
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2010, Article ID 158602, 11 pages
doi:10.1155/2010/158602

Research Article

Timing-Driven Nonuniform Depopulation-Based Clustering

Hanyu Liu and Ali Akoglu

Department of ECE, University of Arizona, 1230 E. Speedway Blvd., Tucson, AZ 85721, USA

Correspondence should be addressed to Ali Akoglu, akoglu@ece.arizona.edu

Received 14 June 2009; Accepted 16 November 2009

Academic Editor: Elı́as Todorovich

Copyright © 2010 H. Liu and A. Akoglu. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Low-cost FPGAs have comparable number of Configurable Logic Blocks (CLBs) with respect to resource-rich FPGAs but have
much less routing tracks. For CAD tools, this situation increases the difficulty of successfully mapping a circuit into the low-
cost FPGAs. Instead of switching to resource-rich FPGAs, the designers could employ depopulation-based clustering techniques
which underuse CLBs, hence improve routability by spreading the logic over the architecture. However, all depopulation-based
clustering algorithms to this date increase critical path delay. In this paper, we present a timing-driven nonuniform depopulation-
based clustering technique, T-NDPack, that targets critical path delay and channel width constraints simultaneously. T-NDPack
adjusts the CLB capacity based on the criticality of the Basic Logic Element (BLE). Results show that T-NDPack reduces minimum
channel width by 11.07% while increasing the number of CLBs by 13.28% compared to T-VPack. More importantly, T-NDPack
decreases critical path delay by 2.89%.

1. Introduction

Field-programmable gate arrays (FPGAs) were first intro-
duced in 1980s. While they are less efficient than ASICs,
FPGAs are becoming more popular because of their low
nonrecurrent engineering cost and fast time-to-market. Cur-
rently, commercial FPGAs can be categorized as low-cost and
resource-rich families. As shown in Table 1, low-cost FPGA
family (Spartan) has comparable number of Configurable
Logic Blocks (CLBs) with resource-rich family (Virtex), but
less memory, multipliers, and routing tracks. Limitation on
interconnect resources increases the probability of nets being
routed through longer paths and nets becoming unroutable
due to congestion. For the sake of routability, when nets go
through longer paths, critical path delay may also increase.
We may solve these problems by migrating to the resource-
rich FPGA device which has more routing resources by
paying 7× price. In order to avoid this, FPGA CAD flow
must improve the routability as well as timing performance
to make the low-cost device a feasible option.

FPGA CAD flow includes four stages: technology map-
ping to form a netlist of logic blocks, clustering to combine
blocks into CLBs, placement to allocate physical positions

to each CLB, and routing to define paths for all nets in
the design. Clustering is the foundation of layout and
has strong influence on area efficiency, timing, and power
[1]. Figure 1 categorizes clustering techniques. Based on
the target utilization objectives, we identify two types of
clustering techniques: targeting maximum logic utilization
and targeting less than maximum logic utilization. Most
clustering approaches fully populate CLBs with optimization
goal for routability (area), timing, or power.

However, maximum logic utilization may cause routing
congestion in some parts of the FPGA. A CLB contains N
basic logic elements (BLEs), where a typical BLE used in
many academic studies is formed of a 4-input LUT, a flip-
flop, and a MUX to choose the output from either the LUT
or the flipflop. A group of CLBs is strongly connected if they
share a large number of nets. After placement, such CLBs
appear close together in a specific region on the FPGA. Filling
these CLBs to the limit (N) increases the demand on the
interconnect resources through this region to be able to route
the connections among them. As a result, channel width
requirements for such regions become higher than others.
This leads to an increase in peak channel width and hence
the design requires more routing resources.

2 International Journal of Reconfigurable Computing

Table 1: Features and prices of two xilinx FPGA families (spartan: low-cost and virtex: resource-rich).

Device CLBs RAM Multi- pliers Interconnect dble.+hex+1 g.1 Price (2008)

Spartan 3s500e 1164 36 k 20 8 + 8 + 24 $23

Virtex 2vp7 1232 792 k 44 40 + 120 + 24 $179

Spartan 3s1200e 2168 504 k 28 8 + 8 + 24 $42

Virtex 2vp20 2320 1584 k 88 40 + 120 + 24 $304
1dble.:double, hex, lg.: long (types of wires).

Clustering techniques

Target max logic

utilization: “fully-

populated” CLBs

Power-driven Timing-driven Routability-driven

P-T-VPack, [18]
SMAC, [12]

SCPlace, [10]

T-VPack, [4]

T-RPack, [9]

HDPack, [13] Marrakchi et al. [11]

∗Target less than max

logic utilization:

“depopulated” CLBs

Uniform
depopulation

∗Non-uniform
depopulation

∗T-NDPack
Un/DoPack, [3]

Tom and Lemieux [7]

iRac, [5]

Tessier and Giza [6]

Figure 1: Categorization of clustering techniques based on logic utilization approach and optimization goals. ∗represents the category of
our technique (T-NDPack).

It has long been known that, as CLBs are depopulated,
better channel widths can be achieved. First proposed in [2],
the depopulation-based clustering techniques can lower peak
channel width and improve routability. Instead of targeting
maximum logic utilization, depopulation is a technique that
underuses CLBs by not filling them to capacity. The regions
with strongly connected CLBs are spread over a larger area
on the FPGA. This reduces the demand for routing resources;
hence in such a region, more resources become available to
route the connections.

However depopulation leads to more number of external
connections among CLBs and typically results with an
increase in critical path delay, because the inter-CLB delays
are much larger than the intra-CLB delays [1]. For exam-
ple, the latest depopulation-based clustering technique [3]
decreases minimum channel width by 15% while increasing
the number of CLBs by 17.32% compared to T-VPack
[4]. Additionally, total area increases by 5%, along with
7% increase in critical path delay. All depopulation-based
clustering algorithms [3, 5, 6] increase critical path delay,
while enhancing the routability.

In this paper, we propose the first depopulation-based
clustering approach that takes timing into account. Cat-
egorized in Figure 1, we develop a seed-based routability
and timing-driven nonuniform depopulation technique, T-
NDPack. We adjust the CLB capacity under construction
based on the criticality of the BLE under consideration.
For example, we cluster the nets on the critical path to full
capacity. That way, we reduce the inter-CLB delay which
helps decrease critical path delay. Meanwhile, we depopulate
on the paths with low criticality to avoid routing congestion

and hence reduce the channel width requirements. To
achieve this idea, we modify both the algorithm flow and cost
function of T-VPack. Results show that T-NDPack decreases
minimum channel width by 11.07% while increasing the
number of CLBs by 13.28% compared to T-VPack. More
importantly, as opposed to the trend we see in other
depopulation techniques, T-NDPack decreases critical path
delay by 2.89%. With the new technique, instead of moving
to a resource-rich FPGA (in the case of Spartan 3s500e
versus Virtex 2vp7 of Table 1), designers may, for example,
move to Spartan 3s1200e and pay 2 × instead of 7 × cost.
Furthermore, this paper stands as a guide when it comes to
understanding the effects of depopulation on area and delay
performance for FPGAs.

Rest of the paper is organized as follows. Section 2
presents the review of the related work on depopulation-
based clustering techniques. Section 3 introduces our clus-
tering technique, T-NDPack. Section 4 presents and ana-
lyzes our experimental results. Section 5 compares our
work with both depopulation- and nondepopulation-based
approaches. Section 6 presents our conclusion and future
work.

2. Related Work

Several depopulation techniques were proposed previously.
We categorize them into two types (Algorithm 1): uniform
depopulation [5, 6] and nonuniform depopulation [3, 7].
Uniform depopulation sets a fixed “upper limit” per CLB
and each CLB is filled to that “upper limit” capacity.
In nonuniform depopulation, the “upper limit” varies

International Journal of Reconfigurable Computing 3

among CLBs. Let us assume that cluster size is 8. While
a uniform depopulation scheme may use a fixed “upper
limit” of 6 for all CLBs, a nonuniform scheme will result
in a CLB distribution with sizes from 1 to 8. nonuniform
depopulation sets a very low “upper limit” to prioritize
routability for a congested area and sets a high “upper limit”
for the congestion free area to save more CLBs. Therefore,
nonuniform depopulation results with better routability in
congested area and higher CLB utilization in uncongested
area compared to uniform scheme.

Tom and Lemieux [7] proposes the first nonuniform
depopulation methodology. Tom uses 20 MCNC benchmark
circuits [8] and connects them with three different topologies
(independent, pipelined, and clique). Each topology repre-
sents an SoC. Each benchmark is an IP block and uses its
own “upper limit.” Results show that the SoC design with
the help of depopulation technique requires less channel
width compared to T-VPack. However, total area increases
while maintaining similar critical path delay relative to T-
VPack. Tom’s approach [7] stands as a good study in terms of
showing the potential benefit of nonuniform depopulation.
However, the methodology determines the “upper limit” for
each IP block manually based on the congestion inside the
same IP block and no algorithm is given.

The nonuniform depopulation technique, Un/DoPack,
was proposed by Tom et al. in [3]. This technique runs the
FPGA CAD flow twice. First iteration is the regular CAD
flow. In the second iteration, clustering stage uses the layout
result of the first iteration and depopulates the congested
regions. While reducing the channel width, Un/DoPack, sim-
ilar to the other depopulation-based clustering approaches,
observes an increase in total area and critical path delay.

3. T-NDPack

In this section, we describe our seed-based routability and
timing-driven nonuniform depopulation clustering tech-
nique, T-NDPack. We present the pseudocode and notable
implementation insights.

3.1. Algorithm Flow. T-NDPack chooses the seed block based
on criticality first. The first block that is clustered into a
CLB is called the seed block of this CLB. Then T-NDPack
packs more blocks into the CLB by following the nonuniform
depopulation clustering scheme.

We define two strategies for depopulation:

(i) BLE-limit: limit the number of BLEs used in a CLB
[3, 6, 7],

(ii) input-limit: limit the number of inputs used for a
CLB [5].

T-NDPack employs either “BLE-limit” or “input-limit”
strategy to achieve variable utilization level. We evaluate
the performance of each and present their effect on min-
imum channel width and critical path delay separately. In
this paper, the “utilization level” measures the amount of
resources used by a CLB in terms of the number of BLEs or
inputs where “high utilization level” means most resources

Table 2: A maximum utilization table (MUT).

The ranking percentage
of the seed’s criticality

Maximum
utilization level

Cluster
size

90%–100% 8 8

40%–90% 7 8

0%–40% 6 8

are used. For the “BLE-limit” strategy, utilization level refers
to the number of BLEs used in a CLB, and for the “input-
limit” strategy, utilization level refers to the number of inputs
used by a CLB.

Algorithm 1 shows the pseudocode for T-NDPack. First,
the algorithm computes the criticality of each block (Ln. 1)
and sorts them based on their criticality (Ln. 2).

Then T-NDPack begins to fill CLBs. Algorithm keeps
clustering blocks into CLBs until no unclustered block is left
(Ln. 3). In each iteration, we have the following.

(1) T-NDPack packs the seed block that has the maxi-
mum criticality (Ln. 4). We regard that the criticality of the
seed block represents the criticality of the net. Therefore,
we determine the “maximum utilization level” based on the
ranking of the seed’s criticality value (Ln. 5). In this paper, the
“maximum utilization level” means the maximum number
of BLEs or inputs that are allowed to be used for a CLB. If the
ranking of the seed’s criticality value is high, algorithm sets
the “maximum utilization level” to a high value to decrease
the critical path delay. Nevertheless, if the ranking is low, the
“maximum utilization level” is set to a low value to reduce
the routing requirement.

Table 2 shows a “maximum utilization table” (MUT) used
to look up the value of “maximum utilization level” for
“BLE-limit” strategy. This MUT allows more BLEs to be
used in a CLB for the seed with 95% criticality ranking than
the seed with 50% criticality ranking. We explain how to
generate MUT in Section 4.2.

(2) Then, T-NDPack starts to cluster blocks, till the CLB
under consideration reaches its maximum utilization level
(Ln. 6). Figure 2 shows the algorithm flow for packing one
block into the CLB (Ln. 7–Ln. 20).

(a) T-NDPack builds a candidate block list (Ln. 7) by
comparing the criticality of blocks with respect to
the “candidate block threshold” (CBT). CBT increases
as the “current utilization level” of the CLB under
consideration increases. We define “current utiliza-
tion level” as the number of currently used BLEs
or inputs for the CLB under consideration. The
candidate block list includes all the blocks whose
criticality is above the CBT value. If the CLB is already
highly utilized, only the blocks with high criticality
are allowed to be clustered. Furthermore, if the list is
empty, T-NDPack stops clustering more blocks into
this CLB (Ln. 8–Ln. 10).

(b) Then a cost function, described in Section 3.2, com-
putes the gain value for each block in the candidate
block list.

4 International Journal of Reconfigurable Computing

(1) Compute the criticality of each block
(1) Sort the blocks with criticality
(3) While unclustered blocks available
(4) Find a seed with maximum criticality
(5) Determine the maximum utilization level in the cluster based on the ranking of the seed’s criticality

through looking up “maximum utilization table” (MUT)
(6) While maximum utilization level is not reached
(7) Build the candidate block list that criticality > “candidate block threshold” (CBT) (CBT is

determined by the current utilization level)
(8) If candidate block list is empty
(9) Break

(10) End if
(11) If the related blocks available
(12) Choose a related block with highest gain from the candidate block list
(13) Else if (current utilization level < “unrelated block threshold” (UBT))
(14) Choose a unrelated block with the highest gain from the candidate block list //unrelated

block Clustering
(15) Else

(16) Break

(17) End if
(18) Remove block from unclusered block list
(19) Add block to current cluster
(20) Current clustered block number ++
(21) End while
(22) End while

Algorithm 1: The pseudocode for T-NDPack.

Beginning of

clustering a block

Form the candidate block list

Compute the gain value

Categorize candidate blocks

Related blocks are
available

Cluster the related block with
the highest gain value

Remove the block from
unclustered block list

End of clustering a block

Clustering unrelated

block is allowed

Cluster the unrelated block
with the highest gain value

N

Y Y

N

Figure 2: Algorithm flow for clustering a candidate basic logic element (BLE) into configurable logic block (CLB).

International Journal of Reconfigurable Computing 5

CLB1 CLB2

Net 1

Net 2

Unused

(a)

CLB1 CLB2

Net 1

Net 2

Unused

(b)

Figure 3: Impact of unrelated block clustering, Net 1 followed by
Net 2. (a) introduces an inter-CLB delay and an external connection
between CLB1 and CLB2. (b) no inter-CLB delay, no external
connection, and less routing resource demand when CLB1 is under-
utilized.

(c) Next, we categorize the blocks in the candidate block
list into related and unrelated blocks: a block is
related if it shares inputs or outputs with the current
CLB under consideration.

(d) T-NDPack tries to cluster the related block with the
highest gain value first (Ln. 11-Ln. 12). If the related
block is not available and clustering the unrelated
blocks is allowed, T-NDPack clusters the unrelated
block with the highest gain value (Ln. 13-Ln. 14). We
explain this mechanism in Section 3.3.

(e) Finally, T-NDPack removes the block from the
unclustered block list with the next iteration.

3.2. Cost Function. The cost function in T-NDPack considers
the criticality in terms of delay and routability simultane-
ously (1) similar to the clustering cost function of the T-
VPack [4]. The “α” parameter balances the criticality and
the routability. The criticality is defined in [4] and calculated
based on the sensitivity of a connection to the delay of the
whole circuit. T-NDPack introduces the current utilization
level as a factor to the routability component in the clustering
cost function of the T-VPack. As current utilization level
increases, the probability of sharing inputs and outputs
increases. Therefore the value of the routability component
increases. T-NDPack gradually scales more on routability
part to provide informed attention to criticality:

gain = α∗ criticality + (1− α)

∗

(

|NetA∩NetB|

G

)/

current utilization level.

(1)

3.3. Unrelated Block Clustering. In this section, we explain
how to cluster an unrelated block. T-NDPack tries to cluster
the related block with the highest gain value first. If no
related block is available and only if the current utilization

level is less than the “unrelated block threshold” (UBT), T-
NDPack allows clustering the unrelated block (Ln. 13 - Ln.
14). This rule avoids clustering very few unrelated blocks
and the possible inter-CLB delay. Also, this rule reduces
the connections between CLBs to improve routability. For
example, as shown in Figure 3, we want to cluster two nets
into two CLBs, in the order of Net 1 followed by Net 2.
In Figure 3(a), after Net 1 is clustered, a block of Net 2
is clustered in CLB 1. This introduces an inter-CLB delay
for Net 2 and a connection between CLB 1 and CLB 2.
As an alternative solution, in Figure 3(b), all blocks of Net
2 are clustered in CLB 2. In this solution, there is no
inter-CLB delay or connection between CLBs. Compared to
Figure 3(b), the solution in Figure 3(a) requires more routing
resources and has a larger delay. Therefore if few available
BLEs are left in a CLB and related block is not available, it is
wiser to leave the BLEs unused.

Typically, clustering techniques modify the cost function
([4, 5, 9]) or the algorithm flow [10] or both ([11–
13]). Here we summarize in what capacity the well-known
approaches enhance the clustering flow and highlight where
our approach stands relative to them.

T-RPack [9] uses the same algorithm flow as T-VPack
and modifies the cost function. T-RPack modifies the
routability part in the cost function by taking into account
the individual contributions of both shared and nonshared
nets between the CLB under construction and the block
under consideration. T-RPack improves minimum channel
width compared to T-VPack.

iRAC [5] develops a new method to choose the seed
block. This technique chooses the unclustered block with
the most used inputs and minimum connectivity as the seed
block. iRAC then clusters each BLE into the CLB under
construction using a new cost function that is based on the
weight of the intersecting net and its pins that are already
in the CLB. Furthermore, it uses the uniform depopulation
with input-limit strategy. The algorithm flow is similar to
T-VPack. However, with the modifications, iRAC achieves
large reduction in the number of external nets which leads
to reduction in minimum channel width.

The latest clustering technique, HDPack [13], uses a glo-
bal placer to determine approximate BLE locations. Then
the algorithm uses this placement information (physical
information) in the clustering cost function. HDPack further
incorporates a prepacking step. However, major contribution
for improvement is based on clustering with the usage of
physical information. The prepacking step leads to little
improvement over the modified cost function.

In summary, as shown in Algorithm 1 and Figure 2,
we adjust the cost function of T-VPack to pay informed
attention to routability and timing by taking utilization
level into account. We also modify the clustering algorithm
significantly by

(i) adjusting the “maximum utilization level” at run
time with maximum utilization table (MUT);

(ii) forming the “candidate block list” with candidate
block threshold (CBT);

6 International Journal of Reconfigurable Computing

Technology mapped circuit Architecture description

Clustering (T-NDPack)

Placement (VPR)

Routing (VPR)

Figure 4: CAD flow.

Table 3: FPGA architecture parameters.

Architecture feature Value

LUT inputs 4

CLB size 8

Inputs/CLB 18

Segment length 1

Fc 0.5

Fs 3

(iii) setting the “unrelated block threshold” (UBT) for
clustering.

4. Experimental Results

4.1. Methodology. We implement T-NDPack based on T-
VPack and conduct several experiments with the 20 largest
MCNC benchmarks. We examine the performance of our
proposed clustering technique and explore the effects of
two depopulation strategies (“BLE-limit” and “input-limit”).
Table 3 lists the main architecture parameters that we used
in the experiments where segment length is the number of
CLBs that a wire length spans, Fc describes the flexibility of
connection blocks, and Fs describes the flexibility of switch
blocks [14]. Figure 4 shows the CAD flow. The VPR version
used in the experiments is v4.30.

As opposed to [3], our method runs the CAD flow once.
Technology-mapped circuit and the architecture description
are the inputs to the clustering stage. T-NDPack carries out
clustering and VPR [15] handles placement and routing. We
obtain the number of used CLBs, minimum channel width,
and critical path delay for performance comparison against
[4, 5, 9, 13].

4.2. Tuning the Parameters for BLE-Limit. We tune various
parameters in our algorithm to identify the configuration
which gives the best performance. In order to find the
suitable value of “α”, “UBT”, “MUT”, and “CBT”, we
performed a set of experiments following the CAD flow
described in Section 4. Here we only discuss the parameter
tuning study based on “BLE-limit” strategy. The parameter
values for “input-limit” strategy rely on the observations on
the “BLE-limit.” We will discuss this in Section 4.3.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40

(%)

50 60 70 80 90 100

C
ri

ti
ca

li
ty

va
lu

e

0 0
0.06 0.06 0.12

0.23

0.35

0.47

0.58

0.7
0.82

0.94

1

Distribution of block criticality

Figure 5: Distribution of CLBs based on criticality value: CLBs are
uniformly distributed between 40% and 96% forming the range of
Maximum Utilization Table (MUT).

Table 4: Maximum utilization table (MUT) with four partitions
shows three examples for potential range configurations. configu-
ration in table (b) results with good quality measurements; then we
fine tune the range and form table in (c).

(a)

The ranking percentage of
the seed’s criticality

Maximum
utilization level

95%–100% 8

40%–95% 7

0%–40% 6

(b)

The ranking percentage of
the seed’s criticality

Maximum
utilization level

95%–100% 8

50%–95% 7

0%–40% 6

(c)

The ranking percentage of
the seed’s criticality

Maximum
utilization level

95%–100% 8

51%–95% 7

0%–40% 6

(i) α: This coefficient balances the tradeoff between
routability and delay. Marquardt et al. [4] shows
that the value of 0.75 results with best area and
delay efficient design. We believe that the behavior
of the α value in our cost function is similar to [4].
Therefore, we varied α within 0.6, 0.7, and 0.75 in our
experiments.

(ii) “UBT”: Unrelated block threshold is used for allow-
ing an unrelated block to be clustered into CLB.
We assigned the values of 2, 4, and 6 for this
parameter. During our preliminary experiments, we
observed that a large value led to CLBs with too many
unrelated BLEs, whereas a small value led to under
utilization of CLBs. Therefore we fix UBT to 4.

(iii) “MUT”: Maximum utilization table is used for
setting the maximum utilization level for a CLB. We

International Journal of Reconfigurable Computing 7

(1) For (each α value)
(2) For (each MUT)
(3) For (each CBT)
(4) For (each benchmark)
(5) Run T-NDPack to obtain the number of used CLBs
(6) Run VPR to obtain the minimum channel width and critical

path delay
(7) End for
(8) Caculate the average number of used CLBs, minimum channel

width and critical path delay
(9) End for
(10) End for
(11) End for

Algorithm 2: Experiments for identifying best configuration values for α, MUT, and CBT (note that UBT is set to be 4).

divide 0% to 100% range into 2 to 5 partitions. The
maximum utilization level for the partition with the
highest range is set to be the CLB capacity, 8, and this
value descends by 1 relative to the ranking. Figure 5
shows the criticality value distribution of netlist
“elliptic.” We observe that 40% of the CLBs have
criticality less than 0.12, and afterwards, criticality
value is more or less evenly distributed till 0.82
criticality value (40% to 95% range). We also observe
that few CLBs have criticality value larger than 0.82.
We capture the nature of this distribution in MUT.
Firstly, we set the upper boundary of the partition
with lowest range near 40% and the lower boundary
of the partition with highest range near 95%. We then
partition 40% to 95% evenly based on the MUT size.
Table 4(a) shows an MUT with three partitions. We
also adjust the boundary by 5% or 10% to derive
alterative MUTs as shown in Table 4(b). If any of
the MUTs results with a good performance, we fine
tune that MUT by adjusting the boundary by 1%
or 3% (Table 4(c)). If not, we continue adjusting the
boundary by 5% or 10%. After finding the MUT
configuration that results with a good performance,
it is fixed and used for all benchmarks. We do not use
a different MUT for each benchmark.

(iv) “CBT”: Candidate block threshold is used for allow-
ing clustering a block into a CLB based on its
criticality. CBT ranges from 0 to 1. If the current
utilization level of the CLB is low (the number of
BLEs used at that time for this CLB is smaller than
6), then we do not take criticality into account, and
set CBT to be 0 to focus on routability. Otherwise we
set CBT to be 0.2 or 0.4 for current utilization level of
6 and set CBT to be 0.8 or 0.9 for current utilization
level of 7.

4.3. Effect of BLE-Limit and Input-Limit Exploration. As
shown in Algorithm 2, we sweep through α, MUT, and
CBT within their predefined ranges to evaluate the “BLE-
limit” strategy. For each configuration, we run the clustering
algorithm over 20 MCNC benchmarks and compute averages

Table 5: Conversion of parameters for input-limit strategy.

(a) Maximum Utilization Table (MUT) conversion.

The ranking
percentage of the
seed’s criticality

Maximum
utilization level
(BLE-limit)

Maximum
utilization level
(input-limit)

95%–100% 8 18

40%–95% 7 16

0%–40% 6 14

(b) Candidate Block Threshold (CBT) conversion.

Current utilization
level (BLE-limit)

Current utilization
level (input-limit)

CBT

7 16 0.8 or 0.9

6 14 0.2 or 0.4

0–5 0–12 0

for the number of used CLBs, minimum channel width and
critical path delay. Figure 6 shows the minimum channel
width and critical path delay reduction of T-NDPack with
“BLE-limit” relative to T-VPack. “x-axis” shows the increase
in the number of CLBs and “y-axis” shows the reduction in
minimum channel width and critical path delay. For each
configuration, we generate two data points: a triangle repre-
senting channel width reduction and a diamond representing
critical path delay reduction. We show each pair of data
points (a triangle and a diamond) with a link indicating
that they use the same parameter configuration. We then
draw solid lines passing through the data points resulting
with best reduction value in channel width and critical path
delay separately. We then label the points on the line with
solid triangle and diamond. We will use these solid points
for analysis in Section 4.4.

For the “input-limit” strategy, instead of sweeping all
parameters, we choose sample points from Figure 6 that are
on the best-line (solid triangle and diamond points) and
run them with “input-limit” constraint. In our experiments,
cluster size (N) and the number of inputs per CLB (I) hold
I = 2N+2 expression, which generates the best area and delay

8 International Journal of Reconfigurable Computing

Table 6: α, UBT, MUT, CBT: best configuration for performance analysis of T-NDPack.

Parameter Value

α 0.65

UBT 4

MUT

The ranking percentage of the seed’s criticality Maximum utilization level

95%–100% 8

45%–95% 7

0%–45% 6

CBT Table

Current utilization level CBT

7 0.9

6 0.2

0–5 0

0

5

10

15

0

20

20 40

R
ed

u
ct

io
n

in
m

in
im

u
m

ch
an

n
el

w
id

th
an

d
cr

it
ic

al
p

at
h

d
el

ay
(%

)

Increase in the number of CLBs (%)

BLE-limit strategy

Wm off line

Wm on line

Crit. off line

Crit. on line

Figure 6: Minimum channel width (Wm) and critical path delay
(crit) reduction of T-NDPack with “BLE-limit” strategy relative to
T-VPack. Triangles represent channel width savings of T-NDPack
relative to T-VPack. Diamonds represent critical path delay savings.
Solid line represents best line drawn over the data points. Points that
are on the solid line are filled (Wm on line and crit. on line). Dotted
line represents triangle and diamond data points collected based on
the same experimental configuration.

Table 7: Execution time over 20 MCNC benchmarks on pentium
iv, core 2 Duo, 2.8 GHz with 4 GB RAM. timing measurements are
based on running experiments ten times and taking their average.

Clustering
algorithm

Clustering
Clustering +
placement + routing

T-VPack 0.4 seconds 30 minutes 41 seconds

T-NDPack 0.56 seconds 32 minutes 58 seconds

product [16]. (As Table 3 shows, N = 8 and I = 18 in our
architecture.) Therefore, we use this relationship and adjust
the MUT and CBT used for “BLE-limit” to accommodate
“input-limit” strategy as shown in Table 5 (converted based
on Table 4(a)). Similarly, we adjust UBT to 10. Figure 7
shows the minimum channel width and critical path delay
reduction of T-NDPack for the “input-limit” strategy. We

Table 8: T-NDPack versus other clustering techniques: based on
reported performance over T-VPack (positive percentage means
improvement), #CLBs: increase in number of CLBs; Wm: minimum
channel width reduction; Crit.: critical path delay reduction.

Clustering tech. # CLBs Wm Crit.
1iRAC + iRAP −8.78% 25.09% N.A.
2Un/DoPack −17.32% 15% −7%
3Un/DoPack −52.78% 40% −20%
4T-NDPack −13.28% 11.07% 2.89%
5T-NDPack −27.31% 16.31% 4.13%

1Not comparable because of different placement tool. 2 3Un/DoPack
in moderate and aggressive amounts of depopulation, respectively.
4 5T-NDPack in moderate and aggressive amounts of depopulation, respec-
tively.

will also use the solid points on this chart for analysis in
Section 4.4.

4.4. Evaluation of BLE-Limit and Input-Limit. Based on
Figures 6 and 7, we tune various parameters in our algorithm
to identify the good configurations whose performances
are shown in Figures 8 and 9. Figure 8 shows reduction
in minimum channel width and Figure 9 shows reduction
in critical path delay for T-NDPack with respect to T-
VPack based on “BLE-limit” and “input-limit” strategies,
respectively. Solid line represents “BLE-limit” strategy and
dashed line represents “input-limit” strategy. Each point with
the same x-value in Figures 8 and 9 is generated with the
same configuration of the parameters. Figures 8 and 9 show
the following.

(i) As the number of CLBs increases, we observe a
reduction in both channel width and critical path
delay.

(ii) The amount of channel width and critical path delay
savings gradually decreases as the number of CLBs
increases.

Furthermore, we observe that the “BLE-limit” strategy
is better than the “input-limit” strategy. We see a couple
of reasons for this behavior. For example, if the criticality
of the seed block is high, algorithm sets a high value for

International Journal of Reconfigurable Computing 9

Table 9: Comparison between T-NDPack and T-VPack on the critical path delay, minimum channel width, and number of used CLBs
metrics over 20 MCNC benchmark circuits (positive percentage means improvement).

Critical pathdelay(10−8s) Minimum channel width Number of used CLBs

T-VPack T-NDPack Change T-VPack T-NDPack Change T-VPack T-NDPack Change

alu4 3.47 3.61 −4.03% 41 37 9.76% 193 219 −13.47%

apex2 4.30 4.46 −3.88% 58 49 15.52% 240 272 −13.33%

apex4 4.23 4.43 −4.73% 58 55 5.17% 165 183 −10.91%

bigkey 2.31 2.06 10.75% 28 27 3.57% 214 233 −8.88%

clma 10.5 7.84 25.72% 72 64 11.11% 1055 1234 −16.97%

des 4.42 5.12 −15.86% 25 21 16.00% 200 227 −13.50%

diffeq 4.19 4.13 1.24% 34 27 20.59% 189 220 −16.40%

dsip 2.52 2.07 18.01% 24 23 4.17% 172 179 −4.07%

elliptic 6.56 5.82 11.28% 53 45 15.09% 454 511 −12.56%

ex1010 6.80 6.60 2.81% 63 56 11.11% 601 679 −12.98%

ex5p 3.96 4.36 −10.30% 55 47 14.55% 138 154 −11.59%

frisc 7.96 7.30 8.25% 59 54 8.47% 446 514 −15.25%

misex3 4.00 3.47 13.16% 46 42 8.70% 179 203 −13.41%

pdc 6.61 6.47 2.11% 88 74 15.91% 582 659 −13.23%

s298 7.50 7.09 5.40% 34 33 2.94% 243 274 −12.76%

s38417 4.89 4.98 −1.85% 43 41 4.65% 802 947 −18.08%

s38584 4.17 4.15 0.54% 45 41 8.89% 806 946 −17.37%

seq 3.87 4.20 −8.39% 51 43 15.69% 221 252 −14.03%

spla 5.81 5.45 6.24% 67 63 5.97% 469 535 −14.07%

tseng 4.21 4.15 1.31% 34 26 23.53% 133 150 −12.78%

Ave. 2.89% 11.07% −13.28%

0

5

10

15

0

20

20 40

R
ed

u
ct

io
n

in
m

in
im

u
m

ch
an

n
el

w
id

th
an

d
cr

it
ic

al
p

at
h

d
el

ay
(%

)

Increase in the number of CLBs (%)

Input-limit strategy

Wm off line

Wm on line

Crit. off line

Crit. on line

Figure 7: Minimum channel width (Wm) and critical path delay
(crit) reduction of T-NDPack with “input-limit” strategy relative
to T-VPack. Circles represent channel width savings of T-NDPack
relative to T-VPack. Squares represent critical path delay savings.
Dashed line represents best line drawn over the data points. Points
that are on the line are filled (Wm on line and crit. on line). Dotted
line represents circle and square data points collected based on the
same experimental configuration.

the maximum utilization level of the CLB under construction
(e.g., 16 out of 18 inputs). This affects the logic utilization
significantly in a CLB. We observed cases like usage of 4 out

0

5

10

15

0

20

20 3010 40

R
ed

u
ct

io
n

in
m

in
im

u
m

ch
an

n
el

w
id

th
(%

)

Increase in the number of CLBs (%)

T-NDPack versus T-VPack

BLE-limit

Input-limit

13.28

Figure 8: “x-axis”: increase in the number of CLBs, “y-axis”:
reduction in minimum channel width relative to T-VPack. Solid
line represents: T-NDPack with “BLE-limit” strategy. Dashed line
represents: T-NDPack with “input-limit” strategy. As number
of CLBs increase, minimum channel width decreases for both
strategies.

of 8 BLEs. In another case, for a seed that has low criticality,
our algorithm allows 12 inputs for that CLB. However, due
to the input sharing, most of the inputs were absorbed
(6 BLEs). Therefore “input-limit” technique in some cases
worked against the objective of depopulation technique.

Based on these observations, we choose “BLE-limit”-
based technique for performance comparison against other

10 International Journal of Reconfigurable Computing

0

4

2

1

3

5

0

6

20 3010 40

R
ed

u
ct

io
n

in
cr

it
ic

al
p

at
h

d
el

ay
(%

)

Increase in the number of CLBs (%)

T-NDPack versus T-VPack

BLE-limit

Input-limit

13.28

Figure 9: “x-axis”: increase in the number of CLBs; “y-axis”:
reduction in critical path delay relative to T-VPack. Solid line
represents: T-NDPack with ”BLE-limit” strategy. Dashed line
represents: T-NDPack with “input-limit” strategy. As number of
CLBs increase, critical path delay decreases for both strategies.

clustering techniques. As shown in Figure 8, the channel
width increases along with an increase in the number of
CLBs. We decompose total area into logic and routing and
use (2) as a model to derive the area estimate. In this paper,
we regard 70% for routing area as a good estimation for the
commercial FPGAs [5]. As used in [3], let “L” be the number
of CLBs and let “W” be the channel width, then

Areanew

Areaold
= 0.3∗

Lnew

Lold
+ 0.7∗

Wold

Wnew
∗

Lnew

Lold
, (2)

where new represents after depopulation, and old represents
before depopulation.

Among the points in Figures 8 and 9, we find that 13.28%
average increase in the number of CLBs is the data point
that leads to the best area-delay product. Table 6 shows the
parameter values used for this data point. We run 20 MCNC
benchmarks with the configuration parameters shown in
Tables 3 and 6. We then compare minimum channel width,
critical path delay, and the number of CLBs with T-VPack
in Table 9. On average T-NDPack reduces minimum channel
width by 11.07%. This results with 4.50% area increase.
On average, the critical path delay decreases by 2.89%.
Spreading the logic among the available CLBs is expected
to increase the critical path delay. We observe this trend for
some of the benchmarks with T-NDPack; however for most
of the benchmarks we observe a reduction in critical path
delay.

4.5. Run-Time. Table 7 compares T-VPack and T-NDPack
based on the time it takes to run the clustering stage for all
20 MCNC benchmarks. Adjusting the level of depopulation-
based on the criticality contributes to the execution time;
therefore T-NDPack increases the run-time of the clustering
stage on average by 0.16 seconds. However, this overhead
is minor when the execution time for the CAD flow
is considered. Since T-NDPack generates more number

of CLBs to be placed and routed, we also observe an
increase in the execution time for the placement and routing
stages.

5. Discussion

In this section, we compare T-NDPack with other
depopulation-based state-of-the-art clustering techniques
and Table 8 summarizes it.

Un/DoPack [3] is a nonuniform depopulation techni-
que. Un/DoPack achieves up to 40% channel width reduc-
tion through aggressive depopulation with a critical path
delay penalty of 20%. In contrast, T-NDPack reduces critical
path delay as the intensity of the depopulation increases.
The trend line in Figure 8 shows that T-NDPack can further
improve on channel width and continue reducing the critical
path delay by using more CLBs (e.g., T-NDPack4 versus T-
NDPack5 in Table 8). However, this leads to a significant area
penalty which may prevent the designer from mapping the
design onto a low-cost FPGA.

iRAC [5] is a routability driven uniform depopulation
clustering technique. iRAC achieves 25.09% reduction in
channel width. However, [5] reports its results based on a
different placement algorithm, iRAP, which reduces channel
width over VPR. We use VPR for the placement. Since
neither iRAC nor iRAP is publicly available, it is not
feasible to make a fair comparison without implementing
their algorithms. iRAC [5] does not report timing results.
It is also not feasible to reach a conclusion on overall
performance without considering area and delay simultane-
ously.

6. Conclusion and Future Work

It has long been known that, as CLBs are depopulated,
better channel widths can be achieved. However depopula-
tion leads to more external connections among CLBs and
typically results with an increase in critical path delay. While
enhancing routability through depopulation is essential for
utilizing the low-cost FPGAs, at the same time there is a need
for addressing the critical path delay. We achieve this goal
with T-NDPack by adjusting the capacity of the CLB under
construction based on the criticality of the logic block under
consideration.

In this study, we show that the depopulation-based
clustering techniques while reducing the stress on routing
can also achieve reduction in critical path delay. This is
significant as this study shows that depopulation-based
clustering potentially allows the designer to stay with the low-
cost FPGA family instead of migrating to the costly resource-
rich FPGA family.

In [17, 18], Pandit introduces a wirelength prediction
techni-que that accurately estimates postplacement individ-
ual wirelength information for a given netlist before the
clustering stage. As future work, we plan to incorporate
this mechanism into our clustering cost function to further
improve the performance of the T-NDPack.

International Journal of Reconfigurable Computing 11

References

[1] A. Marquardt, V. Betz, and J. Rose, “Speed and area tradeoffs in
cluster-based FPGA architectures,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 8, no. 1, pp. 84–93,
2000.

[2] A. DeHon, “Balancing interconnect and computation in
a reconfigurable computing array,” in Proceedings of the
ACM/SIGDA International Symposium on Field Programmable
Gate Arrays (FPGA ’99), pp. 69–78, Monterey, Calif, USA,
1999.

[3] M. Tom, D. Leong, and G. Lemieux, “Un/DoPack: re-
clustering of large system-on-chip designs with interconnect
variation for low-cost FPGAs,” in Proceedings of IEEE/ACM
International Conference on Computer-Aided Design (ICCAD
’06), pp. 680–687, San Jose, Calif, USA, November 2006.

[4] M. Marquardt, V. Betz, and J. Rose, “Using cluster-based logic
blocks and timing-driven packing to improve FPGA speed and
density,” in Proceedings of the ACM/SIGDA 7th International
Symposium on Field Programmable Gate Arrays (FPGA ’99),
pp. 37–46, Monterey, Calif, USA, February 1999.

[5] A. Singh and M. Marek-Sadowska, “Efficient circuit clustering
for area and power reduction in FPGAs,” in Proceedings of the
ACM/SIGDA International Symposium on Field Programmable
Gate Arrays (FPGA ’02), pp. 59–66, Monterey, Calif, USA,
2002.

[6] R. Tessier and H. Giza, “Balancing logic utilization and
area efficiency in FPGAs,” in Proceedings of the International
Workshop on Field Programmable Logic and Applications (FPLA
’00), pp. 535–544, Villach, Austria, 2000.

[7] M. Tom and G. Lemieux, “Logic block clustering of large
designs for channel-width constrained FPGAs,” in Proceedings
of the Design Automation Conference, pp. 726–731, Anaheim,
Calif, USA, 2005.

[8] S. Yang, “Logic synthesis and optimization bench-marks,
version 3.0,” Tech. Rep., Microelectronics Center of North
Carolina, 1991.

[9] E. Bozorgzadeh, S. O. Memik, X. Yang, and M. Sarrafzadeh,
“Routability-driven packing: metrics and algorithms for
cluster-based FPGAs,” Journal of Circuits, Systems and Com-
puters, vol. 13, no. 1, pp. 77–100, 2004.

[10] G. Chen and J. Cong, “Simultaneous timing driven clustering
and placement for FPGAs,” in Proceedings of the International
Conference on Field Programmable Logic and Applications
(FPLA ’04), pp. 158–167, Antwerp, Belgium, August 2004.

[11] Z. Marrakchi, H. Mrabet, and H. Mehrez, “Hierarchical FPGA
clustering to improve routability,” in Proceedings of IEEE
International Conference on Reconfigurable Computing and
FPGAs, Puebla, Mexico, 2005.

[12] J. Y. Lin, D. Chen, and J. Cong, “Optimal simultaneous
mapping and clustering for FPGA delay optimization,” in
Proceedings of the Design Automation Conference, pp. 472–477,
San Francisco, Calif, USA, 2006.

[13] D. T. Chen, K. Vorwerk, and A. Kennings, “Improving timing-
driven FPGA packing with physical information,” in Proceed-
ings of the International Conference on Field Programmable
Logic and Applications (FPL ’07), pp. 117–123, Amsterdam,
The Netherlands, August 2007.

[14] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD
for Deep-Submicron FPGAs, Kluwer Academic Publishers,
Dodrecht, The Netherlands, 1999.

[15] V. Betz and J. Rose, “VPR: a new packing placement
and routing tool for FPGA research,” in Proceedings of the

International Workshop on Field-Programmable Logic and
Application (FPLA ’97), pp. 213–222, London, UK, 1997.

[16] V. Betz and J. Rose, “Cluster-based logic blocks for FPGAs:
area-efficiency vs. input sharing and size,” in Proceedings of
the Custom Integrated Circuits Conference, pp. 551–554, Los
Alamitos, Calif, USA, 1997.

[17] A. Pandit and A. Akoglu, “Wirelength prediction for FPGAS,”
in Proceedings of the International Conference on Field Pro-
grammable Logic and Applications (FPL ’07), pp. 749–752,
Amsterdam, The Netherlands, August 2007.

[18] J. Lamoureux and S. J. E. Wilton, “On the interaction between
power-aware CAD Algorithms for FPGAs,” in Proceedings
of IEEE/ACM International Conference on Computer-Aided
Design (ICCAD ’03), pp. 701–708, San Jose, Calif, USA,
November 2003.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

