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Abstract. We propose a framework for timing attacks, based on (a variant of)
the applied-pi calculus. Since many privacy properties, as well as strong secrecy
and game-based security properties, are stated as process equivalences, we focus
on (time) trace equivalence. We show that actually, considering timing attacks
does not add any complexity: time trace equivalence can be reduced to length
trace equivalence, where the attacker no longer has access to execution times but
can still compare the length of messages. We therefore deduce from a previous
decidability result for length equivalence that time trace equivalence is decidable
for bounded processes and the standard cryptographic primitives.

As an application, we study several protocols that aim for privacy. In partic-
ular, we (automatically) detect an existing timing attack against the biometric
passport and new timing attacks against the Private Authentication protocol.

1 Introduction

Symbolic models as well as cryptographic models aim at providing high and strong
guarantees when designing security protocols. However, it is well known that these
models do not capture all types of attacks. In particular, most of them do not detect
side-channel attacks, which are attacks based on a fine analysis of e.g., time latencies,
power consumption, or even acoustic emanations [34,12]. The issue of side-channel at-
tacks is well-known in cryptography. Efficient implementations of secure cryptographic
schemes may be broken by a fine observation of the computation time or the power
consumption. Of course, counter-measures have been proposed but many variations of
side-channel attacks are still regularly discovered against existing implementations.

The same kind of issues occur at the protocol level as well. For example, the biomet-
ric passport contains an RFID chip that stores sensitive information such as the name,
nationality, date of birth, etc. To protect users’ privacy, data are never sent in the clear.
Instead, dedicated protocols ensure that confidential data are sent encrypted between
the passport and the reader. However, a minor variation in the implementation of the
protocol in the French passport has led to a privacy flaw [9]. Indeed, by observing the
error message when replaying some old message, an attacker could learn whether a
given passport belongs to Alice or not. The attack has been fixed by unifying the er-
ror messages produced by the passports. However, it has been discovered [25] that all
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biometric passports (from all countries) actually suffer from exactly the same attack as
soon as the attacker measures the computation time of the passport instead of simply
looking at the error messages.

The goal of the paper is to provide a symbolic framework and proof techniques
for the detection of timing attacks on security protocols. Symbolic models for secu-
rity protocols typically assume “the perfect encryption hypothesis”, abstracting away
the implementation of the primitives. We proceed similarly in our approach, assuming
a perfect implementation of the primitives w.r.t. timing. It is well known that imple-
mentation robust against side-channel attacks should, at the very least, be “in constant
time”, that is, the execution time should only depend on the number of blocks that need
to be processed. “Constant time” is not sufficient to guarantee against timing attacks
but is considered to be a minimal requirement and there is an abundant literature on
how to design such implementations (see for example the NaCl library [1] and some
related publications [33,16]). One could think that side-channel attacks are only due to
a non robust implementation of the primitives and that it is therefore enough to analyze
in isolation each of the cryptographic operations. However, in the same way that it is
well known that the perfect encryption assumption does not prevent flaws in protocols,
a perfect implementation of the primitives does not prevent side-channel attacks. This is
exemplified by the timing attack found against the biometric passport [25] and the tim-
ing attacks we discovered against the Private Authentication protocol [7] and several of
its variants. These attacks require both an interaction with the protocol and a dedicated
time analysis. Robust primitives would not prevent these attacks.

Our first contribution is to propose a symbolic framework that models timing attacks
at the protocol level. More precisely, our model is based on the applied-pi calculus [4].
We equip each function symbol with an associated time function as well as a length
function. Indeed, assuming a perfect implementation of the primitives, the computation
time of a function typically only depends on the size of its arguments. Each time a pro-
cess (typically a machine) performs an observable action (e.g., it sends out a message),
the attacker may observe the elapsed time. Our model is rather general since it inher-
its the generality of the applied-pi calculus with e.g., arbitrary cryptographic primitives
(that can be modeled through rewrite systems), possibly arbitrarily replicated processes,
etc. Our time and length functions are also arbitrary functions that may depend on the
machine on which they are run. Indeed, a biometric passport is typically much slower
than a server. Moreover, a server usually handles thousands of requests at the same time,
which prevents from a fine observation of its computation time. Our model is flexible
enough to cover all these scenarios. Finally, our model covers more than just timing
attacks. Indeed, our time functions not only model execution times but also any kind of
information that can be leaked by the execution, such as power consumption or other
“side-channel” measurements.

Our second main contribution is to provide techniques to decide (time) process
equivalence in our framework. Equivalence-based properties are at the heart of many
security properties such as privacy properties [29,9] (e.g., anonymity, unlinkability, or
ballot privacy), strong secrecy [19] (i.e. indistinguishability from random), or game-
based security definitions [5,27] (e.g., indistinguishability from an ideal protocol). Side
channel attacks are particularly relevant in this context where the attacker typically tries
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to distinguish between two scenarios since any kind of information could help to make a
distinction. Several definitions of equivalence have been proposed such as trace equiva-
lence [4], observational equivalence [4], or diff-equivalence [18]. In this paper, we focus
on trace equivalence. In an earlier work [24], we introduced length (trace) equivalence.
It reflects the ability for an attacker to measure the length of a message but it does not
let him access to any information on the internal computations of the processes.

Our key result is a generic and simple simplification result: time equivalence can
be reduced to length equivalence. More precisely, we provide a general transformation
such that two processes P and Q are in time equivalence if and only if their transfor-
mation P̃ and Q̃ are in length equivalence, that is P ≈ti Q ⇔ P̃ ≈� Q̃. This result
holds for an arbitrary signature and rewriting system, for arbitrary processes - includ-
ing replicated processes, and for arbitrary length and time functions. The first intuitive
idea of the reduction is simple: we add to each output a term whose length encodes the
time needed for the intermediate computations. The time elapsed between two outputs
of the same process however does not only depend on the time needed to compute the
sent term and the corresponding intermediate checks. Indeed, other processes may run
in parallel on the same machine (in particular other ongoing sessions). Moreover, the
evaluation of a term may fail (for example if a decryption is attempted with a wrong
key). Since we consider else branches, this means that an else branch may be chosen
after a failed evaluation of a term, which execution time has to be measured precisely.
The proof of our result therefore involves a precise encoding of these behaviors.

A direct consequence of our result is that we can inherit existing decidability re-
sults for length equivalence. In particular, we deduce from [24] that time equivalence is
decidable for bounded processes and a fixed signature that captures all standard cryp-
tographic primitives. We also slightly extend the result of [24] to cope with polynomial
length functions instead of linear functions.

As an application, we study three protocols that aim for privacy in different application
contexts: the private authentication protocol (PA) [7], the Basic Authentication Protocol
(BAC) of the biometric passport [2], and the 3G AKA mobile telephony protocol [10].
Using the APTE tool [22] dedicated to (length) trace equivalence, we retrieve the flaw of
the biometric passport mentioned earlier. We demonstrate that the PA protocol is actually
not private if the attacker can measure execution times. Interestingly, several natural fixes
still do not ensure privacy. Finally, we provide a fix for this protocol and (automatically)
prove privacy. Similarly, we retrieve the existing flaw on the 3G AKA protocol.

Related work. Several symbolic frameworks already include a notion of
time [15,30,26,31,32]. The goal of these frameworks is to model timestamps. The sys-
tem is given a global clock, actions take some number of “ticks”, and participants may
compare time values. Depending on the approach, some frameworks (e.g. [15,30]) are
analysed using interactive theorem provers, while some others (e.g. [26,32]) can be
analysed automatically using for example time automata techniques [32]. Compared to
our approach, the representation of time is coarser: each action takes a fixed time which
does not depend on the received data while the attack on e.g. the biometric passport
precisely requires to measure (and compare) the time of a given action. Moreover, these
frameworks consider trace properties only and do not apply to equivalence properties.
They can therefore not be applied to side-channel analysis.
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On the other hand, the detection or even the quantification of information possibly
leaked by side-channels is a subject thoroughly studied in the last years (see
e.g. [35,13,37,17,11]). The models for quantifying information leakage are typically
closer to the implementation level, with a precise description of the control flow of
the program. They often provide techniques to measure the amount of information
that is leaked. However, most of these frameworks typically do not model the crypto-
graphic primitives that security protocols may employ. Messages are instead abstracted
by atomic data. [35] does consider primitives abstracted by functions but the framework
is dedicated to measure the information leakage of some functions and does not apply
to the protocol level. This kind of approaches can therefore not be applied to protocols
such as BAC or PA (or when they may apply, they would declare the flawed and fixed
variants equally insecure).

Fewer papers do consider the detection of side-channel attacks for programs that
include cryptography [36,8]. Compared to our approach, their model is closer to the
implementation since it details the implementation of the cryptographic primitives. To
do so, they over-approximate the ability of an attacker by letting him observe the control
flow of the program, e.g. letting him observe whether a process is entering a then or
an else branch. However privacy in many protocols (in particular for the BAC and PA)
precisely relies on the inability for an attacker to detect whether a process is entering a
then (meaning e.g. that the identity is valid) or an else branch (meaning e.g. that the
identity is invalid). So the approach developed in [36,8] could not prove secure the fixed
variants of BAC and PA. Their side-channel analysis is also not automated, due to the
expressivity of their framework.

2 Messages and Computation Time

2.1 Terms

As usual, messages are modeled by terms. Given a signature F (i.e. a finite set of
function symbols, with a given arity), an infinite set of names N , and an infinite set of
variables X , the set of terms T (F ,N ,X ) is defined as the union of names N , variables
X , and function symbols of F applied to other terms. In the spirit of [6], we split F
into two distinct subsets Fd and Fc. Fd represents the set of destructors whereas Fc

represents the set of constructors. We say that a term t is a constructor term if t does
not contain destructor function symbol, i.e. t ∈ T (Fc,N ,X ). Intuitively, constructors
stand for cryptographic primitives such as encryption or signatures, while destructors
are operations performed on primitives like decryption or validity checks.

A term is said to be ground if it contains no variable. The set of ground terms may be
denoted by T (F ,N ) instead of T (F ,N , ∅). The set of names of a term M is denoted
by names(M). ñ denotes a set of names. Substitutions are replacement of variables by
terms and are denoted by θ = {M1/x1 , . . . ,

Mk /xk
}. The application of a substitution θ

to a term M is defined as usual and is denoted Mθ. The set of subterms of a term t is
denoted st(t). Given a term t and a position p, the subterm of t at position p is denoted
t|p. Moreover, given a term r, we denote by t[r]p the term t where its original subterm
at position p is replaced by r.
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Example 1. A signature for modelling the standard cryptographic primitives (symmet-
ric and asymmetric encryption, concatenation, signatures, and hash) is Fstand = Fc∪Fd

where Fc and Fd are defined as follows (the second argument being the arity):

Fc = {senc/2, aenc/2, pk/1, sign/2, vk/1, 〈 〉/2, h/1}
Fd = {sdec/2, adec/2, check/2, proj1/1, proj2/1, equals/2}

The function aenc (resp. senc) represents asymmetric (resp. symmetric) encryption with
corresponding decryption function adec (resp. sdec) and public key pk. Concatenation
is represented by 〈 〉 with associated projectors proj1 and proj2. Signature is modeled
by the function sign with corresponding validity check check and verification key vk. h
represents the hash function. The operator equals models equality tests. These tests are
typically hard-coded in main frameworks but we need here to model precisely the time
needed to perform an equality test.

2.2 Rewriting Systems

The properties of the cryptographic primitives (e.g. decrypting an encrypted message
yields the message in clear) are expressed through rewriting rules. Formally, we equip
the term algebra with a rewriting system, that is a set R of rewrite rules � → r such that
� ∈ T (F ,X ) � X and r ∈ T (F , vars(�)). A term s is rewritten into t by a rewriting
system R, denoted s →R t if there exists a rewrite rule � → r ∈ R, a position p of s
and a substitution σ such that s|p = �σ and t = s[rσ]p. The reflexive transitive closure
of →R is denoted by →∗

R.
A rewriting system R is confluent if for all terms s, u, v such that s →∗

R u and
s →∗

R v, there exists a term t such that u →∗
R t and v →∗

R t. Moreover, we say that R
is convergent if R is confluent and terminates.

A term t is in normal form (w.r.t. a rewrite system R) if there is no term s such that
t →R s. Moreover, if t →∗

R s and s is in normal form then we say that s is a normal
form of t. In what follows, we consider only convergent rewriting system R. Thus the
normal form of a term t is unique and is denoted t↓.

Example 2. We associate to the signature Fstand of Example 1 the following rewriting
system:

sdec(senc(x, y), y) → x
adec(aenc(x, pk(y)), y) → x

check(sign(x, y), vk(y)) → x
equals(x, x) → x

proj1(〈x, y〉) → x
proj2(〈x, y〉) → y

The two first rewriting rules on the left represent respectively symmetric and asymmet-
ric encryption. The first two rules on the right represent the left and right projections.
The rewriting rule check(sign(x, y), vk(y)) → x models the verification of signature:
if the verification succeeds, it returns the message that has been signed. Finally, the
equality test succeeds only if both messages are identical and returns one of the two
messages.

A ground term u is called a message, denoted Message(u), if v↓ is a constructor term
for all v ∈ st(u). For instance, the terms sdec(a, b), proj1(〈a, sdec(a, b)〉), and proj1(a)
are not messages. Intuitively, we view terms as modus operandi to compute bitstrings
where we use the call-by-value evaluation strategy.
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2.3 Length and Time Functions

We assume a perfect implementation of primitives and we aim at detecting side-channel
attacks at the protocol level. In standard robust implementations of encryption, the time
for encrypting is constant, that is, it does not depend on the value of the key nor the
value of the message but only on the number of blocks that need to be processed. So
the computation time of a function depends solely on the length of its arguments. For
example, assuming the size of m and k to be a multiple of the size of one block, the
time needed to compute senc(m, k), the encryption of the message m over the key k,
depends on the lengths of m and k. We thus introduce time functions as well as length
functions.

Length Function. For any primitive f ∈ F of arity n, we associate a length function
from N

n to N. Typically, the length function of f indicates the length of the message
obtained after application of f, based on the length of its arguments. Given a signature F
and a set of length functionsL associated to F , we denote by lenfL the length function in
L associated to f. Moreover we consider that names can have different sizes. Indeed, an
attacker can always create a bitstring of any size. Hence we consider an infinite partition
of N such that N = ∪i∈NNi and each Ni is an infinite set of names of size i. To ease
the reading, we may denote by ni a name of Ni.

The length of a closed message t, denoted lenL(t), is defined as follows:

lenL(n
i) = i when ni ∈ Ni

lenL(f(t1, . . . , tk)) = lenfL(lenL(t1), . . . , lenL(tk))

We say that a set of length functions L is polynomial if for all f ∈ F , there exists a
polynomial P ∈ N[X1, . . . , Xn] (i.e. a polynomial of n variables, with coefficients in
N) such that for all x1, . . . , xn ∈ N, lenfL(x1, . . . , xn) = P (x1, . . . , xn). The class of
polynomial time functions is useful to obtain decidability of (timed) trace equivalence.
A particular case of polynomial length functions are linear length functions, for which
the associated polynomial is linear. Note that the linear length functions are so far the
only functions that have been proved sound w.r.t. symbolic models [27].

Example 3. An example of set of length functions L associated to the signature Fc of
Example 1 is defined as follows.

lensencL (x, y) = x lenaencL (x, y) = x+ y lenpkL (x) = x

len
〈 〉
L (x, y) = 1 + x+ y lensignL (x, y) = x+ y lenvkL (x) = x

In this example, the length of a encrypted message is linear in the size of the original
message and the length of the key. The concatenation of two messages is of length the
sum of the lengths of its arguments, plus some constant size used to code the frontier
between the two messages. Note that these length functions are polynomial and even
linear. These length functions are rather simple and abstract away some implementation
details such as padding but more complex functions may be considered if desired.
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Time Function. For each primitive f ∈ F of arity n, we associate a time function
from N

n to N. Given a set of time functions T , we denote timefT the time function
associated to f in T . Intuitively, timefT (x1, . . . , xn) determines the computation time of
the application of f on some terms u1, . . . , un assuming that the terms ui are already
computed and the length of ui is xi. Finally, we define a constant function modelling
the computation time to access data such as the content of a variable in the memory,
usually denoted timeXT .

Example 4. Coming back to the signature Fstand of Example 1, we can define the set T
of time functions as follows:

timeXT = 1 time
proj2
T (x) = 1 time

proj1
T (x) = 1 time

〈 〉
T (x, y) = 1

timeadecT (x, y) = x timeaencT (x, y) = x timeequalsT (x, y) = x+ y

In this example, concatenation and projections have constant computation time (e.g.,
concatenation and projections are done by adding or removing a symbolic link). The
asymetric encryption of m by k linearly depends on the size of m. We ignore here the
complexity due to the size of the key since key size is usually fixed in protocols. Note
it would be easy to add a dependency. Finally the time for an equality test is the sum
of the length of its arguments. This corresponds to a naive implementation. We could
also choose timeequalsT (x, y) = max(x, y). Our framework does not allow to model
efficient implementations where the program stops as soon as one bit differs. However,
such efficient implementations leak information about the data tested for equality and
are therefore not good candidates for an implementation robust against side-channel
attacks. Again, other time functions may of course be considered.

The computation time of a term is defined by applying recursively each correspond-
ing time function. More generally, we define the computation time of a term tσ assum-
ing that the terms in σ are already computed.

Definition 1. Let F be a signature, let L be a set of length functions for F and let T
be a set of time functions for F . Consider a substitution σ from variables to ground
constructor terms. For all terms t ∈ T (F ,N ,X ) such that vars(t) ⊆ dom(σ), we
define the computation time of t under the substitution σ and under the sets L and T ,
denoted ctimeL,T (t, σ), as follows:

ctimeL,T (t, σ) = timeXT if t ∈ X ∪ N
ctimeL,T (f(u1, . . . , un), σ) = timefT (�1, . . . , �n) +

∑n
i=1 ctimeL,T (ui, σ)

if �i = lenL((uiσ)↓) and Message(uiσ) is true ∀i ∈ {1, . . . , n}
ctimeL,T (f(u1, . . . , un), σ) =

∑k
i=1 ctimeL,T (ui, σ)

if Message(uiσ) is true ∀i ∈ {1, . . . , k − 1} and Message(ukσ) is false

Intuitively, ctimeL,T (t, σ) represents the time needed to compute tσ↓ when the terms
of σ are already computed and stored in some memory. Therefore the computation time
of a variable represents in fact the access time to the memory. We assume in this pa-
per that all primitives are computed using the call-by-value evaluation strategy with
a lazy evaluation when failure arises. Hence, when computing f(u1, . . . , un) with the
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memory σ, the terms ui are computed first from left to right. If all computations suc-
ceed then the primitive f is applied. In such a case, we obtain the computation time
timefT (lenL(u1σ↓), . . . , lenL(unσ↓)) +

∑n
i=1 ctimeL,T (ui, σ). Otherwise, the compu-

tation of f(u1, . . . , un) stops at the first uk that does not produce a message. This yields
the computation time

∑k
i=1 ctimeL,T (ui, σ). We assume here that names are already

generated to avoid counting their generation twice. Hence the associated computation
time is also timeXT the access time to the memory. We will see later in this section
how the computation time for the generation of names is counted, when defining the
semantics of processes.

3 Processes

Protocols are modeled through processes, an abstract small programming language. Our
calculus is inspired from the applied-pi calculus [4].

3.1 Syntax

The grammar of plain processes is defined as follows:

P,Q,R := 0 | P +Q | P | Q | νk.P | !P |
let x = u in P else Q | in(u, x).P | out(u, v).P

where u, v are terms, and x is a variable of X . Our calculus contains the nil process 0,
parallel composition P | Q, choice P +Q, input in(u, x).P , output out(u, v), replica-
tion νk.P that typically models nonce or key generation, and unbounded replication !P .
Note that our calculus also contains the assignment of variables let x = u in P else Q.
In many calculus, let x = u in P is considered as syntactic sugar for P{u/x}. However,
since we consider the computation time of messages during the execution of a process,
the operation let x = u in P is not syntactic sugar anymore. For example, the three
following processes do not yield the same computation time even though they send out
the same messages.

– P1 = let x = senc(a, k). in out(c, h(n)).out(c, 〈x, x〉)
– P2 = out(c, h(n)).let x = senc(a, k) in out(c, 〈x, x〉)
– P3 = out(c, h(n)).out(c, 〈senc(a, k), senc(a, k)〉)

P1 first computes senc(a, k), and then outputs h(n) and 〈senc(a, k), senc(a, k)〉. P2 is
very similar but outputs h(n) before computing senc(a, k) meaning that the output of
h(n) will occur faster in P2 than in P1, thus an attacker may observe the difference.
Finally, P3 computes senc(a, k) twice and therefore takes twice more time.

The operation let x = u in P can also be used to change the default evaluation
strategy of terms. As mentioned in the previous section, we assume that all primitives
are computed using the call-by-value evaluation strategy with a lazy evaluation when
a failure arises. For example, the eager evaluation of a message senc(sdec(y, k), u) in
the process let x = senc(sdec(y, k), u) in P elseQ can be modelled with the following
process:

let x1 = sdec(y, k) in let x = senc(x1, u) in P else Q else let x2 = u in Q else Q
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In this process, even if the computation of sdec(y, k) fails (else branch), then u is still
computed.

Note that the else branch in let x = u in P else Q is used in case u cannot be com-
puted. For example, let x = sdec(a, a) in 0 else out(c, ok) would output ok. At last, note
that the traditional conditional branching (If-then-else) is not part of our calculus. We
use instead the assignment of variables and the destructor symbol equals. The traditional
process if u = v then P else Q is thus replaced by let x = equals(u, v) in P else Q
where x does not appear in P nor Q.

The computation time of some operation obviously depends on the machine on
which the computation is performed. For example, a server is much faster than a bio-
metric passport. We defined extended processes to represent different physical machines
that can be running during the execution of a protocol. For example, biometric passports
are distinct physical machines that can be observed independently. In contrast, a server
runs several threads which cannot be distinguished from an external observer.

The grammar for our extended processes is defined as follows:

A,B := [P, i, T ] | !A | A ||B
where P is a plain process, i is an integer, and T is a set of time functions. [P, i, T ]
represents a machine with programP and computation time induced by T . The integer i
represents the computation time used so far on that machine. Note that inside a machine
[P, i, T ], there can be several processes running in parallel, e.g. P1 | . . . | Pn. We
consider that their executions rely on a scheduling on a single computation machine
and so the computation time might differ depending on the scheduling. The situation is
different in the case of a real parallel execution of two machines, e.g. A ||B where the
attacker can observe the execution of A and B independently.

Messages are made available to the attacker through frames. Formally, we assume a set
of variables AX , disjoint from X . Variables of AX are typically denoted ax 1, . . . , axn.
A frame is an expression of the formΦ = {ax 1 � u1; . . . ; axn � un}where ax i ∈ AX
and ui are terms. The application of a frame Φ to a term M , denoted MΦ, is defined as
for the application of substitutions.

Definition 2 (time process). A time process is a tuple (E , A, Φ, σ) where:

– E is a set of names that represents the private names of A;
– Φ is a ground frame with domain included in AX . It represents the messages avail-

able to the attacker;
– A is an extended process;
– σ is a substitution of variables to ground terms. It represents the current memory

of the machines in A.

3.2 Semantics

The semantics for time processes explicits the computation time of each operation.
In particular, for each operation, we define a specific time function representing its
computation time standalone, i.e. without considering the computation time required to
generate the messages themselves. Hence, given a set T of time functions associated a
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physical machine, t_letinT (n) represents the computation time of the assignation of a
message of length n to a variable, whereas t_letelseT represents the computation time
in the case the computation of the message fails; t_inT (n) (resp. t_outT (n)) corre-
sponds to the computation time of the input (resp. output) of a message of length n; and
t_commT (n) corresponds to the computation time of the transmission of the message
of length n through internal communication. At last, t_restrT (n) represents the time
needed to generate a fresh nonce of length n.

The semantics for time processes is similar to the semantics of the applied-pi cal-
culus [4] and is given in Figure 1. For example, the label out(M, axn, j) means that
some message has been sent on a channel corresponding to M after some time j (j
is actually the total computation time until this send action). This message is stored
in variable axn by the attacker. Internal communications within the same machine (or
group of machines connected through a local network) cannot be observed by an at-
tacker, therefore the computation time of the corresponding machine increases but the
transition is silent (τ action). No external machines can communicate secretly since we
assume the attacker can control and monitor all communications (he can at least observe
the encrypted traffic). Lastly, note that the choice, replication and parallel composition
operators do not have associated time functions.

The
w−→ relation is the reflexive and transitive closure of

�−→, where w is the concate-
nation of all actions. Moreover,

tr⇒ is the relation
w−→ where tr are the words w without

the non visible actions (τ ). The set of traces of a time process P is the set of the possible
sequences of actions together with the resulting frame.

trace(P) =
{
(tr, νE ′.Φ′)

∣
∣
∣P tr⇒ (E ′, A′, Φ′, σ′) for some E ′, A′, Φ′, σ′

}

Example 5. Consider the signature F , the set L of length functions of Example 3
and the set T of time functions of Example 4 and assume that for all n ∈ N,
t_outT (n) = n. Let a, b ∈ N� and k ∈ N�pk with �, �pk ∈ N. Consider the time
process P = (∅, [out(c, 〈a, b〉), 0, T ] ||[out(c, aenc(a, k)), 0, T ], ∅, ∅). Since we have
lenL(aenc(a, k)) = �+�pk, lenL(〈a, b〉) = 2�+1, ctimeL,T (aenc(a, b), ∅) = � ·�3pk+2
and ctimeL,T (〈a, b〉, ∅) = 3, the set trace(A) is composed of four traces (s, Φ):

1. s = out(c, ax 1, � · �3pk + �+ �pk + 3) and Φ = {ax 1 � aenc(a, k)}
2. s = out(c, ax 1, 2�+ 5) and Φ = {ax1 � 〈a, b〉}
3. s = out(c, ax 1, � · �3pk + � + �pk + 3).out(c, ax 2, 2� + 5) and Φ = {ax1 �

aenc(a, k); ax 2 � 〈a, b〉}
4. s = out(c, ax 1, 2� + 5).out(c, ax 2, � · �3pk + � + �pk + 3) and Φ = {ax1 �

〈a, b〉; ax 2 � aenc(a, k)}

Note that since each computation time is local to each machine, the last argument of
the out action is not necessarily increasing globally on the trace, as exemplified by the
third trace.

3.3 Example: The PA Protocol

We consider (a simplified version of) the Passive Authentication protocol (PA), pre-
sented in [7]. It is designed for transmitting a secret without revealing the identity of
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(E , [let x = u in P else Q | R, i, T ] ||A,Φ, σ)
τ−→ (LET)

(E , [P | R, j, T ] ||A,Φ, σ ∪ {uσ↓/x})
if Message(uσ) with j = i+ ctimeL,T (u, σ) + t_letinT (lenL(uσ↓))

(E , [let x = u in P else Q | R, i, T ] ||A,Φ, σ)
τ−→ (E , [Q | R, j, T ] ||A,Φ, σ) (ELSE)

if ¬Message(uσ) with j = i+ ctimeL,T (u, σ) + t_letelseT

(E , [out(u, t).Q1 | in(v, x).Q2 | R, i, T ] ||A,Φ, σ)
τ−→ (COMM)

(E , [Q1 | Q2 | R, j, T ] ||A,Φ, σ ∪ {tσ↓/x})
if Message(uσ),Message(vσ),Message(tσ) and uσ↓ = vσ↓ with j = i+

ctimeL,T (u, σ) + ctimeL,T (v, σ) + ctimeL,T (t, σ) + t_commT (lenL(tσ↓))

(E , [in(u, x).Q | P, i, T ] ||A,Φ, σ)
in(N,M)−−−−−−→ (E , [Q | P, j, T ] ||A,Φ, σ ∪ {t/x}) (IN)

if MΦ↓ = t, fvars(M,N) ⊆ dom(Φ), fnames(M,N) ∩ E = ∅,
NΦ↓ = uσ↓, Message(MΦ), Message(NΦ), and Message(uσ)

with j = i+ ctimeL,T (u, σ) + t_inT (lenL(t))

(E , [out(u, t).Q | P, i, T ] ||A,Φ, σ)
out(M,axn,j)−−−−−−−−−→ (OUT)
(E , [Q | P, j, T ] ||A,Φ ∪ {axn � tσ↓}, σ)

if MΦ↓ = uσ↓, Message(uσ), fvars(M) ⊆ dom(Φ), fnames(M) ∩ E = ∅,
Message(MΦ), Message(tσ) and axn ∈ AX , n = |Φ|+ 1

with j = i+ ctimeL,T (t, σ) + ctimeL,T (u, σ) + t_outT (lenL(tσ↓))
(E , [P1 + P2 | R, i, T ] ||A,Φ, σ)

τ−→ (E , [P1 | R, i, T ] ||A,Φ, σ) (CHOICE-1)

(E , [P1 + P2 | R, i, T ] ||A,Φ, σ)
τ−→ (E , [P2 | R, i, T ] ||A,Φ, σ) (CHOICE-2)

(E , [νk.P | R, i, T ] ||A,Φ, σ)
τ−→ (E ∪ {k}, [P | R, j, T ] ||A,Φ, σ) (RESTR)

with j = i+ t_restrT (�) and k ∈ N�

(E , [!P | R, i, T ] ||A,Φ, σ)
τ−→ (E , [!P | Pρ | R, i, T ] ||A,Φ, σ) (REPL)

(E , !A ||B,Φ, σ)
τ−→ (E , !A ||Aρ ||B,Φ, σ) (M-REPL)

where u, v, t are ground terms, x is a variable and ρ is used to rename variables in bvars(P ) and
bvars(A) (resp. names in bnames(P ) and bnames(A)) with fresh variables (resp. names).

Fig. 1. Semantics

the participants. In this protocol, an agent A wishes to engage in communication with
an agent B that is willing to talk to A. However, A does not want to compromise her
privacy by revealing her identity or the identity of B more broadly. The participants A
and B proceed as follows:

A → B : aenc(〈Na, pk(skA)〉, pk(skB))
B → A : aenc(〈Na, 〈Nb, pk(skB)〉〉, pk(skA))

else aenc(Nb, pk(skB))

A first sends to B a nonce Na and her public key encrypted with the public key
of B. If the message is of the expected form then B sends to A the nonce Na, a freshly
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generated nonce Nb and his public key, all of this being encrypted with the public key
of A. If the message is not of the right form or if B is not willing to talk with A, then B
sends out a “decoy” message aenc(Nb, pk(skB)). Intuitively, this message should look
like B’s other message from the point of view of an outsider. This is important since
the protocol is supposed to protect the identity of the participants.

This protocol can be modeled in our process algebra as follows:

B(b, a)
def
= in(c, x).let y = adec(x, skb) in

let z = equals(proj2(y), pk(ska)) in νnb.out(c, aenc(M, pk(ska))).0
else νnerror.out(c, aenc(nerror, pk(ska))).0

else 0.

A(a, b)
def
= νna.out(c, aenc(〈na, pk(ska)〉, pk(skb))).in(c, z).0

where M = 〈proj1(y), 〈nb, pk(skb)〉〉. The process A(a, b) represents the role A played
by agent a with b while the process B(b, a) represents the role B played by agent b
with a.

4 Time Equivalence

Privacy properties such as anonymity, unlinkability, or ballot privacy are often stated
as equivalence properties [29,9]. Intuitively, Alice’s identity remains private if an at-
tacker cannot distinguish executions from Alice from executions from Bob. Equiva-
lence properties are also useful to express strong secrecy [19], indistiguishability from
an ideal system [5], or game-based properties [27]. Several definitions of equivalence
have been proposed such as trace equivalence [4], observational equivalence [4], or diff-
equivalence [18]. In this paper, we focus on trace equivalence that we adapt to account
for length and computation times.

The ability of the attacker is now characterized by three parameters: the set of crypto-
graphic primitives, their corresponding length functions, and their corresponding com-
putation times (w.r.t. the attacker). Later in the paper, for decidability, we will show
that we can restrict the attacker to a finite set of names. So we define a length signa-
ture, usually denoted F�, as a tuple of a symbol functions signature F , a set of names
N ⊆ N , and a set of length functions L, i.e. F� = (F ,N, L). Similarly, we denote a
time signature, usually denoted Fti, as a pair containing a length signature F� and a set
of time functions T corresponding to the signature in F�, i.e. Fti = (F�, T ).

4.1 Time Static Equivalence

The notion of static equivalence has been extensively studied (see e.g., [3]). It cor-
responds to the indistinguishability of sequences of messages from the point of view
of the attacker. In the standard definition of static equivalence [3,14,28], the attacker
can only perform cryptographic operations on messages. [24] introduces length static
equivalence, that provides the attacker with the ability to measure the length of mes-
sages. Intuitively, two frames are in length static equivalence if an attacker cannot see
any difference, even when applying arbitrary primitives and measuring the length of the
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resulting messages. In this framework, we also provide the attacker with the capability
to measure computation times. We therefore adapt the definition of static equivalence
to account for both length and computation times.

Definition 3. Let Fti = (F�, T ) be a time signature with F� = (F ,N, L). Let E , E ′

two sets of names. Let Φ and Φ′ two frames. We say that νE .Φ and νE ′.Φ′ are time
statically equivalent w.r.t. Fti, written νE .Φ ∼Fti

ti νE ′.Φ′, when dom(Φ) = dom(Φ′),
fnames(νE .Φ, νE ′.Φ′) ∩ (E ′ ∪ E) = ∅ and when for all i, j ∈ N, for all M,N ∈
T (F ,N ∪ X ) such that fvars(M,N) ⊆ dom(Φ) and fnames(M,N) ∩ (E ∪ E ′) = ∅,
we have:

– Message(MΦ) if and only if Message(MΦ′)
– if Message(MΦ) and Message(NΦ) then

1. MΦ↓ = NΦ↓ if and only MΦ′↓ = NΦ′↓; and
2. lenL(MΦ↓) = i if and only if lenL(MΦ′↓) = i; and
3. ctimeL,T (M,Φ) = j iff ctimeL,T (M,Φ′) = j

Consider the length signature F�, we say that νE .Φ and νE ′.Φ′ are length statically
equivalent w.r.t. F�, written νE .Φ ∼F�

� νE ′.Φ′, when νE .Φ and νE ′.Φ′ satisfy the same
properties as above except Property 3.

4.2 Time Trace Equivalence

Time trace equivalence is a generalization of time static equivalence to the active case.
It corresponds to the standard trace equivalence [4] except that the attacker can now
observe the execution time of the processes. Intuitively, two extended processes P and
Q are in time trace equivalence if any sequence of actions of P can be matched by the
same sequence of actions in Q such that the resulting frames are time statically equiv-
alent. It is important to note that the sequence of actions now reflects the computation
time of each action. We also recall the definition of length trace equivalence introduced
in [24], which accounts for the ability to measure the length but not the computation
time. We denote by =ti the equality of sequences of labels, where the time parameters
of outputs are ignored. Formally, we define �1 . . . �p =ti �

′
1 . . . �

′
q to hold when p = q

and

– for all N,M , �i = in(N,M) if and only if �′i = in(N,M); and
– for all M, axn, �i = out(M, axn, c) for some c if and only if �′i = out(M, axn, c

′)
for some c′.

Definition 4. Consider a time (resp. length) signature F . Let P and Q be two closed
time processes with fnames(P ,Q) ∩ bnames(P ,Q) = ∅. P �F

ti Q (resp. P �F
� Q)

if for every (tr, νE .Φ) ∈ trace(P), there exists (tr′, νE .Φ′) ∈ trace(Q) such that
νE .Φ ∼F

ti νE ′.Φ′ and tr = tr′ (resp. νE .Φ ∼F
� νE ′.Φ′ and tr =ti tr

′).
Two closed time processes P and Q are time (resp. length) trace equivalent w.r.t.

F , denoted by P ≈F
ti Q (resp. P ≈F

� Q), if P �F
ti Q and P �F

ti Q (resp. P �F
� Q

and P �F
� Q).



Timing Attacks in Security Protocols 293

4.3 Timing Attacks against PA

We consider again the PA protocol described in Section 3.3. This protocol should in
particular ensure the anonymity of the senderA. The anonymity of A can be stated as an
equivalence property: an attacker should not be able to distinguish whether b is willing
to talk to a (represented by the process B(b, a)) or willing to talk to a′ (represented
by the process B(b, a′)), provided that a, a′ and b are honest participants. This can be
modeled by the following equivalence:

(E , [B(b, a′), 0, T ] ||[A(a′, b), 0, T ], Φ, ∅)
?

≈F
ti (E , [B(b, a), 0, T ] ||[A(a, b), 0, T ], Φ, ∅)

with E = {ska, ska′ , skb}, Φ = {ax 1 � pk(ska); ax 2 � pk(ska′); ax 3 � pk(skb)}.
In the literature, the Private Authentication protocol was proved [23] to preserve

A’s anonymity when considering standard trace equivalence, i.e. without length and
time. However, an attacker can easily break anonymity by measuring the length of the
messages. Indeed, it is easy to notice that the length of the decoy message is smaller
than the size of the regular message. Therefore, an attacker may simply initiate a session
with B in the name of A:

C(A) → B : aenc(〈Nc, pk(skA)〉, pk(skB))

If the message received in response from B is “long”, the attacker learns that B is
willing to talk with A. If the message is “small”, the attacker learns that A is not one of
B’s friends.

This attack can be easily reflected in our formalism. Consider the sequence of labels
tr(j) = in(c, aenc(〈ni, ax 1〉, ax 3)).out(c, ax 4, j) and the corresponding execution on
B(b, a), where b is indeed willing to talk with a.

(E , [B(b, a), 0, T ] ||[A(a, b), 0, T ], Φ, ∅) tr(j)⇒ (E ′, [A(a, b), 0, T ], Φ ∪ {ax4 � M}, σ)
with M = aenc(〈ni, 〈nb, pk(skb)〉〉, pk(ska)) and E ′ = E ∪ {nb} for some σ and j.
On the other hand, when the communication is between a′ and b then b detects that the
public key does not correspond to a′ and outputs the decoy message:

(E , [B(b, a′), 0, T ] ||[A(a′, b), 0, T ], Φ, ∅) tr(j′)⇒ (E ′, [A(a, b), 0, T ], Φ∪{ax4 � M ′}, σ′)

with M ′ = aenc(nerror, pk(ska)) for some σ′ and j′. If the attacker computes the
length of the received message, he gets lenL(aenc(〈ni, 〈nb, pk(skb)〉〉, pk(ska))) =
2� + �pk + 2 and lenL(aenc(nerror, pk(ska))) = � with ni, nb, nerror ∈ N� and
skb ∈ Npk. Therefore the two resulting frames are not in length static equivalence,
thus

(E , [B(b, a′), 0, T ] ||[A(a′, b), 0, T ], Φ, ∅) �≈F
ti (E , [B(b, a), 0, T ] ||[A(a, b), 0, T ], Φ, ∅)

To repair the anonymity of the PA protocol, the decoy message should have the same
length than the regular message.

PA-fix1. A first solution is to include Na in the decoy message which is set to be
aenc(〈Na,Error〉, pk(skA)) where Error is a constant of same length than
〈Nb, pk(skB)〉. However, this variant does not satisfy even trace equivalence since
the attacker can now reconstruct aenc(〈Na,Error〉, pk(skA)) when Na has been
forged by himself.
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PA-fix2. To fix this attack, a natural variant is to set the decoy message to be
aenc(〈Na, Nd〉, pk(skA)), where Nd is a nonce of same length than 〈Nb, pk(skB)〉.
However, this variant is now subject to a timing attack. Indeed, it takes more time
to generate Nd than Nb since Nd is larger. Therefore an attacker may still notice the
difference. Note that this attack cannot be detected when considering length trace
equivalence only.

PA-fix3. Finally, a third solution is to set the decoy message to be the cipher
aenc(〈Na, 〈Nb,Error〉, pk(skA)〉) where Error is a constant of same length than
pk(skB). We show in Section 6 that due to our main result and thanks to the APTE
tool, we are able to prove this version secure, assuming that public keys are of the
same length (otherwise there is again a straightforward attack on privacy).

We will see in Section 6 that our tool detects all these attacks.

5 Reduction of Time Trace Equivalence to Length Equivalence

We focus in this section on the key result of this paper: time equivalence reduces to
length equivalence. We show that this holds for arbitrary processes, possibly with repli-
cations and private channels (Theorem 1). This means that, from a decidability point
of view, there is no need to enrich the model with time. We also prove that our result
induces that time trace equivalence for processes without replication can also be re-
duced to length trace equivalence for processes without replication, even if we restrict
the names of the attacker. Finally, applying the decidability result on length trace equiv-
alence of [24], we can deduce decidability of trace equivalence for processes without
replication and for a fixed signature that includes all standard cryptographic primitives
(Theorem 2).

These three results rely on a generic transformation from a time process P to a
process P ′ where the sole observation of the length of the messages exchanged in P ′

reflects both the time and length information leaked by P .

5.1 Representing Computation Time with Messages

The key idea to get rid of computation times is to attach to each term t a special message,
called time message, whose length corresponds to the time needed to compute t. To that
extent, we first need to augment the signature used to describe our processes. Given a

time signature Ft = ((F ,N, L), T ), we extend it as Ft
T
= ((FT

,N, L
T
), T

T
), which

is defined as follows. We first add, for each function symbol f, a fresh function symbol f

whose length function is the time function of f, meaning that lenf
L

T = timefT . Similarly,
for each action proc in the execution of a process, we add a new function symbol whose
length function represents the computation time of proc, that is len

gproc

L
T = t_procT .

Lastly, we consider two new symbol functions plus/1 and hide/2 where the resulting
size of the application of plus is the sum of the size of its arguments, and hide reveals
only the size of its first argument. Since these news function symbols should not yield
information on the computation time other than by their size, we consider that all their

time functions are the null function. With these extended time signature Ft
T

, the time
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message of a term t, denoted [t]L,T , can be naturally defined. For instance, if t =
f(t1, . . . , tm) then [t]L,T = plus([t1]L,T , . . . plus([tm]L,T , f(t1, . . . , tm)) . . .). Thanks
to the function symbol plus, the length of [t]L,T models exactly the computation time
of t.

5.2 Transformed Processes

The computation time of a process becomes visible to an attacker only at some specific
steps of the execution, typically when the process sends out a message. Therefore the
corresponding time message should consider all previous actions since the last output.
In case a machine executes only a sequential process (i.e. that does not include processes
in parallel) then the computation time of internal actions is easy to compute. For exam-
ple, given a processP = in(c, x).νk.out(c, v), the computation time ofP when v is out-
put can be encoded using the following time message plus(min, plus(grestr(k),mout))
where:

min = plus([x]L,T , plus([c]L,T , gin(x))) mout = plus([v]L,T , plus([c]L,T , gout(v)))

However, if a machine executes a process Q in parallel of P , then the time message
m does not correspond anymore to the computation time when v is output since some
actions of Q may have been executed between the actions of P . Therefore, we need
to “store” the computation time that has elapsed so far. To do this, we introduce cells
that can store the time messages of a machine and will be used as time accumula-
tor. Formally, a cell is simply a process with a dedicated private channel defined as
Cell (c, u) = out(c, u) | ! in(c, x).out(c, x). Note that a cell can only alternate between
inputs and outputs (no consecutive outputs can be done). Thanks to those cells, we can
define a transformation for a time process P into an equivalent process w.r.t. to some
cell d and some length and time functions L and T respectively, denoted [P ]dL,T , where
the computation time can now be ignored.

Intuitively, each action of a plain process first starts by reading in the cell d and al-
ways ends by writing on the cell the new value of the computation time. For instance,
[νk.P ]dL,T = in(d, y).νk.out(d, plus(y, grestr(k))).[P ]dL,T . Moreover, in the case of an
output, out(u, v) is transformed to out(u, 〈v, hide(t, k)〉) where t is the current value of
the computation time of the plain process and k is a fresh nonce. Hence, the attacker gets
information about the computation time of the process through the size of the second
message of the output. The most technical case is for the process let x = u in P elseQ.
Indeed, if u is not a message then the process executes Q instead of P . The main issue
here is that the computation time of u depends on which subterm makes the compu-
tation fail. This, in turn, may depend on the intruder’s inputs. Therefore we introduce
below the process LetTrT (c, t, [u], y) that determines which cryptographic primitive
fails and then returns on channel c the computation time message that corresponds to
the execution of u, added to the existing computation time message y and t being some
initial parameters.
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LetTrT (c, t, ∅, u) = out(c, plus(u, t))
LetTrT (c, t, [t1; . . . ; tn], u) = LetTrT (c, t, [t2; . . . ; tn], plus(u, [t1]L,T )) if t1 ∈ N ∪ X
LetTrT (c, t, [t1; . . . ; tn], u) = let x = t1 in

LetTrT (c, t, [t2; . . . ; tn], plus(u, [t1]L,T )) else LetTrT (c, t
′, [v1; . . . ; vm], u)

where t1 = f(v1, . . . , vm), t′ = f(v1, . . . , vm).
Thanks to this process, the transformed process [let x = u in P else Q]dL,T is defined as follows
where u = f(v1, . . . , vm), t = f(v1, . . . , vm).

in(d, y).let x = u in out(d,plus(plus(y, gletin(x)), [u]L,T )).[P ]dL,T

else νc.
(
LetTrT (c, t, [v1; . . . ; vm], plus(y, gletelse)) | in(c, z).out(d, z).[Q]dL,T

)

This transformation is naturally adapted to extended processes by introducing a cell for
each extended process A = [P, i, T ], that is [A]L = [νd.(Cell (d, ni) | [P ]dL,T ), i, T ]

for some ni ∈ N .

5.3 Main Theorem

We can finally state the main results of this paper. First, time equivalence can be reduced
to length equivalence, for any two processes.

Theorem 1. Let Fti = ((F ,N , L), T ) be a time signature. Intuitively, T is the set of
time functions for the attacker. Consider two time processes P1 = (E1, A1, Φ1, ∅) and
P2 = (E2, A2, Φ2, ∅) with dom(Φ2) = dom(Φ1), built on (F ,N , L) and time functions
sets T1, . . . , Tn. Let P ′

1 = (E1, [A1]L, Φ1, ∅) and P ′
2 = (E2, [A2]L, Φ2, ∅). Then

P1 ≈Fti

ti P2 if, and only if, P ′
1 ≈Fti

T,T1,...,Tn

� P ′
2

This theorem holds for arbitrary processes and for any signature and associated
rewriting system. It is interesting to note that it also holds for arbitrary time functions.
Moreover, the transformed processes P ′

1 and P ′
2 only add length functions which are

either linear or are the same than the initial time functions. It therefore does not add any
complexity. Note also that if P1 and P2 are two processes without replication then P ′

1

andP ′
2 are still processes with replication. For decidability in the case of processes with-

out replication, we need to further restrict the number of names given to the attacker. We
therefore refine our theorem for processes without replication with a slightly different
transformation. Instead of adding cells of the form out(c, u) | ! in(c, x).out(c, x), we
unfold in advance the replication as much as needed in the extended process. As a con-
sequence, and relying on the decidability of time trace equivalence described in [24],
we can immediately deduce decidability of time trace equivalence for processes without
replication and polynomial time functions.

Theorem 2. Let Fti = ((F ,N , L), T ) be a time signature such that F = Fstand � Fo

where Fo contains only one-way symbols, that are not involved in any rewrite rules. We
assume that L and T contain only polynomial functions. Then time trace equivalence
is decidable for time processes without replication.



Timing Attacks in Security Protocols 297

Anonymity Status Execution time

PA-Original timing attack 0.01 sec

PA-fix1 timing attack 0.01 sec

PA-fix2 timing attack 0.08 sec

PA-fix3 safe 0.3 sec

Unlinkability Status Execution time

BAC timing attack 0.08 sec

AKA timing attack 0.9 sec

Fig. 2. Timing attacks found with the APTE tool

6 Application to Privacy Protocols

The APTE tool [21,22] is a tool dedicated to the automatic proof of trace equivalence
of processes without replication, for the standard cryptographic primitives. It has been
recently extended to length trace equivalence [24]. We have implemented our generic
transformation (Theorem 2) and thanks to this translator from time to length equiva-
lence, APTE can now be used to check time trace equivalence. Using the tool, we have
studied the privacy of three protocols:

PA. Our running example is the Private Authentication Protocol, described in Sec-
tion 3.3. As explained in Section 4.3, this protocol suffers from length or time
attacks for several versions of it, depending on the decoy message. With the APTE
tool, we have found privacy attacks against all the fixes we first proposed. The
APTE tool was able to show privacy of our last version of PA.

BAC. As explained in the Introduction, several protocols are embedded in biometric
passports, to protects users’ privacy. We have studied the Basic Access Control
protocol (BAC). With the APTE tool, we have retrieved the timing attack reported
in [25]. Note that this attack could not have been detected when considering length
trace equivalence only. Indeed, the returned message does not vary. The only no-
ticeable change is the time needed to reply. Even if APTE is guaranteed to always
terminate (since it implements a decidable procedure [21]), the corrected version
that includes a fake test was unfortunately out of reach of the APTE tool in its
current version (we stopped the computation after two days). This is due to the
fact that the BAC protocol contains several inputs and else branches which causes
state-explosion in APTE.

3G AKA Protocol. The 3G AKA protocol is deployed in mobile telephony to pro-
tect users from being traced by third parties. To achieve privacy, it makes use of
temporary pseudonyms but this was shown to be insufficient [10]. Indeed, thanks
to error messages, an attacker may recognize a user by replaying an old session.
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The suggested fix proposes to simply use a unique error message. However, the
protocol then remains subject to potential timing attacks (as for the BAC protocol).
The APTE tool is able to automatically detect this timing privacy attack.

Our study is summarized in Figure 2. The precise specification of the protocols and
their variants can be found in [20].
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17. Biondi, F., Legay, A., Malacaria, P., Wąsowski, A.: Quantifying information leakage of ran-
domized protocols. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS,
vol. 7737, pp. 68–87. Springer, Heidelberg (2013)

http://nacl.cr.yp.to/


Timing Attacks in Security Protocols 299

18. Blanchet, B., Abadi, M., Fournet, C.: Automated Verification of Selected Equivalences for
Security Protocols. In: 20th Symposium on Logic in Computer Science, LICS 2005 (2005)

19. Blanchet, B.: Automatic proof of strong secrecy for security protocols. In: Symposium on
Security and Privacy (S&P 2004), pp. 86–100. IEEE Comp. Soc. Press (2004)

20. Cheval, V.: APTE (Algorithm for Proving Trace Equivalence) (2013),
http://projects.lsv.ens-cachan.fr/APTE/

21. Cheval, V., Comon-Lundh, H., Delaune, S.: Trace equivalence decision: Negative tests and
non-determinism. In: 18th ACM Conference on Computer and Communications Security,
CCS 2011 (2011)

22. Cheval, V.: Apte: an algorithm for proving trace equivalence. In: Ábrahám, E., Havelund, K.
(eds.) TACAS 2014. LNCS, vol. 8413, pp. 587–592. Springer, Heidelberg (2014)

23. Cheval, V., Blanchet, B.: Proving more observational equivalences with proverif. In: Basin,
D., Mitchell, J.C. (eds.) POST 2013. LNCS, vol. 7796, pp. 226–246. Springer, Heidelberg
(2013)

24. Cheval, V., Cortier, V., Plet, A.: Lengths may break privacy – or how to check for equiv-
alences with length. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
708–723. Springer, Heidelberg (2013)

25. Chothia, T., Smirnov, V.: A traceability attack against e-passports. In: Sion, R. (ed.) FC 2010.
LNCS, vol. 6052, pp. 20–34. Springer, Heidelberg (2010)

26. Cohen, E.: Taps: A first-order verifier for cryptographic protocols. In: 13th IEEE Computer
Security Foundations Workshop (CSFW 2000). IEEE Computer Society Press, Los Alamitos
(2000)

27. Comon-Lundh, H., Cortier, V.: Computational soundness of observational equivalence. In:
15th Conf. on Computer and Communications Security, CCS 2008 (2008)

28. Cortier, V., Delaune, S.: Decidability and combination results for two notions of knowledge
in security protocols. Journal of Automated Reasoning, 48 (2012)

29. Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic voting
protocols. Journal of Computer Security (4), 435–487 (2008)

30. Evans, N., Schneider, S.: Analysing time dependent security properties in CSP using PVS.
In: Cuppens, F., Deswarte, Y., Gollmann, D., Waidner, M. (eds.) ESORICS 2000. LNCS,
vol. 1895, pp. 222–237. Springer, Heidelberg (2000)

31. Gorrieri, R., Locatelli, E., Martinelli, F.: A simple language for real-time cryptographic pro-
tocol analysis. In: Degano, P. (ed.) ESOP 2003. LNCS, vol. 2618, pp. 114–128. Springer,
Heidelberg (2003)

32. Jakubowska, G., Penczek, W.: Modelling and checking timed authentication of security pro-
tocols. Fundamenta Informaticae, 363–378 (2007)

33. Käsper, E., Schwabe, P.: Faster and timing-attack resistant aes-gcm. In: Clavier, C., Gaj, K.
(eds.) CHES 2009. LNCS, vol. 5747, pp. 1–17. Springer, Heidelberg (2009)

34. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and other
systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer,
Heidelberg (1996)

35. Köpf, B., Basin, D.: An information-theoretic model for adaptive side-channel attacks. In:
14th ACM Conf. on Computer and Communications Security, CCS 2007 (2007)

36. Molnar, D., Piotrowski, M., Schultz, D., Wagner, D.: The program counter security model:
Automatic detection and removal of control-flow side channel attacks. In: Won, D.H.,
Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 156–168. Springer, Heidelberg (2006)

37. Phan, Q.-S., Malacaria, P., Tkachuk, O., Pasareanu, C.S.: Symbolic quantitative information
flow. ACM SIGSOFT Software Engineering Notes (2012)

http://projects.lsv.ens-cachan.fr/APTE/

	Timing Attacks in Security Protocols: Symbolic Framework and Proof Techniques
	1Introduction
	2Messages and Computation Time
	2.1Terms
	2.2Rewriting Systems
	2.3Length and Time Functions

	3Processes
	3.1Syntax
	3.2Semantics
	3.3Example: The PA Protocol

	4Time Equivalence
	4.1Time Static Equivalence
	4.2Time Trace Equivalence
	4.3Timing Attacks against PA

	5Reduction of Time Trace Equivalence to Length Equivalence
	5.1Representing Computation Time with Messages
	5.2Transformed Processes
	5.3Main Theorem

	6Application to Privacy Protocols
	References


