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The rapid spread of invasive plants makes their management increasingly difficult.

Remote sensing offers a means of fast and efficient monitoring, but still the optimal

methodologies remain to be defined. The seasonal dynamics and spectral characteristics

of the target invasive species are important factors, since, at certain time of the vegetation

season (e.g., at flowering or senescing), plants are often more distinct (or more visible

beneath the canopy). Our aim was to establish fast, repeatable and a cost-efficient,

computer-assisted method applicable over larger areas, to reduce the costs of extensive

field campaigns. To achieve this goal, we examined how the timing of monitoring affects

the detection of noxious plant invaders in Central Europe, using two model herbaceous

species with markedly different phenological, structural, and spectral characteristics.

They are giant hogweed (Heracleum mantegazzianum), a species with very distinct

flowering phase, and the less distinct knotweeds (Fallopia japonica, F. sachalinensis,

and their hybrid F. × bohemica). The variety of data generated, such as imagery from

purposely-designed, unmanned aircraft vehicle (UAV), and VHR satellite, and aerial color

orthophotos enabled us to assess the effects of spectral, spatial, and temporal resolution

(i.e., the target species’ phenological state) for successful recognition. The demands

for both spatial and spectral resolution depended largely on the target plant species.

In the case that a species was sampled at the most distinct phenological phase, high

accuracy was achieved even with lower spectral resolution of our low-cost UAV. This

demonstrates that proper timing can to some extent compensate for the lower spectral

resolution. The results of our study could serve as a basis for identifying priorities for

management, targeted at localities with the greatest risk of invasive species’ spread and,

once eradicated, to monitor over time any return. The best mapping strategy should

reflect morphological and structural features of the target plant and choose appropriate

spatial, spectral, and temporal resolution. The UAV enables flexible data acquisition for

required time periods at low cost and is, therefore, well-suited for targeted monitoring;

while satellite imagery provides the best solution for larger areas. Nonetheless, users

must be aware of their limits.
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INTRODUCTION

Invasive species are considered among the major drivers of global
change and are threats to biodiversity, ecosystem services, the
economy, and human health (Pyšek and Richardson, 2010; Vilà
et al., 2010). Early monitoring and rapid action at the operational
level are therefore needed to mitigate the consequences of plant
invasions (Kaiser and Burnett, 2010). Thanks to the availability
of high spatial-resolution data, remote sensing (RS) is being
increasingly used to study and model the spread of invasive plant
species (Pergl et al., 2011; Somers andAsner, 2013; Rocchini et al.,
2015), their phenology (Ge et al., 2006), and impacts (Asner et al.,
2008). Most of the RS studies focus on invasive trees and shrubs
(e.g., Frazier andWang, 2011; Masocha and Skidmore, 2011), but
the accurate detection of herbaceous plant species is challenging
owing to their smaller size and patchiness. In this sense, invasive
plant species are easier to handle compared to native ones since
they usually grow vigorously, produce a great amount of biomass,
and dominate the canopy, often forming extensive monospecific
stands (Maheu-Giroux and de Blois, 2004; Huang and Asner,
2009; Müllerová et al., 2013). There continues to be a need for
data of sufficient quality and resolution, especially where the
target species is less distinct from other vegetation, or covered
by it.

It has been shown that the timing of data acquisition plays
an important role (Laba et al., 2005) since plants are often more
distinct from the surrounding vegetation at certain times of
the vegetation season (Andrew and Ustin, 2008; Rocchini et al.,
2015), mostly during flowering (Müllerová et al., 2005, 2013;
Andrew and Ustin, 2006; Ge et al., 2006) or leaf coloring (Shouse
et al., 2013). Using a change detection approach, some species
can be recognized by the differences in their life cycle compared
to the background vegetation (Peterson, 2005; McEwan et al.,
2009). Such adaptation is quite common in plant invasions, since
the mismatch of phenology between native and exotic species
can provide benefit to invaders outcompeting the natives by
using the time window available via extending or shifting the
growing season (Wolkovich and Cleland, 2011; Fridley, 2012;
Gioria et al., 2016). Phenological differences influencing the RS
detection include also the seasonal development of broad-leaved
tree canopies, because the target species in the understory may be
detectable only before emergence and after the leaf senescence of
the canopy vegetation (Resasco et al., 2007; Wilfong et al., 2009).
Thus, the seasonal dynamics and spectral behavior of the target
species and their surrounding constitute important parameters
in the RS detection process.

To study the role of phenology on RS detection of invasive
species, it is necessary to acquire data at certain phenological
phases, as well as with suitable spatial and spectral resolution.
Freely available satellite data such as MODIS, Landsat or
Sentinel do not provide appropriate spatial resolution for a
highly heterogeneous Central European landscape where the
occurrence of invasive plant populations is rather patchy. Very
high resolution (VHR) satellites such as Pleiades, QuickBird,

Abbreviations:GNSS, Global Navigation Satellite System; PA, producer’s accuracy;
RF, random forests; RS, remote sensing; SVM, support vector machine; UA, user’s
accuracy; VHR, very high resolution.

Ikonos, or WorldView are costly to acquire, and in all cases
the acquisition of suitable data is constrained by clouds and
the regular trajectory of the satellite. Aerial campaigns offer
some flexibility, but they must still be planned in advance, with
uncertainty in weather forecasting being a factor, and they are
also costly. If relying on the archives of aerial imagery, the
choice of phenology phases is limited and spectral resolution
is usually low. New means such as unmanned aircraft vehicles
(UAV) provide high flexibility, low price, and easy deployment
(Watts et al., 2012), but rather low spectral resolution (RGB +

modified NIR bands with modified consumer cameras if cheap
solution is considered), and due to geometric and radiometric
irregularities they require complex processing (Rango et al.,
2009; Laliberte et al., 2010; Salamí et al., 2014; Müllerová et al.,
2017). At the same time, the large amount of data collected
by UAVs brings about the need for automatic processing. Legal
constraints limiting use of UAVs only to unpopulated areas
further reduce their applicability (Watts et al., 2012). This is
especially problematic for invasive species that tend to prefer
urban areas (Pyšek, 1998; Kowarik, 2008). Moreover, extremely
high detail of UAV data generates problems with precise location
of validation data due to the limits of available GNSS instruments
(especially in forested or hilly environments). Still, despite these
limits, the UAV technology holds great potential for invasive
species assessment and monitoring (Calviño-Cancela et al., 2014;
Michez et al., 2016; Müllerová et al., 2016, 2017; Table 1).

To demonstrate the role of timing and resolution for the RS
detection of invasive plants, we chose two model herbaceous
species with markedly different phenological, structural, and
spectral characteristics. They are the giant hogweed (Heracleum
mantegazzianum), a species with a very distinct flowering phase,
during which it forms large white circular inflorescences, and
knotweeds (Fallopia japonica, F. sachalinensis, and their hybrid F.
× bohemica), lacking such distinct features. High flexibility of the
data acquisition provided by small UAV (in our case a custom-
built one producing imagery of 5 cm spatial and multispectral
resolution of RGB + modified NIR) enabled us to study the
role of phenology. The results were compared with those of
multispectral satellite imagery of 50 cm resolution using several
approaches (pixel- and object-based) and data from different
parts of the vegetation season to find a repeatable, efficient, and
low-cost monitoring strategy (in terms of data source, processing
approach and target species’ phenological stage). Our aims were
to: (a) assess the role of timing and both the spectral and spatial
resolution in detection of the two structurally and phenologically
different invasive species, (b) define the optimal phenological
stage (time window) and data resolution, and (c) describe the
computer-assisted workflow of the image-processing to achieve
the highest detection rate. Our recommended methodology,
operational in environmental monitoring and applicable over
large areas, can be used for nature conservation, with the
potential to reduce the costs of extensive field campaigns.

METHODS

Study Species
To study the different aspects important for their recognition,
we chose model herbaceous invasive species differing in
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TABLE 1 | Advantages and constraints of different types of remote sensing imagery in invasive species monitoring.

NASA and ESA satellites VHR satellites Aerial UAV

Timing (flexibility) No flexibility, but extensive archive Low Medium High

Resolution Down to 10m Down to 0.3–0.4m 0.1–0.5m up to 1 cm

Financial costs of

imagery

No High High Low

Acquisition Easy—available for download Easy—commercial order Easy—commercial order Some expertise needed

Pre-processing Standardized Standardized Standardized Not standardized, complex

Weather

constraints—cloudy

sky

Impossible Impossible Impossible Only possible in case of high clouds and

no rain

Weather

constraints—wind

No influence No influence Strong wind is problematic Very problematic

Legal constraints No No Few Many constraints (e.g., in urban areas, private

land, commercial zones, around airports...)

Data volume Moderate High High High/very high

Spectral resolution High High Low (medium) Medium (depend on camera)

Temporal resolution High Moderate Low High

The best options are highlighted in bold.

TABLE 2 | Remote sensing detection of the two target species—their important characteristics, imagery required for the analysis and the best processing approach.

Species Heracleum mantegazzianum (giant hogweed) Fallopia sp. (knotweeds)

Foliage structure Large, deeply incised leaves Variable leaves, forming dense stands

Inflorescence Large, distinct Small, insignificant

Type of habitat infested Unmanaged grasslands, abandoned land, riverbanks,

sparse forest and field edges, ruderal habitats

Riverbanks, unmanaged grasslands, disturbed sites, sparse

forests, urban areas

Optimal phenological stage for RS detection Peak of flowering Senescence

Optimal period of the data acquisition (CR) 2nd half of June—1st half of July End of October, beginning of November

Detection efficiency Very high High

Imagery tested UAV (RGB+NIR; 5 cm); Pleiades 1B (MSS; 50 cm); color

orthophoto (RGB; 25 cm)

UAV (RGB+NIR; 5 cm and 50 cm); Pleiades 1B (MSS; 50 cm)

Data resolution required Spatial <50 cm <50 cm

Spectral Low Moderate (NIR)

Temporal Right timing important (1 month period) Right timing important (1 month period)

Optimal approach Object-based Pixel-based

plant architecture and spectral dynamics: giant hogweed and
knotweeds (Table 2). These plants are among the most serious
plant invaders in Europe (DAISIE, 2012).

The giant hogweed (H. mantegazzianum Sommier and Levier,
Apiaceae family), native to Caucasus Mountains, is an example
of a species that is distinct from both the spectral and the
structural point of view, with pronounced dynamics of seasonal
development (flowering). It is the biggest herbaceous plant in
Central Europe (2–5m in height with leaves up to 2.5m long),
forming large white circular inflorescences of compound umbels
(up to 80 cm wide; Page et al., 2006; Perglová et al., 2006). As a
perennial monocarpic species it flowers once in a lifetime, mostly
in the third year (Pergl et al., 2006); in the Czech Republic, the
flowering season is from late June to early August (Perglová et al.,
2006). The white inflorescences are distinct, but non-flowering
plants are problematic to detect. Although, the species invades

mostly unmanaged grasslands and anthropogenic habitats, and
forms large monospecific populations, it also occurs at forest
margins or in forest interiors where RS detection is difficult
(Table 2). The same is true for grazed or mown plants, that
survive as ground rosettes that do not flower or, if they do, it is
late in the season and inflorescences are very small (Müllerová
et al., 2013).

Knotweeds [F. japonica Houtt., F. sachalinensis (F. Schmidt)
Nakai, and their hybrid F.× bohemica Chrtek and Chrtková] are
example of species that are difficult to recognize by RS means
because they form dense stands, relatively indistinct from similar
vegetation types; the flowers are in white clustered racemes
that appear from July to September in the Czech Republic.
Morphological differences between the above-listed knotweeds
are too subtle from the RS perspective to separate the two species
and their hybrid. They are stout herbaceous perennials with
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robust erect stems up to 4m tall and with highly heterogeneous
canopy architecture. New leaves are dark red; stems and leaves
turn orange/brown in late autumn. Although, knotweeds are
considered as light-demanding species (Beerling et al., 1994;
Bímová et al., 2003), they can grow under the forest canopy
especially in areas disturbed by flooding, which makes the
detection particularly difficult (Table 2). Still, the differences in
phenology between knotweeds and the tree canopy (mainly the
knotweed stem coloration late in the season after the canopy leaf
abscission) could possibly allow for their detection using imagery
from specific time or multitemporal, remotely-sensed imagery
(cf. Shouse et al., 2013).

Study Area
Three study sites were chosen in Czech Republic, Central Europe
(Figure 1). For giant hogweed detection, these were: site 1 at a
hilly landscape near Louny town (59 ha; 370m a.s.l.), and site 2
in uplands near Sokolov town (70 ha; 600m a.s.l.). Knotweeds
were studied at site 3, situated in the lowland river floodplain
around the Bečva river near Hranice na Moravě (96 ha; 250m
a. s. l.; Figure 1). RS data covered the variety of spectral,
spatial, and temporal resolution (Table 3), such as the satellite
imagery of Pleiades 1B (50 cm pan sharpened resolution; 4
channels; sites 1 and 3), color orthophoto (25 cm; site 1 and 2;
CUZK, 2015), and UAV imagery (5 cm, RGB + NIR; all sites).
For giant hogweed, we studied three phenological phases: the
peak of flowering (beginning of July, site 2, UAV and aerial
data), the end of flowering and the start of the fruit ripening
(2nd half of July, site 1, all types of data), and post-flowering
period (September, site 2, UAV, Table 3). For knotweeds, spring
acquisition (May—UAV) captured early knotweed growth when

many trees did not yet have leaves, summer one (July—UAV,
August—satellite) captured the top of the vegetation season,
and the autumn- (September—satellite, October—UAV) and late
autumn acquisitions (November—UAV) recorded orange/red
decaying knotweeds while most of the tree species were again
without leaves. Availability of satellite imagery from the dates of
the UAV acquisition was limited by cloudy weather.

Unmanned Aircraft System Deployed
For the purpose of this study, we designed a low-cost
UAV capable of performing fully-automated mapping missions
controlled by the APM ArduPlane/PixHawk autopilot. Its aerial
segment is propelled by an electric BLDCmotor, features a flying
wing design and carries two modified consumer cameras (Sony
Alpha A5100 with APS-C sensor and Sony E 20/2.8 lens). The
first camera acquired standard RGB, and the secondwasmodified
to be sensitive in the NIR band by the removal of the built-in IR-
cut filter and the addition of a Hoya R72 filter. This setup was
used as a low-cost alternative to a more expensive multispectral
camera (for more details on the UAV description see Müllerová
et al., 2017). Using this UAV, we could test a suitable period
in the seasonal development of the target species, focusing on
times when it is possibly distinct from the background, such
as, flowering for giant hogweed and autumn senescence for
knotweeds.

Image Processing
Pre-processing
During the UAV flight mission, the sensors were periodically
triggered with an overlap and sidelap ranging between 80 and
85% of the image height and width, respectively. This setting

FIGURE 1 | Study areas for both invasive species. Sites 1 and 2 account for giant hogweed, site 3 for knotweeds.
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TABLE 3 | Overview of study sites and imagery used.

Site No. Name Species Area (ha) Latitude Longitude Acquisition date Phenological stage

UAV Satellite Aerial

1. Domoušice H. mantegazzianum 59 50.23404 13.71937 15.7.2015 17.7.2015 17.7.2013 End of flowering

20.7.2016 Ripening

2. Anenská Ves H. mantegazzianum 70 50.20937 12.53582 4.9.2014 – 1.7.2015 Peak of flowering

9.7.2016 Out of bloom

3. Skalička Fallopia sp. 96 49.5318 17.7944 27.8.2015 7.7.2015 – First leaves

20.10.2015 9.9.2016 Top of vegetation season

25.5.2016 Early senescence

8.11.2016 Late senescence

Gaps in the UAV imagery dataset are due to the technical problems with UAV.

assured a robust mosaicking. Georeferencing was carried out
using structure-from-motion approach (SfM; Dandois and Ellis,
2010; Westoby et al., 2012) in Agisoft PhotoScan Professional
(Agisoft, 2016). This approach identifies similar features in
conjugate images, tolerating large variations in scale and image
acquisition geometry, generating very dense and accurate three-
dimensional point clouds (Whitehead and Hugenholtz, 2014).
Since the data are often linked to other field or remote sensing
data either as a reference or for change detection, very high
spatial resolution of UAV data implies the need for extremely
accurate georeferencing. To assure high georeferencing accuracy,
a GPS module capable of RAW data output (u-blox M8T)
was connected to the autopilot. Triggering the two cameras
was performed by the autopilot based on the distance traveled
between two consecutive images (for more details see Müllerová
et al., 2017).

Imagery from Pleiades 1B satellite was orthorectified using
the Rational Polynomial Coefficients metadata provided and a
digital surface model, and pan-sharpened to 0.5m resolution.
All imagery was afterwards visually checked and if necessary
orthorectified using a national aerial orthophoto (CUZK, 2015)
to ensure that the training areas and validation points cover the
same areas in all UAV and satellite data.

Classification Algorithms
Considering the inconsistent results in the comparison of
different approaches to image classification (see e.g., Duro et al.,
2012), we decided to test a large variety of algorithms (both
pixel and object based) on both species and all three study
sites. Whereas, the pixel-based approach uses only spectral
information, the object-based approach takes into account also
the spatial structure and context information. This approach
is expected to improve the results by reducing the effects of
shadows, within-class spectral variation and mis-registration,
and is especially beneficial for detecting targets that take specific
shape/form (Blaschke, 2010; Blaschke et al., 2014), such as
giant hogweed inflorescences. It is also expected to be suitable
for very high spatial resolution imagery (Laliberte and Rango,
2009). For the pixel-based classification, maximum likelihood
(ML), a baseline classification method with equal probability

of class assignment, and machine learning algorithms Support
Vector Machine (SVM; Vapnik, 1995) and Random Forests (RF;
Breiman, 2001) were employed in an ArcGIS 10.4.1 environment.
Machine learning algorithms are assumed to be less sensitive
to imbalanced training data sets (often the case in invasive
ecology) since no assumptions are made about the distribution
of input variables (Atkinson and Tatnall, 1997; Masocha and
Skidmore, 2011). SVM is supposed be less susceptible to noise
and correlated bands, especially useful for UAV pseudo NIR
bands, and to better detect subtle and non-linear patterns
(Foody and Mathur, 2004) whereas, RF classifier combining
multiple classification trees (Breiman, 2001) is thought to be
resistant to overfitting, strong interactions among the variables
and small perturbations of the data (Pal, 2005; Cutler et al., 2007).
For the object-based approach, several types of segmentation
(multiresolution and contrast split) and classification (rule-based,
SVM, and RF) were tested in eCognition Developer software.
Multiresolution segmentation consecutively merges pixels or
existing image objects minimizing the heterogeneity, whereas
the contrast split segmentation divides the image into dark
and bright objects based on the threshold, maximizing the
contrast by an edge ratio algorithm (eCognition Developer
9.2 Reference Book, 2016). The parameters used to classify
segmented objects in an iterative, rule-based classification
were length/width ratio, maximum object size, brightness,
mean channel value, circular standard deviation and layer
mean, maximum pixel values, hue, saturation, and intensity
transformation, and mean difference to darker neighbors. To
train the machine learning algorithms, the following object
features were used: mean, maximum, and minimum layer values
and their standard deviation—both normal and circular, contrast
to neighboring pixels, the geometry of objects such as extent
and shape (area, border length, length/width ratio, asymmetry,
compactness), textural measures (Haralick and Shanmugam,
1973) based on spatial relationships of pixels in a gray-level
co-occurrence matrix, such as GLCM homogeneity, contrast,
dissimilarity, and entropy. For the giant hogweed, we also tested
the template matching function in eCognition, where objects are
detected based on prior created “templates” generated from the
imagery.
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FIGURE 2 | Reflectance curves of target species H. mantegazzianum and F. japonica measured by portable spectrometer Spectral Evolution RS-3500.

To separate the role of spectral and spatial resolution, coarser
spatial resolution similar to Pleiades 1B satellite was simulated
by resampling UAV data to 50 cm resolution and performing the
same classification algorithms (in case of knotweeds). The same
training areas were used for all classifiers (inspected visually and
in the field). To account for knotweeds hidden within the canopy,
knotweed validation points were stratified to 50 in open areas
and 50 among the canopy or in shadows, although still visible
on all imagery. This allowed us to disentangle the role of the
canopy in determining success in classification at different parts
of vegetation season.

Field Data and Accuracy Assessment
In case of extremely high spatial resolution of the UAV imagery,
geometrical precision of the field data can be problematic.
Differential GNSS with centimeter precision is costly and time-
consuming, especially for larger scales. Moreover, in some cases,

such as a forested environment or with complex geomorphology,
the estimated precision drops to several decimeters or even
meters. To overcome the problem we used an Android-based
application Collector for ArcGIS (ESRI, 2016) installed on a
tablet with an integrated GPS. This enabled manual delineation
of patches of invasive species using custom base maps, such as
UAV imagery or other available high resolution orthophotos,
increasing the precision of collected data. Field data collected
in 2015 and 2016 were divided into the training and validation
part to make the two sets independent. The reflectance spectra
of the target invasive and co-occurring species were collected
at midday with a portable spectrometer, Spectral Evolution
RS-3500 (spectral range 350–2500 nm) using a pistol grip
and calibrated, using a 99% white reference panel. Spectra
were averaged from 10 measurements, repeated 10 times per
species at each site and at the same distance apart, where
possible.
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Validation was performed using 200 randomly-distributed
points (stratified sampling, 50% within the target species
polygons delineated in the field) outside the training areas. For
this purpose, we merged all classes without the target species
into one class (“background”). All validation points were visually
inspected on all images to ensure they cover the target species. In
cases where the land cover changed, the points were removed and
new randompoints were generated. Some training areas had to be
reduced to cover the species on all images, because the extent of
the target species changed between the acquisitions. For accuracy,
assessment and comparison of the role of imagery timing and
resolution, user’s (UA) and producer’s accuracy (PA) were used
(Congalton and Green, 1999; Foody, 2002).

RESULTS

Our results show that both the detection accuracy and the best
classification approach depend strongly on the phenological stage
of plants, and on the spectral resolution of data (Table 2). This
was true for both model species regardless of their markedly
different phenological, structural and spectral characteristics, and
seasonal dynamics. While giant hogweed was best detected when
plants were flowering, thanks to its large white inflorescences,
knotweeds were distinct at the phase of senescence because
of reddish-brown coloring of decaying plants (Figure 2). In

other parts of the season, detection of any of the species was
more problematic and higher spectral resolution of satellite
imagery improved the detection. The object-based approach was
successful for giant hogweed if (i) the species was sampled
in the right phenological stage and (ii) the spatial resolution
enabled the distinction of individual compound umbels. For less
distinct knotweeds spectral resolution of the data and pixel-based
approach played more important role.

Giant hogweed was detected with a very high accuracy when
flowering (up to 100%), dropping down later in the vegetation
season to ∼60% (September; Table 4). Flowering, undamaged
individuals were detected with high accuracy, whereas non-
flowering, fruiting, cut, sprayed, or grazed ones were more
difficult to recognize due to their similarity with the surrounding
vegetation. Further, the leaves surrounding flowering umbels
were difficult to map (Figures 2, 3). The best results were
obtained for full flowering (UAV imagery; 9 July; site 2)
using an object-based approach—contrast split segmentation
followed by rule-based classification (Figure 3). Contrast split
segmentation itself separated very well the white objects on the
imagery, meaning that all flowering hogweeds were detected.
They were, however, mixed with other bright objects such as
some artificial surfaces or harvested fields and had to be filtered
out by further rule-based classification. At peak flowering, the
inflorescences were so distinct that they could be detected with
reasonable success (42/100% PA/UA of the hogweed class) even

TABLE 4 | Classification accuracies (in %) for giant hogweed (Heracleum mantegazzianum) for UAV data (RGB, modified NIR; 5 cm), color orthophotos (RGB; 25 cm),

and Pleiades (MSS; 2m pan sharpened to 50 cm).

Site 1 UAV Pleiades Ortho photo

Classification Pixel-based Object-based Pixel-based Object-based

ML SVM RF MRS CS SVM RF ML SVM RF CS SVM RF CS

Acquisition date 1
5
-J
u
l-
2
0
1
5

2
0
-J
u
l-
2
0
1
6

1
5
-J
u
l-
2
0
1
5

2
0
-J
u
l-
2
0
1
6

1
5
-J
u
l-
2
0
1
5

2
0
-J
u
l-
2
0
1
6

1
5
-J
u
l-
2
0
1
5

2
0
-J
u
l-
2
0
1
6

1
5
-J
u
l-
2
0
1
5

2
0
-J
u
l-
2
0
1
6

1
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The best results are highlighted in bold. Object-based analysis did not work for imagery from later phenophases, such cases are marked as “failed.” CS, contrast split segmentation

followed by rule based classification; ML, Maximum Likelihood; MRS, multiresolution segmentation followed by rule based classification; PA, producer’s accuracy; RF, Random Forests;

SVM, Support Vector Machines; UA, user’s accuracy.
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FIGURE 3 | Detail of giant hogweed at different phenophases captured by various imagery (UAV, aerial, and Pleiades) and results of the best performing classification

for each imagery. CS, contrast split segmentation; ML, Maximum Likelihood; RF, Random Forests object-based.

from a low spectral resolution aerial orthophoto (25 cm) using
the same approach. However, the template-matching approach
incorporated in eCognition software failed to recognize the
umbels even at the peak of flowering. Depending on the
threshold, it either picked all the hogweed umbels and many
other objects of similar shape, even of different color or, if
the threshold was lower, it missed half of the plants. It could
work well if the infested area was previously masked out and
the algorithm ran with high threshold only inside the infested
polygons. This approach would require substantial manual input
and would, thus, not be feasible to apply over larger datasets. In
case of site 1, the summer UAV imagery was obtained later in
the season (15 and 20 July) and part of the umbels in hogweed
compound inflorescences had already started to ripen, slightly
decreasing the accuracy. The contrast split rule-based approach
of 15 July 2015 was the most effective, but failed completely for
the imagery from 20 July 2016, when hogweed was mostly out
of bloom. In the case of ripening hogweed (site 1), pixel-based
approach and ML algorithm of the satellite imagery provided
higher accuracy measures when compared to those derived from
UAV. Still the accuracies were lower compared to full flowering
hogweed on UAV imagery from site 1. In autumn, the UAV
imagery depicted only leaves and dry stems, and the accuracy was
very low (Table 4, Figure 3). In this case, no distinct objects could
be identified and the object-based approach failed.

The accuracies of knotweed classification varied considerably
according to the phenology and spectral resolution (Table 5;
Figure 4). The best results obtained were for the late-autumn
UAV imagery (8 November; ML for both original and 50 cm
resampled), when reddish-brown knotweeds stands were clearly
visible (Figure 4). At other parts of the vegetation season, the
PA derived from UAV imagery was low. Resampling of UAV
data from 5 to 50 cm to simulate the Pleiades resolution
slightly improved accuracies by eliminating salt and pepper
effect, showing that spatial resolution does not limit species’
recognition. Classification of summer Pleiades imagery using
a RF classifier provided high accuracies (74/95% PA/UA of
the knotweed class). Due to their architecture, knotweeds do
not form objects of distinct shape or color, and object-based
algorithms were therefore unsuccessful.

DISCUSSION

Our study addresses how different aspects of data quality
(spatial, spectral, and temporal), costs, and operationality affect
the methodology and practical application of the detection of
invasive plants. Our two model species of different phenology
and architecture, giant hogweed and knotweeds, showed different
results reflecting their spectral characteristics and seasonal
dynamics, still phenology played an important role in detection
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FIGURE 4 | Detail of Fallopia sp. at different phenophases captured by various imagery (UAV and Pleiades) and results of the best performing classification per each

imagery. ML, Maximum Likelihood; RF, Random Forest; SVM, Support Vector Machine.

of both species (cf. Huang and Asner, 2009; Somodi et al., 2012;
Müllerová et al., 2013; Bradley, 2014). The choice of the best
data source (aerial color orthophoto, UAV with RGB + NIR
modified consumer cameras, and Pleiades satellite MSS imagery)
and classification approach (object or pixel based) depended
strongly on the species’ characteristics and their phenological
stage.

We demonstrate that the spectral resolution of the low-cost
solution, represented by an unmanned aircraft system, is limited
(720–950 nm with variable response declining rapidly toward
the longer wavelength; Müllerová et al., 2017), but that this
limitation can to some extent be surpassed by identifying the
right phenological stage when a more satisfactory detection rate
is achievable even for the less distinct species such as knotweed.
During the spring, when the knotweed stands are formed by
the mixture of old red stems from the previous year and
short emerging new regrowth stems, and summer acquisition,
with dense, fully-developed indistinct stands, spectral resolution
became more important for the detection. On the other hand,
during the senescent phase the reddish color and better visibility
of knotweeds under defoliated trees provided good detectability
irrespective of the spectral quality. The problem with the canopy
cover hiding knotweeds during the vegetation season was partly

solved by using off-season imagery (from late autumn), but some
individuals still remained hidden, covered by trunks or by their
shadows.

The very fine spatial resolution of UAV imagery was not
always beneficial. In case of hogweed, it actually overwhelmed the
relevant spatial patterns and hampered the classification based
on flowering objects since, in such a great detail, instead of the
consistent white “dots” of hogweed inflorescences, individual
umbels of each inflorescence were visible, eventually decreasing
the classification accuracy (cf. Ustin and Santos, 2010). On the
other hand, the fine detail enabled mapping of the hogweed
leaves surrounding flowering umbels and, to some extent,
non-flowering individuals. In case of knotweed (pixel-based
approach), very fine spatial resolution of UAV data caused the
salt and pepper effect, eliminated after resampling and being
less pronounced in case of late autumn imagery and slightly
blurred due to technical matters relating to cameras. Still, the
resampling of summer UAV imagery lowered the success rate,
probably because, in the forest, individual pixels of knotweeds
visible among the canopy trees were merged into mixed pixels.

We achieved slightly higher giant hogweed detection rates
compared to previous aerial photography analysis (Müllerová
et al., 2013). Michez et al. (2016) used a similar approach,
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TABLE 5 | Classification accuracies (in %) for knotweed (Fallopia sp.) for UAV data (RGB, modified NIR; 5 cm, and resampled to 50 cm), and Pleiades (MSS; 2m pan

sharpened to 50 cm).
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The best results are highlighted in bold. Object-based analysis did not provide satisfactory results and is not shown. ML, Maximum Likelihood; PA, producer’s accuracy; RF, Random

Forests; SVM, Support Vector Machines; UA, user’s accuracy.

applying multiresolution segmentation (an object-based
approach) and RF classifier on UAV imagery gaining higher
overall accuracy; still since the authors do not provide the
hogweed class accuracy, it is difficult to compare their results
with ours. In contrast to our research, earlier studies of knotweed
detection did not achieve the accuracies sufficient for operational
application (Dorigo et al., 2012; Michez et al., 2016). Dorigo
et al. (2012), who detected knotweed using a ratio of spring and
summer aerial photography, applied a random-forest classifier
based on pixels combined with textural information derived
from a moving kernel. Jones et al. (2011) performed a rule-based
object-oriented classification of aerial photography but provide
no assessment of accuracy so their results are difficult to compare.
Michez et al. (2016) applied multiresolution segmentation (an
object-based approach) and RF classifier of UAV imagery, but
provided only overall accuracies and Kappa index, and admitted
that they did not reach sufficient accuracies for operational
application. These authors show that the best results were
provided by using very small objects (∼30 cm in size) and
spectral indices, which is actually similar to the pixel-based

methods. In some cases, ML performed slightly better compared
to the learning algorithms, still the differences were minor. The
commonly accepted principle of machine learning algorithms
outcompeting ML cannot therefore be taken as a rule of thumb
(but see Andermann and Gloaguen, 2009; Otukei and Blaschke,
2010). For object-based classification, a rule-based algorithm
was more successful compared to the machine learning, still
the method is highly case-specific, less universal, and requires
substantially more expert knowledge.

Trade-offs exist between spatial, spectral, and temporal
resolution while minimizing cost and making an approach
operationally viable (Wiens et al., 2009; Willis, 2015). The
demands for both spatial and spectral resolution depend largely
on the target plant species; good results can be achieved with
substantially lower resolution if the vegetation is sampled at the
phenological phase when the species is at its most distinct. Our
study shows that proper timing and high spatial resolution can
to some extent compensate for the lower spectral resolution of
a low-cost, unmanned aerial system, and help to decrease the
error of omission. This is important for practical applications
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as it minimizes the number of missed plants (Müllerová et al.,
2013). Multispectral or even hyperspectral UAV sensors available
on the market would definitely improve the resulting accuracy;
our low-cost solution of modified consumer cameras provides
substantially lower spectral quality (Müllerová et al., 2017). We
believe, however, that such instruments would make the resulting
methodology too costly and complex to be puts into operation for
nature conservation or land management.

UAV technology with its high flexibility and low costs can
provide an appropriate sampling method at a high spatio-
temporal scale. We do, however, need to be aware of several
limits for application in the management of invasive plants.
Among these are legal constraints in those urban areas that
are typically invaded by alien plants and under the focus of
land managers (Pyšek and Hulme, 2005). UAV is well-suited
for experimental studies, targeted monitoring and eradication
control, yet the satellite imagery (if available at right phenological
phases) provides more appropriate solution for larger areas. For
species with distinct appearance aerial imagery should also be
considered.

CONCLUSIONS AND LESSONS LEARNED

The variety of data and especially flexibility of the UAV
approach enabled us to assess the effect of timing of the
data acquisition (i.e., the phenological stage of the target
invasive species) and both spectral and spatial resolution on
the detection success. Our research establishes a methodology
for targeted timely monitoring of invasive species, provides
land managers and nature protection with information on
spatial distribution of invaders and serves as a baseline for
assessment and modeling of spatial patterns and future spread
of invasive plants. Nevertheless, it is necessary to be aware
of limits of the RS detection, for example, if the target plant
is under dense tree canopies or heavily damaged by mowing,
grazing, or spraying. Our results indicate that the choice of the
best classification method is case-specific, depending largely on
both the target plant and imagery characteristics. The results
from one methodological comparison should not, therefore,

be mechanically transposed to other target species and data
types. A detailed methodological analysis and testing of possible
approaches such as ours is therefore a necessary step in finding
optimal mapping strategies. For practical implementation of the
proposed monitoring approach, the recommended time window
should be wide enough to allow for organizing a flight campaign,
and highly-flexible, small UAVs are a great choice, providing an
opportunity to carry out the mission at the right time and in a
cost-effective manner.
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Fallopia japonica by combined spectral, spatial, and temporal analysis of
digital orthophotos. Int. J. Appl. Earth Observ. Geoinform. 19, 185–195.
doi: 10.1016/j.jag.2012.05.004

Duro, D. C., Franklin, S. E., and Dubé, M. G. (2012). A comparison of pixel-based
and object-based image analysis with selected machine learning algorithms
for the classification of agricultural landscapes using SPOT-5 HRG imagery.
Remote Sens. Environ. 118, 259–272. doi: 10.1016/j.rse.2011.11.020

eCognition Developer 9.2 Reference Book (2016). Trimble Germany GmbH.

Available online at: http://www.ecognition.com/
ESRI (2016). Collector for ArcGIS. Available online at:

https://doc.arcgis.com/en/collector (Accessed December 5, 2016).
Foody, G. M. (2002). Status of land cover classification accuracy assessment.

Remote Sens. Environ. 80, 185–201. doi: 10.1016/S0034-4257(01)00295-4
Foody, G. M., and Mathur, A. (2004). Toward intelligent training of supervised

image classifications: directing training data acquisition for SVM classification.
Remote Sens. Environ. 93, 107–117. doi: 10.1016/j.rse.2004.06.017

Frazier, A. E., and Wang, L. (2011). Characterizing spatial patterns of invasive
species using sub-pixel classifications. Remote Sens. Environ. 115, 1997–2007.
doi: 10.1016/j.rse.2011.04.002

Fridley, J. D. (2012). Extended leaf phenology and the autumn niche in deciduous
forest invasions. Nature 485, 359–362. doi: 10.1038/nature11056

Ge, S., Everitt, J., Carruthers, R., Gong, P., and Anderson, G. (2006).
Hyperspectral characteristics of canopy components and structure for
phenological assessment of an invasive weed. Environ. Monit. Assess. 120,
109–126. doi: 10.1007/s10661-005-9052-1

Gioria, M., Pyšek, P., and Osborne, B. A. (2016). Timing is everything: does early
and late germination favor invasions by herbaceous alien plants? J. Plant Ecol.
doi: 10.1093/jpe/rtw105

Haralick, R. M., and Shanmugam, K. (1973). Textural features for
image classification. IEEE Trans. Syst. Man Cybern. 610–621.
doi: 10.1109/TSMC.1973.4309314

Huang, C. Y., and Asner, G. P. (2009). Applications of remote sensing to alien
invasive plant studies. Sensors 9, 4869–4889. doi: 10.3390/s90604869

Jones, D., Pike, S., Thomas, M., and Murphy, D. (2011). Object-based image
analysis for detection of Japanese Knotweed s.l. taxa (Polygonaceae) in Wales
(UK). Remote Sens. 3, 319–342. doi: 10.3390/rs3020319

Kaiser, B. A., and Burnett, K. M. (2010). Spatial economic analysis of early
detection and rapid response strategies for an invasive species. Resour. Energy
Econ. 32, 566–585. doi: 10.1016/j.reseneeco.2010.04.007

Kowarik, I. (2008). “On the role of alien species in urban flora and vegetation,” in
Urban Ecology, eds J. Marzluff, E. Shulenberger, W. Endlicher, M. Alberti, G.
Bradley, C. Ryan, C. ZumBrunnen, and U. Simon (New York, NY: Springer),
321–338.

Laba, M., Tsai, F., Ogurcak, D., Smith, S., and Richmond, M. E. (2005). Field
determination of optimal dates for the discrimination of invasive wetland plant
species using derivative spectral analysis. Photogramm. Eng. Remote Sensing 71,
603–611. doi: 10.14358/PERS.71.5.603

Laliberte, A. S., Herrick, J. E., Rango, A., and Winters, C. (2010). Acquisition,
orthorectification, and object-based classification of unmanned aerial vehicle

(UAV) imagery for rangeland monitoring. Photogramm. Eng. Remote Sensing

76, 661–672. doi: 10.14358/PERS.76.6.661
Laliberte, A. S., and Rango, A. (2009). Texture and scale in object-based analysis of

sub-decimeter resolution unmanned aerial vehicle (UAV) imagery. IEEE Trans.

Geosci. Remote Sens. 47, 761–770. doi: 10.1109/TGRS.2008.2009355
Maheu-Giroux, M., and de Blois, S. (2004). Mapping the invasive species

Phragmites australis in linear wetland corridors. Aquat. Bot. 83, 310–320.
doi: 10.1016/j.aquabot.2005.07.002

Masocha, M., and Skidmore, A. K. (2011). Integrating conventional classifiers with
a GIS expert system to increase the accuracy of invasive species mapping.
Int. J. Appl. Earth Observ. Geoinform. 13, 487–494. doi: 10.1016/j.jag.2010.
10.004

McEwan, R. W., Birchfield, M. K., Schoergendorfer, A., and Arthur, M. A.
(2009). Leaf phenology and freeze tolerance of the invasive shrub Amur

honeysuckle and potential native competitors. J. Torrey Bot. Soc. 136, 212–220.
doi: 10.3159/08-RA-109.1

Michez, A., Piégay, H., Jonathan, L., Claessens, H., and Lejeune, P. (2016).Mapping
of riparian invasive species with supervised classification of Unmanned Aerial
System (UAS) imagery. Int. J. Appl. Earth Observ. Geoinform. 44, 88–94.
doi: 10.1016/j.jag.2015.06.014

Müllerová, J., Bartaloš, T., Bråna, J., Dvořák, P., and Vítková, M. (2017).
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