 1087 1095.58 0.13 100

[0.50, 0.65] 1 1.00 1087 1089.64 0.04 100

[0.0,1.0] [0.50, 0.80] 3 8.17 2682 7188.71 0.24 95

Therefore, a desired maximum error probability γ for a single

decision can approximately be achieved by setting

N2 :=
⌈(

16 · σ̃Δ,i · Φ−1(γ)

ν · α̃i · cER

)2⌉
. (41)

We point out that (41) does not depend on cER because σ̃Δ,i

is a multiple of cER. In the simulation, we thus may assume

cER = 1. Of course, in a noisy setting the relation between

the noise and cER is relevant. For the experiments in Tables

4 and 5, we chose γ := 2−8 and γ := 2−9, respectively. The

median and mean of the values chosen for N2 in successful

attacks are denoted by Ñ2 and N 2; the median and mean of

the total number of timing samples required for an successful

attack are denoted by Ñtotal and N total.

The experiments were implemented using the error detec-

tion and correction strategy as outlined in Sect. 4.2. We

‘confirmed’ every 64-th interval using additional N2 timing

samples and aborted attacks as soon as 10 errors had been

detected. The average number of errors that were corrected

in successful attacks is denoted by E total in Tables 4 and 5.

Our experiments confirm the theory developed in Sect. 4.2.

In particular, the efficiency of the attack increases with αmax,

which is the reason why in Step 2 of the attack we focus on

the prime pi with larger αi .

It may be surprising that the average sample sizes for 1024-

bit moduli and for 3072-bit moduli are comparable although

the latter takes almost three times as many individual deci-

sions. The reason is that the average gap E(T (u2) − T (u1))

(32) increases linearly in the exponent size, while the stan-

dard deviation of MeanTime(u, N) (34) (in the absence of

additional noise, for fixed N) only grows as its square root.

For b = 2ws with ws ≥ 8, we have β1, β2 ≈ 0 and the

algorithmic noise is considerably reduced, whereas the gap

remains constant. In this case, the required sample sizes are

smaller on average compared to those reported in Tables 4

and 5 (except for ranges where N 2 is already 1).

123

Journal of Cryptographic Engineering (2021) 11:369–397 393

5.3 Local timing attacks

We implemented the local timing attacks presented in

Sect. 4.3.

For window width w, the computation of the decision rule

(39) requires the evaluation of (2w + 1)-dimensional inte-

grals in (38). In contrast to the corresponding attack against

Montgomery’s algorithm, those integrals cannot easily be

determined analytically, which is why we have to resort

to numerical methods. However, due to the so-called curse

of dimensionality, generic numerical integration algorithms

break down completely forw ≥ 3 in terms of either efficiency

or accuracy. We therefore take a step back and consider the

stochastic model for the table initialization phase,

R′
2 =

⌈
αS′

1S′
1 + βU ′

2 − S′
2

⌉
,

R′
3 =

⌈
αS′

2S′
1 + βU ′

3 − S′
3

⌉
,

...

R′
2w−1 =

⌈
αS′

2w−2S′
1 + βU ′

2w−1 − S′
2w−1

⌉
,

(42)

and for operationO j(w+1) = Mθ (j ≥ 2, θ ∈ {1, . . . , 2w−1})
of the exponentiation phase,

R j(w+1) =
⌈
αS j(w+1)−1S′

θ + βU j(w+1) − S j(w+1)

⌉
.

Let (r ′
2, . . . , r ′

2w−1, r j(w+1)) be a corresponding realiza-
tion of extra reductions. Let us assume for the moment
that we are able to draw samples (s′

1,i , . . . , s′
2w−1,i) and

(u′
2,i . . . , u′

2w−1,i) from (42) for 1 ≤ i ≤ N ′ which give

rise to the given extra reduction vector (r ′
2, . . . , r ′

2w−1). For

N ′ sufficiently large (we used N ′ := 10,000 in our experi-
ments), we obtain the approximation

Prθ
(
R j(w+1) = r j(w+1) | R′

2 = r ′
2, . . . , R′

2w−1 = r ′
2w−1

)

≈
1

N ′

N ′∑

i=1

Pr
(
R(S j(w+1)−1, s′

θ,i) = r j(w+1)

) (43)

for all θ ∈ {1, . . . , 2w − 1}, where R(·, ·) is defined as in

(2). The probabilities on the right-hand side of (43) can be

computed explicitly using Lemma 3 (i). Since

Pr(R′
2 = r ′

2, . . . , R′
2w−1 = r ′

2w−1)

is independent of θ (and > 0), the joint probabilities

Prθ (R′
2 = r ′

2, . . . , R′
2w−1 = r ′

2w−1, R j(w+1) = r j(w+1)) in

decision rule (39) can be replaced by the conditional proba-

bilities in (43) without affecting the decision.

A required sample (s′
1, . . . , s′

2w−1) and (u′
2 . . . , u′

2w−1)

from (42) giving rise to an extra reduction vector (r ′
2, . . . ,

r ′
2w−1) can in principle be generated using rejection sam-

pling. For w ≥ 3, however, this is way too inefficient for

aforementioned reasons. We therefore use an approach akin

to Gibbs sampling. First, instead of generating the compo-

nents of

(s′
1, . . . , s′

2w−1) and (u′
2 . . . , u′

2w−1)

independently and uniformly from [0, 1), we sample them

adaptively in the order s′
1, s′

2, u′
2, . . . , s′

2w−1, u′
2w−1, with

each choice conditioned on the previous choices (when

we reach a dead end, we start over). At this moment, the

samples (s′
1, . . . , s′

2w−1) and (u′
2 . . . , u′

2w−1) give rise to

(r ′
2, . . . , r ′

2w−1), but are biased and require some correction.

Therefore, we re-sample the elements s′
1, s′

2, u′
2, . . . , s′

2w−1,

u′
2w−1 cyclically in this order, with each choice conditioned

on the current values of the other variables. In our exper-

iments, we used just 10 such rounds. The final values of

(s′
1, . . . , s′

2w−1) are taken as the desired sample. For the next

sample, we restart the whole process from the beginning.

(Our experiments have shown that continuing the process

from the previous sample may lead to a biased distribution.)

Although this method is somewhat experimental, our exper-

iments below demonstrate that it is sufficient for our attacks

to work. Note that the time complexity of this approach is

linear in 2w, while the complexity of rejection sampling is in

general exponential in 2w.

For the first experiment, we used Diffie–Hellman group

dhe3072 defined in Appendix A.2 of RFC 7919 [16] with

275-bit exponents (cf. Sect. 5.1). The 3072-bit modulus of

this group has Barrett parameters α ≈ 0.63 and β ≈ 0.5

for the base b = 2 we used. The results of the experiment

are reported in Table 6. For each window size w and sam-

ple size N given in the table, we conducted 100 trials of the

timing attack. For each trial, a 275-bit secret exponent and

N (unknown) input bases were chosen independently at ran-

dom. We counted attacks with at most 2 errors as successful

since one or two errors can easily be corrected by exhaustive

search, beginning with the most plausible alternatives. The

mean number of errors is denoted by E .

It can be observed that the attack is exceptionally efficient

for window size w = 1. The reason is that in this case only

the operationsM0 (multiplication by 1) andM1 (multiplication

by the unknown input basis) have to be distinguished, which

is easy because for M0 extra reductions never occur.

For the second experiment, we considered RSA without

CRT with 512-bit moduli. We used Barrett’s multiplication

algorithm with base b = 2 and b = 28, and RSA primes

of bit-size 256. In this experiment, we limited ourselves to

window size w = 4. The results of the experiment for b = 2

are reported in Table 7 and for b = 28 in Table 8. Since the

attack is sensitive to the value α of the modulus (‘signal’),

we conducted trials for several ranges of α. For each row of

the table, we conducted 100 trials. For each trial, we used

rejection sampling to generate an RSA modulus with α in

the given interval and we chose N (unknown) input bases

123

394 Journal of Cryptographic Engineering (2021) 11:369–397

Table 6 Local timing attack on Diffie–Hellman group dhe3072 with

275-bit secret exponents (base b = 2)

Window width Sample size Errors Success rate

w N E (in %)

1 6 6.03 9

8 2.33 64

10 0.62 97

12 0.23 100

2 400 5.76 7

500 3.25 45

600 2.19 59

700 1.43 79

800 0.92 94

900 0.57 96

1000 0.31 100

3 500 6.14 6

600 3.78 26

700 2.24 62

800 1.74 74

900 1.09 91

1000 0.92 92

1100 0.47 100

4 600 5.26 7

800 2.35 55

1000 0.93 89

1200 0.50 98

1400 0.24 100

5 600 6.89 5

800 2.93 44

1000 1.33 88

1200 0.71 96

1400 0.23 100

independently at random. Again, we counted attacks with at

most 2 errors as successful.

As in Sect. 5.1, the choice of 512-bit RSA moduli allows

a comparison with the results in [23] and [25], Section 6.

There Montgomery’s multiplication algorithm was applied

together with a slightly modified exponentiation algorithm,

which resigned on the multiplication by 1 (resp. by Mont-

gomery constant R) when a zero block of the exponent bits

was processed. Even for large α the attack on Barrett’s multi-

plication algorithm with b = 2 is to some extent less efficient

than the attack against Montgomery’s algorithm although

there only one guessing error was allowed. In contrast, for

ws = 8 (and large α), the success rates are similar to those

for Montgomery’s multiplication algorithm. The results for

ws > 8 should be alike because β ≈ 0 in all cases.

Table 7 Local timing attack on 512-bit RSA with window width w = 4

(base b = 2)

Signal Sample size Errors Success rate

α N E (in %)

[0.4,0.6] 1600 6.10 33

2000 3.75 46

2400 2.78 54

2800 1.93 67

3200 1.23 82

3600 1.14 84

4000 0.74 90

4400 0.49 95

4800 0.39 96

[0.6,0.8] 800 4.11 36

1000 1.67 76

1200 0.84 90

1400 0.27 100

[0.8,1.0] 500 3.80 29

600 1.84 77

700 0.79 95

800 0.35 99

Table 8 Local timing attack on 512-bit RSA with window width w = 4

(base b = 28)

Signal Sample size Errors Success rate

α N E (in %)

[0.4,0.6] 800 3.25 44

1200 0.62 93

[0.6,0.8] 600 1.47 84

800 0.23 100

[0.8,1.0] 400 2.42 56

500 0.88 95

For the local timing attack against RSA with CRT, the Bar-

rett parameters α1, β1, α2, β2 of the unknown primes p1, p2

have to be estimated in a pre-step as outlined in Sect. 4.3.2.

We successfully verified this procedure in experiments. Since

the remaining part of the attack is equivalent to the local

timing attack against RSA without CRT, we dispense with

reporting additional results on the full attack against RSA

with CRT.

A single decision by Decision Strategy 2 depends on the

whole table initialization phase but only on one Barrett oper-

ation within the exponentiation phase. For given parameters

α, β,w, b and N its error probability thus does not depend

on the length of the exponent. Since the number of individ-

ual decisions increases linearly in the length of the exponent,

for longer exponents the sample size N has to be raised to

123

Journal of Cryptographic Engineering (2021) 11:369–397 395

some extent to keep the expected number of guessing errors

roughly constant. Tables 6 to 8 underline that local timing

attacks scale well when the exponent length increases. Con-

sider w = 4 in Table 6, for instance: increasing N from 1000

to 1400 reduces the error probability of single decisions to

≈ 25%, which in turn implies that N = 1400 should lead

to a similar success probability for exponent length 1024 as

N = 1000 for exponent length 275.

6 Countermeasures

In Sect. 4, we discussed several attack scenarios against Bar-

rett’s multiplication algorithm. It has been pointed out that

these attacks are rather similar to those when Montgomery’s

multiplication algorithm is applied. Consequently, the same

countermeasures apply.

The most rigorous countermeasure definitely is when all

modular squarings and multiplications within a modular

exponentiation need identical execution times. Obviously,

then timing attacks and (passive) local timing attacks can-

not work. Identical execution times could be achieved by

inserting up to two dummy operations per Barrett multipli-

cation if necessary. However, this should be done with care.

A potential disadvantage of a dummy operation approach

is that dummy operations might be identified by a power

attack, and for software implementations on PCs the compiler

might unnoticeably cancel the dummy operations if they are

not properly implemented. An additional difficulty for soft-

ware implementations is that secret-dependent branches and

memory accesses must be avoided in order to thwart microar-

chitectural attacks.

It should be noted that for Montgomery’s multiplication

algorithm, a smarter approach exists: one may completely

resign on extra reductions if not only R > M but even

R > 4M for modulus M [30]. For Barrett’s multiplication

algorithm, a similar approach exists, see the variant of this

algorithm presented in [12].

Basis blinding and exponent blinding work differently.

While basis blinding shall prevent an attacker from learning

and controlling the input, exponent blinding shall prevent an

attacker from combining information on particular exponent

bits from several exponentiations because the exponent is

constantly changing.

State-of-the-art (pure) timing attacks on RSA without

CRT (or on DH) neither work against basis blinding nor

against exponent blinding. While basis blinding suffices to

protect RSA with CRT implementations against pure timing

attacks, exponent blinding does not suffice; the attack from

[26,27] can easily be transferred to Barrett’s multiplication

algorithm. On the other hand, sole basis blinding does not

prevent local timing attacks as shown in Sects. 4.3 and 5.3,

whereas exponent blinding counteracts these attacks.

Principally, state-of-the-art knowledge might be used to

determine minimal countermeasures, but we recommend to

stay on the safe side by applying combinations of blinding

techniques (at least basis blinding and exponent blinding).

Since blinding also counteracts other types of attacks, we

recommend to use blinding techniques even if the imple-

mentation does not have timing differences.

7 Conclusion

We have thoroughly analysed the stochastic behaviour of

Barrett’s multiplication algorithm when applied in modular

exponentiation algorithms. Unlike Montgomery’s multipli-

cation algorithm, Barrett’s multiplication algorithm does not

only allow one but even two extra reductions, a feature,

which increases the mathematical difficulties considerably.

All known timing attacks and local timing attacks against

Montgomery’s multiplication algorithm were adapted to Bar-

rett’s multiplication algorithm, but specific features require

additional attack substeps when RSA with CRT is attacked.

Moreover, for timing attacks against RSA without CRT and

against DH, we developed an efficient look-ahead strategy.

Extensive experiments confirmed our theoretical results. For-

tunately, effective countermeasures exist.

Acknowledgements We thank Friederike Laus for her careful reading

of an earlier iteration of this document and the anonymous reviewer for

his thoughtful comments on the submitted version. Both helped us to

improve the presentation of the paper.

Funding Open Access funding enabled and organized by Projekt

DEAL.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing, adap-

tation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indi-

cate if changes were made. The images or other third party material

in this article are included in the article’s Creative Commons licence,

unless indicated otherwise in a credit line to the material. If material

is not included in the article’s Creative Commons licence and your

intended use is not permitted by statutory regulation or exceeds the

permitted use, you will need to obtain permission directly from the copy-

right holder. To view a copy of this licence, visit http://creativecomm

ons.org/licenses/by/4.0/.

References

1. Aciiçmez, O., Schindler, W.: A major vulnerability in RSA

implementations due to microarchitectural analysis threat. IACR

Cryptology ePrint Archive 2007, 336 (2007). http://eprint.iacr.org/

2007/336

2. Aciiçmez, O., Schindler, W.: A vulnerability in RSA implemen-

tations due to instruction cache analysis and its demonstration on

openssl. In: T. Malkin (ed.) Topics in Cryptology-CT-RSA 2008,

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://eprint.iacr.org/2007/336
http://eprint.iacr.org/2007/336

396 Journal of Cryptographic Engineering (2021) 11:369–397

The Cryptographers’ Track at the RSA Conference 2008, San Fran-

cisco, CA, USA, April 8–11, 2008. Proceedings, Lecture Notes

in Computer Science, vol. 4964, pp. 256–273. Springer (2008).

https://doi.org/10.1007/978-3-540-79263-5_16

3. Aciiçmez, O., Schindler, W., Koç, Ç.K.: Improving Brumley and

Boneh timing attack on unprotected SSL implementations. In:

V. Atluri, C.A. Meadows, A. Juels (eds.) Proceedings of the 12th

ACM Conference on Computer and Communications Security,

CCS 2005, Alexandria, VA, USA, November 7–11, 2005, pp. 139–

146. ACM (2005). http://doi.acm.org/10.1145/1102120.1102140

4. Barrett, P.: Implementing the Rivest Shamir and Adleman public

key encryption algorithm on a standard digital signal processor. In:

A.M. Odlyzko (ed.) Advances in Cryptology - CRYPTO ’86, Santa

Barbara, California, USA, 1986, Proceedings, Lecture Notes in

Computer Science, vol. 263, pp. 311–323. Springer (1986). https://

doi.org/10.1007/3-540-47721-7_24

5. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh

approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017).

https://doi.org/10.1137/141000671

6. Bosselaers, A., Govaerts, R., Vandewalle, J.: Comparison of three

modular reduction functions. In: D.R. Stinson (ed.) Advances in

Cryptology—CRYPTO’93, 13th Annual International Cryptology

Conference, Santa Barbara, California, USA, August 22–26, 1993,

Proceedings, Lecture Notes in Computer Science, vol. 773, pp.

175–186. Springer (1993). https://doi.org/10.1007/3-540-48329-

2_16

7. Brumley, D., Boneh, D.: Remote timing attacks are practical. In:

Proceedings of the 12th USENIX Security Symposium, Wash-

ington, D.C., USA, August 4–8, 2003. USENIX Association

(2003). https://www.usenix.org/conference/12th-usenix-security-

symposium/remote-timing-attacks-are-practical

8. Brumley, D., Boneh, D.: Remote timing attacks are practical.

Comput. Netw. 48(5), 701–716 (2005). https://doi.org/10.1016/j.

comnet.2005.01.010

9. Buonocore, A., Pirozzi, E., Caputo, L.: A note on the sum of

uniform random variables. Stat. Probab. Lett. 79(19), 2092–2097

(2009). https://doi.org/10.1016/j.spl.2009.06.020

10. Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen,

K., Vercauteren, F. (eds.): Handbook of Elliptic and Hyperelliptic

Curve Cryptography. Chapman and Hall/CRC, Boca Raton (2005).

https://doi.org/10.1201/9781420034981

11. Coppersmith, D.: Small solutions to polynomial equations, and low

exponent RSA vulnerabilities. J. Cryptol. 10(4), 233–260 (1997).

https://doi.org/10.1007/s001459900030

12. Dhem, J.: Design of an efficient public-key cryptographic library

for RISC-based smart cards. Ph.D. thesis, Université Catholique

de Louvain (1998)

13. Dhem, J., Koeune, F., Leroux, P., Mestré, P., Quisquater, J.,

Willems, J.: A practical implementation of the timing attack. In:

J. Quisquater, B. Schneier (eds.) Smart Card Research and Appli-

cations, This International Conference, CARDIS’98, Louvain-la-

Neuve, Belgium, September 14–16, 1998, Proceedings, Lecture

Notes in Computer Science, vol. 1820, pp. 167–182. Springer

(1998). https://doi.org/10.1007/10721064_15

14. Dugardin, M., Guilley, S., Danger, J., Najm, Z., Rioul, O.: Corre-

lated extra-reductions defeat blinded regular exponentiation. In:

B. Gierlichs, A.Y. Poschmann (eds.) Cryptographic Hardware

and Embedded Systems—CHES 2016—18th International Confer-

ence, Santa Barbara, CA, USA, August 17–19, 2016, Proceedings,

Lecture Notes in Computer Science, vol. 9813, pp. 3–22. Springer

(2016). https://doi.org/10.1007/978-3-662-53140-2_1

15. Fieker, C., Hart, W., Hofmann, T., Johansson, F.: Nemo/hecke:

Computer algebra and number theory packages for the julia

programming language. In: Proceedings of the 2017 ACM on

International Symposium on Symbolic and Algebraic Computa-

tion, ISSAC’17, pp. 157–164. ACM, New York, NY, USA (2017).

https://doi.org/10.1145/3087604.3087611

16. Gillmor, D.K.: Negotiated finite field Diffie-Hellman ephemeral

parameters for transport layer security (TLS). RFC (2016). https://

doi.org/10.17487/RFC7919

17. Hoeffding, W., Robbins, H.: The central limit theorem for depen-

dent random variables. Duke Math. J. 15(3), 773–780 (1948).

https://doi.org/10.1215/S0012-7094-48-01568-3

18. Knezevic, M., Vercauteren, F., Verbauwhede, I.: Faster interleaved

modular multiplication based on Barrett and Montgomery reduc-

tion methods. IEEE Trans. Comput. 59(12), 1715–1721 (2010).

https://doi.org/10.1109/TC.2010.93

19. Kocher, P.C.: Timing attacks on implementations of Diffie–

Hellman, RSA, DSS, and other systems. In: N. Koblitz (ed.)

Advances in Cryptology—CRYPTO’96, 16th Annual International

Cryptology Conference, Santa Barbara, California, USA, August

18–22, 1996, Proceedings, Lecture Notes in Computer Science,

vol. 1109, pp. 104–113. Springer (1996). https://doi.org/10.1007/

3-540-68697-5_9

20. Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of

Applied Cryptography. CRC Press, Boca Raton (1996)

21. Montgomery, P.L.: Modular multiplication without trial division.

Math. Comput. 44, 510–521 (1985)

22. Schindler, W.: A timing attack against RSA with the Chinese

remainder theorem. In: Ç.K. Koç, C. Paar (eds.) Cryptographic

Hardware and Embedded Systems—CHES 2000, Second Inter-

national Workshop, Worcester, MA, USA, August 17–18, 2000,

Proceedings, Lecture Notes in Computer Science, vol. 1965, pp.

109–124. Springer (2000). https://doi.org/10.1007/3-540-44499-

8_8

23. Schindler, W.: A combined timing and power attack. In: D. Nac-

cache, P. Paillier (eds.) Public Key Cryptography, 5th International

Workshop on Practice and Theory in Public Key Cryptosystems,

PKC 2002, Paris, France, February 12–14, 2002, Proceedings, Lec-

ture Notes in Computer Science, vol. 2274, pp. 263–279. Springer

(2002). https://doi.org/10.1007/3-540-45664-3_19

24. Schindler, W.: Optimized timing attacks against public key cryp-

tosystems. Stat- Risk Model. 20(1–4), 191–210 (2002). https://doi.

org/10.1524/strm.2002.20.14.191

25. Schindler, W.: On the optimization of side-channel attacks by

advanced stochastic methods. In: S. Vaudenay (ed.) Public Key

Cryptography—PKC 2005, 8th International Workshop on The-

ory and Practice in Public Key Cryptography, Les Diablerets,

Switzerland, January 23–26, 2005, Proceedings, Lecture Notes in

Computer Science, vol. 3386, pp. 85–103. Springer (2005). https://

doi.org/10.1007/978-3-540-30580-4_7

26. Schindler, W.: Exclusive exponent blinding may not suffice to

prevent timing attacks on RSA. In: T. Güneysu, H. Handschuh

(eds.) Cryptographic Hardware and Embedded Systems - CHES

2015—17th International Workshop, Saint-Malo, France, Septem-

ber 13–16, 2015, Proceedings, Lecture Notes in Computer Science,

vol. 9293, pp. 229–247. Springer (2015). https://doi.org/10.1007/

978-3-662-48324-4_12

27. Schindler, W.: Exclusive exponent blinding is not enough to prevent

any timing attack on RSA. J. Cryptogr. Eng. 6(2), 101–119 (2016).

https://doi.org/10.1007/s13389-016-0124-7

28. Schindler, W., Koeune, F., Quisquater, J.: Improving divide and

conquer attacks against cryptosystems by better error detec-

tion/correction strategies. In: B. Honary (ed.) Cryptography and

Coding, 8th IMA International Conference, Cirencester, UK,

December 17–19, 2001, Proceedings, Lecture Notes in Computer

Science, vol. 2260, pp. 245–267. Springer (2001). https://doi.org/

10.1007/3-540-45325-3_22

29. Schindler, W., Koeune, F., Quisquater, J.: Unleashing the full power

of timing attack. Tech. Rep. CG 2001/3, Université Catholique de

Louvain, Crypto Group (2001)

123

https://doi.org/10.1007/978-3-540-79263-5_16
http://doi.acm.org/10.1145/1102120.1102140
https://doi.org/10.1007/3-540-47721-7_24
https://doi.org/10.1007/3-540-47721-7_24
https://doi.org/10.1137/141000671
https://doi.org/10.1007/3-540-48329-2_16
https://doi.org/10.1007/3-540-48329-2_16
https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
https://doi.org/10.1016/j.comnet.2005.01.010
https://doi.org/10.1016/j.comnet.2005.01.010
https://doi.org/10.1016/j.spl.2009.06.020
https://doi.org/10.1201/9781420034981
https://doi.org/10.1007/s001459900030
https://doi.org/10.1007/10721064_15
https://doi.org/10.1007/978-3-662-53140-2_1
https://doi.org/10.1145/3087604.3087611
https://doi.org/10.17487/RFC7919
https://doi.org/10.17487/RFC7919
https://doi.org/10.1215/S0012-7094-48-01568-3
https://doi.org/10.1109/TC.2010.93
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-44499-8_8
https://doi.org/10.1007/3-540-44499-8_8
https://doi.org/10.1007/3-540-45664-3_19
https://doi.org/10.1524/strm.2002.20.14.191
https://doi.org/10.1524/strm.2002.20.14.191
https://doi.org/10.1007/978-3-540-30580-4_7
https://doi.org/10.1007/978-3-540-30580-4_7
https://doi.org/10.1007/978-3-662-48324-4_12
https://doi.org/10.1007/978-3-662-48324-4_12
https://doi.org/10.1007/s13389-016-0124-7
https://doi.org/10.1007/3-540-45325-3_22
https://doi.org/10.1007/3-540-45325-3_22

Journal of Cryptographic Engineering (2021) 11:369–397 397

30. Walter, C.D.: Precise bounds for montgomery modular multiplica-

tion and some potentially insecure RSA moduli. In: B. Preneel (ed.)

Topics in Cryptology-CT-RSA 2002, The Cryptographer’s Track

at the RSA Conference, 2002, San Jose, CA, USA, February 18–

22, 2002, Proceedings, Lecture Notes in Computer Science, vol.

2271, pp. 30–39. Springer (2002). https://doi.org/10.1007/3-540-

45760-7_3

Publisher’s Note Springer Nature remains neutral with regard to juris-

dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/3-540-45760-7_3
https://doi.org/10.1007/3-540-45760-7_3

	Timing attacks and local timing attacks against Barrett's modular multiplication algorithm
	Abstract
	1 Introduction
	2 Stochastic modelling of modular exponentiation
	2.1 Barrett's modular multiplication algorithm
	2.2 Modular exponentiation (square and multiply algorithms)
	2.3 Summary of the relevant facts

	3 Montgomery multiplication versus Barrett multiplication
	3.1 Montgomery's multiplication algorithm in a nutshell
	3.2 A closer look at Barrett's multiplication algorithm
	3.2.1 Modular exponentiation with Algorithm 1
	3.2.2 Modular exponentiation with Algorithm 5
	3.2.3 Special values for α and β

	3.3 A short summary

	4 Timing attacks against Barrett's modular multiplication
	4.1 Timing attacks on RSA without CRT and on DH
	4.2 Timing attacks on RSA with CRT
	4.3 Local timing attacks
	4.3.1 RSA without CRT and DH
	4.3.2 RSA with CRT

	4.4 αapprox0, βapprox0, Algorithm 5: impact on the attack efficiency

	5 Experiments
	5.1 Timing attacks on RSA without CRT and on DH
	5.2 Timing attacks on RSA with CRT
	5.3 Local timing attacks

	6 Countermeasures
	7 Conclusion
	Acknowledgements
	References

