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ABSTRACT 
Timing model extractor builds a timing model of a digital circuit 
for use with a static timing analyzer.  This paper proposes a novel 
method of generating a gray box timing model from gate-level 
netlist by reducing a timing graph.  Previous methods of 
generating timing models sacrificed accuracy and/or did not scale 
well with design size.  The pro
provides model accuracy includi
borrowing, correct support for
capability to support timing cons
Also, cpu and memory resources
scale well with size of the circu
model for a 456K gate block usi
and 464 MB of memory on a
generated model can provide a 
verification by more than two ord

1. INTRODUCTION 
Timing extraction or block chara
of creating a timing model of a d
timing analyzer.  Timing extrac
hierarchical top-down flow and 
reducing the complexity of timing
level of abstraction which hides 
blocks. 
Three most desired features in 
efficiency, and usability.  The m
behavior of the original circui
including correct transparent latch
The model also needs to be eff
needed to generate the model and
Finally, the model must be easy 
analyzers.   This includes easy m
timing reports and capability t
remain valid after a block is repla
In this paper, we present a simp
model by reducing the timing gra
model that is accurate within a 
efficient.  Also, our formulation
apply the original timing cons
constraints as part of the model, 

constraints that can be applied automatically as part of the model 
extraction process.  The support for timing constraints is very 
critical for top-down hierarchical flows. 
 The outline of the paper is as follows.  Section 2 describes the 
related work in this area.  Section 3 describes the graph reduction 
algorithm in detail and provides a simple example of graph 
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Original timing graph w/ 6 arcs Black box model w/ 9 arcs 

Figure 1: Black box models can be larger than original netlist
le method to generate a timing 
ph.  The method can generate a 
specified tolerance and is very 
 makes it easy to preserve and 
traints.  We view the timing 
and generate a set of new timing 

reduction in action.  Model size reduction by using anchor points 
is described in section 4, followed by some experimental results 
in section 5. Section 6 concludes with a summary and future work. 

2. RELATED WORK 
The timing model can be classified into two types: black box 
model and gray box model.  Black box models have no internal 
visibility into the block: all the timing information relates to the 
pins at the boundary of the block.  Gray box models, on the other 
hand, have internal pins that can have delay arcs and check arcs 
associated with them. 

2.1 Black Box Models 
One of the well known black box model generators comes from 
Pearl[1].  Users supply a set of input slew values and output load 
values and the tool performs path tracing to determine all port-to-
port path delays and relevant timing checks.  Although black box 
models have been used widely for many years, they suffer from 
the following drawbacks: 
1. The model size can be larger than the original timing graph 

size.  Figure 1 shows that the removal of internal pin can 
lead to more delay arcs (from 6 to 9) and a larger model. 

2. Only limited latch behavior can be modeled.  The model can 
capture the latch time borrowing behavior of the original 
netlist for some given clock waveforms.   If the clock 
waveforms change after the model is extracted, the model 
becomes invalid. 
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3. Support for assertions is limited, even for those assertions 
that are fully contained in the block.  Only assertions that 
originate from and terminate at boundary ports can be fully 
supported.  For example, multi cycle paths that do not 
originate from or terminate at boundary ports cannot be 
supported.  Also, assertions that span multiple blocks cannot 
be supported.  For example, consider a multi cycle path that 



originates from block A and terminates in the middle of 
block B.  The black box model for block B cannot support 
this multi cycle path assertion. 

Clock characterization work of [2] addressed some of the 
drawbacks of the black box model by capturing register/latch to 
register/latch constraints in a clock feasibility graph.  The 
resulting model consists of a black box for port-to-port path 
delays plus timing checks and a feasibility region in terms of 
clock pulse widths and clock edge separation.  A separate checker 
external to the standard timing analysis tool is needed to verify if 
clock waveforms lie within the feasibility region.  This extension 
allows for limited context insensitivity to clock waveforms in 
modeling latch behavior.  Latch model is limited because 
increa g the level of transparency incurs some runtime penalty.  
Allow g arbitrary levels of transparency becomes prohibitively 
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• it allows the original assertions to remain valid after a block 
is replaced by the model  

Latch time borrowing and support for the application of original 
assertions are accomplished by retaining some internal pins.  
Latch behavior is preserved by retaining all latch input pins and 
the corresponding latch output pins.  Since all the latches are 
essentially retained, this allows for arbitrary levels of latch time 
borrowing as in the original netlist.  We found that the number of 
these internal latch pins is not a limiting factor in model 
generation time or in model size, even for very large industrial 
latch-based designs.  Also, all internal pins associated with 
assertions are retained.  This enables the assertions to remain 
valid after a block is replaced by the extracted model in the 
original context, including assertions that are not completely 
contained in the block. 
sin
in

ive.  Also, since the basic underlying model is a black box, 

is no guarantee that the model size is smaller than the 
l timing graph size.  The work did not address the support 
ertions. 

is a recent work [3] that uses symbolic simulation to 
te black box models.  This work is targeted mainly for 
tor-level circuits where identifying registers or latches can 
ficult.  The model generation begins from a set of valid 
rrival ranges.  Simulation is used to grow the given ranges 
h as possible in all input directions.  The final input arrival 
 are mapped to setup/hold checks relative to some clock 
.  This method does not generate port-to-port path delays 
es not consider the dependency on input slews or output 
or support for assertions. 

Gray Box Models 
is not much published work that can deal with arbitrary 
of transparency in latches using gray box model.  Latches 
 transformed to registers or combinational gates but such 
rmations lead to models that are too conservative and do 
ow for time borrowing.  There is a latch path compression 
[4] that collapses latch paths instead of individual latches.  
tent of compression is controlled by specifying the desired 
f latch transparency.  Although it has been successfully 
r many latch-based designs, the method cannot guarantee a 

ion in model size.  In some cases, the model size actually 
ses after latch path compression[4].  The method does not 

ell with the number of latch paths or with the level of latch 
arency. 
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IMING GRAPH REDUCTION 
opose a novel method for generating a timing model by 
ng the original timing graph.  Timing graph is reduced by 
ely removing pins and merging arcs until no further change 
ible.  This is similar to the manipulation of timing graph in 
ntext of static circuit optimization [5] but has different 

ives and cost functions.  The main advantages of this 
ch are 

 is simple 

 guarantees a reduction in model size 

 allows arbitrary levels of latch time borrowing and scales 
ell with design size 

The outline of this section is as follows.  Timing graph will be 
defined first.  Then models for combinational as well as 
sequential circuits will be described.   The last section discusses 
the reduction algorithm and gives an example of graph reduction 
on a simple example. 

3.1 Timing Graph 
Timing graph G is a three-tuple G = (P, D, C), where P is a set of 
pins, D a set of delay arcs and C a set of check arcs.  Delay arcs 
and check arcs originate from and terminate at pins: D ⊆ (P × P), 
C ⊆ (P × P).  Associated with each delay (check) arc is a 
transition matrix which defines valid transitions (rising or falling) 
between the source (signal) pin and the sink (reference) pin.  Each 
check arc has a type such as setup, hold, recovery, removal, etc. 
A timing graph representation of a simple D-type register is 
shown in Fig. 2.  Delay arcs are represented as solid arrows and  
check arcs as dotted arrows.  The transition matrix for CLK → Q 
delay arc looks like 

CLK Q Transition 

Rising Rising True 
Rising Falling True 
Falling Rising False 
Falling Falling False 

Delay (check) values are associated with delay (check) arcs.  
Delay or check values can be linear functions, lookup tables or 
delay equations. 

3.2 Combinational 
Models 
For the sake of exposition, 
timing models can be divided 
into two parts: 

• Combinational part deals 
with interaction among 
delay arcs and are captured 
in the combinational model.   

• Sequential part deals with interaction between delay arcs and 
check arcs.   Such interactions are captured in the sequential 
model. 



The two main operations in the combinational model that reduce 
the timing graph are 

• s-merge (serial merge) and 

• p-merge (parallel merge). 
s-merge takes two delay arcs (d1 and d2) in series and creates a 
new arc (d3) from the source of the first arc (d1) to the sink of the 
second arc (d2) to represent the “sum” of d1 and d2.  For example, 
if arc d1 has a constant delay of 1 and d2 a delay of 2, then d3 
will have a delay of 3.  p-merge takes two arcs (d1 and d2) in 
parallel (sharing both source and sink pins) and updates d1 to 
represent the “worst” of d1 and d2.  For example, if d1 has a 
constant delay of 3 and d2 a delay of 4, d1 will be updated to have 
a worst delay of 4. 

3.2.1 s-merge (serial merge) 
s-merge is a fundamental reduction operation that allows removal 
of pins from a timing graph.   Whenever s-merge is performed, 
arc delays need to be computed.  For example, consider two arcs 
arc1 and arc2 which are in series having the following delay 
values: 

arc1 

Input Slew Output Slew Arc Delay 

is1 os1 d1 

 

arc2 

Input Slew Output Slew Arc Delay 

os1 os2 d2 

The new arc arc3 resulting from s-merge between arc1 and arc2 
will have the following delay: 

arc3 

Input Slew Output Slew Arc Delay 

is1 os2 d1 + d2 

Note that we use “lazy” slew computation so that output slew and 
arc delay are computed only for new input slew values.  Also, the 
load-dependent delay computation is confined to the last arc that 
drives an output port. 
Accuracy in s-merge operation is controlled by the number of 
input slews/output loads that are retained for delay arcs that 
originate from input ports or terminate at output ports.  For table-
based libraries, the break points in the table provide the initial 
range of input slews and output loads.  For linear or equation-
based libraries, such breakpoints can be characterized.  There is 
no loss in accuracy in s-merge as long as delay calculation is 
performed using the same input slews and output loads from the 
initial breakpoints.  From the initial set of input slews and output 
loads, some slew/load values can be removed if such removal 
does not lead to errors exceeding some desired level.  For 
example, consider a set of three input slews {s1, s2, s3} for a 
delay arc originating from an input port.  Slew value s2 can be 
removed from the set if the error between the delay specified for 
s2 and the delay computed by interpolating between s1 and s3 is 
within the desired tolerance.  Initial errors in slews tend to 
decrease after several s-merge operations in CMOS designs. 

3.2.2 p-merge (parallel merge) 
p-merge leads to a substantial reduction in model extraction time 
as it reduces the number of arcs which need to be processed in the 
next stage of computation.  Given two parallel delay arcs, p-
merge chooses the “worst” of the two arcs and allows the other 
arc to be discarded.  Consider two parallel arcs, arc1 and arc2, 
with the same timing characteristics as in section 3.2.1 except that 
both have the same input slews is1 (assume d1 < d2). 
If a late path is of interest, p-merge picks output slew and arc 
delay from arc2 to update arc1.  The resulting delay for arc1 
becomes 

arc1 

Input Slew Output Slew Arc Delay 

is1 os2 d2 

Conversely, if an early path is of interest, arc1 will remain 
unchanged. 
Note that p-merge only preserves the “worst” (latest and earliest) 
port-to-port delays. 

3.3 Sequential Models 
Sequential models involve delay arcs and check arcs.  All check 
arcs can be classified into two main groups.  One group is called 
the “setup” group where the data signal is expected to arrive 
before the reference or clock signal.  Examples of  “setup” group 
are setup, recovery, skew, clock separation, etc.  The other group 
is called the “hold” group where the reference signal is expected 
to arrive before the data signal.  Examples of “hold” group are 
hold and removal.  To preserve latch behavior, all latch input pins 
and latch output pins are retained but all registers are removed.  
The operations associated with the removal of sequential elements 
are similar to those for combinational models.  To correctly model 
the interaction between delay arcs and check arcs, two different s-
merge operations are used: forward s-merge and backward s-
merge.  Sequential p-merge is essentially the same as 
combinational p-merge.  The only difference is that only check 
arcs of the same type can be merged. 

3.3.1 Forward s-merge 
Forward s-merge operation is used when register/latch clock pins 
are removed.  When a delay arc and a check arc meet at a clock 
pin, a new check arc is created to represent a new check value 
between the old data signal (signal end of the check arc) and the 
new clock signal (source of the delay arc).  Let d denote the delay 
value on the delay arc and c the check value on the check arc.  For 
setup (hold) group, the new check value becomes c – d (c + d). 

3.3.2 Backward s-merge 
Backward s-merge operation is used when register input pins are 
removed.  When a delay arc and a check arc meet at a data pin, a 
new check arc is created to represent a new check value between 
the source of the delay arc and the old clock signal (reference end 
of the check arc).  For setup (hold) group, the new check value 
becomes c + d (c – d). 

3.3.3 Self-loop Check Arcs 
There are some special check arcs where both the signal end and 
the reference end point to the same pin.  Such timing checks 
include, but are not limited to, minimum pulse width (MPW) and 
minimum period (MP) checks on clocks.  By using forward and 



backward s-merge operations, such self-loop check arcs can be 
modeled with correct clock path
rise/fall) and slew propagation. 

 

Figure 3: Modeling self-loop check arcs
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3.4 Graph Reduction A
We start with a timing graph that
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of delay arcs or check arcs whi
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computation routines need to be c
p-merge operations are done. A
associated with assertions or if 
The preservation of internal pins
Self-loop check arcs are processe

removePin(pin){ 
 if (!canRemovePin(pin)) { 
    retainPin(pin); 
    return 0; 
 } 
 for each incoming delay arc d1 to pin { 
    for each outgoing delay arc d2 from pin {
      d3 = s-merge(d1, d2); 
      for each delay arc d parallel to d3 { 
        p-merge(d3, d); 
        delete d; 
    } } 
    for each check arc c1 having pin as sig {

reduceGraph(graph){ 
  changed = 1; 
  while (changed) { 
    changed = 0; 
    for each pin of g
      if (removePin(p
        changed = 1; 
  } } } 
  postProcess(graph);
}      Figure 4: redu
 delays (including asymmetrical 

panded” as a check arc with no 
ting the incoming delay arc.  For 
ph fragment for some clock path 
.  The delay arc is duplicated to 
ow check arc is no longer a self-
e is performed on delay arc d1 
d s-merge is performed on delay 
he previous step.  This leads to 
rt CK that correctly reflects the 
ropagation.  Note that no delay 
 here.  The duplication in Fig. 3 

 

lgorithm 
 is acyclic.  The timer that builds 
r breaking combinational cycles.  
 a time by visiting each internal 
order.  The reduction is repeated 
ible.  Fig. 4 shows the core loop 
() is the main routine which 

erations.  Pseudo code for 
.  postProcess() takes care 

ch originate from primary input 
and terminate at primary output 
ins).  For such arcs, delay 
alled explicitly as no s-merge or 

 pin cannot be removed if it is 
it is needed as an anchor point.  
 will be discussed in section 4. 

d as check arcs in Fig. 5. 

BFS traversal guarantees that  

      c3 = backward-s-merge(d1, c1); 
      for each check arc c parallel to c3 { 
        p-merge(c3, c); 
        delete c; 
    } } 
    for each check arc c2 having pin as ref {
      c4 = forward-s-merge(d1, c2); 
      for each check arc c parallel to c4 { 
        p-merge(c4, c); 
        delete c; 
  } } } 
  delete pin; 
  return 1; 
}                  Figure 5: removePin() code 

• all the incoming delay arcs to a pin have already been 
processed before the pin is removed, and 

• the delay arcs are characterized with respect to a minimum 
number of input slew values. 

raph in BFS order {
in)) { 

 
ceGraph() code 

However, BFS traversal does not guarantee that both the signal 
end and the reference end of all check arcs are processed before 
forward s-merge or backward s-merge operations.  For example, 
consider the timing graph in Figure 6.  When pin c1 is removed, 
the range of slew values coming from the signal end (d2) of the 
check arc is not available.  In this case, we characterize the check 
arc with respect to all possible slew values (usually fewer than 6 
slew values are sufficient to characterize a check arc).  Later 
when pin d2 is processed, we re-characterize the check arc for 

appropriate slew values. 

 clk c1 q1 d2

Figure 6: Some check arcs need re-characterization

Fig. 7 gives an example of graph reduction on a circuit with two 
registers and one latch.  The final model includes two internal 
pins to preserve the latch behavior.  Note that the setup/hold 
checks on reg1 are modeled as self-loop setup/hold check arcs on 
clock C. 
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4. RETAINING INTER
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increasing the model size.  Such
Essential to supporting both pres
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Figure 8.  Associated with each 
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4.1 Anchor Points 
Anchor points are existing intern
lead to an increase in model size.
use the number of delay arcs.  W
make equal contribution to the
assumption, the identification of
problem of finding a set of prun
circuit optimization [5].  The ob
number of delay arcs, not the num
want to characterize the delay a
number of input slew values, we

pins at random without first processing their incoming delay arcs.  
This constrains the order in which anchor points are identified and 
retained. 
We define gain at an internal pin as 

(#incoming delay arcs × #outgoing delay arcs) –  
#incoming delay arcs –  #outgoing delay arcs. 

This represents an increase in the number of delay arcs if the pin 
is removed.  For example, in Figure 1, the number of delay arcs is 
6 before the removal of the internal pin.  If the pin is removed, the 
number of delay arcs becomes 9.  Thus, the gain is 3. Any pin that 
has a positive gain and is observable becomes a candidate for 
anchor points.  A pin is observable if there exists a path from the 
pin to a primary output or to a preserved pin.  Observability 
prevents anchor points from being formed in the transitive fanin 
cone of pins that will eventually be removed.  For example, 

retainPin(pin) { 
  for each incoming de
    compute_delay (d);
  } 
  combine all incoming
  for each outgoing de
    compute_delay(d); 
} }       Figure 8: re
odel extraction on a 
isters and a latch 

NAL PINS 
ming graph for several reasons.  
avior that is correct even in the 

hanges.  Another reason is to 
uch as multi cycle paths, false 
luding those that span multiple 
s associated with assertions and 

n terms of the retained internal 
e a part of the model and, if the 
y even be embedded within the 
atically after the model is read.  
asons are called preserved pins.  
taining internal pins is to avoid 
 pins are called anchor points.  
erved pins and anchor points is 
hose pseudo code is given in 
retained pin is a range of input 
om the incoming delay arcs. 

al pins which, if removed, may 
  To estimate the model size, we 
e assume that all the delay arcs 
 final model size. Given this 
 anchor points is similar to the 
ing pins in the context of static 
jective here is to minimize the 
ber of variables.  Also, since we 
rcs with respect to a minimum 
 do not want to remove internal 

register input pins are not observable and are eventually removed.  
Anchor points with a gain value greater than or equal to some 
threshold are identified by canRemovePin() in Figure 5.  
Once anchor points are identified, they are valid for a particular 
pass.  One pass constitutes a complete sweep of all internal pins. 
Anchor points must be re-identified in the subsequent passes.  
Table 1 presents the results of varying the gain threshold on a 
simple 32-bit combinational multiplier.  The cpu time and  

Table 1: Results of Varying Gain Parameter 
Gain cpu 

sec 
mem 

MB 

#anchor 
points 

#delay  
arcs 

Model 
size 
KB 

#passes

1 2.7 10.6 359 3312 896 5 

2 2.8 10.9 244 3295 1024 4 

3 2.9 11.0 178 3411 1095 4 

5 2.8 11.0 176 3472 1104 4 

50 4.0 12.4 49 5210 2089 3 

1000 5.9 14.6 0 3104 1543 2 

lay arc d of pin { 
 

 input slews at pin;
lay arc d from pin {

tainPin() code 

memory represent the runtime and the memory needed to extract 
the model on a 750MHz Sun Fire 880 machine running Sun OS 
5.8.  With a very high value of gain threshold (like 1000), we can 
remove all anchor points. We provide an option to change the 
gain threshold but the default is set to 1 and the guarantee in 
model size reduction compared to the original timing graph only 
comes with a threshold value of 1.  We found this greedy 1-gain 
heuristic to be very effective. 

4.2 Limitation of Anchor Point Heuristic 
Although the multi-pass greedy heuristic is fast and effective, this 
does not guarantee an optimal solution.  As a result, the greedy 
method may produce a slightly larger model than an approach that 
has a more global view of the graph.  Fig. 7 shows an example of 
such sub-optimality for the 1-gain greedy heuristic.  The greedy 
heuristic fails to delete pins D and E because the removal of either 
pin leads to an increase in the number of delay arcs.  However, if 
both pins are removed, the total number of delay arcs would go 
down.  We have not found this to be a big limitation in more than 
70 industrial designs that we have tested so far.  Nevertheless, we 
are investigating ways to remedy this limitation.   



 
Table 2: Timing Model Extraction Results 
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Figure 9: Greedy heuristic 

ckt #gates #regs& 

latches 

#I/O 
ports 

#int 
pins 

intial 
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initial 

#int 
pins 

final 

#arcs 

final 

#passes Model 
extraction 

time / mem 

(sec /  MB) 

Pre-
extraction 
timing 
analysis 

time / mem 

(sec / MB) 

Post-
extraction 
timing 
analysis 

time / mem

(sec /  MB)

model 
size 
(MB)

ex1 108K 1855 133 116079 157660 215 1452 3 20.8 / 62.4 11.5 / 43.8 1.5 / < 1.0 1.3

ex2 129K 7 2322 117959 279820 12703 54803 3 41.3 / 126.1 17.5 / 51.0 6.1 / < 1.0 46.4

ex3 307K 7742 777 320697 514033 21 636 3 113.4/162.9 30.3/ 109.1 1.2  / < 1.0 1.0

ex4 456K 17949 180 467049 649922 204 545 4 109.4/463.6 56.1/ 235.1 1.3  / < 1.0 0.3

5. EXPERIMENTAL R
Table 3: Results showi

Timing analysis o
original netlist 

ckt 

Early slack late slack 

ex1 -11857.34 -11857.34

ex2 -3.74 -87.37 

ex3 -1.85 -1.85 

ex4 -7.47 -7.47 

Tables 2 and 3 present results of 
designs.  Multi-pass 1-gain gree
them.  Reported cpu times and 
Sun Fire 880 machine running 
internal pins (final) includes all p
The models were written out in 
(TLF) version 4.4.  The runtime i
networks using insertion delays. 
The resources needed to generate
in terms of cpu time and 1.4-2
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efficient since static timing ana
single input slew value and a si
model extraction considers, on t
values and 4 output load values. 
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value) as can be seen in Table 3. 
The design ex2 led to an out of m
box generator based on [1] and a
box generator based on [4].  The 
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large models.  We produced a 1% accurate model in 41.3 sec that 
has a reasonable size (46.4 MB) for this design. 
d 
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x

y

fails to remove d & e pins

ESULTS 
ng accuracy of models 
n Timing analysis on 

extracted model 
early slack late slack 

 -11857.34 -11857.34 

-3.76 -87.35 

-1.85 -1.85 

-7.47 -7.47 

graph reduction on four industry 
dy heuristic was used on all of 
memory usage are on 750MHz 
Sun OS 5.8.  The number of 
reserved pins and anchor points.  
Cadence Timing Library Format 
ncludes characterization of clock 

 a timing model are about 2-4x 
.5x in terms of memory usage 
timing analysis.  This is very 
lysis is performed using only a 
ngle output load value, whereas 
he average, about 4 input slew 
 Timing analysis was performed 
 both late mode and early mode 

ed paths per endpoint).  All the 
early paths in the model match 
hin 1% (the specified tolerance 

emory error (> 4 GB) for a black 
 model size of  5 GB for a gray 
design has only 7 latches and the 
 nature.  We identified several 
 395 and 384.  Removal of such 
time, large memory usage and 

As can be seen from Table 2, extracted timing model leads to 
significant gains in capacity in terms of both runtime and memory 
usage.  If netlists are replaced by timing models, we gain up to 
43x in terms of runtime and up to 235x in terms of memory usage 
in timing verification. 

6. CONCLUSIONS AND FUTURE WORK 
We have presented a novel method of generating a timing model 
by graph reduction.  This method is simple and is shown to be 
quite effective in increasing the capacity of timing verification.  
The generated model provides a plug-in replacement capability 
for blocks for static timing analysis and it is well suited for top-
down hierarchical flows.  It takes 1.4-4x more computational 
resources to generate an accurate model than to perform timing 
analysis.  The method guarantees a reduction in model size 
compared to the original timing graph and lends nicely to a 
formulation where constraints that span multiple blocks can be 
supported.  Also, the model allows for arbitrary levels of latch 
time borrowing. 
As discussed in section 4.2, the greedy heuristic may not always 
produce an optimal solution.  Future research will examine ways 
to further minimize the model size.  Also, work is under way to 
provide support for bottom-up IP characterization flows and an 
option to generate black box models for applications that are not 
capable of reading gray box models. 
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