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Abstract

This thesis has one main goal: design algorithms that computers can use to produce expressive

sounding rhythmic phrases. First, I describe four elements that can characterize musical rhythm:

metric structure, tempo variation, deviations, and ametric phrases. The �rst three elements can be

used successfully to model percussive rhythm.

Second, I describe two algorithms: one, an automatic transcription algorithm, extracts stroke

attack times and automatically constructs unique stroke types from a percussive performance. The

other takes a percussive performance and factors out the metric structure, tempo variation, and de-

viations.

Third, I apply these algorithms to a performance given by the percussion group Los

Mu~nequitos de Matanzas. Using both a synthesis of the performance and statistical analysis, I

demonstrate that timing data represented in this form is not random and is in fact meaningful. In a

synthesis with tempo variation removed but deviations retained, the original performance's expres-

sive feel is preserved. Therefore, I claim that rhythmic analysis requires the study of both tempo

variation and deviations.

Finally, because similar quantized rhythmic phrases have similar corresponding deviations,

the smoothness assumption necessary for a function approximation approach to learning is satis�ed.

I describe a multi-stage clustering algorithm that locates sets of similar quantized phrases in a per-

formance. I then describe a machine learning algorithm that can build a mapping between quan-

tized phrases and deviations. This algorithm can be used to apply deviations to new phrases.

I claim that deviations are most important for the expressive feel of percussive music. There-

fore, I have developed a new drum machine interface, a deviation experimentation program, with

which deviations can be explored.

(Jeff Bilmes)
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Chapter 1

Introduction

Picard: The good doctor was kind enough to provide me with a recording of your

concert. Your performance shows { { feeling.

Data: As I have recently reminded others, sir, I have no feeling.

Picard: It's hard to believe. Your playing is quite beautiful.

Data: Strictly speaking, sir, it is not my playing. It is a precise imitation of the

techniques of Jascha Heifetz and Trenka Bronkjen.

Picard: Is there nothing of Data in what I'm hearing? You see, you chose the

violinists. Heifetz and Bronkjen have radically di�erent styles, di�erent tech-

niques, and yet, you combined them { { successfully.

Data: I suppose I have learned to be { { creative, sir { { when necessary.

ST:TNG1

The Ensign of Command

Robots, Star Ships, The Speed of Light, Creativity. In space, everything has an easy

solution. Science �ction movies have long tantalized those of us trying to understand these

phenomena. Although they encourage the advancement of science, they often trivialize the

process, deodorizing and discounting the sweat through which solutions are found. Data

merely combines the styles of Heifetz and Bronkjen. What could be easier?

What they do not tell us is how. How exactly is Data able to be \creative"? How

is he able to combine the styles of the violinists, \successfully"? What is it in the music

that he �nds imitable? What features can he recognize and exploit to create his own per-

formance? At the very least, he must have a special capability to extract a representation

1From Star Trek: The Next Generation. Data, an android, has completed a concert playing violin. He

and Picard, the captain of the ship and an a�cionado of �ne music, are discussing this performance. Pre-

sumably, the birth date of Trenka Bronkjen is beyond the 20th century.
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of the performers' style, a capability that lends itself to manipulation and combination and

that perfectly describes their melody, harmony, and rhythm.

Those are the features he must understand: melody, harmony, and rhythm { they are

each distinctive. They e�ect each other in many ways. But how do they e�ect each other?

We need more than just a representation, we need a model. A good model is one that can

accurately represent a phenomenon. A better model is additionally one the manipulation

of which produces valid stylistic changes within the phenomenon. With both criteria in

mind, in this thesis I address the problem of representing and reproducing expressive tim-

ing in musical rhythm. My primary goal is this: produce human-like expressive rhythmic

phrases by computer.

Duplicating expressivity in musical performance is quite an elusive task. Duplicating

human intelligence using a computer, however, is perhaps even more elusive. It is my hope

that building a system that to some degree simulates musical expressivity might inform us

about the way humans think. Perhaps we can learn about temporal perception, audition,

or perhaps even emotion. Whatever we learn, a music system that successfully duplicates

expressivity might shed some light onto nebulous concepts such as aesthetics[Min81].

There is at least one obvious similarity between the problem of understanding musi-

cal expression and that of understanding human intelligence. That is, performance evalu-

ation. Music exists in all cultures and there are indisputably di�erent types of music and

di�erent performances of the same style that are considered more or less expressive, a word

that embraces a number of aesthetic musical qualities. Although I do not plan to delve into

aesthetics, I believe (and will base my conclusions on this) that if a group of critical listen-

ers evaluate a piece of music and reach a consensus that it contains expression, we will have

satis�ed the goal of simulating expression. This is a musical Turing test. The similarities

are unequivocal.

1.1 Applications

Of what use is the successful reproduction of musical expression? First, current commercial

drum machines and music sequencers represent music either by using multiples of a time

quantum for inter-onset time intervals or by recording note attack times to within some

time resolution. They attempt to produce a swing feel, but they sound arti�cial and cold.

14



The producers of these machines stand in great need of a representation that can facili-

tate the production of expressive rhythmic phrases. Second, in music schools, there is de-

mand for computer programs that can teach students a rhythmic feel. A successful imple-

mentation of such a system could provide quantitative performance evaluation. Third, it

would be enlightening to explore, from an evolutionary standpoint, why musical expressiv-

ity evolved. Is there some physiological reason? Did it arise out of intended or unintended

uctuations? Finally, it is interesting to note that expressive rhythm and dance are closely

related. How and why does expressive rhythm stimulate our pleasure centers, and in some

cases, provoke movement or dance? Understanding rhythmic expression might help deci-

pher some of these riddles.

1.2 Scope

My investigation of rhythmic expressivity involved the utilization of techniques from many

di�erent �elds including signal processing, computer science, statistics, cluster analysis, pat-

tern recognition, and neural networks. A brief outline of the thesis follows.

Chapter 2 begins by describing my general rhythmic philosophy. It de�nes what I be-

lieve to be the main elements that characterize musical rhythm. It de�nes deviations, and

asserts that they are extremely important for representing percussive rhythm. Further, it

de�nes the concept of tatum, used often throughout this work. Chapter 3 consists primar-

ily of low-level analysis. It de�nes a new method of automatic percussive music transcrip-

tion that produces a list of attack times and pitch types from an audio signal. Transcrip-

tion, however, was not my end goal, and the timing data obtained from these techniques is

used in subsequent analysis. Chapter 4 de�nes a timing analysis algorithm that takes at-

tack times and pitch types as de�ned in Chapter 3, and produces the elements described in

Chapter 2. The algorithm is applied to a real performance with some very interesting re-

sults. Speci�cally, the elements are shown to have captured the performance's expressivity,

and that the rhythmic representation contains useful data. This is demonstrated by statis-

tical analysis and by synthesizing the performance in various ways. Chapter 5 describes a

system that can be used to learn the expressive features in rhythmic phrases and can add

expression to lifeless rhythmic phrases. Chapters 3, 4, and 5 are depicted in Figure 1-1.

Last, Chapter 6 describes what remains to be done and suggests possible future projects.

15



Figure 1-1: Thesis Outline.

It is my hope that this research will open the gates for others to explore these avenues.

In summary, we �rst introduce a new rhythmic philosophy and representation. Next,

we obtain timing data from a real percussive performance. A new rhythmic representation

is extracted from the timing data. Finally, a system is de�ned that learns expressive tim-

ing, and can add expressivity to bland rhythmic phrases.

1.3 Symbolic versus Continuous

Historically, musical information processing has come in two forms: symbolic and continu-

ous. Symbolic musical information processing operates on a discrete domain. Here, the main

concept is quantization and there are three types. Time quantization is most common. This

is when the duration between note events is a multiple of some time quantum. There is also

pitch quantization, in which an instrument is represented by a small subset of the pitches it

can produce. Finally, tempo quantization is when there are instantaneous jumps in tempo

at various positions in a musical piece. Musical counterpoint, traditional musical harmony,

grammar approaches to musical representation, and unembellished standard musical nota-

tion are all examples of representations used in symbolic musical information processing.

On the other hand, continuous musical information processing operates on a continuous do-

main. Herein lies the expression. Here is where we �nd accelerando, rubato, accentuation,

pause, timbre variation, crescendo, etc. Here is where we �nd music's life. I claim, however,

that we need both. To successfully model music, we need to study both the symbolic and

the numerical aspects of music. Throughout this thesis, I keep this in mind. So, let us begin.
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Chapter 2

Rhythm

Rhythm is one of the principle translators between dream and reality. Rhythm
might be described as, to the world of sound, what light is to the world if sight.

It shapes and gives new meaning.

Dame Edith Sitwell [1887-1964]
The Canticle of the Rose [1949]

Rhythm may be de�ned as the movement in time of individual sounds.
: : :however, rhythm is not only the whole feeling of movement in music, but also

the dominant feature. : : : [It] provides the regular pulsation or beat which is the
focal point in uniting the energies of the entire community in the pursuit of their

collective destiny.

C.K. Ladzekpo
Foundation Course in African Dance Drumming[Lad89]

The perception of ordered movement in time, an apt and well-known de�nition. Con-

sider the obvious analogy between tempo and velocity. It seems �ne, right? Perhaps not.

This de�nition neglects rhythm's original function. It ignores the reason we evolved to the

point where we could perceive rhythm. The goal of musical rhythm is to unify. It is a rec-

onciliatory force that transforms the cacophony of isolated individuals into the harmonious

collectivity of an ensemble. Musical rhythm is more than just movement, it is synchronized

movement. Herein, I try to remember rhythm's original purpose and strive to better un-

derstand it.
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2.1 Rhythmic Elements

I claim that four elements constitute musical rhythm: metric structure, tempo variation,

deviations, and ametric phrases. Each of these elements can be studied separately and will

be described presently. Percussive rhythm, however, is musical rhythm in its purest form.

It is rich in expression without the distraction of melody and harmony. As we will see, the

�rst three elements are enough to represent most percussive rhythm. They will be discussed

extensively.

Metric structure in musical rhythm is a symbolic representation. It can be consid-

ered both perceptually and representationally. Perceptually, musical metric structure com-

prises beats and hierarchies. Beats constitute the framework in which successive musical

events are perceived. They make up the isochronous sequence of elements which occur in

music. They are the most fundamental musical form and were perhaps originally intended

to emulate the heart beat, the sound of walking, or beating a rock with a stick. Beats es-

tablish the musical tactus,1 they give us something to synchronize our tapping foot with,

and they are usually the pulse that inspires us to dance. Beats are rarely solitary, how-

ever; they are arranged in groups, and the groups are arranged in groups, and so on, form-

ing what is called the metric hierarchy. Beat grouping, sometimes referred to as subjec-

tive rhythmization[Fra83], is a psychological linking of these sequential event stimuli. It is a

perceptual illusion which has no apparent practical purpose. For the illusion to occur, the

beats can not be too far apart (no more than two seconds), nor too close together (no less

than 120 milliseconds). Indeed, these are not new concepts; previous study can be found in

[Mey56, LJ83, Fra83, Han89, Lee91] but this list is not at all comprehensive.

Metric structure can also be considered representationally. In this form, it goes by

such names as Western musical scripture (Figure 2-1A) or horizontal bar notation (Fig-

ure 2-1B). The latter form is often used in computer music sequencers and electronic drum

machines. The common characteristic here is time quantization; the duration between all

note events is a multiple of some time quantum.

Metric structure alone is not an accurate way of representing musical rhythm; it pro-

vides a fundamental framework that is necessary, but restrictive. Music represented solely

in this form tends to be bland and lifeless. In fact, very little expressive timing can be de-

1The stroke of the hand or baton in conducting, or often the most emphasized pulse.
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B: A Time Deformation

Figure 2-2: Representations for Tempo Variation.

scribed using only metric structure. We therefore leave the symbolic world, and enter the

continuous one.

Tempo variation is perhaps the most studied expressive timing model. It refers to the

change in speed with which the metric grid passes by as the musical piece progresses. This

is similar to a real performance in which the tempo will increase (accelerando) or decrease

(ritardando). Models of tempo variation often take the form of functions that map score

time to performance time [Jaf85, WBS87] (Figure 2-2A), or that map time durations to de-

formed time durations [AK91, AB91, AB92, AK89] (Figure 2-2B). There are other models

that do not appear to be tempo variation[Cli77], but in fact are. Tempo variation functions

have been discovered that correspond closely to real musical performances [FERes, Rep90].

In short, although all the above models are essentially the same thing (functions that pro-

vide a duration for each beat), tempo variation is required for any valid representation of

expressive timing in music. No study of rhythmic timing should go without it.

Ametric models of rhythm represent those phrases that do not have an associated

beat. A musician produces these phrases without using a constant beat as a reference for

note placement. These rhythmic �gures are akin to those of poetry or even plain speech,

and might be called rhythmic prosody. There are two musical situations in which this oc-

curs: 1) Some music contains no perceptible beat. Rhythmic phrases contained therein
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completely disregard any isochronous pulse, so no beat-based representation is suitable. 2)

When there is a clearly de�ned beat, sometimes a performer will land on that beat only

once per phrase. For example, a performer might land on a beat every eight bars, but in

the interim might completely ignore all such guidelines. In this case, a model must account

for the connection with high levels in the metric hierarchy and for the interim sections. I

am not aware of any attempts to model these types of musical phrases. And because al-

most all percussive music can be represented without ametric models, I also will not con-

sider them further. Ultimately, however, they should be investigated.

Musical expression is not always best thought of in terms of inter-onset durations.

That is, we do not always conceive of a piece of music as items separated by a stretchable or

shrinkable duration, like boxes and glue in a TEX document. Tempo variation is inherently a

controller of inter-onset durations in which space between note events is varied; the shorter

the space, the faster the tempo. Often, however, music is event centered: we place events at

appropriate times perhaps deviating from some grid markers. In this case, the inter-onset

durations play a minor role. It is the onset times themselves that make the headlines.

For example, a common di�erence between Western classical music and ethnic or

modern music (such as African, Latin, or jazz) is that expressive timing in the former can

often be represented using only tempo variation. Ethnic and modern music is event cen-

tered, however, and tempo variation is not a suitable model. Therefore, this music requires

a new timing model. Enter deviations. Deviations are, like tempo variation, functions of a

metric time position. Unlike tempo variation, however, a deviation function provides a du-

ration for each metric position used to time shift any musical event falling on that position

(see Figure 2-3). Such a function can therefore be used to model African music and jazz

(i.e., swing) in which performers deviate in time from a relatively uniform beat.

Jazz music almost always has a steady beat. But a jazz musician almost never plays

on the beat. Where is the beat? In particular, where is it when everyone plays o� the beat?

People are said to play \behind the beat," \right on the beat," or \in front (or on top) of

the beat," in which note events occur respectively later than, right on, or earlier than the

time grid de�ned by the beat. When most of the performers play on the beat (hardly ever),

the time grid is explicitly de�ned, but the performance sounds dead. When most of the

performers play o� the beat, how do we know where it lies? That is, if all performers in an

ensemble play behind the beat, why do we not just perceive the time grid earlier and hear
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Figure 2-3: A Deviation Curve.

the performers playing on the beat? Several reasons are possible: 1) Performers do not de-

viate by the same amount. In ensembles, certain instruments whose role is to de�ne the

back-beat typically play more on the beat than other instruments; for example, the bass in

a jazz ensemble and a support drum in an African ensemble tend to play more on the beat.

2) The amount a performer plays behind or ahead of the beat varies. For example, during

the beginning of a section, a performer might play right on the beat but deviate apprecia-

bly during the middle. Models of deviation can easily represent both of these situations.

There is no doubt that music devoid of both harmony and melody can still contain

considerable expression. Percussive music is a case in point, as anyone who has truly en-

joyed traditional music from Africa, India, or Central or South America knows. I claim that

most percussive rhythmic �gures can be represented solely using these models. Speci�cally,

deviations are essential to any study of percussive musical phrases.

2.2 Tatums

The next concept will be used throughout this thesis. When we listen to or perform music,

we often perceive a high frequency pulse, frequently a binary, trinary, or quaternary subdi-

vision of the musical tactus. What does it mean to perceive this pulse, or as I will call it,

tatum?2

The tatum is the high frequency pulse or clock that we keep in mind when perceiv-

ing or performing music. The tatum is the lowest level of the metric musical hierarchy. We

2When I asked Barry Vercoe if this concept had a term, he felicitously replied \Not until now. Call it

temporal atom, or tatom." So, in honor of Art Tatum, whose tatum was faster than all others, I chose the

word tatum.
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Figure 2-4: Illusory Contours.

use it to judge the placement of all musical events.

Perceiving the tatum does not necessarily imply a conscious ticking in the mind, like

a clock. Often, it is an unconscious and intuitive pulse that can be brought into the fore-

ground of one's thought when needed. Perceiving the tatum implies that the listener or per-

former is judging and anticipating musical events with respect to a high frequency pulse.

Often, it is an illusory perception, quite similar to the illusory contours described in Marr's

book[Mar82] and perceived in the upside-down triangle in Figure 2-4.

The tatum is not always explicitly stated in a piece of music. How, then, is it implied?

Often, it is de�ned by the smallest time interval between successive notes in a rhythmic

phrase. For example, two sixteenth notes followed by eighth notes would probably create a

sixteenth note tatum. Other times, however, the tatum is not as apparent; then, it might

best be described as that time division that most highly coincides with all note onsets.3

The tatum provides a useful means of de�ning tempo variation and deviations.

Tatums pass by at a certain rate, and can be measured in tatums per minute. Therefore,

tempo variation can be expressed as tatum duration (in seconds) as a function of tatum

number. Similarly, deviations can be expressed as deviation (in seconds) as a function of

tatum number. That is, a deviation function determines the amount of time that an event,

metrically falling on a particular tatum, should be shifted when performed.

3Section 6.1.1 discusses situations in which the tatum rate may change in a piece.
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Note that tempo variation is de�ned per ensemble, whereas deviations are de�ned per

single voice of a performer. A piano, which has ten voices, would have a deviation function

producing at most ten values per tatum. Therefore, deviations operating at the tatum level

can encode the chord asynchronies of [Pal88] or constructs in the expressive timing calculus

of [DH92]. A drum, which we study here, has one voice and would have a deviation func-

tion producing at most one value per tatum.

The tatum concept will be used in several ways throughout this thesis. Tatums are

used to refer both to a perceptual concept and to a physical computer representation. Ad-

ditionally, tatums are used in two ways when referring to a representation.4 First, the

n
th tatum in a piece of music is the n

th tatum that occurs in that piece. For example, if

the piece is 200 measures long, and there are 16 tatums per measure, then there are 3200

tatums in the piece numbered from 1 to 3200. Second, the term per-measure tatum refers

to a tatum in a certain position relative to every measure in a piece of music. So, the i
th

per-measure tatum refers to the i
th tatum relative to the beginning of every measure.

2.3 Tempo Variation versus Deviations

One common question is if we assume tempo variation is also per person, why not just use

tempo variation to represent deviations in a performance? That is, is there mathematically

any di�erence between tempo variation and deviations? The answer is no, there is no math-

ematical di�erence. Either can represent performance timing. There is, however, a percep-

tual di�erence.

When listening to or playing in a drum or jazz ensemble, there are times when the

tempo is considered constant, even though members are playing o� the beat. Notice, the

concept of being \o� the beat" suggests that there is deviation from some tempo followed by

the ensemble. There is no concept, however, of individual members of the ensemble slightly

adjusting their own personalized tempo. Furthermore, the tempo change needed to repre-

sent deviations in a typical performance would be at an unnaturally high frequency and

high amplitude. Imagine, at each successive tatum, varying the tempo between 2000 and

354 tatums per minute (Figure 2-5A). Perceptually, this seems quite impossible. However

it seems quite reasonable to assume that a person could, at a constant tempo of 300 tatums

4Appendix E further de�nes representational subclasses of tatums.
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Figure 2-5: Equivalent Tempo Variation and Deviation Representations.

per minute, play every other note 15 percent of a tatum early (Figure 2-5B). In other words,

although they might be mathematically equivalent, tempo variation and deviations are dif-

ferent in more important ways { they are distinct both functionally and conceptually.

The previous paragraph suggests that there must be some (per person) upper limit

on tempo oscillation frequency. That is, any timing variation in the performance not ac-

counted for by tempo variation because of its high frequency must be caused by \devia-

tions." This seemingly minor point, as we will see in Section 4.2, is quite important.
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Chapter 3

Data Acquisition

Before we begin an analysis of timing in musical rhythm, it is necessary to obtain timing

data, extracting both onset time and note category. This chapter describes a new process

that I used both to extract onset times from a recorded performance of percussive music

and to automatically classify musical events into di�erent categories.

3.1 Attack Time Detection

What is an attack time? Most people would agree, an attack time is the point when a mu-

sical event becomes audible. But what does audible mean in this context? Does it refer to

the time when physical energy in a signal increases in�nitesimally, the time of peak �ring

rate of the cochlear nerve, the time when we �rst notice a sound, the time when we �rst

perceive a musical event (perceptual attack time), or something else? Whatever it means,

it is clear that perceptual attack time is not necessarily coincident with initial increase in

physical energy. In his paper, [Gor84] discusses various de�nitions of attack time. Unfortu-

nately he comes to no certain conclusion to the question. He notes, however, that it is eas-

ier to determine the attack time (whatever it may be) in percussive music because there is

less room for error; relative to other musical instruments, the time between zero and maxi-

mum energy of a percussive musical event is almost instantaneous.

Because there is not wide agreement on the exact de�nition of attack time, I use a

de�nition that, although not unreasonable, is biased towards percussive music: the attack

time is a point at which the slope of the short-time energy of the high-pass �ltered signal

reaches a peak. The reasons for this are discussed in this chapter.
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Some de�nitions of key terms used throughout this thesis follow. Each musical event

in percussive music is called a drum stroke or just a stroke; it corresponds to a hand or stick

hitting a drum, two sticks hitting together, two hands hitting together, a stick hitting a

bell, etc. The attack time of a drum stroke is its onset time, therefore the terms attack and

onset have synonymous meanings, and are used interchangeably. Finally, the term drum

stroke type (or just stroke type) is functionally similar to pitch. It provides a means to clas-

sify the quality of percussive sounds. A drum is hit in di�erent ways and those ways that

produce sounds that are distinct from others constitute di�erent stroke types.

3.1.1 The Recording, Environment, Instrumentation, and Personnel

They were possessed by the spirit of the drums.

Chinua Achebe
Things Fall Apart [1959]

It was an honor to have Los Mu~nequitos de Matanzas, the extraordinary dance and

drum ensemble from Matanzas, Cuba, as participants in my collection of percussive tim-

ing data. Indeed, the members of Los Mu~nequitos de Matanzas are some of the best (if

not the best) drummers in the world. They play with incredible feeling and technique and

they could fairly be called the apotheosis of percussive musical expression. I could not have

found a better musical ensemble for this study. The data obtained from this performance

was used for all subsequent analysis in this thesis.

The recording took place on 6 November 1992 in the MIT Media Laboratory's Exper-

imental Media Facility.1 I am indebted to the people who, during the two preceding days,

concentrated on the technical issues surrounding the recording.2 They were thorough and

ensured that the recording, once underway, would go smoothly and without malfunction.

Each performer was recorded onto a separate track of a multi-track tape player. My

goal was to obtain a transcription of each individual drummer, i.e., a list of all pairs of at-

tack times and stroke types for each performer. The drummers were each recorded on sep-

arate tracks to eliminate the necessity of performing source separation on the resulting sig-

nal, a procedure known to be extremely problematic [Ell92a, Mel91].

1i.e., the Cube.
2Especially Greg Tucker and Andy Hong.
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Figure 3-1: Layout of the Los Mu~nequitos Performance.

Eight members of Los Mu~nequitos de Matanzas were recorded. Three drummers each

played one conga drum { a low pitched one (tumbao), a middle one (segundo) and a high

one (quinto). The quinto player improvised whereas the tumbao and segundo players mainly

played repetitive, predetermined parts. Another ensemble member played the guagua, a

thick bamboo cylinder, about 4" diameter, hit with two sticks. In addition, there were four

singers. One singer simultaneously played the clave, two cylindrical hardwood blocks that

are hit together producing a high pitched sound. Another singer played the shaker, a rat-

tle made from a dried gourd with beads webbed around the gourd's bulbous end.

The drummers were as arranged as in Figure 3-1. Sound barriers surrounded the

guagua player and the three drummers (indicated as black bars in the �gure), preventing as

much inter-track bleed as possible (nevertheless, as we will see later, there was enough bleed

to cause di�culties). The recording was made on an eight track tape machine. The recorded

tracks, in order, consist of: 1) quinto, 2) tumbao, 3) segundo, 4) guagua, 5) the clave, the

shaker, and voice, 6) unused, 7) voice, and 8) voice. Although the original plan assigned one

performer to each recording track, technical di�culties required us to use only three tracks

for the vocals, clave, and shaker. A total of six songs were recorded, �ve rumbas and one

santeria. This amounts to a total recording time of approximately twenty three minutes.
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3.1.2 Computation of Drum Attack Times

Attack time detection was not a facile task. Although inter-track bleed was minimized by

the precautions taken during the recording process, some of the tracks, especially the tum-

bao, contained considerable bleed. The process described herein was developed speci�cally

for this performance. Nevertheless, it would successfully produce attack times for any per-

cussive recording without bleed.

Stroke types can generally be categorized in three ways (there are more than three

stroke types, but for the purpose of this discussion, three general categories su�ce):

1. High energy open tones with relatively long temporal extent (about 250ms). The

drummer forcefully strikes the drum, immediately removing the hand.

2. High energy slaps with relatively small temporal extent (about 20ms). The drummer

forcefully strikes the drum, without immediately removing the hand.

3. Low energymutes with relatively short temporal extent. The drummer gently grounds

the hand on the drum.

Unfortunately, the energy of mutes in one track was often less than the energy of bleed from

the combined e�ects of the quinto slaps and the broad-band noise of the shaker. For exam-

ple, in Figure 3-2, there are three tumbao mute attacks at 29.42, 29.6, and 29.8 seconds.

The quinto attacks bleed over at 29.35 seconds and 29.525 seconds,3 and there is broad-

band, temporally-long \noise" from the shaker between 29.25 and 29.45 seconds. Clearly,

this makes it di�cult to extract the attack time of the tumbao mute at 29.42 seconds which

is engulfed in a ood of neighboring track signal. This recurring situation caused consider-

able problems for the attack time detection algorithms. I tested several methods, all oper-

ating on data obtained from a 44.1kHz DAT recording of the individual tracks.

I initially implemented and tested the method described in [Sch85, Gor84]. First, the

envelope of the signal is computed by sliding a min-max window over the data. The min-

max window computes two values for the time point at the window's center; these values

are simply the minimum and maximum valued samples in the window. The window slides

over the signal �nding minimum and maximum values for all points in the signal { except,

3Because the entire spectral region (from 0Hz to 20kHz) is shown, the low frequency bleed near 500Hz is
at the very bottom of the spectrogram.
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Figure 3-2: Bleed of Quinto and Shaker onto Tumbao Track.

of course, for the �rst and last (windowLength� 1)=2 points. These values for all the signal

points constitute the envelope. A pseudo-derivative of the upper portion of the envelope is

then computed: for each point, it and several surrounding points are used to �nd the slope

parameter m using the method of linear least-squares �tting to a line. The slope signal is

searched sequentially and, when the slope goes above some threshold, the time of the next

zero-crossing (envelope maxima) is found and used as the attack time. That is, an attack

time is de�ned as a zero-crossing in the slope (or envelope maxima) that directly follows a

slope maxima above some threshold.

Because of the large amount of inter-track bleed in the Mu~nequitos recordings, how-

ever, this method either produced many spurious attacks, missed many of the low energy

mutes, or both. Furthermore, because the attack time is based on the slope of the envelope,

and the envelope is essentially a very low-pass �lter and has a very narrow pass-band, this

method has very poor time resolution. Drum hits are usually characterized by rapid tran-

sients that result in a broad-band noise burst. The most accurate attack-time measurement

will be aligned to this burst and is most easily computed using the upper part of the signal

spectrum. Therefore, we should use only high frequency energy as an attack time determi-
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Figure 3-3: Spectrogram of a Tumbao Mute and Open Tone.

nant. With this in mind, I proceeded to develop a new attack detection method.

Observe the spectrogram of two typical attacks, the �rst a mute, the second an open

tone (see Figure 3-3). The mute occurs at 5.5 seconds and the open tone begins at 5.7

seconds. There is essentially a broad-band short burst of energy for both attacks, but the

open tone has signi�cant temporal extension in the low frequencies (below about 500Hz).

Therefore, we can �lter out the low frequency energy and use the only high frequency en-

ergy as an attack time determinant. Because the high frequency energy burst is not tempo-

rally distributed and is essentially vertical and linear in the spectrogram, it makes sense to

use a linear phase FIR high-pass �lter. The resulting �ltered signal will therefore be wide

in frequency and shifted in time by the constant group-delay of the �lter [OW89]. Further-

more, because the �lter has a very wide pass-band (from the pass-band cuto� frequency up

to half the sampling rate) we should obtain good time resolution. This suggests the follow-

ing strategy which is diagrammed in Figure 3-4.

Attack Detection Strategy #1

Input: A digital signal containing drum strokes.
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Figure 3-4: Attack Detection Strategy #1.

Output: The attack times for each drum stroke.

Step 1: HPF. Filter the attack signal with a linear phase FIR high-pass �lter.

Step 2: ENG. Compute the short-time energy of the �ltered signal using a sliding win-

dow energy process. A window slides across the signal �nding the energy for the sam-

ple point at the window center. That is, we compute

e[n] =
i=+MwsX
i=�Mws

(x[n+ i])2;

where x[n] is the �ltered signal, 2Mws + 1 is the window size in samples, and e[n] is

the energy for position n of the �ltered signal.

Step 3: SLP. Compute the slopes of the energy using a sliding window slope process. This

is not just a �rst order di�erence, but is the computation of the slope m using the lin-

ear least squares method.

Step 4: THRS. Search through the slope signal. Once the slope goes above some thresh-

old (slopeThres), search over a pre-de�ned region (msSearchWin) for the point at

which the slope is maximum (MAX). Take that point as the attack time.

Step 5: Skip a bit (skipRegion) and go to step 4 if any signal remains to be processed.

Step 4 looks for the maximum of the slope of the short-time energy of the high-pass

�ltered signal { we are using, as our attack time, the point of fastest increase in high fre-

quency energy. The algorithm does not look for the maximum energy of the �ltered sig-
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nal as in [Sch85]; it looks for a rapid increase of �ltered signal energy at a time resolution

dependent on the size of the slope window, the size of the energy window, and the pass-

band of the high-pass �lter. There are several reasons for taking the maximum of the slope

rather than the maximum of the energy as the attack time:

� If we look only for absolute energy values, we might skip an attack. Consider, for ex-

ample, a possible situation in which the energy increases above some threshold be-

cause of an attack, and then before decreasing, increases further because of a new

higher energy attack. If we look only at absolute energy, we miss the second attack

(because there is no zero crossing of the slope of the energy of the �rst attack, it never

reaches a maximum). By looking at the maximum of the slope, however, we will de-

tect both attacks. In each attack, the computed attack times will be the points at

which the energy increases the fastest.

� Some might argue that it is important to compute the perceptual attack time (PAT),

i.e., the point in time at which humans perceive the attack. However, for analysis and

synthesis (which we do have planned), it might be erroneous to compute the PAT be-

cause once analyzed, synthesized, and re-listened, PAT adjustments would be counted

twice. In other words, any analysis on the timing properties of percussive sounds that

aims to discover what constitutes expressive timing should analyze what will be per-

ceived, not actually what is perceived. Therefore, we are ideally looking for the in-

tended attack time (IAT), the time the performer meant the sound to begin, not the

perceptual attack time. That way, a synthesis will produce something meant to be

perceived. At worst, if the PAT is identical for di�erent percussive sounds (or at least

within 1ms) and if the computed attack time is consistently a �xed distance away

from the PAT, then there will be no appreciable error during synthesis.

Furthermore, as discussed in section 3.1, we currently know little about the process-

ing in, and the feedback between, components of the mammalian hearing mechanism,

surely not enough to make de�nitive assertions about exactly when we perceive an at-

tack. The cochlea, the cochlear nucleus, the medial geniculate nucleus, and the audi-

tory cortex might all inuence each other in ways still unknown to even the best re-

searchers. And, although we have quantitative knowledge of auditory-nerve �ber re-

sponses in mammals, and are aware that such a nerve �ber follows a tuning curve
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[KP88] (the threshold of responses to tones plotted as a function of frequency), we

can not assume necessarily that the resulting post-threshold neural �ring rate corre-

sponds with PAT. PAT remains elusive.

It therefore may be concluded that we should choose the measure that enables us to

produce the most consistent attack times without being unduly concerned with PAT.

I implemented and tested this strategy. The high-pass �lter was designed using the

Kaiser window method [OW89]. A full listing of all the parameters and their descriptions

follow:

1. High-pass �lter parameters: The stop-band cuto� frequency !s, pass-band cuto� fre-

quency !p, and tolerance �. The transition region (�! = !s�!p) is de�ned implicitly.

2. slopeThres: When the slope goes above this value, we start searching for an attack.

3. msSearchWin (Maximum slope search window): once the slope is above slopeThres,

this is the maximum amount of time to search for a slope peak. This reduces unnec-

essary searching past the real slope peak.

4. skipRegion: Once a slope peak is found, this is the time to skip before searching again.

This is usually about 60% of the tatum rate (and is therefore tempo dependent).

5. ews: Energy window size: the window size for the sliding window energy process.

6. sws: Slope window size: the window size for the sliding window slope process.

The actual parameters used are listed in Table 3.1. I obtained many of them empirically by

repeatedly running the program. Note that slopeThres is dependent on the recording level

of the performance.

An average human can detect time deviations no smaller than about 5ms

[Sch85][pg22]. It seems reasonable to assume that professional percussionists, such as Los

Mu~nequitos de Matanzas, have more �nely tuned sensitivity to time deviations. It is there-

fore necessary to maintain very �ne-grained time resolution in our attack detection strat-

egy. Values controlling time resolution, the �lter pass-band, ews, and sws, needed to be

carefully chosen.

Unfortunately, because the attacks di�er signi�cantly in overall broad-band energy,

no working value for the slope threshold could be found, even after spending considerable
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Segundo Tumbao Quinto

!s 1000Hz 1000Hz 1000Hz

�! 50Hz 50Hz 50Hz

� 0.001 0.001 0.001

slopeThres 108 108 1:3� 108

msSearchWin 2.5ms 10ms 10ms

skipRegion 80ms 90ms 65ms

ews 1ms 1ms 1ms

sws 0.5ms 0.5ms 0.5ms

Table 3.1: Parameters for Strategy #1.

time adjusting all the parameters. One of two things would always happen. With a low

threshold, the algorithm would detect all mutes, open tones, and slaps, but would also de-

tect many spurious attacks (i.e., bleed). With a high threshold, the algorithm would not

produce any spurious attacks, but would also miss many of the mutes.

Attack Detection Strategy #2

In place of the high-pass �lter, I tried many band-pass �lters. I determined the pass-bands

by visually inspecting the spectrogram of the attacks, �nding frequency bands at which all

attacks seemed to all have common energy { but to no avail. The same problems occurred.

Attack Detection Strategy #3

Next, I located frequency bands in which di�erent attacks had comparable energy.

These regions might indicate reliable characteristics in the attacks' spectra that could be

used as a criterion for the indication of an genuine attack. I manually selected a set of

13 di�erent sample attacks that contained no bleed. For each attack i, its 16k point DFT

Xi[k] was computed. Then, the minimum Xmin[k] and maximum Xmax[k] of the magni-

tude spectrum was determined:

Xmin[k] = min (jX1[k]j; jX2[k]j; : : : ; jXn[k]j) ;

and

Xmax[k] = max (jX1[k]j; jX2[k]j; : : : ; jXn[k]j) :
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I then found the frequency bands where the di�erence,

Xres[k] = Xmin[k]�Xmax[k];

was small. Those frequency bands reveal the spectral locations at which the di�erence be-

tween the maximum energy and minimum energy of all attacks is small. There are two use-

ful cases when a frequency band in Xres[k] is small:

1. Xmax[k] is large and so is Xmin[k]. So, all attacks have high energy in this frequency

band.

2. Xmax[k] is small and so is Xmin[k]. So, all attacks have low energy in this frequency

band.

Case 1 could determine pass-bands and case 2 stop-bands in a multiple band-pass �lter.

Therefore, the �ltered signal would theoretically contain information pertinent only to the

attacks. And because the pass-bands are regions at which there is little energy di�erence,

the �ltered attacks should have comparable energy. I tested this strategy (using the method

of Strategy #1) with various such multiple band-pass �lters, but unfortunately there were

three problems which made it unusable.

First, contiguous frequency bands where Xres[k] was very small (less than or equal to

about 1% of the average value)

Xres[k]=average(Xres[k]) � 0:01

were extremely narrow. In fact the largest such region, centered just above 10kHz, had only

a 5Hz band-width. At 10kHz, at which the energy from all drum strokes is very low, any

attack detection strategy would fall prey to spurious attacks caused by the broad-band and

relatively high energy shaker.

Second, a linear phase FIR �lter with such a small pass-band (which implies, of course,

an even smaller transition region) would be several seconds in length[OW89]. A �lter of

this length would be computationally unrealistic with a sampling frequency of 44.1kHz.

Even worse, it would have terrible time resolution. Digital IIR �lters can be designed to

implement these very sharp spikes in magnitude frequency response. However, they would

likewise have terrible time resolution and would also produce nonlinear phase distortions.
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Figure 3-5: Another Example of Quinto Bleed onto Tumbao Track.

Therefore, such �lters were not considered further.

Third, when looking at frequency bands wider than 5Hz and centered on frequency

regions containing most of the drum energy (between 1k and 10kHz), Xres[k] would quickly

(within about 10Hz) jump to more than 50% of the average value and stay there. There-

fore, using a shorter DFT with coarser frequency resolution in the computation of Xres[k]

would probably produce no frequency bands in which Xres[k] was small. Disregarding these

facts, I tried the method with a linear phase FIR �lter of reasonable length. The pass-bands

with band-widths ranging from 50 to 300 Hz were situated over regions at which Xres[k]

was minimum. Unfortunately, even with these narrow pass-bands, the variation in Xres[k]

was signi�cant and the results were identical to those previous: either spurious attacks or

missed mutes. Reluctantly, this strategy was abandoned.

Two main problems caused the previous three approaches to fail. The �rst can be seen

in Figure 3-5. The genuine tumbao attacks are at 8.4, 8.61, and 8.82 seconds. At 8.52 sec-

onds, there is moderate high-frequency and signi�cant low-frequency bleed from the quinto

open tone onto the tumbao track. There is also signi�cant high-frequency bleed from the

shaker starting near 8.46 seconds. There is a high slope peak near 8.5 seconds because of
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Figure 3-6: High Frequency Quinto Bleed onto Tumbao Track.

the high-frequency bleed. This is higher in fact than the slope peak near the real tumbao

attack at 8.61 seconds. The above strategies produced either a spurious attack near 8.5 sec-

onds (with a high slopeThres) or a missed attack at 8.61 seconds (with a low slopeThres).

The second problem occurred when high frequencies bled from another drum track

(Figure 3-6). This example shows the quinto at 7.5 seconds bleeding over, not only in the

low frequencies but also in the high frequencies above 1kHz. The tumbao mute at 7.54 is al-

most smothered. Furthermore, the shaker bleed once again is signi�cant in high frequency

between 7.61 seconds therefore drowning the tumbao at 7.66 seconds.

From these two situations, we may deduce the following criteria about a valid current-

track attack: it contains a coincident increase in high and low frequency energy; the low

frequency energy is much larger than the high frequency energy; and the high frequency

energy is a broad-band temporally-narrow vertical burst. Therefore, it seems logical to re-

tain Strategy #1's attack criteria on the high frequency energy, but accept the attack only

if it coincides with a sharp increase in low frequency energy. This leads to the following al-

gorithm also depicted in Figure 3-7:

Filter Process A
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Figure 3-7: Attack Detection Strategy #4.

Input: A digital signal containing drum strokes.

Output: slopesA, a signal containing the slope of the energy of the high-pass �ltered input.

A1: HPF. Filter the attack signal with a linear phase FIR high-pass �lter.

A2: ENG. Compute the short-time energy of the signal using a sliding window energy

process.

A3: SLP. Compute the slopes of the energy using a sliding window slope process. Call

this slopesA.

Filter Process B

Input: A digital signal containing drum strokes.

Output: slopesB, a signal containing the slope of the energy of the low-pass �ltered input.

B1: LPF. Filter the attack signal with a linear phase FIR low-pass �lter. designed with

a pass-band cuto� frequency equal to the frequency below which the majority of an

average attack's energy is found.

B2: ENG. Compute the short-time energy of the signal using a sliding window energy

process.

B3: SLP. Compute the slopes of the energy using a sliding window slope process. Call

this slopesB.

Attack Detection Strategy #4
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Input: A digital signal containing drum strokes.

Output: The attack times for each drum stroke.

step 1: Run Filter processes A and B.

step 2: Once slopesA goes above slopeAthreshold, if slopesB is also above slopeBthresh-

old1 (THRS), search (MAX) over some pre-de�ned region (msSearchWin) for the

point at which slopesA is maximum. Accept the attack time only if slopesB is above

slopeBthreshold2.

step 3: Skip a bit more. Go to step 2 if any signal remains to be processed.

The attack time is therefore the point at which the high frequency energy is increas-

ing the fastest, contingent on the low frequency energy increasing at a certain rate. Of

course, this process adds considerably to the number of parameters. In fact, the parame-

ters now consist of:

1. High-pass �lter parameters: The stop-band cuto� frequency !As , pass-band cuto�

frequency !Ap , and tolerance �A. Again, the transition region (�!A = !As � !Ap) is

implicitly de�ned.

2. slopeAThres: When the slope goes above this value, we begin searching for an attack.

3. ewsA: Energy window size, the window size for the sliding window energy process.

4. swsA: Slope window size, the window size for the sliding window slope process.

5. Low-pass �lter parameters: The pass-band cuto� frequency !Bp , stop-band cuto� fre-

quency !Bs, and tolerance �B .

6. slopeBThres: Same, but for process B.

7. ewsB: Same, but for process B.

8. swsB: Same, but for process B.

9. slopeBThres2: The value that slopesB must be above for a candidate attack to be ac-

cepted. This reduces the likelihood that a small bump in low frequency would cause

the process to accept a spurious attack.
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Segundo Tumbao Quinto

!Bs 1000Hz 1000Hz 1000Hz

�!B 50Hz 50Hz 50Hz

�B 0.001 0.001 0.001

slopeBThres 107 0:2� 107 106

slopeBThres2 0 0 0

ewsB 1ms 1ms 1ms

swsB 15ms 20ms 15ms

Table 3.2: Strategy #2 Parameters.

10. skipRegion: Same as in Strategy #1.

11. msSearchWin: Same as in Strategy #1.

I implemented and tested this strategy. The FIR �lters were again designed using the

Kaiser window method. Many parameters here are identical to Strategy #1 and have the

same �nal values, so Table 3.2 contains only the additional ones. Notice that the low-pass

�lters pass only the frequencies that the high-pass �lter removes.

The parameter slopeBThres2, always set to zero, ensured that slopesB was not nega-

tive at the attack time. Therefore, we never accepted an attack time when the low frequency

energy was decreasing. This reduced the chance of spurious attacks. In addition, this pa-

rameter, along with msSearchWin, limited the search extent for high frequency slope peaks.

This algorithm worked well. Figure 3-8 gives an example in which dotted lines in-

dicate computed attacks. Nevertheless, I spent considerable time adjusting parameters.

There was method to this madness however; deactivating the attack criteria on slopesB,

I adjusted the attack criteria on slopesA until all real attacks and some spurious attacks

were detected. Then, looking at the values of slopesB at the spurious attack times, I set

the slopesB attack criteria parameters to reject only the spurious attacks. Then, reactivat-

ing the slopesB attack criteria, I ran the program a �nal time.

This algorithm, along with its preventatively set parameters, eliminated all of the

spurious attacks while allowing the genuine ones through. Still, there were some problems

in the adjustment of swsB. If it was too small, a spurious attack occurring just before a

genuine attack might cause a large slopesB value and would be accepted. If swsB was too

large, mutes were rejected because values of slopesB were essentially zero at mute attacks

even though values of slopesA were above threshold.
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The tumbao track was most intransigent. This drum was placed next to the quinto

(the loudest drum) during the performance, so there was quite a bit of bleed. Moreover,

tumbao open tones were occasionally followed immediately by a soft mute, and slopesB was

negative even though slopesA was large and positive. In addition, fast runs of open quinto

tones caused problems detecting quinto attacks; the previous tone had not completely de-

cayed when the next tone started, so slopesB was not very large.

The parameters listed in Table 3.2 were tuned to avoid spurious attacks and miss as

few mutes as possible. Presumably, it is better to get valid data and less than 100% of what

exists (missed attacks), than invalid data and more than 100% of what exists (spurious at-

tacks).

After all attacks were detected, I assiduously examined and veri�ed each one, correct-

ing any mistakes. This step was necessary because subsequent portions of this project rely

on perfectly accurate data. I also used the corrected attack time lists to judge the perfor-

mance of the attack detector. On all tracks, the attack detector found 100% of the open

tones and slaps, about 95% of the mutes, and produced less than 3% spurious attacks.

Bleed caused most of the problems. If there was no inter-track bleed, I believe this

approach would be 100% successful. In an ideal recording session with drummers playing

in isolation booths, this attack detection strategy should work perfectly.

3.1.3 Computation of the Guagua Attack Times

Computation of the guagua attacks was a facile task, indeed. Although there was track

bleed, the guagua attacks were signi�cantly higher in energy. More importantly, all the

guagua attacks had about equal energy and the impulse responses of the guagua attacks

were all almost identical. Therefore, I used Attack Detection Strategy #1, �nd the fastest

increase in energy of the �ltered signal. There was one major di�erence, however. Rather

than using a linear phase �lter, I used a matched �lter. The matched �lter's impulse re-

sponse was obtained by simply taking a time reversed sample of a clean (no bleed) guagua

stroke. Convolving the guagua track with this �lter was therefore equivalent to cross-

correlating it with the clean guagua impulse response. That is, normal discrete time con-
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volution of a signal and a �lter is de�ned as

y[n] = x[n] � h[n] =
1X

k=�1

x[k]h[n� k];

where x[k] is the signal and h[n] is the �lter impulse response. If h[n] is the impulse re-

sponse of the guagua, we compute

y[n] = x[n] � h[�n] =
1X

k=�1

x[k]h[k� n];

which is the de�nition of cross-correlation between x[n] and h[n]. The peaks of the slope of

the energy were found just as in Strategy #1. This worked awlessly.

3.1.4 Implementation Note

I implemented this whole process in C++. Entire signals, 5 minutes of 44.1kHz stereo 16bit

sampled sounds,4 were much too large to process whole. Therefore, processing was done

in segments. The �ltering method consisted of linear convolution using FFTs in which ad-

jacent segments were combined using the overlap add method[OW89]. For the same rea-

son, the program computed alternating segments of slopesA and slopesB rather than one at

a time. Because ewsA 6= ewsB and swsA 6= swsB, it was possible to encounter a value in

slobesB whose corresponding slopesA value was not in the current segment (and vice versa).

Therefore, the program contained some interesting bookkeeping.

I implemented the sliding windows attempting to take advantage of previously com-

puted information whenever possible. The sliding energy-window was implemented as a

C++ class. Through obvious means, each single sample slide-right required two oating-

point multiplies, two oating-point adds, and one pointer increment. The sliding slope-

window was also implemented as a C++ class. Each single sample slide-right required four

oating point adds, and �ve oating point multiplies, regardless of the window size. As-

suming the de�nitions of Sx, Sy , Sxx, and Sxy given in [PTVF92], let Sx[i], Sy[i], Sxx[i], and

Sxy[i] be the corresponding values for position i+ (M � 1)=2 in the sequence Y [i]. Because

Sxy [i+ 1]� Sxy [i] = �T � (Yi+1 + Yi+2 + : : :+ Yi+M�1 � (M � 1)Yi+M );

4I look forward to the day when I can look back and smile at this paltry value.
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where T is the sampling period, each slide right may be computed as

Sy -= (double)Y[0];

// Y is actually a float* pointing to the first data location.

Y++;

Sxy -= period*(Sy - (double)(windowLength-1)*

(double)Y[windowLength-1]);

Sy += (double)Y[windowLength-1];

Roundo� could be a problem after many slides. Therefore, computation is done in double

precision and, for each new segment, Sy and Sxy are calculated anew.

With these optimizations, the FFT code consumed 60% of the user time in each run.

Additional optimizations were not possible.

3.1.5 Conclusion

The wasting of time is an abomination to the spirit.5 Yet many hours of time spent mas-

saging parameters for a given test case motivated one major realization: This is not the

way humans detect attack times in percussive music. When I, a human, listen to the per-

formance, I have no trouble attending to only the current drum, ignoring the bleed (simi-

lar to the well-known cocktail party e�ect [Bre90]). In fact, I have no trouble attending to

an instrument only via its bleed (I can easily listen to the quinto on the tumbao track, for

example). The energy process approach would certainly kick up its heels with that one.

In e�ect, humans have the capability of listening to only what they wish. We can iso-

late events from an amalgamation of sounds; we can zoom in on what interests us. All of

these things, I believe, require a high degree of knowledge about the sound source. Humans

must have a representation of what they are attending to (e.g., a particular percussive in-

strument), they must have unconscious knowledge of what to listen for, and they must have

expectations about when to listen. This representation perhaps signi�cantly inuences low-

level auditory processing, something [KP88] a�rms. Indeed, I expect any low level process-

ing like the method I describe above to be completely fruitless in an endeavor to obtain any

perceptually genuine measure of auditory event onset times. Nevertheless, as stated above,

for our purposes we require not the perceptual attack time, but rather an attack time mea-

5The Maxims of Ptahhotpe [c. 2350 B.C.]
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Figure 3-9: Automatic Stroke Classi�cation Strategy.

sure based on the physical energy in the data signal itself and that can be used for analy-

sis and synthesis. So, although it is a fascinating problem to determine how humans per-

ceive percussive attacks (or for that matter, any sound at all), we have restricted ourselves

here to the task at hand, studying what humans produce.

3.2 Automatic Stroke Classi�cation

I initially classi�ed drum strokes by hand { another extremely tedious process. While su�-

cient for obtaining stroke types, this manual process became quite time consuming. I there-

fore decided to build an automatic stroke classi�cation system.

The general approach, depicted Figure 3-9, is described as follows. For each drum

stroke, extract numerical features from the input signal. Use these features in an unsuper-

vised learning strategy that discovers natural clusters in the feature space. Finally, assume

each cluster corresponds to a separate stroke type. Three processes constitute the system: 1)

the segmentation process, 2) the feature extraction process, and 3) the clustering algorithm.

3.2.1 Drum Stroke Segmentation

When extracting features, it is necessary to know the portion of the signal constituting each

drum stroke, i.e., the delimiting time points. This is done by �nding the point after each

attack time at which the energy has signi�cantly decayed.

First, compute the short-time energy signal using the sliding window energy process.
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Use a relatively large window size (sEws) that guarantees high-frequency (i.e., short time)

and large-magnitude energy variation does not mistakenly signal the end of the stroke.

Second, �nd the point of maximum energy between the attack time and breakO� sec-

onds before the next stroke. Therefore, both breakO� and the next attack time determine

the maximum distance to search.

Finally, starting at the attack time, search for the point when the energy signal be-

comes smaller than a fraction, energyFraction, of the previously found maximum energy.

The end of the stroke is determined by the point of submergence. If the energy signal never

gets there, however, the stroke end is breakO� seconds time before the next attack time.

When I tested this algorithm, I adjusted the parameters to provide the best segmen-

tation. I judged this by visually inspecting the stroke delimiters. The results were then

given to the next stage of processing.

3.2.2 Feature Extraction

Obtaining good features for each drum stroke was quite straightforward: run each stroke

segment through a four-stage processing step consisting of: 1) segmentation, 2) feature ex-

traction, 3) normalization, and 4) feature dimensionality reduction.

Feature De�nition

The segmented signal is subjected to spectral analysis resembling the transfer function be-

tween auditory sound events and action potentials of cochlear nerve �bers in the mammalian

ear. The spectral components provide features. Similar to the low-level auditory processing

of humans who do so magni�cently in this task, such biologically plausible features should

make it easier for a pattern classi�er to discriminate between di�erent strokes. The analy-

sis technique I used is an approximation to the constant Q transform[Bro91, Ell92b].

A constant Q transform has components that have constant Q, or constant center fre-

quency ! to band-width �! ratio (i.e., !=�! = Q). Such a transform may be calculated

by evaluating[Bro91]

Xcq[kcq] =

N [kcq ]�1X
n=1

![n; kcq]x[n]e
�jn!kcq ;

where Xcq[kcq] is the kcq'th component of the transform, x[n] is the sampled time function,

and ![n; kcq] are window functions (kernels) of length N [kcq] that determine the frequency
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characteristics (center frequencies and band-widths) of each transform component.

Resembling natural cochlear �ltering, the center frequencies are geometrically spaced

and the band-widths of the individual elements increase with frequency. The center fre-

quencies are often based on a musical scale and may be calculated using

!kcq = (2c=12)kcq!min;

where !min is the lowest center frequency, and c is the number of semitones between suc-

cessive center frequencies. This leads to a Q of

Q =
!kcq

!kcq+1 � !kcq
=

1

2c=12 � 1
:

In [BP91], a constant Q transform is calculated e�ciently using the output of a dis-

crete Fourier transform (DFT). However, I chose to approximate the constant Q transform

using a DFT by simply averaging the spectral values at di�erent band-widths for di�erent

center frequencies. The implementation is quite easy and, as we will see, seems to produce

distinguishable features. Speci�cally, I de�ne the approximated constant Q transform as

Xacq[kcq] =
1

Mkcq �Nkcq + 1

MkcqX
k=Nkcq

jX [k]j;

where

Nkcq = (!kcq �
!kcq
2Q

)
N

2�
;

Mkcq = (!kcq +
!kcq
2Q

)
N

2�
;

and where Xacq[kcq] is the kcq'th component of the transform, !kcq are the desired center

frequencies, X [k] is the DFT of drum stroke time signal x[n], and N is the DFT length. I

implemented and tested this strategy with various values for c and !min.

Two additional features were computed for each stroke. The �rst one is the length-

normalized energy of the drum stroke sample; that is,

xavg =
1

L+ 1

LX
n=0

xe[n]
2;

where L is the length of the stroke segment.
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The second one, used also in [Sch85], encodes temporal extent by exploiting a drum

stroke's near exponential energy decay. The goal is to �t an exponential decay function to

the energy of the drum stroke sample. The energy is once again computed using the sliding

window energy process, with window size fEws. Speci�cally, we �nd � , the decay constant

for which the energy of x[n] most closely matches the function y[n] = e�nT=� , where T is

the sampling period. I �rst considered using nonlinear least squares methods [PTVF92] to

�t the decaying exponential to the energy of the signal, but decided against it because the

following approach was much simpler and probably just as e�ective.

I use autoregressive (AR) or all-pole signal modeling[LO88]. Speci�cally, I use the au-

tocorrelation method of linear prediction and obtain a �rst-order model of the drum stroke

energy signal xe[n]; the parameters of the �rst-order model determine the time constant � .

The derivation of � which follows is quite di�erent than that found in [Sch85].6

We wish to model the signal xe[n], the drum stroke energy sample of length L + 1

and with z-transform Xe(z). By �nding a signal a[n] = a0 � a1�[n � 1] with z-transform

A(z) = a0 � a1z
�1 such that

Xe(z)A(z) = 1 +E(z);

or

xe(n) � a(n) = �(n) + e(n); (3:1)

where the error e[n] is minimized, A(z) becomes an approximation to the inverse of Xe(z).

We may therefore approximate Xe(z) using the inverse of A(z); that is,

X̂e(z) =
1

A(z)
=

1

a0 � a1z�1
� Xe(z):

Because we are interested only in the time decay and not the amplitude of the approxima-

tion, we may multiply by a0 and obtain

X̂e
0
(z) = a0

1

A(z)
=

1

1� a01z
�1

;

where a01 = a1=a0 giving

x̂e[n] = a01
n
u[n] � xe[n]=a0:

6A more general derivation of the autocorrelation method can be found in [Jac89, LO88, Mak75].
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Equation 3.1 can be represented in matrix form

Xe~a = ~� + ~e;

where

Xe =

0
BBBBBBBBBBBBBB@

xe[0] 0

xe[1] xe[0]

xe[2] xe[1]
...

...

xe[L] xe[L� 1]

0 xe[L]

1
CCCCCCCCCCCCCCA

;

~a = [a0 �a1]
T ;

~� = [1 0 : : :0]T ;

and

~e = [e0 e1 : : : eL+1]
T :

Applying the least-squares error criterion, we seek to minimize

E = ~eT~e = (Xe~a� ~�)T (Xe~a� ~�):

Setting the vector derivative to zero, we get:

@E

@ ~xe
= 2Xe

TXe~a� 2Xe

T~� = ~0;

or

Xe

TXe~a = Xe

T~� = xe[0]~�;

which is called the normal equation [Str88] and has solution

~a = (Xe

TXe)
�1

xe[0]~�:
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In the �rst order case, we have

Xe

TXe =

0
B@

PL
n=0(xe[n])

2 PL�1
n=0 xe[n]xe[n+ 1]PL�1

n=0 xe[n]xe[n+ 1]
PL

n=0(xe[n])
2

1
CA ;

and because we are not interested in the amplitude of the exponential approximation, we

can write the normal equation as

Xe

TXe~a
0 = (xe[0]=a0)~�;

where ~a0 = ~a=a0. The second equation in this system of two equations implies

L�1X
n=0

xe[n]xe[n+ 1]� a01

LX
n=0

(xe[n])
2 = 0;

or

a01 =

PL�1
n=0 xe[n]xe[n+ 1]PL

n=0(xe[n])
2

:

Assuming that a01 = e�T=� with sampling period T , we get

� =
�T

ln(a01)
:

This provides the time constant value.

The previous process provides us with, for each of the P strokes, length N vectors,

~F 0
i =

�
cqi0 cqi1 : : : cqiN�3 �i xavgi

�T
;

where for i = 1 : : :P , cqij is the jth approximated constant Q transform component, �i is

the time decay constant, and xavgi is the average energy for the ith drum stroke.

Normalization

Because each vector component should carry equal importance in the classi�er, the features

were normalized to possess zero mean and unit variance. This was done by subtracting the

means and dividing by the standard deviations:

~Fi j = ( ~F 0
i j �mj)=�j;
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~m =
1

P

PX
i=1

~F 0
i;

~�j =

 
1

P

X
i=1

P ( ~F 0
i j �mj)

2

!1=2
:

Dimensionality Reduction

If c, the number of semitones between successive center frequencies of the transform, is too

large, we loose frequency resolution and therefore loose ability to discriminate between dif-

ferent stroke types. Therefore, I determined the best values of c and !min experimentally. A

value of 4 semitones (third octaves) resulted in 26 transform components and feature vector

lengths of 28 { quite large for the number of drum strokes per data set (approximately 1000).

To reduce the feature space to a more manageable size, I used principle component

analysis (also known as the Karhunen-Lo�eve transform). This method enables us to repre-

sent a vector ~Fi of dimension N with a linear combination of M < N vectors from an ap-

propriate orthonormal basis ~uj ; j = 1 : : :N . This approximation is

~̂
F = �1~u1 + �2~u2 + : : :+ �M~uM ;

where

�i = ~Fi~ui:

For a given value ofM , we desire the di�erence between the original and the approximation,

~� = ~Fi �
~̂
F =

NX
j=M+1

�j~uj ;

to be minimal.

It can be shown [The89] that the basis vectors that minimize ~�T~� for a given M are

the eigenvectors corresponding to the M largest eigenvalues of the correlation matrix of

vectors ~Fi,

E[ ~F ~FT ]:

The maximum likelihood estimation of the correlation matrix, called the sample correla-
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tion matrix[DH73], is de�ned as

R =
1

P

PX
i=1

~Fi ~F
T
i ;

and is what I used. Further, it can be shown that this set of eigenvectors accounts for as

much of the data's variances as possible for a given M [HKP91, The89] (the eigenvector

corresponding to the largest eigenvalue points in the direction of the greatest variance of

the data, the eigenvector corresponding to the next largest eigenvalue points in the direc-

tion of the next greatest variance, and so on). So, by choosing these eigenvectors as a ba-

sis, we are representing the features using the most important directions.

We therefore compute the N eigenvectors and eigenvalues of the sample correlation

matrix, sort them, and then choose M eigenvectors where the sum of the largest M corre-

sponding eigenvalues is some percentage p of the total sum of the eigenvalues. The param-

eter p is determined empirically. It is chosen with the goal of minimizing the number of di-

mensions while retaining the ability for the classi�er to discriminate between feature vectors.

3.2.3 Classi�cation

I considered several unsupervised learning strategies, including Hebbian self-organizing

feature extractors [HKP91] and a competitive learning strategy based on adaptive reso-

nance theory [HKP91, CG91]. However, I decided on a more traditional clustering ap-

proach because it was much easier to implement. I used the K-means clustering procedure

[The89, DH73] (also called the Basic ISODATA procedure) which I de�ne here. Note that

in this de�nition, the words cluster, class, and stroke type are used interchangeably.

K-Means Algorithm

Input: A list of feature vectors of dimension M and the upper limit K of the number of

clusters to assign to the feature vectors.

Output: For each feature vector, a number between 1 and K indicating the cluster to

which it belongs

step 1: Create K clusters. Arbitrarily assign each feature vector
~̂
F i to one of the K clusters.

step 2: Compute the means of each cluster.

step 3: Reassign each feature vector to the cluster to which it is nearest.
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step 4: If any reassignments occurred in step 3, go to step 2, otherwise stop.

It can be shown [DH73] that the simple K-means procedure optimizes the sum-of-

squared-error criterion function, de�ned by

mi =
1

ni

X
~̂
F2Fi

~̂
F

and

Je =
KX
i=1

X
~̂
F2Fi

k
~̂
F �mik

2;

where Fi is the set of vectors currently contained in cluster i, and ni is the size of Fi. That

is, for a given K, the K-means procedure attempts to �nd a clustering of the samples for

which Je is minimum. From the equations, it can be seen that this is essentially a mini-

mum variance criterion; K-means tries to �nd a clustering where the intra-cluster variance

is minimum.

A major problem with the simple K-means algorithm is determining the number of

clusters K. This is known as the problem of validity. Normally, if K is known, K-means

works well for dense, well-separated clusters (i.e., small intra-cluster variance and large

inter-cluster variance). But because our data set is essentially unknown, we have no a pri-

ori means of determining K. Much literature exists on testing the validity7 of a given K.

The approaches are usually either based on statistical assumptions about the process gen-

erating the data or assume an optimizeable criterion function [DH73, And73, JD88, Bij73,

DHJO87, AB84, ACD87].

Rather than formulating the problem in such a way, and because I did have rough

bounds on K (i.e., K � 3 and K � 15, a rather small range), I determined it empirically:

I ran K-means several times and found the K which worked best according to my ear.

3.2.4 Results of Automatic Classi�cation

I applied the classi�cation procedure to the tumbao, quinto, and segundo data. I corrected

any errors by hand because they were unacceptable for later analysis. The results which

follow are a comparison between the direct output of the algorithm and the hand-corrected

7We also encounter this problem once again in Chapter 5.
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Tumbao Quinto Segundo

Segmentation

sEws 5ms 5ms 5ms
engergyFraction 0.5% 0.5% 0.5%
breakO� 10ms 10ms 10ms

Features

c 4 4 4
!min 50 30 30
fEws 5ms 5ms 5ms
Resulting Num Features 31 31 28

Karhunen-Lo�eve

Percent p 90% 90% 90%
Resulting Num Features 4 5 9

K-Means Procedure

K 5 4 5
Correct Num Classes 6 8 10

Table 3.3: Classi�cation Parameters and Results.

versions. The programs were run with the parameters listed in Table 3.3. I will describe

the results for the Tumbao and Quinto only.

I ran K-means several times trying di�erent values for K. In addition, select samples

were manually extracted from the signal. I used the output of each K-means run to synthe-

size the performance by matching cluster numbers to hand-extracted samples. A synthesis

program8 retriggered the hand extracted samples at the appropriate time using the stroke

types determined by K-means. The classi�cation that produced the most correct sounding

performance was accepted.

I accepted a value of K = 5 for the K-means algorithm on the tumbao data. There

are 997 tumbao samples. Once manual correction had been completed, there turned out

to be 6 distinct stroke types. K-means, with K = 5, correctly classi�ed 80% of the drum

strokes, as can be seen in Table 3.4. Notice that we have done quite well (above 85%) with

those drum strokes that have high relative frequency (above 20%); and we have done poorly

on those strokes that have low relative frequency. This con�rms our expectation about the

K-means algorithm: if there are not enough samples in a class to create a relatively dense

8Csound[Ver].
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Class Total Occurrences Relative Freq Num Correct % Correct

1 42 0.0421264 0 0%

2 384 0.385155 339 88.2812%

3 212 0.212638 211 99.5283%

4 292 0.292879 252 86.3014%

5 64 0.0641926 0 0%

6 3 0.00300903 0 0%

Totals 997 1 802 80.4413%

Table 3.4: Classi�cation Results for Tumbao, K = 5.

Class Total Occurrences Relative Freq Num Correct % Correct

1 42 0.0421264 0 0%

2 384 0.385155 338 88.0208%

3 212 0.212638 134 63.2075%

4 292 0.292879 250 85.6164%

5 64 0.0641926 0 0%

6 3 0.00300903 3 100%

Totals 997 1 725 72.7171%

Table 3.5: Classi�cation Results for Tumbao, K = 6.

cloud, samples from that class will tend to be adopted by another.

Once I knew the correct number of classes, out of curiosity I re-ran the K-means al-

gorithm with K = 6; the results are shown in Table 3.5. The most striking feature of these

results is that the total percent correct decreased from 80% to 73%, especially because class

6, with three samples, is classi�ed 100% correctly.

Table 3.6 shows the K-means results with K = 4, the accepted value on the quinto

data. I again corrected any errors manually { there were eight distinct stroke types { and,

once again ran K-means on the quinto data, this time with K = 8. The results are shown

in Table 3.7. Once again, we see that the total percent correct went from 80%, when using

an incorrect number of classes, down to 52%, when using the correct number.

This phenomenon can be explained by considering the minimum variance criterion

function Je which K-means attempts to optimize[DH73]. When the K-means algorithm is

allowed to create more classes, rather than create a new cluster surrounding a small num-

ber of points that constitute their own class, K-means will try to split a heavily populated

class into smaller ones. This is because creating a cluster surrounding a small group will
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Class Total Occurrences Relative Freq Num Correct % Correct

1 299 0.318424 299 100%

2 339 0.361022 336 99.115%

3 209 0.222577 135 64.5933%

4 12 0.0127796 8 66.6667%

5 41 0.0436635 0 0%

6 4 0.00425985 0 0%

7 1 0.00106496 0 0%

8 34 0.0362087 0 0%

Totals 939 1 778 82.8541%

Table 3.6: Classi�cation Results for Quinto, K = 4.

Class Total Occurrences Relative Freq Num Correct % Correct

1 299 0.318424 295 98.6622%

2 339 0.361022 86 25.3687%

3 209 0.222577 83 39.7129%

4 12 0.0127796 5 41.6667%

5 41 0.0436635 5 12.1951%

6 4 0.00425985 0 0%

7 1 0.00106496 0 0%

8 34 0.0362087 17 50%

Totals 939 1 491 52.2897%

Table 3.7: Classi�cation Results for Quinto, K = 8.
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have only a small e�ect on Je, whereas splitting a dense and large cluster will create two

smaller clusters, each with much less variance, having a large overall decrease in Je. For

perfect clustering, therefore, it is important to have well balanced classes when using the

K-means procedure. Unfortunately, my data was only moderately balanced.

Is 80% correct the best we can do? When I listen to some of the incorrectly classi�ed

drum strokes in isolation, I also have di�culty determining which stroke was played. How-

ever, once the stroke is in context { within a musical phrase performed relative to the met-

ric form { I have no trouble identifying the stroke. The basic problem is this: too many

drum strokes sound alike when out of context. I would not be surprised to �nd an illusory

e�ect of some kind, an illusory di�erence, in which drum strokes which sound identical out

of context sound completely di�erent in a musical context (more on this in Section 6.1.5).

Therefore, without fundamental information such as the drum stroke's tatum number, its

position in a musical phrase, and perhaps even a deeper understanding of the performance

itself, it seems unlikely to produce a classi�cation scheme that rivals human performance.

Nevertheless, even at 80% correct, the tedious process of hand classi�cation was re-

duced to a much easier and faster process of checking for errors, a time saver indeed.
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Chapter 4

Timing Analysis

4.1 Introduction

To err is human. Yet most users of drum machines and music sequencers strive to elimi-

nate errors in musical performance. In fact, some computer musicians1 never turn o� the

quantize option, destroying forever \aws that make the performance sound sloppy." On

the other hand, some computer musicians complain about the mechanical quality of com-

puter music. They call for the development of techniques that would enable computers to

sound better, i.e., more \human."

There are two orthogonal criteria of performance. The �rst is sheer technical pro�-

ciency. Clearly, computers have long surpassed humans on this axis { no one can perform

faster than a computer. The other is expressivity, something more elusive, something that

gives music its emotion, its feeling, its joy and sorrow, and its humanity. Music exudes hu-

manity; computer music exudes uniformity. This, I strive to eliminate.

4.2 Timing Extraction Algorithm

The algorithm presented herein extracts the quantized score, the tempo variation, and the

deviations from a musical performance. Combined with the algorithms given in Chapter 3,

it can be considered an automatic transcriber, with the added feature of providing expres-

sive timing information. The input to the algorithm is a list of attack times. Section 2.3

1I use \computer musician" to refer to anyone who uses a computer to create music and \computer mu-
sic" to refer to music created thereby.
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suggests that there must be some (per person) upper limit on tempo oscillation frequency.

That is, any timing variation in the performance not accounted for by tempo variation be-

cause of its high frequency must be owing to deviations. This is a crucial point and the

timing extraction algorithm was developed with this assumption in mind.

The main goal of the algorithm is to obtain information that can transform quan-

tized musical phrases into expressive ones. This task becomes easier if we use the knowl-

edge of a performer. Therefore, the algorithm is given complete metric knowledge. That is,

it knows the time signature, the number of tatums per beat, the number of beats per mea-

sure, and where the beginning of the measure is (the answer to \where is one?"). The algo-

rithm is not a music quantizer. Music quantizers are often used by MIDI sequencers, score

editing programs, and electronic drum machines; they produce a performance in which the

duration between all note onsets is a multiple of some time quantum. This algorithm not

only extracts the metric score and tempo track (similar in function to the tempo tracking

in [Ver84, DMR87]) but also extracts the deviations.

There are two versions of the algorithm: the �rst is primarily for percussive music;

the second is slightly more general. The algorithms both require a reference instrument

and a performance instrument. The reference instrument is used to extract tempo. The al-

gorithms produce the expressive timing of a performance instrument relative to the tempo

de�ned by the reference instrument. In an ensemble, any instrument (including the refer-

ence instrument) may be considered a performance instrument.

In version I of the algorithm, the reference instrument must repeatedly play a known

predetermined pattern. The period of the pattern must be an integer multiple of the mea-

sure duration. Percussive music normally contains such an instrument (e.g., a bell, a clave,

etc.) so this is not an unreasonable requirement.

The algorithm �rst computes a tempo function using the reference instrument. The

tempo function is then transformed into a tatum duration function { tatum duration as a

function of tatum number. The tatum duration function determines a tempo-normalized

metric grid, i.e., a time grid spaced so that grid markers determine the time points of each

tatum. The metric grid is then used as a reference to judge the performance instrument. For

each performance instrument attack, the deviation is its distance to the nearest grid marker.

Let L be the number of tatums per measure, R be the number of reference instru-

ment attacks per measure, x[n] be the nth reference instrument attack time, y[n] be the nth

59



performance instrument attack time, and let z[n] = x[n�R] be our estimate of the starting

time of the nth measure (if reference instrument attacks do not fall on the measure start-

ing points, we interpolate, add entries to x[n], and pretend that it does). y[0] must lie past

the �rst measure's starting point.

For n = 0 : : :R � 1, we compute P [n], the average fraction of a measure of the time

between reference instrument attacks n and n + 1:

P [n] =
1

M

M�2X

m=0

x[mR+ n+ 1]� x[mR+ n]

z[m+ 1]� z[m]
;

where M is the number of measures in the performance. If the performer is playing very

uniformly (i.e., nearly quantized), P [n] may be obtained directly from the pattern (or score)

rather than from the attack times.

Next, we compute the rough tempo function

T 0[n] =
x[n+ 1]� x[n]

P [n mod R]
:

T 0[n] provides an estimate, at time x[n], of the measure duration. The reference instru-

ment informs the ensemble what the tempo is at any one point in time. The performance

instrument, if it is dominant in the ensemble (e.g., a lead drum), controls when the tempo

speeds up and slows down. In short, the reference instrument de�nes the tempo while the

performance instrument controls the tempo. Because the actual tempo might take a while

to be reected in the reference instrument, when obtaining the timing of a dominant per-

formance instrument we look slightly ahead, and compute

T [n] =
1

C + 1

n+CX

k=n

T 0[k];

where C is a parameter determining how far into the future we should look. C depends on

the performance instrument, and could equal zero. Accordingly, T [i] might or might not be

an anticipatory measure duration estimate.
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Creating a continuous time function, we next linearly interpolate2

D(t) = T [n] + (T [n+ 1]� T [n])�
t � x[n]

x[n+ 1]� x[n]
;

where

n = fn : x[n] � t < x[n+ 1]g:

It follows that D(t) is an estimate at time t of the measure duration.

Clearly, as the tempo decreases, D(t) increases and 1=D(t) decreases. The goal is to

�nd the tempo-normalized time points that de�ne the tempo. These time points are used

to compute the deviations. Therefore, for each measure, we �nd the time points that di-

vide the area under 1=D(t) into L equal area regions. The time points provide a tatum

time function: a function that gives the time point of each tatum.

So, for each measure m, 0 � m < M � 1, and each tatum i in measure m, 1 � i < L,

we �nd bL[mL+ i] where

z[m] � bL[mL+ i] < z[m+ 1];

and R bL [mL+i]
z[m] 1=D(t)dt
R z[m+1]
z[m] 1=D(t)dt

= i=L:

The array bL[n] is the L-tatum per measure time location of tatum n.

Next, we compute the �rst order forward di�erence by linear convolution,

d0[n] = bL[n] � (�[n+ 1]� �[n]) = bL[n+ 1]� bL[n];

where �[n] is the unit sample sequence.3 Note that this is a discrete �rst-order di�erentia-

tion process.

To �lter out high frequency variation, we again use linear convolution and compute

d[n] = d0[n] � h[n];

where h[n] is either an FIR low-pass �lter with a desired stop-band, or a Savitzky-Golay

2Higher order interpolation methods could be used here, but they probably would not signi�cantly alter
the �nal outcome.

3�[0] = 1; �[n 6= 0] = 0.
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smoothing �lter[PTVF92, LO88]. Because we are going to re-integrate, the �lters must

have a unity DC component. That is, each �lter must have H(0) = 1, where H(!) is the

�lter's frequency response. This step removes high frequency timing variation from d0[n].

Therefore, the array d[n] is our estimate of the duration of the nth tatum. Next, we recover

the tatum positions from d[n] by convolving with the unit step sequence u[n],4

b[n] = (d[n� 1] + bL[0]�[n]) � u[n] = bL[0] +
n�1X

i=0

d[n]:

This is a discrete integration process. The array b[n] then provides the time position of

tatum n.

For each performance instrument attack y[n], we �nd the closest tatum. The distance

from y[n] to the closest tatum is the stroke's deviation. That is,

devs[n] = y[n]� b[j]

and

quants[n] = j;

where

j = argmin
j

j y[n]� b[j] j :

The array devs[n] is the deviation function and quants[n] is an array of tatum numbers.

Therefore, the quantized score is given (in tatums) by quants[n], the tempo variation by

b[n], and the deviations by devs[n]. A positive deviation means the attack occurred after

the tatum and a negative one means it occurred before.

Version II of this algorithm does not require the reference instrument to play repet-

itively. It does require the complete score or quantized representation. Some methods for

automatic score transcription are provided in [Ros92, CRMR+84, Moo77]. The score may

be used directly if it is already known and the goal is only to obtain the tempo variation

and deviations.

The main distinction between versions I and II of this algorithm is that in version II,

4u[n < 0] = 0; u[n � 0] = 1.
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Figure 4-1: The Guagua Pattern.

P [n] is not computed from the performance. Instead, it is obtained directly from the score.

That is, P [n] becomes the measure fraction of the time duration between reference instru-

ment attacks n and n+1 according to the score. For example, an eight note in 4
4 time would

produce a value of 1=8 and a quarter note in 7
8 time a value of 2=7. The starting time of

each measure z[n] is computed from x[n] also according to the score. If no x[n] falls at the

beginning of a particular measure, we interpolate and create an estimation of the measure

starting time. The only other di�erence is the following:

T 0[n] =
x[n+ 1]� x[n]

P [n]
:

The tempo variation b[n] and the deviations devs[n] are computed as in version I. Version

II, however, is intended for the case of identical reference and performance instruments

(e.g., solo piano) and for obtaining timing data from a performance of written music. It

computes the tempo variation as the low-pass �ltered performance timing variation. High

frequency performance variation remains as the deviations. The trick is to �nd the desired

stop-band cuto� frequency, something that largely depends on the musical style.

4.3 Timing Analysis Results

I applied Version I of the timing extraction algorithm to the data obtained from Los

Mu~nequitos de Matanzas described in Chapter 3. I obtained timing data from the following

performance instruments: the quinto (high), the segundo (middle), and the tumbao (low)

drum. The reference instrument was the guagua. An approximation of the reference in-

strument pattern can be seen in Figure 4-1. The computed values of P [n] are listed in Ta-

ble 4.1, along with the values that would be obtained from a perfectly quantized perfor-

mance. Clearly, this reference instrument is far from quantized. I ran the algorithm with

C = 3 and h[n] = (u[n]� u[n � 5])=5. Therefore, h[n] is a rectangular moving window av-

erage. What follows are the results of the segundo only.
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n 0 1 2 3 4 5 6 7 8 9 10

P [n] 0.057 0.122 0.069 0.059 0.120 0.065 0.114 0.144 0.053 0.122 0.074
Fig. 4-1 0.063 0.125 0.063 0.063 0.125 0.063 0.125 0.125 0.063 0.125 0.063

Table 4.1: Computed Values of P [n].

4.3.1 Tempo Variation and Deviations

The tempo variation d[n] is plotted in Figure 4-2. Although it appears to contain consid-

erable high frequency variation, the abscissa scale informs us otherwise. Figure 4-3 shows

the DFT magnitude of d[n]. The abscissa is measured in normalized frequency units where

0:5 corresponds to the Nyquist frequency. The frequency units, however, are in cycles per

tatum, not in Hz. The DFT magnitude is not plotted for f > 0:1 (variation of less than

10 tatums per cycle) since the energy quickly drops o� to insigni�cance (below 0.01). Not

shown in the plot is the large DC value caused by the always positive tempo. Also, the

peaks at 0.0620 and 0.0630 correspond to 16.13 and 15.9 tatums per cycle respectively. It

is probably more than coincidental that 16 is both the number of tatums per measure and

a large component in tempo variation's frequency response.

Figure 4-4 shows a plot of the deviations for the segundo performance. In this for-

mat it is di�cult to discern any structure in the data. Furthermore, the deviations for the

quinto and tumbao look roughly the same when plotted in this way.

Figure 4-5, shows a 30 bin histogram of the deviations for the quinto, segundo, and

tumbao, respectively. Notice that they are all slightly centered to the left of zero, implying

that, in general, they are all playing slightly on top of the beat. Also, the histograms of the

quinto and segundo look approximately Gaussian distributed. Could the deviations simply

be the result of an independent and identically distributed random Gaussian process? We

shall see (also see Section 5.1.1).

The deviation plots displayed above provide a deviation value whenever there is a

stroke on a tatum. In between strokes, there are essentially missing samples. Fortunately,

a form of spectral analysis is possible. The Lomb normalized periodogram [PTVF92] is a

method for magnitude spectrum analysis of either unevenly sampled signals or signals with

missing samples. It is commonly applied to astrophysical data where regular sampling is

not possible.
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Figure 4-2: Mu~nequitos Tempo Track d[n].
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Figure 4-5: 30 Bin Deviation Histograms.
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For each desired frequency point !, the Lomb periodogram is equivalent to running

linear least squares �tting to the model,

h(t) = A cos(!t) + B sin(!t):

The power of a spectral component at frequency ! is proportional to the degree to which

the signal �ts this model (the best possible values of A and B). The power also corresponds

to statistical signi�cance levels against the null hypothesis of random Gaussian noise. The

signi�cance level is the probability that a random Gaussian process would generate this

power level.

Spectral analysis of unevenly sampled signals can be performed by interpolating, ob-

taining samples at evenly spaced time points, and then running a DFT. This method, how-

ever, can lead to large errors, particularly when large gaps in the original signal lead to ex-

cessive low frequency in the interpolated signal. Because the Lomb periodogram is essen-

tially doing least squares analysis, only the signal's original sample points are used to de-

termine the spectral content. It is therefore insensitive to this sort of error.

When dealing with evenly sampled data, the highest representable frequency is half

the sampling rate, or the Nyquist frequency. Therefore, a DFT of a real signal provides

useful spectral information only up to this rate (assuming there is no aliasing). In unevenly

sampled data, however, the highest frequency represented in the signal is not so easily de-

termined. We therefore do not know the highest spectral component the Lomb periodogram

should compute. The approach used in [PTVF92] bases things on the \average" Nyquist

frequency, de�ned as

fc = N=(2D);

where N is the number of samples in the signal and D is the total duration. This would

be the real Nyquist frequency if the signal was evenly sampled and we were using a normal

DFT method. We therefore ask for spectral components up to some multiple, hifac, of the

average Nyquist frequency. An additional parameter, the over-sampling factor ofac, con-

trols the frequency spacing of the spectral plot. Speci�cally, the frequency spacing in the

spectral plot is �f = 1=(D� ofac). If we sample up to the frequency fhi = fc � hifac, then
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this implies that the number of di�erent frequencies provided as output is

Nf = fc=�f =
ofac� hifac

2
N:

For most applications, hifac = 2 and ofac = 4. In our case, however, we know that because

the deviations are a function of tatum number, we can never have a frequency faster than

half the tatum rate (the Nyquist sampling theorem gives us that result). Therefore, the up-

per limit fhi should always be 0.5 and hifac should always be 1.

As with any spectral method, a short-time [LO88] version can be developed that �nds

the spectral components over segments of the input signal, rather than over the entire sig-

nal at once. We can thus see the spectral content of the signal evolve over time, rather than

viewing it as a static one-shot image. In our case, the segments of the input are �xed in

size and are speci�ed in units of tatums. Most of the time, however, a particular segment

will contain a di�erent number of drum strokes than other segments. Then, the high fre-

quency computation described above will produce di�erent values of Nf for di�erent seg-

ments. To avoid this problem, we compute the per-segment hifac value as

hifaci =
segBoundsi
segStrokesi

;

where segBoundsi is the bounds, in tatums, of the ith segment (the tatum distance between

the �rst and last stroke within the segment), and segStrokesi is the number of strokes in

the ith segment. Therefore, fhi will be 0:5 and Nf will be the same for all segments.

Hoping to uncover some structure in the data, I applied this short-time Lomb peri-

odogram to the quinto, segundo, and tumbao deviations. Because the deviation functions

are plotted as a function of tatum number, frequencies are neither in Hz, nor cycles per

sample, but rather in units of cycles per tatum. A frequency of f cycles per tatum means

that a single sinusoidal period will complete in 1=f tatums.

Like the short-time DFT, the choice of the window size (or D, in our case) is crucial

for creating these plots. If D is too small, we will get good temporal resolution (any quick

change in deviation patterns will appear in the plot) but poor frequency resolution (dis-

criminating between adjacent frequencies will be di�cult). The opposite is true if D is too

large. Choosing the window size, however, is not obvious. Therefore, when displaying the

periodogram, I show two spectral deviation plots per drum, one with a window size (ws) of
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32 tatums (two measures) and overlap (ov) of 24 and the other with a window size of 100

(an arbitrary number) and overlap of 80 tatums.

Figure 4-6 shows the short-time Lomb normalized periodogram for the segundo devi-

ations listed in Figure 4-4. The front axis is, again, measured in normalized frequency units

(cycles per tatum) where 0.5 is the Nyquist frequency. Notice the strong peak at 0.25 cy-

cles per tatum, implying considerable deviation periodicity near 4 tatums per cycle. The

segundo performance, in fact, largely consists of a repeating 4 tatum phrase. Figure 4-7

shows the short-time periodogram of the segundo with a larger window size. The better

frequency resolution is apparent: the peak signi�cantly narrows centered right on 0.25, and

other small peaks appear at 0.125, 0.166, and 0.333. Clearly, this con�rms that structure

does exist in the deviations.

Figures 4-8 and 4-9 show the short and long window size versions of the periodogram

for the quinto and tumbao tracks. These plots distinctly show that there is structure in the

signals, but how signi�cant are the results? Table 4.2 shows the distribution of the signif-

icance values. Each row gives a signi�cance value (left column). The right columns show

the number of drum segments whose peak value is less signi�cant than the value given in

the left most column. The last row shows the minimum signi�cance value for each drum.

The Random column shows the results for deviations generated from an independent and

identically distributed Gaussian random process with the same mean and variance as the

segundo deviations. The quinto deviations are not as signi�cant as the others, mainly be-

cause the quinto is primarily an improvisational instrument and does not often play peri-

odic phrases. Overall, though, the results for the real deviations are much more signi�cant

than the random process. In fact, the segundo and tumbao results are striking.

The spectral analysis of the tempo variation and deviation signals con�rms that they

contain valid information and that they are not merely random noise. In other words,

there's gold in them thar signals.

4.3.2 Performance Synthesis

The performance was synthesized5 by triggering select samples of the original performance.

The automatic note classi�cation algorithm developed in Chapter 3 completed the score.

5Using Csound[Ver].

70



0

500

1000

1500
0 0.1 0.2 0.3 0.4 0.5

0

5

10

tatums

freq (Cycles/Tatum)

power

Figure 4-6: Lomb Normalized Periodogram: Segundo Deviations, ws = 32,ov = 23.
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Table 4.2: Number of Spectral Segments with Signi�cance < p, ws = 100,ov = 80.

p Random Segundo tumbao quinto

1 82 82 82 82

0.5 40 82 82 62

0.2 16 82 75 41

0.1 6 82 67 29

0.05 3 82 62 17

0.02 2 79 55 11

0.01 1 79 52 8

0.005 1 77 49 7

0.002 0 74 47 5

0.001 0 70 45 4

0.0005 0 68 42 3

0.0002 0 64 38 3

0.0001 0 57 32 2

Min. Sig. 0.002 3:338� 10�9 9:966� 10�9 1:760� 10�5

The synthesized examples consist of the following:6

1. Direct { by triggering the samples at the appropriate time.

2. Quantized { using a constant tempo equal to the overall average.

3. Quantized { using b[n] as the tempo.

4. Quantized { with devs[n] added to the nth attack.

5. Quantized { with random Gaussian deviations added to each attack time. The Gaus-

sian process had the same mean and variance as the devs[n] array.

6. Quantized { with per-tatum random Gaussian deviations added to each attack time.

In this case, there were 16 independent Gaussian processes, each with a di�erent mean

and variance. The mean and variance for the ith process was the same as the mean

and variance of devs[n mod i].7

Most people who listen to these examples say that number 4 sounds most like the

original, observing that only 4 contains the \feel" of the original performance. In addition,

6Also see Appendix C.
7Also see Section 5.1.1.
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Figure 4-10: Lomb Normalized Periodogram: Random Gaussian Deviations.

numbers 5 and 6 are considered, in general, to sound \sloppy" and \random" (also see Sec-

tion 5.1.1). Accordingly, Figure 4-10, showing a periodogram for the deviations in synthe-

sis 5, con�rms that there is a lack of structure. As expected, synthesis 2 sounds mechan-

ical. Unexpectedly, even synthesis 3 sounds mechanical; tempo variation apparently does

not matter. In general, without the correct deviations, the performance sounds colorless

and cold { with them, it sounds rich and alive.

Consequently, I propose that, in addition to the ongoing studies of tempo variation,

we begin a concentrated study on performance deviations.8 Combining both tempo varia-

tion and deviations could eventually produce the full e�ect of rhythmic expressivity.

4.4 Conclusion

In this chapter, I have used the separate rhythmic elements de�ned in Chapter 2 for rhyth-

mic analysis and have demonstrated the importance of deviations for representing and re-

producing expressive timing in percussive musical phrases. Furthermore, I have demon-

strated that the deviations extracted from a performance are indeed meaningful. The Lomb

normalized periodogram provides quantitative evidence and the synthesis provides empiri-

8Appendix E describes a new electronic drum machine interface for the exploration of deviations.
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cal evidence that the timing data is not random noise { that, in fact, deviations play a vital

role in expressive timing and, therefore, should be analyzed, comprehended, and utilized in

the pursuit of electronic means to reproducing human musicality.
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Chapter 5

Deviation Learning System

The least initial deviation from the truth is multiplied later a thousandfold.

Aristotle
On the Heavens

In this chapter we bridge the gap between symbolic and numerical approaches to mu-

sic information processing. Speci�cally, we have the following goal: given a quantized mu-

sical phrase, produce the deviations that make it sound natural { plainly stated, take a di-

vested construct, and impart both life and beauty.

5.1 First Attempts

In Figure 5-1 the �rst 170 tatums of the quinto score can be seen. The top plot shows de-

viation as a function of tatum number and the bottom one shows the stroke type (the dis-

played section uses only three di�erent stroke types). The vertical dashed lines denote the

measure boundaries (16 tatums per measure). As can be seen, there is no obvious structure

in the plots and from this standpoint the data even appears random. Similarly, Figure 5-2

displays the �rst 120 tatums of the segundo score. There seems to be slightly more struc-

ture; the segundo is playing a repetitive phrase. Still, no obvious plan seems to be generat-

ing these deviations.
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Figure 5-1: Quinto Score. First 170 Tatums.
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Figure 5-2: Segundo Score. First 120 Tatums.
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5.1.1 Simple Random Processes

The deviation distributions might provide some insight into the underlying structure of the

data. In Figure 5-3, we see a 30 bin histogram of the quinto deviations. The plot looks ap-

proximately Gaussian, centered slightly to the left of zero. Promisingly, this agrees with our

intuitive feeling that the quinto player is, on average, playing slightly in front of the beat.

Could modeling the deviations as a simple independent and identically distributed

(i.i.d.) random Gaussian process provide the mechanism we are looking for to model devi-

ations? Probably not. Nevertheless, as discussed in Section 4.3.2, taped example number 5

is a synthesis of such a performance. In that case, the real deviations are substituted with

ones generated from a simple Gaussian process with the same mean and variance as the

original deviations. When listening to the tape, we perceive it as being obviously wrong. In

fact, it sounds terrible. The deviations are no longer related to the current musical event

and the performance seems �lled with random mistakes. As expected, a simple i.i.d. ran-

dom process alone can not accurately represent the deviations in a musical data stream.

A possible problem with the above approach is that it ignores per-measure tatum1

deviations. It assumes the same deviation distribution for all tatums in the performance. Is

there a special importance about the ith tatum of a measure? Perhaps. Figures 5-4 and 5-5

show the per-measure tatum deviation histograms.2 For each value i ranging from 0 : : :16,

I have computed a histogram using deviations from the i'th tatum of all measures. The

plot labeled \tatum i" shows that histogram. As can be seen, the histograms look some-

what akin to each other; they all look Gaussian with slightly di�erent means and variances.

Could we model the deviations as 16 i.i.d. random processes, the ith one providing a

deviation value for a drum stroke landing on the ith per-measure tatum? In Section 4.3.2,

taped example number 6 is a synthesis of such a performance. Unfortunately, it sounds

just as bad as if not worse than example number 5. Therefore, there must be some contex-

tual dependence: the deviations must somehow depend on the phrase in which they exist.

The deviations are not just randomly generated, as some commercial drum machine manu-

facturers think.3 Although a sophisticated random process model might have more success

1Per-measure tatums were de�ned in Section 2.2.
2These plots also show the tendency for the quinto to play o� beat. In fact, 37% of the strokes were on

beat (tatums 0,2,4,: : : ) and 63% were o� beat (tatums 1,3,5,: : : ). Therefore, algorithms based on the mini-
mum syncopation principle de�ned in [LHL84, Lee85] would incorrectly parse these phrases.

3Some drum machines have a human feel button which, when activated, slightly perturbs each percussive
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Figure 5-4: Per-Tatum Histogram of Quinto Deviations, tatums 0-7.

82



0

2

4

6

8

-0.1 -0.05 0 0.05 0.1
******************************

Tatum 8

0

1

2

3

4

-0.1 -0.05 0 0.05 0.1
******************************

Tatum 9

0

2

4

6

8

10

-0.1 -0.05 0 0.05 0.1
******************************

Tatum 10

0

5

10

15

-0.1 -0.05 0 0.05 0.1
******************************

Tatum 11

0

2

4

6

-0.1 -0.05 0 0.05 0.1
******************************

Tatum 12

0

2

4

6

8

-0.1 -0.05 0 0.05 0.1
******************************

Tatum 13

0

1

2

3

-0.2 -0.1 0 0.1
******************************

Tatum 14

0

5

10

15

-0.2 -0.1 0 0.1
******************************

Tatum 15

Figure 5-5: Per-Tatum Histogram of Quinto Deviations, tatums 8-15.
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in this endeavor, I chose to abandon this approach in search of one that explicitly uses the

current context.

5.1.2 Time Series Learning

There are many methods for the learning and analysis of time series. In [Jor89], a recur-

rent arti�cial neural network is made to learn, reproduce, and generalize a sequence of ac-

tions. Similar work is described in [WZ92, Moz92, SHH88]. In [LO88, Spa88], autoregres-

sive and Bayesian approaches to time sequence learning can be found. Furthermore, many

�nance theory models have been applied to stock market data with reasonable results.

The deviations and stroke types we have extracted are also time series. The meth-

ods above, however, are inadequate for our use because they often have di�culty learning

global structure; that is, they are not able to deduce the way in which long-range low fre-

quency information a�ects short-range high frequency information. In addition, they do not

take advantage of potential a priori knowledge; they blindly charge ahead trying to learn

the series without a pause to consider the generation process. But the main problem is that

these approaches learn only a single series. Our problem consists not only of learning both

the deviation and stroke type array, but also to understand their inter-relationship. That

is, we must understand how the context of the stroke type data inuences the deviations.

Therefore, I did not pursue the methods discussed above.

5.2 Similar Phrases have Similar Deviations

Figure 5-6 shows two quinto phrases. Phrase A begins on tatum 209 and ends on tatum

216 and phrase B begins on tatum 833 and ends on tatum 840. The phrases are almost the

same: they are situated in the same place relative to the measure markers and the stroke

types used in them are nearly identical. In fact, these phrases sound practically the same.

Note that the deviation patterns are also very similar { phrase B is a bit earlier, but rel-

ative to the �rst tatum, the di�erence is quite small. That di�erence is 0.0134, -0.0024,

0.0156, 0.0111, and 0.0105 seconds respectively.4

event. The purpose is to make a more expressive sounding phrase. The result is ghastly.
4The tempo at phrase A (near tatum 840) is faster than at phrase B (near tatum 210). See Figure 4-

2. The deviations are almost all about 10ms smaller in magnitude when the tempo is faster. This suggests
that a phrase's deviation is dependent on tempo. Unfortunately, I have deferred this issue for the future.
Also see Section 6.1.3.
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Fortunately, there are other sets of nearly identical phrases with similar deviations

in the quinto performance. Furthermore, in Figure 5-2 we see that the conga performance,

primarily a repeated pattern, has matching periodic deviations. The tumbao performance

also exhibits this behavior. In general, nearly identical quantized musical phrases seem to

have similar corresponding deviations in general. Consequently, we can use the phrase itself

to determine an appropriate set of deviations. That is, given a quantized musical phrase

and given that we have speci�c knowledge about the particular musical style, we can deter-

mine a set of deviations that can make the phrase sound expressive. This fact is extremely

relevant to our goal.

5.3 Function Approximation: Learning by Mapping

To produce an expressive rhythmic phrase, we can �rst �nd a quantized one and then ap-

propriately deviate each stroke. This sounds quite similar to function approximation.

We assume there exists some mapping

f : X ) Y;

where X is the space of all quantized percussive phrases, and Y is the space of all devia-

tions. Both X and Y are well-de�ned if we assume that the length in tatums of these per-

cussive phrases is bounded. This is not disconcerting perceptually. Most musical phrases

tend not to last more than at most 32 tatums. Our goal is, given a training set of pairs

D = f(xi; yi) 2 X � Y gNi=1;

where N is the data set size, produce an approximation to f

f� : X ) Y:

That is, the mapping f� is an approximation to f based on the training pairs D.

According to Poggio [PG93], producing the mapping f� will work only if the follow-

ing three conditions are satis�ed:

1. Similar inputs must have similar outputs. This is known as the smoothness assump-
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Figure 5-6: Near Identical Quinto Phrases.
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tion.

2. The method of producing the approximating map f� must be powerful enough to re-

semble the real map f .

3. The data set D must be large. Normally, the number of errors of f� is inversely de-

pendent to the training set size N .

Condition number 1 is the smoothness assumption. The telephone-number learning

example [PG93] clearly illustrates this concept. If the input X is the set of all names and

the output Y is the set of all phone numbers listed in a phone directory, then the output

space is very jagged. Consider the names \John A. Smith," \John B. Smith," and \John

C. Smith." Although the names themselves are very similar (very small steps in the in-

put space), it is extremely unlikely that they will have similar phone numbers in the output

space (very sharp peaks in the output space). We can say that the mapping is not smooth,

or that similar inputs do not have similar outputs. It would therefore be impossible to in-

fer the phone number of \John B. Smith" from knowing the phone numbers of the other

two. Section 5.2 demonstrated that similar quantized rhythmic phrases have similar devia-

tions. Therefore, it seems reasonable to assume that we can infer the deviations of a phase

knowing only the deviations of other phrases near it in the input space.

Condition number 2 requires that the approximating mapping must be powerful

enough to represent the real mapping. A powerful approximating strategy, however, always

implies a large capability for learning. The results of [VC71] extended in [BEHW89, Hau89]

show that the capability (or VC-dimension) of a learner is directly correlated with the num-

ber of training examples needed to achieve reasonable generalization. It is beyond the scope

of this discussion to provide a detailed explanation of this principle (see [HH93] for a nice

introduction). Nevertheless, these results obligate condition number 3.

Assuming the three conditions above can be satis�ed, an additional potential prob-

lem remains. The information in the data might not be su�cient to uniquely reconstruct

the mapping in regions at which data is not available. That is, we can never know with cer-

tainty what the appropriate mapping is at locations not covered by D. There are holes in

the input and output space in which we must somehow interpolate. Furthermore, consider

the rhythmic phrase space X . In practice, it is not possible to obtain a data set that com-

pletely spans the input space X by observing only one musical style. There are likely to be
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Figure 5-7: Phrase Space.

large regions representable by X that never appear in the musical phrases of a performer of

a particular style. Moreover, di�erent musical styles could have di�erent deviations for the

same quantized rhythmic phrase, i.e., across musical style boundaries, identical points in X

would map to very di�erent deviations. This could even be true of di�erent performers of

the same style. Therefore, it seems like we have a problem. If we were to obtain enough data

to broadly span the input space X , our data set would contain contradictory X � Y pairs.

Fortunately, there are ways around this problem. The mapping problem can be

thought of as regression, interpolation, splines, etc. The smoothness assumption really

means that we have dense data relative to the space, dense enough so that there is no signif-

icant variation in the output surface Y between data points. That is, the highest frequency

variation in the output space Y should be comparable to the data set spacing. There are

two situations in which this condition is achieved:

1. The entire mapping is smooth and we have enough training data to span the entire

input space. Therefore, any interpolation between data points will closely approxi-

mate any actual point that exists there, and the learner can achieve good generaliza-

tion (Figure 5-7B).

2. The entire mapping is spiky, and we do not have enough training data to span the en-

tire input space. But, we are interested only in small regions of the input space and

we do have enough examples to densely cover those regions. That is, within the small

regions, our data set is relatively dense enough so that the mapping (within that re-

gion) for all means and purposes becomes smooth. In those regions, an interpolation
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between points will not be a gross error. Therefore, it is possible for the learner to

achieve good generalization (Figure 5-7A).

We are working only within one musical style and we are not interested in simultaneously

obtaining the mapping for phrases not found in that style. Furthermore, we would be satis-

�ed to approximate the deviations of even one expert performer in one style. Therefore, we

need only to pick densely packed samples from select regions of the space X . Fortunately,

those select regions are exactly the ones that appear in a performance of one style. There-

fore, we just need to obtain a large data set from the performer of interest.

When working with the data for the conga (Figure 5-2) and the tumbao, choosing the

phrases that constitute the X space is obvious. Each of these drums is repeatedly playing

phrases delineated by measure boundaries. The similar phrases are naturally delineated by

these measure boundaries. Therefore, the training data may consist of separate measures;

xi is the quantized representation and yi are the deviations of the ith measure.

For the quinto, choosing the phrases is not obvious. The quinto is improvisational,

and does not repeat the same phrase every measure. As we saw above, nearly identical

quinto phrases do have similar deviations. We can not, however, simply segment the per-

formance using measure boundaries as with the conga or the tumbao. If we did, we would

�nd that the resulting phrases would not be similar to each other at all. We need a method

to determine the similar phrases in the quinto data. The next section presents an algorithm

to do just that.

5.4 Similarity Phrase Clustering

The goal of the algorithm is, given a musical quantized score in the form of a sequence

of tatum and stroke type pairs, extract the phrases and bundle them into clusters. The

phrases in each cluster should be similar. Previous methods of musical pattern detec-

tion [MRG85] are not applicable in this context. The approach I take is one of clustering

[DH73, And73, JD88]. We want to �nd the phrases in the piece of music, and simultane-

ously cluster them into groups of identical or nearly identical sets. Within each cluster, the

di�erence between any two phrases should be minimal.
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5.4.1 Clustering Criterion Function

Assume that the vector ~x denotes a phrase from a musical sequence and let Xi denote one

of c clusters of identical or nearly identical phrases. One way of proceeding is to derive a

function that judges the quality of a particular clustering; this is called a criterion function.

The clustering algorithm can then proceed as an optimization problem; we �nd the cluster-

ing that minimizes the criterion function.

One way of judging a clustering is to use the minimum variance criterion

Je =
cX

i=1

X
~x2Xi

k~x� ~mik2; (5:1)

where the mean vector is

~mi =
1

ni

X
~x2Xi

~x ; ni = jXij:

This function is minimized when the intra-cluster phrase distance is as small as possible.

There are three problems:

1. How do we segment the musical sequence into phrases?

2. How do we represent a quantized percussive phrase?

3. How do we optimize the criterion function?

5.4.2 Derivation of Phrase Distance d(~x; ~x0)

How do we represent variable length percussive phrases with a �xed length vector ~x? Fur-

thermore, can we correctly assume that given such a representation, the perceptual distance

between two musical phrases corresponds to the Euclidean distance between their two cor-

responding vectors? Probably not. With a bit of algebra, we may re-write equation 5.1 as

follows[DH73]:

Je =
1

2

cX
i=1

ni�si;

where

�si =
1

ni
2

X
~x2Xi

X
~x02Xi

k~x� ~x0k2:

It is now possible to see that the criterion function is actually an average of the intra-cluster

phrase distances. The problem lies, where ~x is mentioned, in the expression k~x� ~x0k2. This
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quantity is the Euclidean distance between ~x and ~x0. If we substitute this distance metric

with our own measure as in

�si =
1

ni
2

X
~x2Xi

X
~x02Xi

d(~x; ~x0);

we have reduced the problem to �nding an appropriate distance measure d(~x; ~x0) between

percussive rhythmic phrases.

There are several qualities we would like d(~x; ~x0) to possess. First, identical phrases

should have a distance of zero. Two quantized percussive phrases are identical only if:

1. Their �rst strokes have the same relative measure o�set.

2. They have the same number of tatums between their bounding strokes.

3. They have the same sequence of stroke types (not counting leading or tailing rests).

4. The inter-onset times between strokes are identical.

Second, nearly identical phrases, phrases slightly violating few of the conditions above,

should have very low distance values.

One approach to a distance measure is to discover the set of features that constitute

all percussive phrases. The features might be contours, patterns of ups and downs, or other

shapes. A similarity measure could possibly be found that matches the features of two per-

cussive phrases; the degree of feature commonality would determine the overall similarity

[Tve77]. This approach is not suitable, however, for percussive phrases because we do not

know a priori the appropriate set of features; nor do we want to create a �xed set of fea-

tures. That would be restricting because a new musical sequence would need its own feature

set. Furthermore, this approach is not suitable because percussive phrases come in various

lengths, and might consist only of one note on one tatum in one measure. There is no ap-

parent way to obtain features from such a phrase and then compare them to those from one

much longer. For the same reason, �xed length vector representations seem unpromising.

Therefore, rather than approaching the problem in this way, the distance measure d(~x; ~x0)

developed herein compares the two phrases directly without extracting features.

First, the phrases are transformed into a contingency table. Normally, a contingency

table is used to represent the co-occurrence between two presumably independent variables

91



Var B: Height
5' 5.5' 6' : : : 12' Row Totals

70lb. n11 n12 n13 : : : n1q n1:
80lb. n21 n22 n23 : : : n2q n2:

Var A: 90lb. n31 n32 n33 : : : n3q n3:

Weight
...

...
...

... : : :
...

...
300lb. np1 np2 np3 : : : npq np:

Col Totals n:1 n:2 n:3 : : : n:q n::

Table 5.1: Height versus Weight Contingency Table.

Var B: Height
5' 5.5' 6' : : : 12' Row Totals

70lb. f11 f12 f13 : : : f1q f1:
80lb. f21 f22 f23 : : : f2q f2:

Var A: 90lb. f31 f32 f33 : : : f3q f3:

Weight
...

...
...

... : : :
...

...
300lb. fp1 fp2 fp3 : : : fpq fp:

Col Totals f:1 f:2 f:3 : : : f:q 1

Table 5.2: Height versus Weight Relative Frequency Table.

A and B. The table represents n:: events. Element nij in the table is the number of events

that fall in both the ith class of variable A and the jth class of variable B. The marginal to-

tals are ni:, the number of events that fall in the ith class of variable A, and n:j , the num-

ber of events that fall in the jth class of variable B. Therefore, we have

ni: =
X
j

nij n:j =
X
i

nij

n:: =
X
i

ni: =
X
j

n:j

For example, class A might be a persons weight, and class B height. An experiment consists

of sampling n:: events. In Table 5.1, n:: peoples' heights and weights are obtained where nij

is the number of people who have weight given in row i and height given in column j.

In contingency table analysis, all entries and the marginal totals are typically divided

by n:: providing the relative frequency fij of each event (see Table 5.2). Notice that fij has
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the properties of a joint probability mass function.5 That is,

0 � fij � 1;

and X
i

X
j

fij = 1:

A quantized percussive musical phrase can be represented as a quantized discrete time

sequence, discrete in time (the tatum number is the index) and quantized in amplitude (the

stroke type). Figure 5-8 shows two musical phrases and their corresponding time sequence

representations. These phrases contain only three stroke types; type 0 refers to a rest, type

1 refers to pitch A, and type 2 refers to pitch C.

Each of these rest-padded phrases can be considered a variable in the contingency

table and each stroke type in the phrase can be considered a variable class. Furthermore,

each tatum can be considered an event. The two phrases must adhere to the same metric

form and in particular, they must have the same time signature. The phrases are lined up

according to the metric grid, as shown in the �gure. The phrase boundaries are determined

by the earliest and latest non-rest of both phrases. I assume that a short phrase is equiv-

alent to a long phrase with rest on the ends. So, if one phrase extends past the other, the

other is padded with rests. Note in the �gure that phrase B has a rest padded onto its be-

ginning, and phrase A has a rest padded onto its end.

A contingency table can thus be constructed that encodes, for each possible pair of

stroke types, the number of tatums in which phrase A is one type, and phrase B another.

The total number of tatums considered is n::. Consequently, the contingency table counts

the number of stroke type co-occurrences between two phrases. For example, the contin-

gency table for the phrases given in Figure 5-8 is shown in Table 5.3.

We use C(A;B) to denote the matrix de�ned by the contingency table for phrases A

and B. Notice that, for identical phrases, C(A;B) is zero everywhere except for along the

main diagonal.

When measuring the similarity between two phrases, a stroke type di�erence on one

tatum might matter to a greater or lesser degree than a stroke type di�erence on another

5A discrete joint probability density function.
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Figure 5-8: Percussive Phrases as Time Sequences.

Phrase B
0 1 2

0 0 3 0 3
Phrase A 1 1 1 1 3

2 1 0 1 2
2 4 2 8

Table 5.3: Phrase A versus Phrase B Contingency Table.
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Figure 5-9: Two Phrases with Tatum Signi�cance Values.

Phrase B
0 1 2

0 0 2b3 + b1 0 2b3 + b1
A 1 b2 b5 b2 b5 + 2b2

2 b0 0 b4 b4 + b0
b2 + b0 b5 + 2b3 + b1 b4 + b2 b0 + b1 + 2b2 + 2b3 + b4 + b5

Table 5.4: Phrase A versus Phrase B Tatum Dependent Contingency Table.

tatum. Therefore, we attach a signi�cance to each per-measure tatum, and construct a

tatum dependent contingency table. For each measure, each tatum has a signi�cance bi as-

sociated with it. The signi�cance is a value, between 0 and 1, that indicates the importance

of a stroke type di�erence. That is, the signi�cance bi indicates the degree to which a co-

occurrence of two stroke types on that tatum is valuated in the contingency table (see Fig-

ure 5-9). If there are N tatums per measure, then there are N distinct signi�cance values. A

value of 1 indicates that a di�erence on this tatum is maximally signi�cant and 0 indicates

that it is not counted. Each time there is a co-occurrence on the kth per-measure tatum of

stroke type i in phrase B and type j in phrase A, the value bk is added into the ith row and jth

column of the tatum dependent contingency table. The result for Figure 5-9 is shown in Ta-

ble 5.4. Let us denote the tatum dependent contingency table for phrases A and B by P (A;B).

As in regular contingency table analysis, we require a relative frequency measure. If

we divide each entry by
P
bi, the sum of the n:: tatum signi�cance values spanning the

length of the phrases, the result is the tatum dependent relative frequency matrix for phrases

A and B, R(A;B). That is,

R
(A;B)
ij =

X
i2Qij

bi

P
bi

=
P

(A;B)
ijP
bi

;
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Phrase B
0 1 2

0 0 (2b3 + b1)=
P
bi 0 (2b3 + b1)=

P
bi

A 1 b2=
P
bi b5=

P
bi b2=

P
bi (b5 + 2b2)=

P
bi

2 b0=
P
bi 0 b4=

P
bi (b4 + b0)=

P
bi

(b2 + b0)=
P
bi (b5 + 2b3 + b1)=

P
bi (b4 + b2)=

P
bi 1

Table 5.5: Phrase A and B Tatum Dependent Relative Frequency Matrix.

where Qij is a multi-set of tatum signi�cance indices. The indices in Qij are those of the

per-measure tatums upon which a phrase A stroke of type i and a phrase B stroke of type

j both land. An example, for the phrases given in Figure 5-8, is shown in Table 5.5 whereP
bi = b0 + b1 + 2b2 + 2b3 + b4 + b5.

The matrix R(A;B)still has the properties of a joint probability mass function. This

becomes clear if we consider three things:

1. Clearly, no element in R(A;B)can be less than zero.

2. The maximum value of an element in P (A;B) is
P
bi. This occurs when phrases A and

B are identical and consist of only one stroke type. Because R(A;B) = P (A;B)=
P
bi,

the largest possible value of R(A;B) is 1.

3. By de�nition, we know that
P

i;j P
(A;B)
ij =

P
bi, therefore

P
i;j R

(A;B)
ij =P

i;j P
(A;B)
ij =

P
bi = 1.

Once again, our goal is to develop a similarity measure between the two phrases. No-

tice that the sum of the columns in R(A;B) is the tatum-signi�cance scaled distribution of

stroke types for phrase A. Similarly, the sum of the rows is the tatum-signi�cance scaled

distribution of stroke types for phrase B. One approach, then, is to use a standard measure

of association between variables in a contingency matrix. The chi-square statistical mea-

sure [JD88, And73] can be used to test the hypothesis of independence between these two

distributions. Speci�cally, we can test the hypothesis H0 : rij = ri:r:j where rij is the ac-

tual value of the ith row and jth column of R(A;B), ri:r:j is the expected value, under the

independence assumption, of that row and column, and ri: and r:j are the marginal totals

of, respectively, that row and column. If H0 is found to be probable, the distributions are

independent and there is low association. If H0 is very improbable, the distributions are
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likely to be dependent and there is high association. Other association methods are based

on optimal class prediction [And73]. These measures test the power of one stroke type in

phrase A to predict another stroke type in phrase B. If a high degree of predictability can

be found, then we say there is high association. Further association methods are based on

the correlation coe�cient [HT88], and entropy [PTVF92, CT91].

A problem with the above approaches, however, is that they all test association not

similarity. Phrase A is well associated with phrase B if, for example, all the rests of phrase

A perfectly coincide with any one stroke type in phrase B. But, in that case, the phrases

would certainly not be similar. Essentially, the measures mentioned above test how well

the matrix resembles the solution to the N-rooks problem, where N is the number of stroke

types. We, however, need a measure that tests how well the matrix resembles one that re-

ects the degree of similarity between stroke types. What follows is such a measure.

Let S denote a similarity matrix where Sij is a value between 0 and 1. A 0 in row i

column j indicates that stroke type i and j are completely dissimilar, whereas a 1 indicates

that stroke type i and j are completely identical. The matrix S can be obtained using data

from a perceptual experiment on human subjects (see Section 5.4.4 further describing the

results of such an experiment). It is found that S has the following properties:

� It is symmetric.

� It contains values of 1 along the main diagonal (identical stroke types are identical to

each other).

� O� the main diagonal, all values are less than one.

The distance measure on percussive musical phrases is de�ned by using the joint dis-

tribution properties of R(A;B) to measure the probability of dissimilarity. We take the op-

posite of the expected value, with respect to the tatum dependent relative frequency ma-

trix, of the similarity matrix S. This result is scaled by the di�erence in lengths between

the original phrases. That is, for phrases ~x and ~x0,

d(~x; ~x0) = 1�	(~x; ~x0)E(~x;~x0)[S] =

1�	(~x; ~x0)
X
i;j

R
(~x;~x0)
ij Sij ;
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where 	(~x; ~x0) is a scaling function de�ned as

	(~x; ~x0) = 1�
���k~xk � k~x0k

���
k~xk+ k~x0k ;

k~xk is the length of the phrase ~x before rest padding, S is the similarity matrix, and where

E(~x;~x0)[S] is the expected value of S with respect to phrases ~x and ~x0

E(~x;~x0)[S] =
X
i;j

R
(~x;~x0)
ij Sij :

We also will �nd it useful to de�ne the similarity measure

s(~x; ~x0) = 1� d(~x; ~x0) = 	(~x; ~x0)E(~x;~x0)[S]:

Notice that E(~x;~x0)[S] is a similarity measure; 	(~x; ~x0) is a penalty for having di�erent length

phrases; s(~x; ~x0) is a scaled similarity measure; and d(~x; ~x0) is the opposite of the scaled

similarity measure.

Assuming that ~x 6= ~x0, the distance measure d(~x; ~x0) has the following properties:

1. 8~x; ~x0 : 0 � d(~x; ~x0) � 1: Clearly, s(~x; ~x0) � 0 and 0 � 	(~x; ~x0) � 1. Furthermore,

R(~x;~x0) has the properties of a joint probability mass function, and because 0 � Sij � 1

the result follows.

2. 8~x; ~x0 : d(~x; ~x0) = d(~x0; ~x): The similarity matrix S is symmetric, so E(~x;~x0)[S] =

E(~x0;~x)[S]. Clearly 	(~x; ~x0) is a symmetric function. The result follows.

3. 8~x; ~x0 : ~x = ~x0 , d(~x; ~x0) = 0: Right to Left: Because R(~x;~x) contains non-zero values

only along the main diagonal, E(~x;~x)[S] = 1. Clearly, 	(~x; ~x) is always 1. The result

follows. Left to Right: If the distance is zero, then s(~x; ~x0) must be 1. 	(~x; ~x0) is 1

only when ~x and ~x0 have the same length. E(~x0;~x) is 1 only when all o�-diagonal ele-

ments of R(~x;~x0) are zero, which implies that ~x = ~x0.

4. Triangle Inequality is False: 8~x; ~y; ~z : d(~x; ~y) + d(~y; ~z) � d(~y; ~z). Consider three two

stroke-type phrases. Each phrase is three tatums long, ~x1 = [001], ~x2 = [010], and

~x3 = [100]. Assume the similarity matrix S has values of 0 everywhere except for

the diagonal at which it has only values of 1. Then, d(~x1; ~x2) = d(~x2; ~x3) = 1, but
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d(~x1; ~x3) = 2=3.

It would be strange to expect d(~x; ~x0) to satisfy the triangle inequality. If it did, then

this distance measure would be a true distance metric and that would seem counterintu-

itive. I believe, however, that d(~x; ~x0) has a close correspondence to human judgment of

disparity between identical and near-identical percussive phrases.

Do the tatum signi�cance values reect a cultural or stylistic bias? They probably

do. In fact, we can compute the signi�cance values using the results of a perceptual exper-

iment. Suppose we ask a set of subjects to rate the dissimilarity, on a scale from 0 to 1, of

N pairs of percussive phrases. Suppose further that the ith response is the rating between

phrases ~xi
A and ~xi

B and that the dissimilarity value is di. The entire vector of experimen-

tally derived dissimilarity values obtained from the subjects is denoted by the N � 1 vector

~d. Assume there are M tatum signi�cance values we wish to compute and they are repre-

sented by the M � 1 vector ~b. We want to �nd the tatum signi�cance values that minimize

the di�erence between the predicted dissimilarity values and those obtained experimentally:

~b� = argmin
~b

�
~d� ~d(~xA; ~xB)

�2

where ~d(~xA; ~xB) is the N � 1 vector of of predicted dissimilarity values and ~b� is the vec-

tor of optimum tatum signi�cance values. We can perform this minimization by setting the

predicted and experimentally derived dissimilarity values equal to each other

di = 1�	(~xi
A; ~xi

B)E(~xi
A; ~xi

B)[S] 8i:

This can be represented as a system of N equations with M unknowns

(	F )~b = 1 � ~d; (5:2)

where 	 is an N �N diagonal matrix with 	ii = 	(~xi
A; ~xi

B), and

F =

0
BBBBBBB@

F1

F2

...

FN

1
CCCCCCCA
;
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Figure 5-10: Percussive Phrase Examples.

where Fi is a row vector and Fij is the number of tatums with signi�cance bj existing within

the duration of phrases ~xi
A and ~xi

B . With this de�nition of F , the predicted dissimilarity

values may be given by

d(~xi
A; ~xi

B) = 1�	iiFi~b:

Normally, M << N in Equation 5.2, and ~b can be found by least squares

approximation[Str88]

~b =
�
(	F )T (	F )

��1
(	F )T (1� ~d):

An example follows. Figure 5-10 lists �ve phrases. Assuming the similarity matrix

S =

0
BBBB@

1 0 0

0 1 0:5

0 0:5 1

1
CCCCA ;

and that 8i : bi = 1, then the values of d(~x; ~x0) for the phrases listed in Figure 5-10 are

d(X1; X2) = 0:776; d(X1; X3) = 0:647;

d(X1; X4) = 0:045; d(X1; X5) = 1:

These distance values seems reasonable, especially considering the contrived similarity ma-

trix and the fact that we have not computed the tatum signi�cance values.
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5.4.3 Clustering Algorithm: Divide and Conquer

The next step is the actual clustering. The problem is, �nd the phrases and clustering that

minimizes the expression

Je =
1

2

cX
i=1

1

ni

X
~x2Xi

X
~x02Xi

�
1� 	(~x; ~x0)

X
i;j

R
(~x;~x0)
ij Sij

�
: (5:3)

Assume that we have N drum strokes. The brute force approach would be to look at

all possible ways to form the N strokes into K phrases and all possible ways to cluster the

K phrases into c clusters, where K may range from 1 to N and c may range from 1 to K.

We would then pick the phrases and clustering with minimum Je. The number of ways to

cluster K phrases into c clusters S(K; c) is very large and given by [JD88, DH73]

S(K; c) =
1

c!

cX
i=1

(�1)c�i
 
c

i

!
(i)K � cK=c!:

And this assumes c is known! The number of ways to form the N strokes into K phrases6

is L(N;K) =
�N�1
K�1

�
. If K and c are known, the number of ways to form the N strokes

into K phrases and cluster the K phrases into clusters is L(N;K)S(K; c). If K is unknown

and c = 1, the number of ways to form the N strokes into phrases6 is 2N�1. In our case,

however, we do not know either K or c and the number of ways to form the N strokes into

phrases and the phrases into clusters is astronomical. Therefore, to avoid a ridiculously in-

tractable algorithm, we must proceed with a heuristic optimization strategy.

Finding the best number of clusters is a fundamental problem in cluster analysis.

There are various heuristic clustering strategies given in the literature. One of the most pop-

ular techniques is the ISODATA algorithm [BH65, DH73, And73, JD88]. This is an iterative

procedure in which clusters are split and merged according to certain guidelines, using K-

means along the way. Another method, called hierarchical clustering [DH73, And73, JD88],

works bottom-up by �rst creating one cluster for each sample (phrase in our case) and then

merging the clusters that increase Je the least. There are other methods that test cluster

validity, i.e., how good is the computed value for c. These methods statistically determine,

using Monte Carlo analysis, how unusual (valid) a particular clustering is.7 In our case,

6This is derived in Appendix A.
7We also encountered this problem back in Chapter 3.
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however, because a sample is a phrase and a phrase is a set of strokes, we need to simul-

taneously �nd the phrases and decide how to cluster them, a task that none of the above

clustering techniques will perform. We need a multi-stage clustering algorithm, one that si-

multaneously clusters on two levels. A new algorithm was therefore developed.

The algorithm Linear Phrase Cluster divides the sequence of strokes into two

halves, solves the problem on each of the two halves, and then merges them back to form

the complete solution. It produces a group of clusters. The �nal number of clusters is c, as

de�ned in Equation 5.3. Each cluster contains a set of phrases that are maximally similar.

Each phrase comprises a sequence of stroke types and tatum numbers.

Procedure: Linear Phrase Cluster

Input: A sequence of tatum numbers and corresponding stroke types.

Output: A phrase clustering that minimizes Je.

Step 1: Call Recurse with the entire sequence and return the result.

Procedure: Recurse

Input: A sequence of tatum numbers and corresponding stroke types.

Output: A phrase clustering that minimizes Je for the sequence.

Step 1: If the sequence is less than the threshold length, call baseCluster and return the

resulting group.

Step 2: Split the sequence in half. If possible, the point of division should be situated at

a gap between strokes of two or more tatums (thereby, we avoid splitting a phrase in

half).

Step 3: Call Recurse on the left half.

Step 4: Call Recurse on the right half.

Step 5: Call Merge on the two halves.

Step 6: Call Iterative Optimize on the result.

Step 7: Call Merge on the result with itself. This will merge any clusters that either cause

a reduction in or only slightly increase Je (see the de�nition of Merge).
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Step 8: Return the result.

Procedure: baseCluster

Input: A sequence of tatum numbers and corresponding stroke types.

Output: A phrase clustering obtained by heuristics.

Step 1: Assemble all strokes that are one tatum apart into phrases.

Step 2: Place each phrase into its own cluster.

Step 3: Place all the clusters into one group.

Step 4: Call Iterative Optimize on the resulting group.

Step 5: Return the result.

The procedure baseCluster uses simple heuristics to obtain its clustering. First, it

assumes that the sequence length is small, so there are probably not any similar clusters.

Second, it assumes that all adjacent strokes are part of the same phrase (which accounts

for step 1). Finally, in case there are similar phrases, it calls Iterative Optimize which

tries to �nd them.

Procedure: Merge

Input: Two groups to be merged.

Output: A merger of the two input groups.

Step 1: For all unequal pairs of clusters in each group, calculate the di�erence in Je be-

tween separately representing and merging the two clusters. That is, let J
(2)
e be the

cost if we keep both clusters and let J
(1)
e be the cost if we merge the two clusters. The

di�erence is then J
(2)
e � J

(1)
e . Let Di be the di�erence for the i

th pair of clusters.

Step 2: Sort Di in increasing order. Create a new empty group.

Step 3: While Di � 0, merge the two corresponding clusters and place the result in the

new group. Merge some fraction (mergeFraction) of the remaining clusters, even if

Di > 0. We want to encourage the merging of clusters even if it slightly increases Je.

This step avoids the situation in which Je is zero but the number of clusters is equal

to the number of phrases, clearly an incorrect solution [DH73, page 241].
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Step 4: Add any remaining clusters into the new group.

Step 5: Return the new group.

Procedure: Iterative Optimize

Input: A group.

Output: A group whose phrases have been manipulated to minimize Je.

Step 1: Edge Switch: Check the strokes at the edges of each phrase. If switching the edge

of a phrase to its neighbor reduces Je, then do it. The edges of a phrase are de�ned

as the strokes at its left and right ends.

Step 2: Split: Check each phrase. If Je is reduced by splitting the phrase in half, then do it.

Step 3: Split and Merge: Check each phrase. If Je is reduced by splitting the phrase in half

and merging either the left half with the left neighbor, or the right half with the right

neighbor, then do it. Note that the left or right neighbor might be in another cluster.

Step 4: If any changes have taken place and we have not passed a maximum loop count,

goto step 1.

Step 5: Return the modi�ed group.

In the procedure Iterative Optimize, the edges of a one-tatum phrase are the same. Be-

cause we might remove the only edge of a phrase, this step might eliminate phrases.

Linear Phrase Cluster would surely be of no use if it was computationally in-

tractable. As we will see, it is not. The following are the costs of each of the procedures:

� Cost of baseCluster: because a maximum of N strokes are given to this procedure,

and because it is clearly linear in its input size N , this step is O(N).

� Cost of Merge: Calculating the di�erence array is O(N2); Sorting is O(N lg(N));

Merging is O(N) because a maximum of N=2 clusters can be merged. Therefore, this

step is O(N2).

� Cost of Iterative Optimize: Each of the optimization stages, Edge Switch, Split,

and Split and Merge are clearly O(N). Convergence is not guaranteed however; in�nite

loops could occur if not for the loop count threshold. But considering the loop thresh-

old as a constant, the cost is a constant times O(N). Therefore, this step is O(N).
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The procedure Recurse performs four steps: it calls itself with the left and right

halves of its input, and calls Merge and Iterative Optimize. Therefore, the cost is:

O(N2) +O(N) + 2(COSTOF(Recurse; N=2))

This may be expanded into

O(N2) + O(N) + 2(O((N=2)2) + O(N=2) + 2(O((N=4)2) +O(N=4) + : : :

+O(N 02) + O(N 0) + 2(O(N 0=2))) : : :)

where N 0 = O(N= lg2(N)). This may be reduced to

O(N2) + O(N2):::+O(N2)| {z }
lg2(N)

;

where there are lg2(N) terms in the sum. Therefore the complexity of the algorithm is

O(N2 lg2(N)), far better than the brute force approach. Now the question is, how well does

it do?

5.4.4 Clustering Results

I implemented the phrase clustering algorithm and tested it on the quinto data. I obtained

the similarity matrix S by performing a perceptual experiment on human subjects.8 The

goal of the experiment was to obtain information about perceived similarity between drum

strokes. A computer program presented a set of drum stroke pairs to a subject. Each pair

was presented using a graphics window that contained eight widgets: two buttons played

the drum strokes, �ve numbered buttons enabled the subject to choose a similarity rating,

and a next button moved on to the next pair. The pairs were presented in random order.

Thirty subjects participated in the study. Each subject produced three similarity matri-

ces, one each for the quinto, the conga, and the tumbao. For each drum, the overall aver-

age similarity matrix was calculated, and used as the similarity matrix S.

The similarity matrix for the quinto is listed in Appendix B, Figure B-17. Notice

8Seth McGinnis, an undergraduate working with me at MIT, was the principle experiment administra-
tor and wrote the computer program to test the subjects. We gratefully acknowledge the support of TVOT
for this experiment.
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Threshold Length 32 tatums (2 measures)

Similarity Matrix Perceptual Experiment

Tatum Signi�cance Values 8i : bi = 1

Merge Fraction 0.5

Loop Count 25

Figure 5-11: Quinto Phrase Cluster Parameters.

that it is almost symmetric. To ensure that presentation order did not e�ect the similarity

rating, the entire matrix of pairs was presented to the subjects. That is, we wanted to ver-

ify that, when comparing strokes A and B, the similarity rating was identical regardless of

whether stroke A was listed on the left or right. The asymmetries in the matrix are negligi-

ble and may be considered experimental error. Figure B-18 shows the matrix standard de-

viations over all the subjects. The values are quite small which shows there was wide agree-

ment about the similarities. Notice also that the asymmetries in the mean matrix are al-

most always within one standard deviation of each other.

The algorithm was run with various parameter values on the quinto data; the val-

ues from the �nal run are listed in Table 5-11. I used the distance measure d(~x; ~x0) under

the assumption that all tatums were equally signi�cant, i.e., 8i : bi = 1. Figure B-1 in Ap-

pendix B shows the results of the quinto data for the �rst 450 tatums. The vertical dotted

lines show phrase boundaries and the vertical solid lines show the stroke type. Figures B-

2 through B-16 show some of the typical clusters in standard musical notation.

Out of 1717 tatums total (about 5 minutes), the algorithm produced 292 clusters of

phrases. Most of the clusters were quite small, and many of them contained only one phrase.

Although it did produce a clustering with Je = 0, it was not the best possible. There are

probably several reasons for this.

� Insu�cient data. The data in the quinto performance alone does not predominantly

contain similar phrases. If we used a much longer performance, or many performances,

the similar phrases would become more apparent because they would constitute denser

chunks in the sample space. Therefore, with more data, similar phrases would have a

better chance of being clustered together. This would, in turn, cause clusters to at-

tract additional similar phrases because the procedure Merge �nds mergers that in-

crease Je the least. This is a fundamental problem for cluster analysis. If the data
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does not occupy relatively compact and well separated clouds in the sample space,

clustering becomes di�cult. Insu�cient quantities of data can lead to this sparsity.

� Inadequate assumption for bi. All tatums were valuated equal. We do not hold this to

be self-evident, however. I expect that obtaining better values for bi using the method

given in Section 5.4.2 would signi�cantly improve the results.

� The space de�ned by Je is di�cult. The criterion function Je probably has local min-

ima. Moreover, there are many incorrect global minima. That is, the minimum value

of Je is zero, but any clustering with one phrase per cluster will have that minimum.

If the sequence has no similar phrases, such a result might be correct. This is not,

however, the normal case. Step number 3 in Merge and step 7 in Recurse was an at-

tempt to avoid this situation. In step 3, even if Je was increased, we forced the clus-

ters to merge, producing a cluster with more than one phrase. However, it might be

additionally bene�cial to bias Je away from clusters with just one phrase.

� The distance measure. The distance measure d(~x; ~x0) tends to get large quickly as

phrases become dissimilar. If the measure was slightly more tolerant of dissimilar

phrases, additional phrases might be clustered together.

I also applied the algorithm to test data containing multiple copies of only two phrases.

Although it successfully grouped identical phrases into clusters, many clusters that con-

tained near identical phrases were not merged together. Therefore, the algorithm shows

promise, but more parameter �ddling is clearly necessary.

5.5 Neural Network Learning Strategy

This section describes a Neural Network learning strategy for implementing the mapping

function f : X ! Y discussed in Section 5.3. It was designed speci�cally for learning devi-

ations from quantized rhythmic phrases. The approach is a common one: a multi-layered

perceptron (MLP) trained using the gradient descent procedure[HKP91]. The output rep-

resentation, however, is not.

The input to the network consists of a set of units for each tatum. Each unit in a set

encodes a particular stroke type. Each set corresponds to a tatum; a unit in a set is acti-

vated if a stroke occurs on the set's tatum and no unit is activated if there is a rest. The
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number of tatums in the input layer is determined by the number of tatums in the maxi-

mum length phrase. Because a phrase shifted right or left is completely di�erent perceptu-

ally, each phrase is lined up according to its measure boundaries when presented as input

to the network.

The �nal network output needs to be a deviation. As the histograms have shown, this

is a small real number somewhere between about -0.25 and +0.25 seconds and has what

looks like a Gaussian distribution. Any output of the network must also follow a similar

distribution; that is, it must have approximately the same mean, variance, and shape. Be-

cause we can pre-compute the mean and variance, we can eliminate this burden from the

network. Assuming an approximate Gaussian distribution, the probability of a given devi-

ation is given by

p =
1

�
p
2�

e
�(d��)2

2�2 ;

where � and �2 are the computed mean and variance and d is the deviation. The inverse

of this function is given by

d = � �
q
�2�2 ln (�p

p
2�): (5:4)

Therefore, corresponding to each deviation d, there is a probability p and a sign +1 or �1.
Rather than learning the deviations directly using one MLP, we use two MLP networks.

Network A uses logistic output units and learns the probability of a particular deviation,

something that is distributed uniformly between 0 and 1. Network B uses hyperbolic tan-

gent outputs and learns the sign of a deviation. After performing a forward pass through

the network, the two values are post-processed through Equation 5.4 providing a deviation.

This technique should facilitate deviation learning for two reasons: �rst, we have essentially

doubled the amount of deviation training data; network A receives the same probability for

two deviations on opposite sides of the mean. Second, the target values are now uniformly

distributed and the information about the mean and variance has been removed which is

one less thing for the network to learn.
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Chapter 6

The Future

This thesis is only a beginning. There are many avenues left to explore and the following

section describes several of them.

6.1 Future Work

6.1.1 Multiple Tatum Clocks

Multiple tatum clocks refer to tatums at di�erent rates. This is not tempo variation, how-

ever. The tempo might stay �xed while the tatum clock rate changes. Even within an

ensemble, di�erent performers might simultaneously perceive di�erent tatum clock rates.

There are two (not necessarily mutually exclusive) musical situations in which multiple

tatum clocks can occur.

The �rst may be called successive tatum clocks. Some of the phrases in a piece of mu-

sic seem better represented using a di�erent tatum rate. For example, some phrases more

closely match a metric grid containing of a multiple of three tatums per measure rather than

a multiple of four. Fast triplet �gures are a perfect example. In the Mu~nequitos record-

ings, a phrase occasionally sounded more triplet-like and the L = 16 assumption produced

a few incorrect quantizations. Consequently, the resulting deviations were also incorrect.

This occurred rarely, but it could pose problems for future analysis. We therefore need a

method to determine if a tatum rate change has occurred.

Perhaps one method could perform the timing analysis described in Chapter 4 with

di�erent values of L, the number of tatums per measure. Regions in the performance at
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which deviations are smaller for a given L could be evidence for a temporary tatum rate

equal to L. Of course, we could not increase L inde�nitely because the deviations would

eventually approach zero as the clock resolution becomes �ner. We would probably choose

reasonable tatum rate values, like 16, 24, or 32 tatums per measure { whatever we believe

likely in the music. The appropriate tatum rate would probably have the smallest devia-

tions. This minimum deviation principle, however, needs to be veri�ed. That is, why should

we believe that the best L produces the minimum deviations? This seems akin to the min-

imum syncopation principle of [LHL84, Lee85] which is not applicable in many musical sit-

uations. Therefore, we need more research in this area.

In addition, percussive rhythmic phrases are often ambiguous. In those cases, even

humans might not know the tatum rate. We often do not know how to quantize them and

therefore �nd them most di�cult to notate using standard musical scripture. When, for ex-

ample, do phrases begin to sound in three (twenty four tatums per measure) or four (six-

teen tatums per measure). We need a test to determine this threshold. I expect that there

is a hysteresis e�ect, in which we maintain one tatum perception until the deviations be-

come very large in magnitude (past some threshold) and then we switch to the other tatum

perception. Therefore, at di�erent times, the exact same phrase might be more naturally

perceived using di�erent tatum clock rates.

There is a second multiple tatum situation, in which multiple concurrent tatum clocks

exist in the perception of a music. African music frequently seems to contain two simulta-

neous tatum clocks; often the clock rates are both 16 and 24 tatums per cycle. The pro-

gram described in Appendix E describes an interface that can model this situation. We

need, however, much more research into this area.

6.1.2 A Drum Machine Project

Ultimately, the research contained herein might be used in the production of a commercial

drum machine. There are several changes that I would advise. First and most importantly,

the recorded performance should be ideal. If possible, there should be no bleed between

tracks. The bleed signi�cantly complicates the attack detection process and solving the

problem of bleed removal is irrelevant to obtaining good timing data. In the ideal recording

situation, each drummer would reside in a transparent sound-proof isolation booth. The

booths should be transparent so the drummers can all see each other. It should be isolated
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so there is no inter-track bleed. When recording trap drums, each drum should be moni-

tored separately using a piezo pickup rather than a microphone. Everything that can be

done to eliminate bleed should be done. Attack time analysis will then be much easier.

Second, it would be bene�cial to test the accuracy of the performers. They should be

asked to play the same phrases several times and the deviations for each phrase should be

calculated. Then, the deviation variance for identical phrases will provide rough guidelines

about the required accuracy of our representation. Furthermore, a small deviation variance

will con�rm our assumption that the same phrase at the same tempo is always deviated in

the same way.

Third, select the reference instrument (de�ned in Chapter 4) carefully. The reference

instrument should be the most solid instrument in the performance. In the Mu~nequitos

recordings, for example, it might have been bene�cial to use a combination of the segundo

and tumbao. Whatever is chosen, it should be solid and it should de�ne the tempo.

Other suggestions are perhaps more obvious: make sure the performers are well-

rested, are in a good mood, and are performing in as natural a setting as possible. All these

things will produce a superior performance and, consequently, superior timing data.

6.1.3 Deviations Dependent On Tempo

In Chapter 5, Figure 5-6 suggests that deviations are dependent on tempo. This is not sur-

prising. It seems clear that a performer will use di�erent deviations when playing a piece

at di�erent tempos. Unfortunately, I did not inquire into this matter but I would proceed

as follows: obtain several performances of the same phrase at di�erent tempos. The tim-

ing analysis algorithm can then provide the deviations and we can see how the deviations

change with tempo. Perhaps for a given phrase, the deviation is a �xed percentage of tatum

duration. In fact, Appendix E describes a drum machine interface that speci�es deviations

not in seconds but in percentage of tatum duration. Varying the tempo with that program,

however, seems to suggest that deviations get smaller relative to the tatum duration as the

tempo increases. This makes sense; there is less room to deviate. However, there is much

room here for experimentation.
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Figure 6-1: Timing Variation on a Metric Hierarchy.

6.1.4 Metric Hierarchy and Deviations and Tempo

Music can be hierarchically divided into separate components based on its metric structure.

One simple example of a metric hierarchy can be obtained from the 32 bar jazz AABA form.

The form repeats inde�nitely. Each repetition is divided into four sections, each section into

eight measures, each measure into four beats, and each beat into three tatums. Each piece

of music has its own hierarchical structure. In addition, the arrangement may change over

time. A jazz tune, for example, might alternatively move from a structured (e.g., AABA)

to a free (only measures and tatums) form. Therefore, the hierarchical structure is time-

varying; it changes as the piece transpires. In [LJ83] much discussion is devoted to this topic.

It is possible to de�ne both tempo variation and deviations on domains corresponding

to levels in a metric hierarchy. So far, we have seen these functions de�ned only on the low-

est level, the tatum level. In general, a function de�ned on a particular level operates over

a time region equal to the duration of that level (e.g., measure, beat, eight measures, etc.)

and is band-limited. That is, a function operating on the highest level might last the entire

piece and contain only low-frequency energy. A function operating on a low level might last

only a measure and contain only high frequency energy. The low-frequency high-level func-

tions may describe global structure whereas the high-frequency low-level functions may de-

scribe local phrase speci�c variation. Figure 6-1 depicts such a situation. Section A consti-

tutes an entire piece and there is one low-frequency timing variation function (tempo vari-

ation or deviations) that lasts for that duration. During the �rst half of the piece, section

A1, a higher frequency timing variation function applies. The second half of the piece, sec-

tion A2, is similar, and on down the hierarchy.

Mathematically, it is feasible to represent tempo variation or deviations as the sum

of all the functions on all the levels of the metric hierarchy. This is what I have been do-

ing so far; each tempo variation or deviation function represents all the tempo variation or

deviations in the performance. The point of this hierarchical breakdown is to �nd simple
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functions (sinusoids, second or third degree polynomials, etc.) that accurately describe the

variation for a particular level. Figures 4-6 in Chapter 4, for example, comprises two main

components which might be simpler functions operating at di�erent levels in the metric hi-

erarchy. I believe that a separation based on the metric hierarchy will enable us to �nd sim-

ple functions describing tempo variation and deviations. We can then combine these sim-

ple functions during a resynthesis to produce natural-sounding expressive phrases.

6.1.5 Higher Order Similarity Matrices

In Section 5.4.2, the similarity matrix measured only the similarity between isolated per-

cussive strokes. As was mentioned in Section 3.2.4, di�erent strokes might sound identi-

cal when heard out of context. The similarity matrix in Chapter 5 (and listed in Figure B-

17), however, tested the similarity of strokes only out of context. Context is important and

incorporating it into the distance measure should produce more realistic values. Let's say

there are N stroke types. A �rst-order similarity matrix (Figure B-17) provides a similar-

ity for each of the N(N � 1)=2 pairs of strokes. A second order similarity matrix, how-

ever, provides the similarity of two strokes also considering the strokes that preceded them.

The preceding strokes provide a context. Each stroke may be preceded by one of N other

strokes, so this matrix contains a value for each of the N2(N2
�1)=2 possibilities. This idea

could be extended to even higher order similarity matrices. In all cases, the similarity ma-

trices may be used in the distance measure de�ned in Chapter 5 as long as the contingency

tables also considered the preceding strokes.

6.1.6 Additional Points

� The timing analysis algorithms in Chapter 4 use low-pass �lters to remove high-

frequency variation from a performance. It is assumed that the deviations constitute

this high-frequency variation. We need a method to determine the stop-band cuto�

frequency of the low-pass �lter so this algorithm can be applied to a variety of di�er-

ent musical forms.

� Ametric musical phrases should be studied and better understood.

� Deviations could prove useful for determining the style or avor of a piece of music.

The style is the type of music, and the avor is the category within a type of music
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such as \excited", \sad", \complex", etc. The same set of quantized phrases could be

performed within a variety of styles and avors and the resulting deviations (extracted

using the timing analysis algorithm) could be examined. The deviations might then

indicate from which style the music originated and could be used in a avor oriented

drum machine interface such as [Mat93].

� Flams are two or more very rapid successive drum strokes. They are much faster than

the tatum rate and I believe they are often perceived as one stroke. Nevertheless, the

inter-onset times of the ams should be studied. Deviations will appropriately model

this situation.

6.2 Finis

The main goal of this thesis was to represent and reproduce expressive timing in percus-

sive musical rhythm { that is, to design algorithms that computers can use to produce ex-

pressive sounding rhythmic phrases. I believe I have been successful in this endeavor and

have begun to quantitatively describe one of the many elusive human behaviors. Music is

one of the most important means of expression, and rhythm is probably the most impor-

tant means of attaining musical expression. We have herein begun to produce expressive

sounding rhythmic phrases using a computer. We have yet, however, to achieve the level

of Star Trek's Data, the level at which computers can combine styles and be creative suc-

cessfully. And if computers do not soon progress, they might su�er a dreadful fate { they

might become what is referred to in the following:

He ain't got rhythm.

So no one's with 'im.

He's the loneliest man in town.1

1An Irving Berlin tune. Sung by Billie Holiday with Teddy Wilson and his Orchestra, 1937.
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Appendix A

Derivation of L(N;K)

Herein we derive the formula L(N;K), the number of ways to formN strokes intoK phrases.

The strokes all live on a line and the phrases must all consist of contiguous sequential line

segments.

We can consider the domain as a sequence of numbers on the number line. That is, we

have the numbers 1 through N, and we want to �nd the number of ways to cluster those N

numbers into K clusters, where the clusters must consist of a contiguous sequence of num-

bers.

Clearly, L(N;K) is de�ned only for N > 0 (there must be something to cluster) and

K � N (we can not ask to cluster N numbers into more than N clusters). Figure A-1 shows

a derivation tree for L(N;K). The left-most branch is the case when just the number 1 is

contained in one cluster. The remaining problem is then to cluster the remaining numbers,

L(N−1,K−1) L(N−2,K−1) L(K−1,K−1)

[1],2
,3,4,...

,N

[1
,2

],3
,4

,..
.,N

[1,2,...,N−K+1],N−K+2,...,N

L(N,K)

.  .  .

Figure A-1: L(N;K) Derivation Tree.
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2 through N, into K-1 clusters. The second branch then shows the case when numbers 1 and

2 are contained in one cluster. The remaining problem then is to cluster the remaining num-

bers, 3 through N, into K-1 clusters. This proceeds until we ask for the minimum number

of numbers (K-1) to be clustered into K-1 clusters. This implies the recurrence relationship

L(N;K) =
N�1X
i=K�1

L(i;K � 1)

where 8i; L(i; 1) = 1 and L(K;K) = 1 are the base values. If we generate this recurrence

relationship in a table, we get the following:

K

1 2 3 4 5 6 7

N 1 1

2 1 1

3 1 2 1

4 1 3 3 1

5 1 4 6 4 1

6 1 5 10 10 5 1

7 : : :

Therefore, this generates Pascal's triangle. Looking carefully at the table, we see that

L(N;K) =

 
N � 1

K � 1

!
:

This simple answer begs for an intuitive derivation of L(N;K). An intuitive one fol-

lows: We have N sequential strokes, thus there are N-1 stroke gaps between samples. We

want K clusters. For a given clustering, there are K-1 cluster gaps between clusters, each

cluster gap must correspond to some sample gap. The number of ways of choosing K-1

stroke gaps out of a total of N-1 is exactly
�
N�1

K�1

�
, and this is identical to the number of

ways of clustering the N strokes into K clusters.

The number of ways to cluster N strokes into K clusters where K is unknown

follows[Bey87, page 66]:
NX
i=1

L(N; i) =
NX
i=1

 
N � 1

i� 1

!
=

116



=
N�1X
i=0

 
N � 1

i

!
= 2N�1:
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Appendix B

Phrase Cluster Results:

Quinto Data
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Figure B-1: Quinto Phrase Cluster Results: First 455 Tatums.
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Figure B-2: Cluster Number 0.
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Figure B-4: Cluster Number 5.
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Figure B-7: Cluster Number 13.
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Figure B-8: Cluster Number 19.
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Figure B-9: Cluster Number 20.
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Figure B-10: Cluster Number 38.
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Figure B-12: Cluster Number 58.
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Figure B-17: Quinto Mean Stroke Similarity Matrix. 8 Stroke Types, 1 Rest.
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Appendix C

Tape Contents

Two sets of musical examples are contained on a tape that accompanies this thesis. Each set

contains two sections: 1) a section of short sound segments and 2) a section of long sound seg-

ments fromwhich the short segments were extracted. Csound[Ver] was used for all syntheses.

We �rst hear musical examples from the Los Mu~nequitos de Matanzas recording. In

the �rst section, each segment is about 30 seconds long:

1. Recording of the segundo attack detection example shown in Figure 3-8.

2. Original two microphone room recording.

3. O� the board, recording.

4. O� the board, recording. Vocals not included.

5. Direct synthesis by triggering samples of the performance at the appropriate time

(Section 4.3.2, Example 1).

6. Quantized with the tempo equal to the average (Section 4.3.2, Example 2).

7. Quantized including the original tempo variation in the performance (Section 4.3.2,

Example 3).

8. Quantized with the original deviations in the performance and average tempo (Sec-

tion 4.3.2, Example 4).

9. Quantized with random Gaussian deviations and average tempo (Section 4.3.2, Ex-

ample 5).
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10. Quantized with per-measure tatum random Gaussian deviations and average tempo

(Section 4.3.2, Example 6).

The second section consists of the full four minute examples. The descriptions are

the same as above.

The third section contains 20 second examples from a di�erent performance. Here,

the timing analysis and data extraction methods were applied to a performance given by

myself and C.K. Ladzekpo[Lad89], a master drummer from Ghana, Africa.

1. Original Recording.

2. Direct synthesis by triggering samples of the performance.

3. Quantized with the tempo equal to the average.

4. Quantized with the original performance tempo variation.

5. Quantized with the original deviations (average tempo).

6. Quantized with both the original deviations and tempo variation.

7. Quantized with double the deviations in the original performance, original tempo.

8. Quantized with the original performance deviations negated, original tempo.

The fourth section consists of the full four minute examples of the Ladzekpo perfor-

mance. The descriptions are the same as above.

The taped examples demonstrate two things: 1) The original performance's expres-

sivity is captured by the synthesis. Therefore, when working with a representation control-

ling only attack times, it is possible to produce expressive music. 2) The deviations, not

the tempo variation, is crucial to determining expressivity in these percussive performances.

Without the deviations, the syntheses sound lifeless and cold, regardless of the tempo vari-

ation. With the deviations, they sound warm and alive. These claims were con�rmed by

C.K. Ladzekpo himself in an experiment in which he was given no prior knowledge.
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Appendix D

Source Code

The postscript form of this thesis, the compressed sound examples, and all the source code

is or will be1 available via anonymous ftp from one of the following locations:

� media-lab.media.mit.edu:pub/bilmes-thesis

� cecelia.media.mit.edu:pub/bilmes-thesis

� ftp.icsi.berkeley.edu:pub/bilmes-thesis

The source code was all written in C++. Therefore, to take advantage of the code,

you will need a C++ compiler. I used GNU C++ version 2.4.5, a free compiler available

from the Free Software Foundation. Unfortunately, the numerical recipes code[PTVF92] is

not included because it would be in violation of copyright restrictions.

1
Or was once.
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Appendix E

xited: A New Drum Machine In-

terface

Drum machines and music sequencers should start providing advanced facilities for exper-

imenting with deviations. While waiting for this to occur, we1 have developed a deviation

experimentation program called xited (pronounced \excited" for eXperimental Interactive

Tatum-Editor of Deviations, see Figure E-1). Currently, xited runs on SGI IRIS Indigo

workstations.

The program consists of a control panel and any number of pattern windows. The

control panel controls global tempo in units of normal-tatums per minute, starting and stop-

ping, and other miscellany.

The pattern windows determine the score. Each pattern window consists of a rect-

angular grid of toggle buttons (of any size), an additional row of sliders, and a duration

value. A pattern window's grid represents a repeatedly-played percussive phrase. The rows

correspond to drum samples or voices and the columns correspond to pattern-tatums. If a

toggle is set for row i and column j, then voice i will be triggered during pattern-tatum j.

Each column also has a corresponding deviation slider. The slider for pattern-tatum j de-

termines, in percentage of pattern-tatum, the amount of time to shift all voices set to play

on that pattern-tatum.

A pattern window also contains a duration in units of normal-tatums. Therefore, dif-

ferent patterns, with identical absolute durations, might have di�erent numbers of pattern-

1Je� Foley, an undergraduate working with me at MIT, has been the main implementor of this program.
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Figure E-1: Graphical Deviation Program xited in Action.
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tatums. This can be used to express polyrhythms and multi-tatum ethnic music. For ex-

ample, in Figure E-1, the top pattern has a duration of 16 normal-tatums and contains 24

pattern-tatums. The bottom pattern has a duration of 16 normal-tatums and contains 16

pattern-tatums. This example encodes, in a sense, the feeling of multiple concurrent tatums

that is heard in African or Afro-Cuban music.

Each pattern window maintains a counter. When the <PLAY> button is pressed,

the counters are isochronously incremented modulo their pattern-tatum length. When the

counter reaches a particular tatum, any voices scheduled for that tatum are appropriately

shifted and triggered. Deviations, toggles, and pattern durations may all be adjusted dur-

ing playback.

xited is thus a novel drum machine user interface. A similar such interface could be

used by music sequencers, or eventually, by commercial drum machines. In Chapter 5, an

algorithm is de�ned that creates a mapping between quantized musical patterns and sets of

deviations. This algorithm will be eventually incorporated into xited. xited provides the

ability to experiment with deviations and to determine the best sounding deviations for a

drum pattern. Indeed, some very interesting rhythmic e�ects may be attained with xited by

varying deviations and pattern durations. Yet, they must be heard to be fully appreciated.
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