
Timing Model Extraction of Hierarchical Blocks By Graph Reduction
Cho W. Moon

Cadence Design Systems
15015 Avenue of Science

San Diego, CA 92128, USA
001-858-613-2714

cmoon@cadence.com

Harish Kriplani
Cadence Design Systems
555 River Oaks Parkway

San Jose, CA 95134, USA
001-408-944-7822

kriplani@cadence.com

Krishna P. Belkhale
Cadence Design Systems
555 River Oaks Parkway

San Jose, CA 95134, USA
001-408-895-3268

belkhale@cadence.com
ABSTRACT
Timing model extractor builds a timing model of a digital circuit
for use with a static timing analyzer. This paper proposes a novel
method of generating a gray box timing model from gate-level
netlist by reducing a timing graph. Previous methods of
generating timing models sacrificed accuracy and/or did not scale
well with design size. The pro
provides model accuracy includi
borrowing, correct support for
capability to support timing cons
Also, cpu and memory resources
scale well with size of the circu
model for a 456K gate block usi
and 464 MB of memory on a
generated model can provide a
verification by more than two ord

1. INTRODUCTION
Timing extraction or block chara
of creating a timing model of a d
timing analyzer. Timing extrac
hierarchical top-down flow and
reducing the complexity of timing
level of abstraction which hides
blocks.
Three most desired features in
efficiency, and usability. The m
behavior of the original circui
including correct transparent latch
The model also needs to be eff
needed to generate the model and
Finally, the model must be easy
analyzers. This includes easy m
timing reports and capability t
remain valid after a block is repla
In this paper, we present a simp
model by reducing the timing gra
model that is accurate within a
efficient. Also, our formulation
apply the original timing cons
constraints as part of the model,

constraints that can be applied automatically as part of the model
extraction process. The support for timing constraints is very
critical for top-down hierarchical flows.
 The outline of the paper is as follows. Section 2 describes the
related work in this area. Section 3 describes the graph reduction
algorithm in detail and provides a simple example of graph

Permission to make digital or hard c
personal or classroom use is granted
not made or distributed for profit
copies bear this notice and the full
otherwise, or republish, to post on
requires prior specific permission an
DAC 2002 , June 10-14, 2002, New
Copyright 2002 ACM 1-58113-297-
posed method is simple, yet it
ng arbitrary levels of latch time
 self-loop timing checks and
traints that span multiple blocks.
 required to generate the model
it. We were able to extract a

ng under 2 minutes of cpu time
 Sun Fire 880 machine. The
capacity improvement in timing
ers of magnitude.

cterization refers to the process
igital circuit for use with a static
tion plays an important role in
bottom-up IP authoring flow by
 verification and by providing a

the implementation details of IP

timing extraction are accuracy,
odel must preserve the timing

t and produce accurate results
 behaviors and timing violations.

icient in terms of the resources
 in terms of the final model size.
to use with existing static timing
odel instantiation, easy-to-follow
o allow original constraints to
ced by the model.

Original timing graph w/ 6 arcs Black box model w/ 9 arcs

Figure 1: Black box models can be larger than original netlist
le method to generate a timing
ph. The method can generate a
specified tolerance and is very
 makes it easy to preserve and
traints. We view the timing
and generate a set of new timing

reduction in action. Model size reduction by using anchor points
is described in section 4, followed by some experimental results
in section 5. Section 6 concludes with a summary and future work.

2. RELATED WORK
The timing model can be classified into two types: black box
model and gray box model. Black box models have no internal
visibility into the block: all the timing information relates to the
pins at the boundary of the block. Gray box models, on the other
hand, have internal pins that can have delay arcs and check arcs
associated with them.

2.1 Black Box Models
One of the well known black box model generators comes from
Pearl[1]. Users supply a set of input slew values and output load
values and the tool performs path tracing to determine all port-to-
port path delays and relevant timing checks. Although black box
models have been used widely for many years, they suffer from
the following drawbacks:
1. The model size can be larger than the original timing graph

size. Figure 1 shows that the removal of internal pin can
lead to more delay arcs (from 6 to 9) and a larger model.

2. Only limited latch behavior can be modeled. The model can
capture the latch time borrowing behavior of the original
netlist for some given clock waveforms. If the clock
waveforms change after the model is extracted, the model
becomes invalid.

opies of all or part of this work for
 without fee provided that copies are
or commercial advantage and that
citation on the first page. To copy
 servers or to redistribute to lists,
d/or a fee.
Orleans, Louisiana., USA.
2/01/0006 (1-58113-461-4)…$5.00.

3. Support for assertions is limited, even for those assertions
that are fully contained in the block. Only assertions that
originate from and terminate at boundary ports can be fully
supported. For example, multi cycle paths that do not
originate from or terminate at boundary ports cannot be
supported. Also, assertions that span multiple blocks cannot
be supported. For example, consider a multi cycle path that

originates from block A and terminates in the middle of
block B. The black box model for block B cannot support
this multi cycle path assertion.

Clock characterization work of [2] addressed some of the
drawbacks of the black box model by capturing register/latch to
register/latch constraints in a clock feasibility graph. The
resulting model consists of a black box for port-to-port path
delays plus timing checks and a feasibility region in terms of
clock pulse widths and clock edge separation. A separate checker
external to the standard timing analysis tool is needed to verify if
clock waveforms lie within the feasibility region. This extension
allows for limited context insensitivity to clock waveforms in
modeling latch behavior. Latch model is limited because
increa g the level of transparency incurs some runtime penalty.
Allow g arbitrary levels of transparency becomes prohibitively
expens
there
origina
for ass

There
genera
transis
be dif
input a
as muc
ranges
signals
and do
loads n

2.2
There
levels
can be
transfo
not all
work
The ex
level o
used fo
reduct
increa
scale w
transp

3. T
We pr
reduci
iterativ
is poss
the co
object
approa

• it

• it

• it
w

• it allows the original assertions to remain valid after a block
is replaced by the model

Latch time borrowing and support for the application of original
assertions are accomplished by retaining some internal pins.
Latch behavior is preserved by retaining all latch input pins and
the corresponding latch output pins. Since all the latches are
essentially retained, this allows for arbitrary levels of latch time
borrowing as in the original netlist. We found that the number of
these internal latch pins is not a limiting factor in model
generation time or in model size, even for very large industrial
latch-based designs. Also, all internal pins associated with
assertions are retained. This enables the assertions to remain
valid after a block is replaced by the extracted model in the
original context, including assertions that are not completely
contained in the block.
sin
in

ive. Also, since the basic underlying model is a black box,

is no guarantee that the model size is smaller than the
l timing graph size. The work did not address the support
ertions.

is a recent work [3] that uses symbolic simulation to
te black box models. This work is targeted mainly for
tor-level circuits where identifying registers or latches can
ficult. The model generation begins from a set of valid
rrival ranges. Simulation is used to grow the given ranges
h as possible in all input directions. The final input arrival
 are mapped to setup/hold checks relative to some clock
. This method does not generate port-to-port path delays
es not consider the dependency on input slews or output
or support for assertions.

Gray Box Models
is not much published work that can deal with arbitrary
of transparency in latches using gray box model. Latches
 transformed to registers or combinational gates but such
rmations lead to models that are too conservative and do
ow for time borrowing. There is a latch path compression
[4] that collapses latch paths instead of individual latches.
tent of compression is controlled by specifying the desired
f latch transparency. Although it has been successfully
r many latch-based designs, the method cannot guarantee a

ion in model size. In some cases, the model size actually
ses after latch path compression[4]. The method does not

ell with the number of latch paths or with the level of latch
arency.

 D

CLK

setup

hold
Figure 2: Timing graph
for a D-type register

Q
IMING GRAPH REDUCTION
opose a novel method for generating a timing model by
ng the original timing graph. Timing graph is reduced by
ely removing pins and merging arcs until no further change
ible. This is similar to the manipulation of timing graph in
ntext of static circuit optimization [5] but has different

ives and cost functions. The main advantages of this
ch are

 is simple

 guarantees a reduction in model size

 allows arbitrary levels of latch time borrowing and scales
ell with design size

The outline of this section is as follows. Timing graph will be
defined first. Then models for combinational as well as
sequential circuits will be described. The last section discusses
the reduction algorithm and gives an example of graph reduction
on a simple example.

3.1 Timing Graph
Timing graph G is a three-tuple G = (P, D, C), where P is a set of
pins, D a set of delay arcs and C a set of check arcs. Delay arcs
and check arcs originate from and terminate at pins: D ⊆ (P × P),
C ⊆ (P × P). Associated with each delay (check) arc is a
transition matrix which defines valid transitions (rising or falling)
between the source (signal) pin and the sink (reference) pin. Each
check arc has a type such as setup, hold, recovery, removal, etc.
A timing graph representation of a simple D-type register is
shown in Fig. 2. Delay arcs are represented as solid arrows and
check arcs as dotted arrows. The transition matrix for CLK → Q
delay arc looks like

CLK Q Transition

Rising Rising True
Rising Falling True
Falling Rising False
Falling Falling False

Delay (check) values are associated with delay (check) arcs.
Delay or check values can be linear functions, lookup tables or
delay equations.

3.2 Combinational
Models
For the sake of exposition,
timing models can be divided
into two parts:

• Combinational part deals
with interaction among
delay arcs and are captured
in the combinational model.

• Sequential part deals with interaction between delay arcs and
check arcs. Such interactions are captured in the sequential
model.

The two main operations in the combinational model that reduce
the timing graph are

• s-merge (serial merge) and

• p-merge (parallel merge).
s-merge takes two delay arcs (d1 and d2) in series and creates a
new arc (d3) from the source of the first arc (d1) to the sink of the
second arc (d2) to represent the “sum” of d1 and d2. For example,
if arc d1 has a constant delay of 1 and d2 a delay of 2, then d3
will have a delay of 3. p-merge takes two arcs (d1 and d2) in
parallel (sharing both source and sink pins) and updates d1 to
represent the “worst” of d1 and d2. For example, if d1 has a
constant delay of 3 and d2 a delay of 4, d1 will be updated to have
a worst delay of 4.

3.2.1 s-merge (serial merge)
s-merge is a fundamental reduction operation that allows removal
of pins from a timing graph. Whenever s-merge is performed,
arc delays need to be computed. For example, consider two arcs
arc1 and arc2 which are in series having the following delay
values:

arc1

Input Slew Output Slew Arc Delay

is1 os1 d1

arc2

Input Slew Output Slew Arc Delay

os1 os2 d2

The new arc arc3 resulting from s-merge between arc1 and arc2
will have the following delay:

arc3

Input Slew Output Slew Arc Delay

is1 os2 d1 + d2

Note that we use “lazy” slew computation so that output slew and
arc delay are computed only for new input slew values. Also, the
load-dependent delay computation is confined to the last arc that
drives an output port.
Accuracy in s-merge operation is controlled by the number of
input slews/output loads that are retained for delay arcs that
originate from input ports or terminate at output ports. For table-
based libraries, the break points in the table provide the initial
range of input slews and output loads. For linear or equation-
based libraries, such breakpoints can be characterized. There is
no loss in accuracy in s-merge as long as delay calculation is
performed using the same input slews and output loads from the
initial breakpoints. From the initial set of input slews and output
loads, some slew/load values can be removed if such removal
does not lead to errors exceeding some desired level. For
example, consider a set of three input slews {s1, s2, s3} for a
delay arc originating from an input port. Slew value s2 can be
removed from the set if the error between the delay specified for
s2 and the delay computed by interpolating between s1 and s3 is
within the desired tolerance. Initial errors in slews tend to
decrease after several s-merge operations in CMOS designs.

3.2.2 p-merge (parallel merge)
p-merge leads to a substantial reduction in model extraction time
as it reduces the number of arcs which need to be processed in the
next stage of computation. Given two parallel delay arcs, p-
merge chooses the “worst” of the two arcs and allows the other
arc to be discarded. Consider two parallel arcs, arc1 and arc2,
with the same timing characteristics as in section 3.2.1 except that
both have the same input slews is1 (assume d1 < d2).
If a late path is of interest, p-merge picks output slew and arc
delay from arc2 to update arc1. The resulting delay for arc1
becomes

arc1

Input Slew Output Slew Arc Delay

is1 os2 d2

Conversely, if an early path is of interest, arc1 will remain
unchanged.
Note that p-merge only preserves the “worst” (latest and earliest)
port-to-port delays.

3.3 Sequential Models
Sequential models involve delay arcs and check arcs. All check
arcs can be classified into two main groups. One group is called
the “setup” group where the data signal is expected to arrive
before the reference or clock signal. Examples of “setup” group
are setup, recovery, skew, clock separation, etc. The other group
is called the “hold” group where the reference signal is expected
to arrive before the data signal. Examples of “hold” group are
hold and removal. To preserve latch behavior, all latch input pins
and latch output pins are retained but all registers are removed.
The operations associated with the removal of sequential elements
are similar to those for combinational models. To correctly model
the interaction between delay arcs and check arcs, two different s-
merge operations are used: forward s-merge and backward s-
merge. Sequential p-merge is essentially the same as
combinational p-merge. The only difference is that only check
arcs of the same type can be merged.

3.3.1 Forward s-merge
Forward s-merge operation is used when register/latch clock pins
are removed. When a delay arc and a check arc meet at a clock
pin, a new check arc is created to represent a new check value
between the old data signal (signal end of the check arc) and the
new clock signal (source of the delay arc). Let d denote the delay
value on the delay arc and c the check value on the check arc. For
setup (hold) group, the new check value becomes c – d (c + d).

3.3.2 Backward s-merge
Backward s-merge operation is used when register input pins are
removed. When a delay arc and a check arc meet at a data pin, a
new check arc is created to represent a new check value between
the source of the delay arc and the old clock signal (reference end
of the check arc). For setup (hold) group, the new check value
becomes c + d (c – d).

3.3.3 Self-loop Check Arcs
There are some special check arcs where both the signal end and
the reference end point to the same pin. Such timing checks
include, but are not limited to, minimum pulse width (MPW) and
minimum period (MP) checks on clocks. By using forward and

backward s-merge operations, such self-loop check arcs can be
modeled with correct clock path
rise/fall) and slew propagation.

Figure 3: Modeling self-loop check arcs

CK

MPW

d1

d2

Bwd s-merge

d2

CK Fwd s-merge

MPW

Self-loop check arcs may be “ex
self-loop by conceptually duplica
example, consider the timing gra
with a MPW check arc in Fig. 3
produce two arcs d1 and d2 and n
loop arc. First, backward s-merg
and the check arc. Then, forwar
arc d2 and the check arc from t
another self-loop check arc at po
clock path delay and the slew p
arcs or pins need to be duplicated
is for the sake of exposition only.

3.4 Graph Reduction A
We start with a timing graph that
the timing graph is responsible fo
The graph is reduced one pin at
pin in breadth first search (BFS)
until no further changes are poss
of the algorithm. removePin

performs all the merge op
removePin() is given in Fig. 5
of delay arcs or check arcs whi
pins (or preserved internal pins)
pins (or preserved internal p
computation routines need to be c
p-merge operations are done. A
associated with assertions or if
The preservation of internal pins
Self-loop check arcs are processe

removePin(pin){
 if (!canRemovePin(pin)) {
 retainPin(pin);
 return 0;
 }
 for each incoming delay arc d1 to pin {
 for each outgoing delay arc d2 from pin {
 d3 = s-merge(d1, d2);
 for each delay arc d parallel to d3 {
 p-merge(d3, d);
 delete d;
 } }
 for each check arc c1 having pin as sig {

reduceGraph(graph){
 changed = 1;
 while (changed) {
 changed = 0;
 for each pin of g
 if (removePin(p
 changed = 1;
 } } }
 postProcess(graph);
} Figure 4: redu
 delays (including asymmetrical

panded” as a check arc with no
ting the incoming delay arc. For
ph fragment for some clock path
. The delay arc is duplicated to
ow check arc is no longer a self-
e is performed on delay arc d1
d s-merge is performed on delay
he previous step. This leads to
rt CK that correctly reflects the
ropagation. Note that no delay
 here. The duplication in Fig. 3

lgorithm
 is acyclic. The timer that builds
r breaking combinational cycles.
 a time by visiting each internal
order. The reduction is repeated
ible. Fig. 4 shows the core loop
() is the main routine which

erations. Pseudo code for
. postProcess() takes care

ch originate from primary input
and terminate at primary output
ins). For such arcs, delay
alled explicitly as no s-merge or

 pin cannot be removed if it is
it is needed as an anchor point.
 will be discussed in section 4.

d as check arcs in Fig. 5.

BFS traversal guarantees that

 c3 = backward-s-merge(d1, c1);
 for each check arc c parallel to c3 {
 p-merge(c3, c);
 delete c;
 } }
 for each check arc c2 having pin as ref {
 c4 = forward-s-merge(d1, c2);
 for each check arc c parallel to c4 {
 p-merge(c4, c);
 delete c;
 } } }
 delete pin;
 return 1;
} Figure 5: removePin() code

• all the incoming delay arcs to a pin have already been
processed before the pin is removed, and

• the delay arcs are characterized with respect to a minimum
number of input slew values.

raph in BFS order {
in)) {

ceGraph() code

However, BFS traversal does not guarantee that both the signal
end and the reference end of all check arcs are processed before
forward s-merge or backward s-merge operations. For example,
consider the timing graph in Figure 6. When pin c1 is removed,
the range of slew values coming from the signal end (d2) of the
check arc is not available. In this case, we characterize the check
arc with respect to all possible slew values (usually fewer than 6
slew values are sufficient to characterize a check arc). Later
when pin d2 is processed, we re-characterize the check arc for

appropriate slew values.

 clk c1 q1 d2

Figure 6: Some check arcs need re-characterization

Fig. 7 gives an example of graph reduction on a circuit with two
registers and one latch. The final model includes two internal
pins to preserve the latch behavior. Note that the setup/hold
checks on reg1 are modeled as self-loop setup/hold check arcs on
clock C.

D Q

C

reg0 reg1 latch0

QD

C

Figure 7: Example of m
design with two reg

4. RETAINING INTER
We retain internal pins in the ti
One reason is to model latch beh
presence of clock waveform c
support all original assertions s
paths, generated clocks, etc., inc
blocks. We retain all internal pin
re-write the original assertions i
pins. The new assertions becom
library format allows it, they ma
timing model and applied autom
Internal pins retained for these re
Another important reason for re
increasing the model size. Such
Essential to supporting both pres
the retainPin() operation w
Figure 8. Associated with each
slew values which are obtained fr

4.1 Anchor Points
Anchor points are existing intern
lead to an increase in model size.
use the number of delay arcs. W
make equal contribution to the
assumption, the identification of
problem of finding a set of prun
circuit optimization [5]. The ob
number of delay arcs, not the num
want to characterize the delay a
number of input slew values, we

pins at random without first processing their incoming delay arcs.
This constrains the order in which anchor points are identified and
retained.
We define gain at an internal pin as

(#incoming delay arcs × #outgoing delay arcs) –
#incoming delay arcs – #outgoing delay arcs.

This represents an increase in the number of delay arcs if the pin
is removed. For example, in Figure 1, the number of delay arcs is
6 before the removal of the internal pin. If the pin is removed, the
number of delay arcs becomes 9. Thus, the gain is 3. Any pin that
has a positive gain and is observable becomes a candidate for
anchor points. A pin is observable if there exists a path from the
pin to a primary output or to a preserved pin. Observability
prevents anchor points from being formed in the transitive fanin
cone of pins that will eventually be removed. For example,

retainPin(pin) {
 for each incoming de
 compute_delay (d);
 }
 combine all incoming
 for each outgoing de
 compute_delay(d);
} } Figure 8: re
odel extraction on a
isters and a latch

NAL PINS
ming graph for several reasons.
avior that is correct even in the

hanges. Another reason is to
uch as multi cycle paths, false
luding those that span multiple
s associated with assertions and

n terms of the retained internal
e a part of the model and, if the
y even be embedded within the
atically after the model is read.
asons are called preserved pins.
taining internal pins is to avoid
 pins are called anchor points.
erved pins and anchor points is
hose pseudo code is given in
retained pin is a range of input
om the incoming delay arcs.

al pins which, if removed, may
 To estimate the model size, we
e assume that all the delay arcs
 final model size. Given this
 anchor points is similar to the
ing pins in the context of static
jective here is to minimize the
ber of variables. Also, since we
rcs with respect to a minimum
 do not want to remove internal

register input pins are not observable and are eventually removed.
Anchor points with a gain value greater than or equal to some
threshold are identified by canRemovePin() in Figure 5.
Once anchor points are identified, they are valid for a particular
pass. One pass constitutes a complete sweep of all internal pins.
Anchor points must be re-identified in the subsequent passes.
Table 1 presents the results of varying the gain threshold on a
simple 32-bit combinational multiplier. The cpu time and

Table 1: Results of Varying Gain Parameter
Gain cpu

sec
mem

MB

#anchor
points

#delay
arcs

Model
size
KB

#passes

1 2.7 10.6 359 3312 896 5

2 2.8 10.9 244 3295 1024 4

3 2.9 11.0 178 3411 1095 4

5 2.8 11.0 176 3472 1104 4

50 4.0 12.4 49 5210 2089 3

1000 5.9 14.6 0 3104 1543 2

lay arc d of pin {

 input slews at pin;
lay arc d from pin {

tainPin() code

memory represent the runtime and the memory needed to extract
the model on a 750MHz Sun Fire 880 machine running Sun OS
5.8. With a very high value of gain threshold (like 1000), we can
remove all anchor points. We provide an option to change the
gain threshold but the default is set to 1 and the guarantee in
model size reduction compared to the original timing graph only
comes with a threshold value of 1. We found this greedy 1-gain
heuristic to be very effective.

4.2 Limitation of Anchor Point Heuristic
Although the multi-pass greedy heuristic is fast and effective, this
does not guarantee an optimal solution. As a result, the greedy
method may produce a slightly larger model than an approach that
has a more global view of the graph. Fig. 7 shows an example of
such sub-optimality for the 1-gain greedy heuristic. The greedy
heuristic fails to delete pins D and E because the removal of either
pin leads to an increase in the number of delay arcs. However, if
both pins are removed, the total number of delay arcs would go
down. We have not found this to be a big limitation in more than
70 industrial designs that we have tested so far. Nevertheless, we
are investigating ways to remedy this limitation.

Table 2: Timing Model Extraction Results

= a

b

c

Figure 9: Greedy heuristic

ckt #gates #regs&

latches

#I/O
ports

#int
pins

intial

#arcs

initial

#int
pins

final

#arcs

final

#passes Model
extraction

time / mem

(sec / MB)

Pre-
extraction
timing
analysis

time / mem

(sec / MB)

Post-
extraction
timing
analysis

time / mem

(sec / MB)

model
size
(MB)

ex1 108K 1855 133 116079 157660 215 1452 3 20.8 / 62.4 11.5 / 43.8 1.5 / < 1.0 1.3

ex2 129K 7 2322 117959 279820 12703 54803 3 41.3 / 126.1 17.5 / 51.0 6.1 / < 1.0 46.4

ex3 307K 7742 777 320697 514033 21 636 3 113.4/162.9 30.3/ 109.1 1.2 / < 1.0 1.0

ex4 456K 17949 180 467049 649922 204 545 4 109.4/463.6 56.1/ 235.1 1.3 / < 1.0 0.3

5. EXPERIMENTAL R
Table 3: Results showi

Timing analysis o
original netlist

ckt

Early slack late slack

ex1 -11857.34 -11857.34

ex2 -3.74 -87.37

ex3 -1.85 -1.85

ex4 -7.47 -7.47

Tables 2 and 3 present results of
designs. Multi-pass 1-gain gree
them. Reported cpu times and
Sun Fire 880 machine running
internal pins (final) includes all p
The models were written out in
(TLF) version 4.4. The runtime i
networks using insertion delays.
The resources needed to generate
in terms of cpu time and 1.4-2
compared to performing static
efficient since static timing ana
single input slew value and a si
model extraction considers, on t
values and 4 output load values.
by examining 1000 worst paths in
(with a maximum of 500 report
worst late paths and the worst
those in the original circuit wit
value) as can be seen in Table 3.
The design ex2 led to an out of m
box generator based on [1] and a
box generator based on [4]. The
logic is mostly combinational in
anchor points with gain values of
anchor points leads to long run

large models. We produced a 1% accurate model in 41.3 sec that
has a reasonable size (46.4 MB) for this design.
d

e

x

y

fails to remove d & e pins

ESULTS
ng accuracy of models
n Timing analysis on

extracted model
early slack late slack

 -11857.34 -11857.34

-3.76 -87.35

-1.85 -1.85

-7.47 -7.47

graph reduction on four industry
dy heuristic was used on all of
memory usage are on 750MHz
Sun OS 5.8. The number of
reserved pins and anchor points.
Cadence Timing Library Format
ncludes characterization of clock

 a timing model are about 2-4x
.5x in terms of memory usage
timing analysis. This is very
lysis is performed using only a
ngle output load value, whereas
he average, about 4 input slew
 Timing analysis was performed
 both late mode and early mode

ed paths per endpoint). All the
early paths in the model match
hin 1% (the specified tolerance

emory error (> 4 GB) for a black
 model size of 5 GB for a gray
design has only 7 latches and the
 nature. We identified several
 395 and 384. Removal of such
time, large memory usage and

As can be seen from Table 2, extracted timing model leads to
significant gains in capacity in terms of both runtime and memory
usage. If netlists are replaced by timing models, we gain up to
43x in terms of runtime and up to 235x in terms of memory usage
in timing verification.

6. CONCLUSIONS AND FUTURE WORK
We have presented a novel method of generating a timing model
by graph reduction. This method is simple and is shown to be
quite effective in increasing the capacity of timing verification.
The generated model provides a plug-in replacement capability
for blocks for static timing analysis and it is well suited for top-
down hierarchical flows. It takes 1.4-4x more computational
resources to generate an accurate model than to perform timing
analysis. The method guarantees a reduction in model size
compared to the original timing graph and lends nicely to a
formulation where constraints that span multiple blocks can be
supported. Also, the model allows for arbitrary levels of latch
time borrowing.
As discussed in section 4.2, the greedy heuristic may not always
produce an optimal solution. Future research will examine ways
to further minimize the model size. Also, work is under way to
provide support for bottom-up IP characterization flows and an
option to generate black box models for applications that are not
capable of reading gray box models.

7. REFERENCES
[1] Cherry, James J. Pearl: A CMOS Timing Analyzer, Design

Automation Conference, (1988), 148-159.

[2] Venkatesh, S.V., Palermo, R., Mortazavi, M., Sakallah, K.A.
Timing Abstraction of Intellectual Property Blocks, Custom
Integrated Circuit Conference (1997), 99 – 102.

[3] McDonald C.B., Bryant, R.E. A Symbolic Simulation-Based
Methodology for Generating Black-Box Timing Models of
Custom Macrocells, ICCAD (2001), 501 – 506.

[4] Segal, Russell B. Extracting accurate and efficient timing
models of latch-based designs, U.S. Patent 5,790,830 (August 4,
1998).

[5] Visweswariah, C., Conn, A.R. Formulation of Static Circuit
Optimization with Reduced Size, Degeneracy and Redundancy
by Timing Graph Manipulation, ICCAD (2000), 244 – 251.

