

Timing Attacks on Software Implementation

of RSA

Project Report

Harshman Singh

School of Electrical Engineering and Computer Science

Oregon State University

Major Professor: Dr. Çetin Kaya Koç

 2

Acknowledgements

I am deeply grateful to my advisor Dr. Çetin Kaya Koç for his support, guidance and

patience throughout my project work. I would like to thank Dr. Werner Schindler who

answered my questions and provided me with lot of inputs. Special thanks to David

Brumley for clarifying my doubts.

 3

Abstract

Timing attacks enable an attacker to extract secret information from a cryptosystem by

observing timing differences with respect to different inputs given to an encryption or

decryption algorithm. Werner Schindler has proposed a timing attack on smart card

devices. We implemented this attack based on the same approach for RSA

implementation provided by OpenSSL library. The attacking client can obtain private key

information demonstrating the vulnerability of even software implementations of RSA to

these attacks.

 4

Table of Contents

1 Introduction……………………………………………………………………… 6

2 RSA Cryptosystem……………………………………………………………… 9

2.1 The RSA Algorithm

Key Generation Algorithm

Encryption

Decryption

3 Fast Implementation of RSA…………………………………………………....12

3.1 Modular Exponentiation

3.2 Chinese Remainder Theorem

3.2.1 Exploiting CRT in Timing Attack

3.3 Modular Exponentiation Speed-up Techniques………………………..15

3.3.1 Square and Multiply Exponentiation

3.3.2 Sliding Window Technique

 Exploiting Sliding Window in the New Timing Attack

3.4 Modular Multiplication and Modular Reduction……………………….18

3.4.1 Montgomery Multiplication

3.4.2 Montgomery Exponentiation

3.4.3 Montgomery Exponentiation and Sliding Window Technique

3.5 Multiplication in RSA operations……………………………………….20

3.5.1 Karatsuba Multiplication

Exploiting multiplication optimizations in timing attacks

4 OpenSSL’s Implementation of RSA………………………………………………29

4.1 Extra Reductions

5 The New Timing Attack on OpenSSL……………………………………………30

5.1 Exploiting Sliding Window Pre-computations

5.2 Implementation Details of the Attack

5.2.1 Experimental Setup

5.2.2 Client –server design of the timing attack for the experiment

6 Experimental Results………………………………………………………………33

7 Countermeasures………………………………………………………………… 38

8 Conclusion & Future Work……………………………………………………… 39

References…………………………………………………………………………...43

 5

List of Figures

Fig 2.1 Summary of RSA Algorithm 8

Fig 3.1 The square-and-multiply algorithm 10

Fig 3.2 Exponentiation using sliding window technique 13

Fig 3.3 Montgomery Multiplication Algorithm 15

Fig 3.4 Montgomery Exponentiation Algorithm 16

Fig 3.5 Montgomery Exponentiation Algorithm (with sliding windows) 17

Fig 3.6 Classical Multi-precision Multiplication Algorithm 18

Fig 3.7 Karatsuba Algorithm 19

Fig 4.1 Extra Reductions in Montgomery Reduction 20

Fig 5.1 Bits of guess g for factor q 23

Fig 5.2 Pseudocode of the Server Attacked 28

Fig 5.3 Pseudocode for attacking client 29

Fig 6.1 Timing attack on bits ranging from 0 to 256 with neighbourhood = 200 30

Fig 6.2 Repeated samples of decryption timings for bits 106 and 107 31

Fig 6.3 Trend in decryption timings for different bit values 32

Fig 6.4 Lower bit positions of q are difficult to guess 33

Fig 6.5 Higher bit position can be distinguished clearly 34

Fig 6.6 Effect of increasing neighbourhood values for bits 57, 58 and 59 35

Fig 6.7 Decryption timings with repeated samples for bit range 152 – 160 36

Fig 6.8 Actual bit values of factor q shown graphically 37

 6

1 Introduction

A timing attack is somewhat analogous to a burglar guessing the combination of a safe by

observing how long it takes for someone to turn the dial from number to number. Timing

attacks exploit the fact that, when the running time of a cryptographic algorithm is non-

constant, then it may leak information about the secret parameters the algorithm is

handling. Timing attack can expose private information, such as RSA keys, by measuring

the amount of time required to perform private key operations e.g. encryption or

decryption etc.

Timing attacks are related to a class of attacks called side-channel attacks. Others include

power analysis and attacks based on electromagnetic radiation. Unlike these extended

side channel attacks, the timing attack does not require special equipment and physical

access to the machine. Here we only focus on the timing attacks that target the

implementation of RSA decryption in OpenSSL.

Until now, timing attacks were only applied in the context of hardware security tokens

such as smartcards. It is generally believed that timing attacks cannot be used in complex

environment like networks or to attack general purpose servers, such as web servers,

since decryption times are masked by many concurrent processes running on the system.

It is also believed that common implementations of RSA (using Chinese Remainder

Theorem and Montgomery multiplication) are not vulnerable to timing attacks. These

assumptions are challenged by developing a remote timing attack against OpenSSL [1],

an SSL library commonly used in web servers and other SSL applications.

Timing attacks are generally performed to attack devices such as smart cards which are

weak computing devices. Werner Schindler has shown that timing attack against weak

 7

computing devices such as smart cards could be implemented efficiently [4]. Smart cards

traditionally contain embedded microchips which include some tamper resistantance and

attack countermeasures. But due to their weak processing capacity, they can reveal

important information about secret keys when subjected to timing attacks. We have

picked the same approach to perform timing attacks against general software systems.

The attack presented here is based on the implementation of RSA decryption in OpenSSL

version 0.9.7. The basic attack works as follows: the attacking client measures the time

an OpenSSL server takes to respond to decryption queries. The client is then able to

extract the private key stored on the server.

The idea of timing attack was first introduced by Kocher [5] in 1996. Schindler [7]

introduced timing attack against RSA decryption based in Chinese Remainder Theorem.

Boneh and Brumley [3] has implemented the same attack on software systems. Current

attack is an extension of Schindler’s approach towards OpenSSL’s implementation of

RSA decryption.

2 RSA Cryptosystem

Traditional cryptography is based on the sender and receiver of a message using the same

secret key. The sender uses the secret key to encrypt the message, and the receiver uses

the same secret key to decrypt the message. This method is known as secret-key or

symmetric cryptography. The main problem is getting the sender and receiver to agree on

the secret key without anyone else finding out.

The concept of public-key cryptography was introduced in 1976 by Whitfield Diffie and

Martin Hellman in order to solve the key management problem. In their concept, each

person gets a pair of keys, one called the public key and the other called the private key.

Each person’s public key is published while the private key is kept secret. Thus the need

for the sender and receiver to share secret information is eliminated; all communications

involve only public keys, and no private key is ever transmitted or shared. No longer is it

 8

necessary to trust some communications channel to be secure against eavesdropping or

betrayal. An algorithm using a pair of different, though related cryptographic keys to

encrypt and decrypt is called and asymmetric key algorithm.

2.1 The RSA Algorithm

RSA is a one such asymmetric algorithm that is most widely used in public key

cryptography. The RSA Algorithm was named after Ronald Rivest, Adi Shamir and

Leonard Adelman, who first published the algorithm in April, 1977. Since that time, the

algorithm has been employed in Internet electronic communications encryption program

namely, PGP, Netscape Navigator and Microsoft Explorer web browsers in their

implementations of the Secure Sockets Layer (SSL), and by MasterCard and VISA in the

Secure Electronic Transactions (SET) protocol for credit card transactions.

The security of the RSA system is based on the intractability of the integer factorization

problem. It is very quick to generate large prime numbers using probabilistic algorithms

and Rabin-Miller test but very hard to factor large numbers. The next section describes

RSA algorithm in more detail.

Key Generation Algorithm

1. Generate two distinct large random primes, p and q, of approximately equal size

such that their product n = pq is of the required bit length, e.g. 1024 bits.

2. Compute n = pq and Euler’s totient function φ(n) = (p-1)(q-1).

3. Choose an integer e, 1 < e < φ(n), such that gcd(e, φ(n)) = 1.

4. Compute the secret exponent d, 1 < d < φ(n), such that ed ≡ 1 mod φ(n).

5. The public key is (n, e) and the private key is (n, d). The values of p, q, and φ(n)

should be kept secret.

In practice, common choices for e are 3, 17 and 65537 (2
16

+1). These are Fermat primes

and are chosen because they make the modular exponentiation operation faster. Value for

 9

d is calculated using the Extended Euclidean Algorithm d = e
-1

 mod φ(n) which is also

known as modular inversion.

Here n is known as the modulus, e is known as the public exponent and d is known as the

secret exponent.

Encryption

Sender A does the following:

• Obtains the recipient B's public key (n, e).

• Represents the plaintext message as a positive integer m < n.

• Computes the ciphertext c = m
e
 mod n.

• Sends the ciphertext c to B.

Decryption

Recipient B does the following:

• Uses his private key (n, d) to compute m = c
d
 mod n.

• Extracts the plaintext from the integer representative m.

RSA Algorithm

• n = pq where p and q are distinct primes.

• φ(n) = (p-1)(q-1)

• e < n such that gcd(e, φ(n)) = 1

• d = e
-1

 mod φ(n)

• C = M
e
 (mod n)

• M = C
d
 (mod n)

Fig 2.1 Summary of RSA Algorithm

 10

3 Fast Implementation of RSA

3.1 Modular Exponentiation

Once an RSA cryptosystem is set up, i.e. the modulus n, the private exponent d and

public exponent are determined and the public components have been published, the

senders as well as the recipients perform a single operation for encryption and decryption.

The RSA algorithm in this respect is one of the simplest cryptosystems. In RSA

encryption or decryption, the core part of the algorithm which takes up much time is the

modular exponentiation. Especially in decryption we need to calculate, M = C
d
 (mod n)

and since d is generally a big number (usually more than 512 bits). For the decryption to

run acceptably, speeding up of modular exponentiation is very important. This section

describes various methods that are generally employed to speed up the exponentiation

process. Later sections describe how these very mechanisms are exploited to retrieve

RSA key private information using timing attacks on decryption process.

3.2 Chinese Remainder Theorem

To speed up the modular exponentiation during decryption RSA uses Chinese Remainder

Theorem. In essence, the CRT says it is possible to reconstruct integers in a certain range

from their residues modulo a set of pairwise relatively prime moduli. Formally,

Theorem 1 (CRT) Let m1 ,m2,…,mk be pairwise relatively prime integers, that is

gcd(mi,mj) = 1 whenever i ≠ j. Then, for any a1, a2,…,ak Ζ∈ , the system of equations

x = a1 mod m1

x = a2 mod m2

…

x = ak mod mk

has a solution, and the solution is unique modulo m = m1m2…mk. That is if x is a solution,

then any x’ = x mod m is also a solution.

 11

For example, let m, n be two integers and gcd(m,n) = 1. Now given 0 ≤ a < m and 0 ≤ b <

n, there exists a unique integer X, 0 ≤ X < mn such that,

X ≡ a (mod m)

X ≡ b (mod n)

and X is given by,

)(mod21 mnnbcmacX +≡

where,

c1 = n mod m

c2 = m mod n

or X can also be calculated using,

]mod)[(2 ncabmaX −+=

RSA decryption calculates M = C
d
 mod n, where n = pq is the RSA modulus. With

Chinese remaindering this decryption process could be made faster by computing it in in

two steps instead. Write the decryption as M = C
d
 (mod pq). This can then be broken into

two congruences,

M1 ≡ C
d
 (mod p)

M2 ≡ C
d
 (mod q)

Now by applying Fermat’s theorem, the above equations could be written as,

)(mod1

1 pCM
d≡

)(mod2

1 pCM
d≡

Evaluate those two where d1 and d2 are precomputed from d,

d1 ≡ d (mod p-1)

d2 ≡ d (mod q-1)

Then m1 and m2 are combined using CRT to yield M,

qPMMpMM mod)[(1

121

−−+=

In the above method d1 and d2 are almost half the size of d and p and q are almost half the

size of n. This is faster by the factor of four than the original calculation to perform the

exponentiation.

3.2.1 Exploiting CRT in Timing Attack

 12

RSA decryption with CRT generally gives a speed up of four times. Although RSA with

CRT is not vulnerable to Kocher’s timing attack [5]. But an RSA implementation with

CRT uses factors of public modulus n. These factors could be exposed by performing a

timing attack on the decryption process. If factors of n become known then the

decryption key could be calculated by computing d = e
-1

 mod (p-1)(q-1), thus effectively

breaking the cipher.

3.3 Modular Exponentiation Speed-up Techniques

RSA decryption with CRT needs to calculate C and . These

modular exponentiations are computationally expensive operations. Various techniques

exist for speeding up this most crucial operation in RSA decryption. The simplest

algorithm for computing modular exponentiation is square and multiply, also called

binary method. Next sections explain this algorithm and various techniques employed in

fast implementation of RSA.

)(mod1 p
d

)(mod2 pC
d

3.3.1 Square and Multiply Exponentiation

A naïve way of computing C = M
e
 (mod n) is to start with C := M (mod n) and keep

performing the modular multiplication operations,

C := C · M (mod n)

until C = M
e
 (mod n) is obtained. The naïve method requires e - 1 modular

multiplications to compute C := M
e
 (mod n), which would be prohibitive for large e.

The square and multiply method is designed to do modular exponentiation more quickly.

It runs in arounf O(k
3
) operations if k is the number of bits in the exponent. It is based on

two facts that exponentiation could be done faster as a series of squaring operations and

occasional multiplications, when the exponent is odd. And while using binary arithmetic

 13

all the multiplications are not necessary, zeros can be skipped. The square-and-multiply

or binary method is described below:

The square-and-multiply method scans the bits of the exponent either from left to right. A

squaring is performed at each step, and depending on the scanned bit value, subsequent

multiplication is performed. Let k be the number of bits of e, i.e. k = 1 + , and the

binary expansion of e be given by,

 e2log

∑
−

=
−− ==

1

0

0121 2)...(
k

i

i

ikk eeeeee

for ei ∈ {0,1}. The binary method for computing C = M
e
 (mod n) is given below:

The square-and-multiply method

Input: M, e, n.

Output: C=M
e
 mod n.

1.
2.

3.

if ek-1 = 1 then C := M else C :=1

for i = k-2 downto 0

2a. C := C · C (mod n)

2b. if ei = 1 then C := C · M (mod n)

return C

Fig. 3.1 The square-and-multiply algorithm

3.3.2 Sliding Window Technique

Simple square-and-multiply processes only one bit of e at each iteration in C = M

e
 (mod

n). To further optimize the performance of square-and-multiply sliding window technique

is used. When using sliding windows a block of bits, called window, of e are processed at

each iteration. The speed of square-and-multiply is improved at the cost of some memory

which is required to store certain precomputed values. Sliding windows requires pre-

 14

computing a multiplication table, which takes time proportional to 2
w-1

+1 for a window

of size w.

The sliding window technique divides the given number into zero and non-zero words of

variable length. To calculate C = M
e
 (mod n), M is divided into zero and non-zero

windows of variable length. Let w be the window size.

Algorithm Sliding-window exponentioation

 INPUT: g, e = (etet-1…e1e0)2 with et = 1, and w ≥ 1.

 OUTPUT: g
e

1.

2.
3.

−= vi

4.

Precomputation.

a. g1 := g, g2 := g
2

b. for i from 1 to (2
w-1

 - 1) do

g2i+1 := g2i-1 · g2

A := 1, i := t

while i ≥ 0 do

a. if ei = 0 then do

A := A
2

i := i – 1

b. otherwise (ei ≠ 0), find the longest bitstring eiei-

1…ev such that i-v+1 ≤ w and ev = 1, and

do

21

1

)...(

2:
vii

ti

eeegAA
−

+−

⋅=

1:

return(A)

Fig. 3.2 Exponentiation using sliding window technique

There is an optimal window size that balances the time spent during precomputation

versus actual exponentiation. For a 1024-bit modulus, OpenSSL uses a window size of

five so that about five bits of the exponent e are processed in every iteration.

Exploiting Sliding Window in the New Timing Attack

For the timing attack the point to mark is that during the sliding windows algorithm there

are many multiplications by g, where g is the input ciphertext. By querying on many

 15

inputs g the attacker can expose information about bits of the factor q. But timing attack

on sliding windows is trickier since there are far fewer multiplications by g in sliding

windows. Special techniques has to be employed to handle sliding windows

exponentiation used in RSA implementations utilizing it.

3.4 Modular Multiplication and Modular Reduction

The sliding windows exponentiation algorithm performs a modular multiplication at

every step. Given two integers x, y computing xy mod q is done by first multiplying the

integers x · y and then reducing the result modulo q.

A naïve method to perform a reduction modulo q is done via multi-precision division and

returning the remainder. This is a very expensive operation. Montgomery [7] has

proposed a method for efficiently implementing a reduction modulo q using a series of

operation in hardware and software.

3.4.1 Montgomery Multiplication

In 1985, P. Montgomery introduced an efficient algorithm for computing u = a · b (mod n)

where a, b, and n are k-bit binary numbers. The algorithm is particularly suitable for

implementation on general-purpose computers namely, signal processors or

microprocessors) which are capable of performing fast arithmetic modulo a power of 2.

The Montgomery reduction algorithm computes the resulting k-bit number u without

performing a division by the modulus n. Via an ingenious representation of the residue

class modulo n, this algorithm replaces division by n with division by a power of 2. The

latter operation is easily accomplished on a computer since the numbers are represented

in binary form. Assuming the modulus n is a k-bit number, i.e.2
k-1

 ≤ n < 2
k
, let r be 2

k
.

The Montgomery reduction algorithm requires that r and n be relatively prime, i.e.,

 16

gcd(r, n) = gcd(2
k
, n) = 1

This requirement is satisfied if n is odd. In the following, we summarize the basic idea

behind the Montgomery reduction algorithm.

Given an integer a < n, define its n-residue or Montgomery representation with respect to

r as,

a = a · r (mod n)

Clearly, the sum or difference of the Montgomery representations of two numbers is the

Montgomery representation of their sum or difference respectively:

)(baba +=+ (mod n) and)(baba −=− (mod n)

It is straightforward to show that the set

{ i · r (mod n) | 0 ≤ i ≤ n-1 }

is a complete residue system, i.e. it contains all numbers between 0 and n-1. Thus, there

is a one-to-one correspondence between the numbers in the range 0 and n-1 and the

numbers in the above set. The Montgomery reduction algorithm exploits this property by

introducing a much faster multiplication routine which computes the n-residue of the

product of the two integers whose n-residues are given. Given two n-residues a and b ,

the Montgomery product is defined as the scaled product,

1−⋅⋅= rbau (mod n)

where r
-1

 is the (multiplicative) inverse of r modulo n i.e. it is the number with the

property,

r
-1

 · r = 1 (mod n).

As the notation implies, the resulting number u’ is indeed the n-residue of the product,

u = a · b (mod n)

since,

u = 1−⋅⋅ rba (mod n)

= (a · r) · (b · r) · r
-1

 (mod n)

= (a · b) · r (mod n).

 17

In order to describe the Montgomery reduction algorithm, we need an additional quantity,

η, which is the integer with the property,

r · r
-1

 - n · n’ = 1

The integers r
-1

 and n’ can both be computed by the extended Euclidean algorithm. The

Montgomery product algorithm which computes,

u = 1−⋅⋅ rba (mod n)

given a and b is given below:

Algorithm MonPro(a ,b)

1. t := b⋅a

2. m := t · n’ (mod r)

3. u := rnmt)(⋅+

4. if u ≥ n then return u - n

else return u

Fig. 3.3 Montgomery Multiplication Algorithm

The most important feature of the Montgomery product algorithm is that the operations

involved are multiplications modulo r and divisions by r, both of which are intrinsically

fast operations since r is a power 2. The MonPro algorithm can be used to compute the

“normal” product u of a and b modulo n provided that n is odd:

Function ModMul(a, b, n) { n is odd}

1. Compute n’ using the extended Euclidean algorithm.

2. a := a · r (mod n)

3. b := b · r (mod n)

4. u := ModPro(a ,b)

5. u := ModPro(u ,1)

6. return u

 18

3.4.2 Montgomery Exponentiation

The Montgomery product algorithm is more suitable when several modular

multiplications are needed with respect to the same modulus. Such is the case when one

needs to compute a modular exponentiation, i.e., the computation of M
e
 (mod n).

Algorithms for modular exponentiation decompose the operation into a sequence of

squarings and multiplications using a common modulus n. This is where the Montgomery

product operation MonPro finds its best use. In the following, we exemplify modular

exponentiation using the standard “square-and-multiply” method, i.e. the left-to-right

binary exponentiation method, with ei being the bit of index i in the k-bit

exponent e. Presented ahead in the section is the algorithm that uses Montgomery

exponentiation to calculate M
e
 (mod n):

Algorithm MonExp(M, e, n)

1. Compute n’ using the extended Euclidean algorithm.

2. M := M · r (mod n)

3. x :=1 · r (mod n)

4. for i = k – 1 down to 0 do

5. x := MonPro(x , x)

6. if ei = 1 then x := MonPro(M , x)

7. x := MonPro(x , 1)

8. return x

Fig. 3.4 Montgomery Exponentiation Algorithm

Thus, we start with the ordinary residue M and obtain its n-residue M and the n-

residue 1 of 1 using division-like operations, as was given above. After this pre-

processing is done, the inner loop of the binary exponentiation method uses the

Montgomery product operation, which performs only multiplications modulo 2
k
 and

divisions by 2
k
. When the loop terminates, the n-residue x of the quantity x = M

e
 (mod n)

is obtained. The ordinary residue number x is obtained from the n-residue by executing

the MonPro function with arguments x and 1. This is readily shown to be correct since

 19

x = x · r (mod n)

implies that,

x = x · r
-1

 (mod n) = x · 1 · r
-1

 (mod n) := MonPro(x , 1).

The resulting algorithm is quite fast, as is demonstrated by its various implementations.

3.4.3 Montgomery Exponentiation and Sliding Window

Technique

To achieve even faster exponentiation Montgomery multiplication can be combined with

sliding window technique. To calculate M
e
 mod n we proceed the following way:

Algorithm Montgomery exponentiation with sliding-windows

INPUT: M, e, n

OUTPUT: M
e
 (mod n)

1. M := M · r mod n

2. x := 1 · r mod n

3. partition e into zero and no-zero windows, wi of length li where i =

1,2,3,…,k

4. precompute and store jM (mod n) where j = 3,5,…2
m
-1

5. for i = k downto 1 do

6. x = MonPro(
il

x 2)

7. if wi ≠ 0 then x = MonPro(x , iw
M)

8. x = MonPro(1, x)

9. return x

Fig 3.5 Montgomery Exponentiation Algorithm (with sliding windows)

3.5 Multiplication in RSA operations

 20

Multi-precision integer multiplication routines lie at the heart of most of the essential

RSA operations and the speed up techniques. OpenSSL implements two multiplication

routines: Karatsuba and normal brute force multiplication. The simplest of them is the

classical method for multiplying large numbers as described below:

Assume that u and v are two m bit and n bit numbers, respectively, and t is their product,

which would be a mn bit number. The calculation of t could be done as follows:

Algorithm Brute force multiplication of large numbers

INPUT: positive integers u = (um-1 um-2 … u1 u0) and v = (vn-1 vn-2 … v1 v0)

OUTPUT: the integer product t = u · v

1. for i = 0 to m + n + 1 do

2. ti ← 0

3. c ← 0

4. for i = 0 to m do

5. for j = 0 to n do

6. (c, s)B ← ti+j + ui · vj + c

7. ti+j = s

8. ti+n+1 = c

9. return (t)

Fig 3.6 Classical Multi-precision Multiplication Algorithm

The algorithm proceeds in a row-wise manner. That is, it takes one digit of one operand

and multiplies it with the digits of the other operand, in turn appropriately shifting and

accumulating the product. The two digit intermediary result (c,s)B holds the value of the

digit ti+j and the carry digit that will be propagated to the digit ti+j+1 in the next iteration of

the inner loop. The subscript B indicates that the digits are represented in radix-B. As can

be easily seen the number of digit multiplications performed in the overall execution of

the algorithm is m · n. Hence, the time complexity of the classical brute force

multiplication algorithm grows with O(n
2
), where n denotes the size of the operands.

 21

But this algorithm is too slow to be solely dependent upon. OpenSSL implementation of

RSA employs Karatsuba’s algorithm to speed up multiplication of large numbers.

3.5.1 Karatsuba Multiplication

Karatsuba and Ofman proposed a faster algorithm for multiplication in 1962. The

splitting technique introduced by Karatsuba reduces the number of multiplication in

exchange of extra additions. The algorithm works by splitting the two operands u and v

into halves,

u = u1B + u0 and v = v1B + v0

where B = 2
n/2

 and n denotes the length of the operands. First the following three

multiplications are computed:

d0 = u0v0

d1 = (u1 + u0)(v1 + v0)

d2 = u1v1

Note that these multiplications are performed with operands of half length. In comparison,

the grammar school method would have required the computation of four multiplications.

The product u · v is formed by appropriately assembling the three products together as

follows,

u · v = d0 + (d1 - d0 - d2)B + d2B
2

In total three multiplications, two additions and two subtractions are needed compared to

the four multiplications and one addition required by the classical multiplication method.

Hence, the Karatsuba technique is preferable over the classical method whenever the cost

of one multiplication exceeds the cost of three additions counting additions and

subtraction as equal. The true power of the Karatsuba method is realized when

recursively applied to all partial product computations in a multi-precision multiplication

operation. For Karatsuba algorithm, the length of the operands must be powers of two.

This technique could be used recursively to further speed up the process when dealing

with very large numbers.

 22

Algorithm Karastuba(a, b, n)

1. Let p = 2
n and q = 2

n (such that p + q = n).

2. Write u = u0 + X
p
a1 and b = b0 + X

p
b1.

3. Compute α = a0 – a1 and β = b0 – b1.

4. return Karastuba(a0, b0, p) · (1+X
p
) + Karastuba(α, β, q) · X

p

5. + Karastuba(a1, b1, q) · (X
p
 + X

2p
).

Fig 3.7 Karatsuba Algorithm

Essentially, Karastuba method drills down the multiplication down to the level that the

actual multiplication takes place in the sizes of words depending on the platform being

used. Karatsuba algorithm takes O time which is O(n)(
3log2n

1.58
).

Exploiting multiplication optimizations in timing attacks

Multi-precision libraries represent large integers as a sequence of words. OpenSSL

implements both classical and Karastuba routines for multi-precision integer

multiplication.

OpenSSL uses Karastuba multiplication when multiplying two numbers with an equal

number of words, which runs in O or O(n)(
3log2n

1.58
) time. OpenSSL uses normal

multiplication when multiplying two numbers with an unequal number of words of size n

and m, which runs in O(nm) time. Hence, for numbers that are approximately the same

size, so that n is close to m, normal multiplication takes quadratic time. That leads to the

inference that OpenSSL’s integer multiplication routine leaks important timing

information. Since Karastuba is typically faster, multiplication of two unequal size words

takes longer thatn multiplication of two equal size words. Time measurements can reveal

how often the operands given to the multiplication routine have the same length. This fact

is used in the timing attack on OpenSSL.

 23

4 OpenSSL’s Implementation of RSA

OpenSSL is a widely deployed, open source implementation of the Secure Sockets Layer

(SSL v2/v3) and Transport Layer Security (TLS v1) protocols as well as a full-strength

general purpose cryptography library. The SSL and TLS protocols are used to provide a

secure connection between a client and a server for higher level protocols such as HTTP.

The OpenSSL crypto library implements a wide range of cryptographic algorithms used

in various Internet standards. The services provided by this library are used by the

OpenSSL implementations of SSL, TLS and S/MIME, and they have also been used to

implement SSH, OpenPGP, and other cryptographic standards. This is the library that

provides functionality required to use RSA public key cryptosystem. Following are the

main functions used to implement RSA public key encryption and decryption:

#include <openssl/rsa.h>

int RSA_public_encrypt(int flen, unsigned char *from, unsigned char *to,
 RSA *rsa, int padding);
int RSA_private_decrypt(int flen, unsigned char *from,
 unsigned char *to, RSA *rsa, int padding);
int RSA_private_encrypt(int flen, unsigned char *from,
 unsigned char *to, RSA *rsa,int padding);
int RSA_public_decrypt(int flen, unsigned char *from, unsigned char *to,
 RSA *rsa,int padding);

OpenSSL maintains the following RSA data structure to store public keys as well as

private RSA keys. The structure also stores several precomputed values, dmp1, dmq1 and

iqmp etc. which when available help RSA operations execute much faster.

struct
 {
 BIGNUM *n; // public modulus
 BIGNUM *e; // public exponent
 BIGNUM *d; // private exponent
 BIGNUM *p; // secret prime factor
 BIGNUM *q; // secret prime factor
 BIGNUM *dmp1; // d mod (p-1)
 BIGNUM *dmq1; // d mod (q-1)
 BIGNUM *iqmp; // q^-1 mod p
 // ...

 24

 };
 RSA

Implementation of RSA decryption in OpenSSL is the most relevant to the presented

timing attack. Core of RSA decryption lies in modular exponentiation M = C
d
 mod n

where n = pq is the RSA modulus, d is the private exponent and C the ciphertext.

OpenSSL employs various speedup techniques which have been described in sections

above. The exponentiation marked out here is performed using CRT. RSA decryption

with CRT speeds up by a factor of four. Since CRT uses factors of public modulus n

hence they are vulnerable to be discovered by a timing attack. Once they are discovered it

is easy to discover the private key by simple modular arithmetic.

Also for multi-precision multiplications required in CRT based exponentiations, a

number of techniques are used. OpenSSL uses square-and-multiply with sliding windows

exponentiation. Sliding windows perform a pre-computation to build a multiplication

table. This precomputation takes 2
w-1

+1 for a window of size w. In case of a 1024-bit

modulus OpenSSL employs window size of five.

From timing attack perspective, the most important is that in silding windows there are

many multiplications by the ciphertext input to RSA decryption algorithm. By querying

on many such inputs the information about factor q could be exposed. But timing attack

on sliding windows is much harder due to lesser number of multiplications being

performed there. Special techniques have to be employed to overcome this.

OpenSSL uses Montgomery technique to perform multiplications and their modular

reductions as necessary in sliding window exponentiations. Montgomery reductions

transform a reduction modulo q to a reduction modulo some power of two. This is faster

since many arithmetic operations could be implemented directly in hardware in that case.

So for a little penalty of transforming input to Montgomery form a large gain is achieved

in modular reduction performance.

4.1 Extra Reductions

 25

The most relevant fact about Montgomery technique is that at the end of multiplication

there is a check to see if the output is greater than modulo reduction number.

 if u ≥ q then return u - q

else return u

Here while calculating C
d
 (mod q), q is subtracted from the output to ensure that the

output is in range [. This extra step is called an extra reduction and causes noticeable

timining difference in RSA decryption for different ciphertext inputs. Werner Schindler

[9] observed that the probability of an extra reduction happening during some

eponetiation g

),0 q

d
 mod q is proportional to how close g is to q. The probability for an extra

reduction is given by:

R

qg
reductionextra

2

mod
]Pr[=−

Where R := h
2
 for some h such that Montgomery multiplication was used to transform

reduction modulo q to reduction modulo R.

OpenSSL calls following function in the order whenever a decryption query is made.

int RSA_private_decrypt(int flen, unsigned char *from,
 unsigned char *to, RSA *rsa, int padding);

calls the following function,

int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p,
 const BIGNUM *m, BN_CTX *ctx);

which in turn calls the Montgomery multiplication function is the modulus is odd,

int BN_mod_mul_montgomery(BIGNUM *r, BIGNUM *a, BIGNUM *b,
 BN_MONT_CTX *mont, BN_CTX *ctx);

this function then uses the following code to convert back and forth the Montgomery

form:

int BN_from_montgomery(BIGNUM *r, BIGNUM *a, BN_MONT_CTX *mont,
 BN_CTX *ctx);

 26

The above mentioned extra reduction as appears in file bn_mont.c:

if (BN_ucmp(ret, &(mont->N)) >= 0){
 if (!BN_usub(ret,ret,&(mont->N))) goto err;
}

So if ciphertext input g approaches either factor p or q from below, the number of extra

reductions greatly increases. But at exact multiple of p or q the number of extra reduction

drops vastly. Figure 4.1 clearly marks the discontinuity in number of extra reductions

appearing at multiples of p or q.

Fig 4.1 Extra Reductions in Montgomery Reduction

By detecting resulting timing differences in decryption it is possible to tell how close

input g is to p or q.

 27

As has been described in the sections above, OpenSSL utilizes both classical and

Karatsuba methods for doing multi-precision integer multiplications. A choice about

which method to use is based on the input values. Karastuba method is used whenever

multiplication of two unequal size words is required, otherwise classical method is used.

OpenSSL leaks important timing information here. Karastuba is typically faster so timing

measurements could reveal how often the operands given to the multiplication routine

have the same length. This fact is used in the timing attack.

5 The New Timing Attack on OpenSSL

Two factors cause the time variance in RSA decryption, namely, extra reductions in

Montgomery multiplication and choice of Karastuba versus classical multiplication

routine.

Consider decryption of a chosen ciphertext g by OpenSSL. Begin with a smaller g and let

it approach towards a multiple of factor q from below. The number of extra reductions

keeps on increasing until it reaches some multiple of q. After that the number of extra

reductions decreases dramatically. So decryption of q < q is slower than decryption of g

> q.

Karastuba versus classical multiplication causes opposite effect. When g only slightly

less than some multiple of q, Karatsuba is used. If g is over the value of a multiple of q

then g mod q is a small number consequently OpenSSL is more likely to choose slower

classical multiplication. In this case the decryption of g < q should be faster than

decryption of g > q, which is the exact opposite of the effect of presence of extra

reductions in Montgomery’s algorithm.

5.1 Exploiting Sliding Window Pre-computations

Since OpenSSL uses CRT with sliding windows with window size 5 there is a significant

amount of precomputation involved. If input is chosen carefully noticeable timing

 28

differences could be observed in exponentiation calculations. Werner Schindler [2] made

the following observation about implementation of sliding windows exponentiation in

OpenSSL:

Let y be the input for the exponentiation algorithm and R the Montgomery constant, in

present case R = 2
512

. Further, let MonPro(a, b) mean the Montgomery multiplication of a

and b, i.e.,

MonPro(a, b) := a · b · R
-1

 (mod q).

If the exponentiation uses CRT with sliding window (window size = 5) then following

values are precomputed and stored [10]:

y1 := MonPro(y, R
2
(mod q)) = y · R (mod q),

y2 := MonPro(y1, y1) = y
2
 · R (mod q),

y3 := MonPro(y1, y2) = y
3
 · R (mod q),

y5 := MonPro(y3, y2) = y
5
 · R (mod q),

…

y29 := MonPro(y27, y2) = y
29

 · R (mod q),

y31 := MonPro(y29, y2) = y
31

 · R (mod q).

Now if the input to exponentiation is some number y such that,

y = [h · R
-1/2

(mod n)] (mod n)

where h ~ q
1/2

, then from the calculations above we have y2 = u. To compute the values

y3,y5,...,y31 the pre-computations process multiplies 15 times with y2.

Whereas in Boneh and Brumley's timing attack [Ref BnB] the input is,

y = [g · R
-1

(mod n)] (mod n)

where g ~ q. In this case the multiplication with y1 is exploited. In particular, y1 = g. And

one would expect that about 5 - 6 multiplications with y1. The exact number of

multiplications depends on q.

This difference in number of calculations directly relating to input, helps in observing the

time variations more clearly.

 29

5.2 Implementation Details of the Attack

The presented time attack is the chosen input attack. The basic idea is to make an initial

guess and refine it by learning bits one at a time, from the most significant to the least.

Let n = pq with q < p. The attack proceeds by building approximations to q that get

progressively closer. Thus our attack can be viewed as a binary search for q. After having

recovered half-most significant bits of q, the rest of them could be retrieved using

Coppersmith’s algorithm. We initially begin with the guess g of q lying between 2
512

 (or

) and 2
2/log22

N 511
 (or 2). We try all the combinations of the top few bits. Having

timed the decryptions, we pick the first peak as the guess for q (We at least know that the

first bit is 1). The attack proceeds basically in the following steps:

1)2/(log2 −N

Suppose we have already recovered the top i-1 bits of q. Let g be an integer that has the

same top i-1 bits as q and the remaining bits of g are 0. Here g < q.

Fig 5.1 Bits of guess g for factor q

We go with the following strategy to recover the next ith bit of q and rest of higher bits:

Initialize R := 2
a
, whereas a is the number of bits of the prime factors p or q

which is typically 512.

1.

2. After having guessed bit i-1 of the prime q counting from the left and starting

the count with i = 1, there exists two bounds for current guess as, gi-1, low and

gi-1,high with,

 30

gi-1,high = gi-1,low + 2
a-i

If all the guessing have been correct so far then gi-1,low < p < gi-1,high should hold. Now

let g := gi-1,low and ghi := g + 2
a-i-1

 i.e. ghi is of the same value as g, with only the ith bit

set to 1.

3.

4.

5.

6.

7.

Now if bit i of q is 1, then g < ghi < q. Otherwise, g < q < ghi.

Compute hhi := and h := . Here Round function

rounds the argument to the closest integer.

)(
2/1

higRound)(2/1gRound

Compute uh = hR
−1/2

 mod n and uhi = hhiR
−1/2

 mod n. This step is needed

because RSA decryption with Montgomery reduction and sliding windows

will put uh and uhi in Montgomery form before exponentiation.

We measure the time to decrypt both uh and uhi . Let t1 = DecryptTime(uh)

and t2 = DecryptTime(uhi).

We calculate the difference ∆ = | t1 − t2 |. If g < q < ghi then, the difference ∆

will be “large”, and bit i of q will be 0. If g < ghi < q, the difference ∆ will be

“small”, and bit i of q will be 1. We use previous ∆ values to know what to

consider “large” and “small”. Thus we can use the value | t1 − t2 | as an

indicator for the ith bit of q.

When the ith bit is 0, the “large” difference can either be negative or positive. In this case,

if t1 − t2 is positive then DecryptTime(g) > DecryptTime(ghi), and the Montgomery

reductions dominated the time difference. If t1 − t2 is negative, then DecryptTime(g) <

DecryptTime(ghi), and the multi-precision multiplication dominated the time difference.

To overcome the effect of using sliding window we query at a neighborhood of values h-

n, h-n-1,...h-1, h, h+1, h+2, ..., h+n, and use the result as the decrypt time for h (and

similarly for hhi). In that case we determine the time difference by taking the difference of

the following two equations:

∑
−=

−⋅+
+

=
b

bi

L nRiheDecryptTim
b

T)mod)((
12

1
: 2/1

 31

∑
−=

−⋅+
+

=
b

bi

hiH nRiheDecryptTim
b

T)mod)((
12

1
: 2/1

and then compute ∆ := TL – TH. This could be repeated for b = 100, 200, 300, 400 etc. for

finer results. As neighbourhood values grows, | TL − TH | typically becomes a stronger

indicator for a bit of q (at the cost of additional decryption queries).

The Boneh & Brumley [4] attack exploits the multiplications with the base (multiplied

with the Montgomery constant R) instead of exploiting the multiplications with the

second power of the base (multiplied with R) in the initialization phase of the table.

5.2.1 Experimental Setup

The attack were performed against OpenSSL 0.9.7. The experimental setup consisted of a

TCP server and client both running on a Pentium 4 processor with 2.0 GHz clock speed

and RedHat Linux 7.2 on it. We performed the attacks on server running on Pentium

Xeon processor with 2.4 GHz and running Linux. We also tested our attack on campus

network running client on a very fast bee machine which is a Linux Beowulf cluster, all

servers and clients compiled using gcc 2.96. All keys used in the experiments were

generated randomly using OpenSSL’s key generation routine.

5.2.2 Client –server design of the timing attack for the experiment

The client and server both were implemented in C. The pseudocode for server is given in

the figure below:

 32

1. Create a TCP socket. Binds socket to a port.
2. Generate a 1024 bit key by calling RSA_generate_key() of

Crypto library.
3. Accept a connction from the client.
4. Send the public modulus (n) to the client.
5. while(true)
6. Recieve the guess.
7. Decrypt it using RSA_private_decrypt().
8. Send end of decryption message back to client

Fig. 5.2 Pseudocode of the Server Attacked

 33

The pseudo code for attacking client is as follows. The Round()function here rounds the

argument to the closest integer:

1. Create Tcp Socket. Connect to Tcp Server.
2. Receive n from server.
3. Generate a 512 bit guess in g.
4. Set the first 2 bits of g equal to 1 which is the first two

bits of q. set rest of the bits to 0.

5. For i = 3 to 256 /* i is the bit position */

a. Set T0 = T1 = 0.
b. Set g0 = g1 and set bit i to 1 in g1.
c. Calculate h0 = Round(sqrt(g0)).
d. Calculate h1 = Round(sqrt(g1)).
e. for neighbourhood s = 0 to 1000

i. Calculate u0 = R05^{-1} * (h0+s) (mod n)
ii. Send the above guess 7 times and record the

difference in clock ticks from the time the
message is sent to the time end of decryption is
received each time.

iii. Set t0 = median of these 7 values.
iv. T0 = T0 + t0

v. Calculate u1 = R05^{-1} * (h1+s) (mod n)
vi. Send the above guess 7 times and record the

difference in clock ticks from the time the
message is sent to the time end of decryption is
received each time.

vii. Set t1 = median of these 7 values.
viii. T1 = T1 + t1

f. Calculate (T0-T1).
g. If difference is large, bit is 0 else bit is 1, copy the

correct bit to g.
6. Return(g).

Fig. 5.3 Pseudocode for attacking client

 34

6 Experimental Results

We performed the timing attack under different parameters. Experiments were conducted

in interprocess as well as networked environment. In the former case the server and

attacking client both were running on the same machine whilst in the latter case server

was run on a remote machine and attacking client was run on a fast local machine to

expose RSA private key information.

The success rate of recovering private key from the server varies greatly with the correct

parameter values and incorporation error correction logic in the client.

The graph in figure 6.1 depicts the value of decryption time recorded by the attacking

client (in CPU clock cycles) for bits ranging from 0 to 256. The lower of the two curves

is for time taken to decrypt while the bit being guessed was 1 and the other higher curve

shows the decryption time while the bit being guessed was 0 in the factor q. One can

observe that for lower bit positions, especially for bits ranging from 0 to 32 the curves

overlap and the difference between the timings of different bit values is inconsistent. But

there is noticeable difference for higher bit values. We explored further in our

experiments about what is going on with lower bit ranges and higher bit ranges as well as

techniques to enhance the distinction between bit timings.

 35

-10000

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 15 30 45 57 69 89 10
5

12
3

13
5

15
2

16
5

18
7

20
5

21
9

22
9

24
0

25
1

24
2

25
6

Bits of secret factor q

D
e
c
ry

p
t

T
im

e
s

bits with value 0 bits with value 1

Fig 6.1 Timing attack on bits ranging from 0 to 256 with neighbourhood = 200.

We performed further experiments to enhance the distinction so that it is even easier to

mark out bits of the guess g. We recorded repeated decryption timings to look at more

clearly how the decryption times differ if the bit is 0 or if it is 1. Graphs in figure 6.2

shows that decryption timings for bit value 0 are very much constant whereas they

fluctuate if the bit value is 1. This gives a clue to repeatedly sample the decryption

timings and record the trend of values to get a clearer indication of the bit value currently

under attack.

 36

bit 107 value 1

0

1000000

2000000

3000000

4000000

5000000

6000000

1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930

Samples

D
e
c
ry

p
 T

im
e
s

bit 106 value 0

0

20000

40000

60000

80000

100000

120000

140000

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

Samples

D
e
c
ry

p
t

T
im

e

Fig. 6.2 Repeated samples of decryption timings for bits 106 and 107.

The timing data shown in figure 6.3 clearly confirms this observation that the bits could

be distinguished based on the trend of their decryption timings. Bits that are 1 in value

yield almost constant and low decryption timings while for bits that are 0 in value

decryption times are high and they fluctuate.

 37

Samples

D
e
c
ry

p
t

T
im

e

bit 107 val 1 bit 106 val 0

Fig 6.3 Trend in decryption timings for different bit values

Figures 6.4 depicts that for very low bit positions (here bit positions 16 and 17) it is

difficult to predict the bit values even with higher neighbourhood values. Only more

extensive sampling of decryption timings can eliminate the errors in guessing bit values

for the factor q.

 38

-2000

0

2000

4000

6000

8000

10000

12000

14000

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

Neighbourhood

T
im

e

bit 16 val 0 bit 17 val 1

Fig 6.4 Lower bit positions of q are difficult to guess

Figure 6.5 Shows the gap between decryption timings of comparatively higher bits.

0

10000

20000

30000

40000

50000

60000

100 150 200 250 300 350 400 450 500 550 600

Neighbourhood

T
im

e

bit 64 val 0 bit 65 val 1

Fig 6.5 Higher bit position can be distinguished clearly

 39

Figure 6.6 shows the effect of increasing neighbourhood values. We varied the

neighbourhood size from 200 to 1000. Because we accumulate the timing difference

values in out attack so the distinction between bits with different values becomes more

pronounced. But this usually varies from key to key.

0

1000000

2000000

3000000

4000000

5000000

6000000

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Neighbourhood Values

D
e
c
ry

p
t

T
im

e
s

Bit 57 val 1 Bit 58 val 0 Bit 59 val 1

Fig 6.6 Effect of increasing neighbourhood values for bits 57, 58 and 59.

Figure 6.7 shows the repeated decryption timings for a small bit range with high

neighbourhood value (1000). One can see that repeating the decryption queries makes it

easier to distinguish among the bit values. Fig 6.8 shows the actual bit values of the factor

q for easy comparison. The actual bit values in q were 152 = 1, 153 = 0, 154 = 1, 155 =

156 = 0, 157 = 158 = 159 = 1 and 160 = 0.

 40

15
2

15
3

15
4

15
5

15
6

15
7

15
8

15
9

16
0

Bits of factor q

D
e
c
ry

p
 T

im
e
s

Bit Range 152-160

Fig 6.7 Decryption timings with repeated samples for bit range 152 – 160.

152 153 154 155 156 157 158 159 160

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
it
 V

a
lu

e

Bit Positions

Actual bit values of q

Fig 6.8 Actual bit values of factor q shown graphically

It is clear from the results that effectiveness of presented timing attack could be

significantly improved by adopting repeated sampling or special error correcting

strategies. But use of such techniques results in increased time to attack.

 41

7 Countermeasures

Although the timing attack is a serious threat, there are simple counter measures that can

be used, including the following:

Constant exponentiation time: Ensure that all the exponentiations take the same amount

of time before returning a result. This is a simple fix but it does degrade performance.

Random delay: To achieve better performance and yet secure against adversary timing

decryption random delay could be used. Here a random delay to the exponentiation

algorithm is added to confuse the timing attack. But Kocher [5] pointed out that if

defenders do not add enough noise, attackers could still succeed by collecting additional

measurement to compensate for the random delays.

Blinding: This could be one of the most effective counter measures used to thwart

potential timing attacks. Here the ciphertext is multiplied by a random number before

performing exponentiation. This process prevents the attacker from knowing what

ciphertext bits are being processed inside the computer and therefore prevents the bit-by-

bit analysis essential to the timing attack. In RSA implementation with blinding feature

enabled the private-key operation M = C
d
 mod n is implemented as follows:

1.

2.

3.

4.

Generate a secret random number r between 0 and n-1.

Compute C’ = C(r
e
) mod n, where e is the public exponent.

Compute M’ = (C’)
d
 mod n with the ordinary RSA implementation.

Compute M = M’r
-1

 mod n. In this equation, r
-1

 is the multiplicative inverse of

r mod n. This is the correct result because r
ed

 mod n = r mod n.

There is a 2 to 10% penalty in performance if blinding is enabled in RSA

exponentiations.

 42

8 Conclusion & Future Work

This project implemented timing attack on software implementation of RSA

cryptosystem that uses CRT, Montgomery's multiplication and reduction and sliding

window techniques. The experiments were based on the similar attack suggested by

Werner Schindler on hardware devices like smart cards [2]. We demonstrated here that

counter to current belief, timing attacks are effective even when carried out for software

implementations and in complex networked environments.

To avoid the actual possibility of such attacks, taking countermeasure is very much

necessary, since even networked servers are vulnerable. Use of blinding or other

techniques discussed in previous sections is recommended strongly in contemporary RSA

implementations.

These attacks could be further improved to reduce the attack time and the number of

queries required to guess a single bit of RSA secret parameter. One possible strategy

could be to combine various approaches, e.g. Boneh & Brumley [4] with the current to

gain maximum advantage. Use of various statistical tools could also be used to make the

attack even more effective. Also similar techniques could be used to more powerful

attacks where several bits could be guessed simultaneously.

 43

References

[1] OpenSSL Project. Openssl. http://www.openssl.org.

[2] Werner Schindler. A timing attack against RSA with the Chinese remainder theorem.

In Cryptographic Hardware and Embedded Systems - CHES 2000, pages 109–124,

2000.

[3] Intel. Using the RDTSC instruction for performance monitoring. Technical report,

1997, http://developer.intel.com/drg/pentiumII/appnotes/RDTSCPM1.HTM.

[4] D. Boneh and D. Brumley. Remote Timing Attacks are Practical. Proceedings of the

12th USENIX Security Symposium, August 2003.

[5] P. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and

other systems. In Proceedings of Crypto 96, LNCS 1109, Springer, 1996, pp. 104—

113

[6] Cetin Kaya Koc, Tolga Acar, and Burton S. Kaliski Jr. Analyzing and Comparing

Montgomery Multiplication Algorithms. IEEE Micro, pages 26--33, June 1996.

[7] P. Montgomery, "Modular Multiplication Without Trial Division," Mathematics of

Computation, Vol. 44, No. 170, 1985, pp. 519--521.

[8] Menezes, van Oorschot, Vanstone: Handbook of Applied Cryptography, Algorithm

14.85.

[9] C .K. Koc, "High-speed RSA implementations," RSA Laboratories Technical Notes

and Reports TR 201, RSA Laboratories, Nov. 1994

http://www/
http://developer.intel.com/drg/pentiumII/appnotes/RDTSCPM1.HTM

	Abstract
	Key Generation Algorithm
	Encryption
	Decryption

