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Timing of inorganic phosphate release modulates
the catalytic activity of ATP-driven rotary motor
protein
Rikiya Watanabe1,2 & Hiroyuki Noji1

F1-ATPase is a rotary motor protein driven by ATP hydrolysis. The rotary motion of F1-ATPase

is tightly coupled to catalysis, in which the catalytic sites strictly obey the reaction sequences

at the resolution of elementary reaction steps. This fine coordination of the reaction scheme

is thought to be important to achieve extremely high chemomechanical coupling efficiency

and reversibility, which is the prominent feature of F1-ATPase among molecular motor

proteins. In this study, we intentionally change the reaction scheme by using single-molecule

manipulation, and we examine the resulting effect on the rotary motion of F1-ATPase. When

the sequence of the products released, that is, ADP and inorganic phosphate, is switched, we

find that F1 frequently stops rotating for a long time, which corresponds to inactivation of

catalysis. This inactive state presents MgADP inhibition, and thus, we find that an improper

reaction sequence of F1-ATPase catalysis induces MgADP inhibition.
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F1-ATPase (a3b3gde), a catalytic sub-complex of F0F1-ATP
synthase, is a rotary motor protein fuelled by ATP
hydrolysis1–3. Three subunits (a3b3g) function as the

minimum component of the rotating system, where the a3b3
unit forms a cylindrical stator and the g rotor subunit penetrates
the centre of the cylinder4. The catalytic sites for ATP hydrolysis
are located on each interface between the a and b subunits,
mainly on the b subunits, and the three b subunits are always in
different catalytic states4. The interconversion of the catalytic
states of b subunits, which induces their conformational
transition, drives the rotation of the g subunit5–7.

The rotary motion of F1 can be directly visualized by optical
microscopy8–10. The unitary step size of the rotation of F1 is 120�,
and each step is coupled to a single turnover of ATP hydrolysis11.
The 120� step is further divided into 80� and 40� sub-steps12,13.
The 80� sub-step is triggered by ATP binding and ADP release,
each of which occurs on different b subunits14. The 40� sub-step
is triggered by ATP hydrolysis and release of inorganic phosphate
(Pi), which also occurs on different b subunits14,15. The catalytic
state of the b subunits is tightly coupled to the rotation of the
g subunit; thus, F1 can synthesize ATP from ADP and Pi when
the g subunit is forcibly rotated in the reverse direction16,17.
Mechanically induced ATP synthesis is the physiological role of
F1 of F0F1-ATP synthase, in which F0, a proton-driven motor
protein, compels F1 to rotate in the reverse direction for ATP
synthesis. This reversibility of chemomechanical coupling is the
prominent feature of F1 among other motor proteins.

To achieve reversibility of chemomechanical coupling, fine
coordination of the reaction sequence, which properly induces the
conformational transition of b subunits, is required. To under-
stand the fine coordination mechanism, extensive studies have
been dedicated to unveiling the basic reaction scheme for the
rotation and catalysis of F1, focusing on the catalytic turnover of
individual b subunits (Fig. 1a). In this scheme, an individual b
subunit binds to ATP when the g subunit is oriented at a specific
angle, and the binding angles for the individual b subunits differ
by ±120�. Each b subunit hydrolyses the bound ATP into ADP
and Pi after g rotates another 200� from the ATP-binding angle18.
In addition, the produced ADP and Pi are released from
the catalytic site after additional 40� and 120� rotations,
respectively14,15,19,20. When the g subunit returns to the
original angular position, the b subunit initiates the next round
of catalysis by binding to a new ATP. Thus, the reaction
sequences among the three b subunits are well coordinated at the
resolution of elementary reaction steps, which contributes to the
reversibility of the chemomechanical coupling on F1.

Then, the question arises as to what happens when the reaction
sequence of F1 is changed. In the case of the hydrolysis step,
although the timing of hydrolysis shifts by 80� relative to the
authentic reaction angle, F1 drives the rotation without interrup-
tion, demonstrating the robustness of the chemomechanical
coupling of F1 (ref. 21). In contrast, in the case of other
elementary reaction steps, such as Pi release, the effect of timing
on rotary motion has not been examined so far, although we
established a method to change the timing of Pi release by using
single-molecule manipulation15. In particular, the free energy
change resulting from Pi release was relatively high among
reaction steps; that is, the rotary torque was mainly generated by
Pi release, and therefore, the effect of the timing of Pi release on
rotary motion is expected to be larger than that of other reaction
steps14,15,22. In addition, the timing of Pi release in F1 is different
from that in other motor proteins fuelled by ATP hydrolysis, such
as kinesin and myosin, in which Pi release occurs before ADP
release23,24, and this difference is thought to be important for the
reversibility of the chemomechanical coupling mechanism of
F1 (ref. 15).

In this study, to further investigate the role of the finely
coordinated reaction sequence of F1, we evaluate the effect of
changing the timing of Pi release on the chemomechanical
coupling mechanism. When Pi is released before ADP, we find
that F1 frequently stops rotating for a long time, which
corresponds to inactivation of catalysis. This inactive state
presents MgADP inhibition, and thus, we find that an improper
timing of Pi release induces MgADP inhibition.

Results
Rotation of hybrid F1. We observed the rotation of hybrid F1
carrying one b(E190D), that is, a3b2b(E190D)g, in the presence
of 1mM ATP. Glu190 of the b subunit, the so-called ‘general
base’, is known to be one of the most important residues for
hydrolysis25–27, and its substitution into aspartic acid causes
distinctively slow hydrolysis of ATP28 and strong temperature
sensitivity29. Therefore, the kinetic steps of the mutated catalytic
site are easily distinguished from those of the other two sites. In
the presence of 1mM ATP, the hybrid F1 showed three distinctive
dwells caused by the incorporated b(E190D); the dwell for the
temperature-sensitive reaction at 0� (t¼ 32ms)15,29, which is the
same as the dwell at the ATP-binding angle, ATP hydrolysis
at 200� (t¼ 318ms), and Pi release at 320� (t¼ 9ms) (cyan in
Fig. 1a,b). The dwell time for Pi release at 320� was prolonged
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Figure 1 | Chemomechanical coupling scheme of F1-ATPase. (a) The

circles and red arrows represent the catalytic state of the b subunits and the

angular positions of the g subunit. Each b subunit completes one turnover

of ATP hydrolysis in a turn of the g subunit, where the three b subunits vary

in their catalytic phase by 120�. Regarding the catalytic state of the top b
subunit (cyan), ATP binding, hydrolysis, ADP release and inorganic

phosphate (Pi) release occur at 0�, 200�, 240� and 320�, respectively.
(b) Time course of the rotation of the hybrid F1-ATPase, a3b(E190D) b2g,
in the presence of 1mM ATP. Red, orange, and green represent the pause

at 200�, 320�, and 360� for b(E190D), respectively. The inset shows a

magnification of the time course.
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because of the viscous drag of the rotary probe on g as previously
reported30,31. Hereafter, we refer to the angle for ATP hydrolysis
by b(E190D) as the catalytic angle.

Single-molecule manipulation to induce Pi release. During free
rotation, one b hydrolyses ATP and another b releases the pro-
duced Pi at the catalytic angle, resulting in a rotation of the g
subunit in an anticlockwise direction (Fig. 1a). In contrast to the
free rotation, we recently succeeded in inducing the release of
another produced Pi from the same catalytic site used for ATP
hydrolysis by arresting the g subunit for a long time (410 s)15,22.

In this study, we used the same method to induce the release of
produced Pi immediately after ATP hydrolysis. For manipulation
of g rotation, a magnetic bead was attached to the g subunit of F1,
and the a3b3 ring was immobilized on the glass surface. When the
hybrid F1 showed a pause for ATP hydrolysis by b(E190D) at
200�, we turned on the magnetic tweezers within B450ms
(Fig. 2a,b) and arrested F1 at ±10� from 200�. After a certain
time period had elapsed, we turned off the magnetic tweezers and
released F1 from arrest. Then, F1 roughly showed one of two
behaviours without exception, as previously reported: rotating
forward or restarting the hydrolysis-waiting pause (Fig. 2a).
When F1 shows the former behaviour, b(E190D) has already
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Figure 2 | Single-molecule manipulation for Pi release. (a) Schematic representation of manipulation procedures. When the hybrid F1-ATPase paused at

200�; that is, the angle for ATP hydrolysis by b(E190D), we switched on the magnetic tweezers and arrested F1 at ±10� from 200�. After release from

arrest, F1-ATPase roughly showed two behaviours: rotating forward to next reaction angle (‘ON’), or staying at the original pausing angle (‘OFF’). In

addition, the behaviour of ‘ON’ was classified into three types: (I) rotating forward to 320� and showing the distinctive pause for Pi release (time constant

(t) is B9ms); (II) rotating forward to 360� (skip the pause at 320�); or (III) rotating forward to 320� and showing a long pause (t¼B39 s).

(b) Hydrolysis-waiting time at 200� before F1-ATPase is arrested with the magnetic tweezers. The average waiting time was 370±37ms for the

behaviours (I) and (II) (light grey), and 275±56ms for the behaviour (III) (grey). Error bars indicate s.d. (c) Time course of PON. Red and blue points

represent PON in the absence or presence of 100mM Pi, respectively. The number of arrest trials and molecules used for each data point were 23–108

and 8–19. The time courses were fitted with the reaction scheme; F1?ATP2?F1 (ADPþ Pi)-F1?ADPþ Pi (solid lines). (d) Example of the time course

of the arrest experiments (blue periods) corresponding to the behaviour of (I), (II) and (III), respectively. (e) Magnification of d. Orange and green

represent the pauses at 320� and 360�.
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hydrolysed ATP and exerted a torque on the magnetic beads,
whereas when b(E190D) shows the latter behaviour, it has not
hydrolysed ATP because F1 cannot generate torque unless
b(E190D) catalyses hydrolysis. These behaviours are hereafter
referred to as ‘on’ and ‘off’, respectively. Then, we measured the
probability of the post-hydrolysis state as the probability of the
‘on’ case against the total number of trials, PON. In the absence of
Pi in solution, PON increased toward 100% as the arrest time
increased; in contrast, in the presence of 100mM Pi, PON did not
change depending on the arrest time, which suggests that PON
depends on the time course of Pi release from the catalytic site
(Fig. 2c).

We extensively analysed the ‘on’ case and found that it can be
classified into three behaviours; (I) rotating forward to 320�,
(II) rotating forward to 360�; that is, skipping the pause at 320�,
and (III) rotating forward to 320� and spontaneously stopping the
rotation for a long time (Fig. 2d,e). When b(E190D) shows (I),

it has hydrolysed ATP during its arrest but has not released
the produced Pi because the rate-limiting step at 320� is not
hydrolysis by b(WT) but rather Pi release by b(E190D) (Fig. 1a).
F1 cannot generate torque at 320� unless b(E190D) releases Pi.
When b(E190D) shows (II), it has hydrolysed ATP and
simultaneously released the produced Pi, and therefore, F1 has
already exerted torque for the step from 320� to 360� driven by Pi
release. Regarding the behaviour of (III), we have not identified
the chemical state of b(E190D) thus far; however, the pausing
angle is the same as that of the MgADP-inhibited state32.
Hereafter, we characterize (III). First, we analysed the dwell time
at 320� and calculated the probability of occurrence for each
behaviour. As shown by the blue bars in Fig. 3a, distinctively long
dwell times (longer than 100ms), which correspond to the
behaviour of (III), can be recognized. Then, we calculated the
probability of occurrence of (III), that is, PIII, as the number of
events corresponding to the blue bars divided by total number of
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Figure 3 | Analysis of the effect of Pi release at 200�. (a,b) Histograms of the dwell time at 320� after the release from 200� arrest for 10 s, 30 s,

and 60 s, or during free rotation. The bin sizes of the histogram are 15 s for a and 4ms for b. Blue bars in a represent the number of pauses longer

than 100ms (behaviour (III)). The data after first bin in b were well-fitted by the single exponential curve where t¼ 9ms (Pi release dwell at 320�).
The deviations of the first bins from the single exponential curves are coloured green (behaviour (II)). (c) Probability of Pi release at 200�. The red solid

line presents the simulation curve for Pi release calculated from the analysis of PON based on the kinetic scheme as follows: F1 �ATP2 F1 � (ADPþ Pi)-

F1 �ADPþ Pi. Green, blue and orange points represent the probability of occurrence of II (PII), III (PIII) and their sum (PIIþ PIII), respectively. PII and PIII
were determined from the analysis of b and a, respectively.
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events in the histograms, and found that PIII increased as the
arrest time increased. As shown in Fig. 3b, we changed the time
scale of the histogram to shorter bins (4ms), and found that the
histogram deviated from a single exponential decay model as the
arrest time increased. For example, at 60 s of arrest, the first bin
(o4ms) contained many more events in which b(E190D)
skipped the pause at 320� than expected from a single
exponential decay that fit the data well after the first bin with a
time constant of 9ms (black line in Fig. 3b), which was consistent
with that of Pi release in free rotation (rightmost panel in Fig. 3b).
Therefore, the first bin deviated from single exponential decay
because of the behaviour of (II); accordingly, the first bin
potentially includes behaviours of both (I) and (II). To calculate
the probability of occurrence of (II), that is, PII, we fit the data
points of the histograms (except for the first bin) to a single
exponential curve with 9ms as the time constant of Pi release.
PII was determined as the number of events that deviated from
the single exponential curve in the first bin (green bars in Fig. 3b)
divided by total number of events of the histogram in Fig. 3a. In
addition, we also calculated the probability of occurrence of (I),
that is, PI, as the number of remaining events (light yellow bars in
Fig. 3b) divided by total number of events.

Kinetic analysis of Pi release and the inactive state. From the
analysis of PON based on the irreversible reaction scheme (Fig. 2c)
F1 �ATP2 F1 � (ADPþ Pi)-F1 �ADPþPi, we can calculate the
probability of Pi release during arrest as PoffPi , as shown by the
red line in Fig. 3c. For example, PoffPi is 37% and 60% for 30-s and

60-s arrest, respectively. Here, we compared PII and PoffPi , and
found that PII was much smaller than PoffPi (Fig. 3c, green).
As mentioned above, we could not identify the chemical state of
(III). Thus, we suspected that (III) was caused by Pi release
immediately after ATP hydrolysis and summed PII and PIII. The
sum of PII and PIII was almost the same as PoffPi (Fig. 3c, orange),
suggesting that (III) was caused by Pi release immediately after
ATP hydrolysis. To confirm the relationship between (III) and
Pi release, we conducted the arrest measurement in the presence
of high [Pi] (B100mM), where Pi did not affect the kinetics of
ATP binding and produced ADP release14,33. When we added
more than 10mM Pi in solution, PIII was completely suppressed
toward 0% (Fig. 4a,b), suggesting that (III) was induced after the
Pi release. Then, the kinetic scheme of (III) is given below
(equation (1)), where, khydATP, ksynATP, koffPi , konPi , and ka-i are the rate
constants of ATP hydrolysis, synthesis, Pi release, binding and
inactivation of b(E190D), respectively.

F1 � ATP �! �
kATPhyd

kATPsyn

F1 � ðADPþ PiÞ �! �
kPioff

kPion

F1 � ADPþPi

�!ka!i F1 � ADP� þ Pi ð1Þ

As previously reported, khydATP, ksynATP, koffPi , and konPi were given as
2.3 s� 1, 0.8 s� 1, 0.021 s� 1 and 2� 103M� 1 s� 1, respectively15.
Then, from the fitting of PIII in Fig. 4a based on the kinetic
scheme as shown above, the only fitting parameter; ka-i, was
determined as 0.019 s� 1. To verify this kinetic scheme, we
fixed the arrest time as 60 s, and we re-plotted PIII against Pi
concentration. Based on this kinetic scheme with the determined
ka-i, we mathematically reproduced the experimental result of
PIII as shown in Fig. 4b. From these results, we confirmed that
this inactive state was induced after Pi release at 200� with a rate
constant of 0.019 s� 1.

We analysed the dwell time for activation from this inactive
state (Fig. 4c). As shown in Fig. 4c, the histogram of the dwell
time fit well to a single exponential curve, and we determined the
time constant of activation, ti-a, as 39 s, which was almost the
same as that for activation from an MgADP-inhibited state32. In
addition, the aforementioned phenomena in which the addition
of a large amount of Pi prohibited F1 from lapsing into the
inactive state (Fig. 4a) is a well-known feature of the MgADP-
inhibited state34, suggesting that the inactive state revealed in this
study corresponds to MgADP inhibition.

Discussion
MgADP inhibition, a common feature of F1-ATPase and ATP
synthases from various sources32,34–37, is the catalytically inactive
state. Although many biochemical studies have addressed
MgADP inhibition, the mechanism of MgADP inhibition has
remained elusive in the context of catalysis-rotation scheme.
Here, we propose a simple model for how F1 lapses into the
MgADP-inhibited state during catalysis (Fig. 5). We assume that
the fundamental principle of MgADP inhibition is the loss of
the driving energy of rotation derived from Pi release. Our
experimental data indicate that F1 can continue rotating even if it
releases Pi before ADP at 200�, suggesting that F1 principally
stores the driving energy derived from Pi release in conformation
for 320�–360� rotation (grey solid line in Fig. 5). However, with a
time constant of 0.019 s� 1, F1 dissipates the stored energy during
rotation before reaching 320� and lapses into MgADP inhibition
at 320� (grey dash line in Fig. 5). The driving force of 320–360�
rotation after inhibition is a thermal agitation, as our previous
work suggests that thermally agitated rotation of g over 30�
induced activation from the MgADP-inhibited state37. Thus, the
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MgADP-inhibited state is so stable that it takes a long time to
resume rotation, ti-a¼ 39 s (Fig. 4c)32.

The crystal structures co-crystallized with azide, including the
original structure4,38, revealed that b at 320� (bE) does not bind
nucleotides or phosphate. Considering that azide is well known
to stabilize the MgADP-inhibited state of F1, these structures
demonstrate the structural features of the MgADP-inhibited state.
Thus, it is highly probable that b in the 320� state of MgADP-
inhibited F1 has no bound nucleotide or phosphate, which is
consistent with our model (Fig. 5).

It should be mentioned that the Walker group has challenged
our reaction scheme of catalysis and rotation for active F1, on
which the present work is based, that is, where Pi is released from b
in 320� state. Based on the recent crystal structure of MF1 in which
b in the 320� state is bound to Mg-free ADP39, they proposed that
Mg and Pi are released before ADP. Although the reason for this
apparent discrepancy is not clear, it should be noted that most of
the crystal structures solved so far had no bound nucleotide on b in
the 320� state; the only exceptions are the above-mentioned
structure39 and a structure in a different study40. In addition, there
are several experimental differences between the present study and
the crystal structure study such as the species from which F1 is
derived and the buffer contents. A precise correlation between the
crystal structure and the reaction model based on single-molecule
experiments remains to be established.

In vivo, F1 forms F0F1-ATP synthase and synthesizes ATP by
coupling with a rotary motion driven by F0. Previous studies
revealed that MgADP inhibition suppresses ATP hydrolysis but not
synthesis41. Recently, the rotary motion of the F0F1 complex coupled
to the synthesis of ATP was visualized at the single-molecule level42–
44. For further understanding of the effect of MgADP inhibition on
ATP synthesis, verification by single-molecule measurement of the
F0F1 complex is desirable in the future.

Methods
Rotation assay. To visualize the rotation of hybrid F1, a3b(E190D) b2g, the stator
region (a3b(E190D)b2) was fixed on the glass surface, and a magnetic bead
(f¼ 0.3 mm; Seradyn, USA) was attached to the rotor part (g) as a probe for
rotation and manipulation. The experimental procedure was as follows. The flow
chamber was constructed from an uncoated top coverslip and a bottom coverslip
whose surface was modified with Ni2þNTA. F1 solution, which was diluted in
buffer A (50mM MOPS-KOH, 50mM KCl and 5mM MgCl2, pH 7.0) to a final
concentration of 200 pM, was infused into the flow chamber. After 5min, unbound
F1 molecules were washed out with buffer A containing 10% bovine serum
albumin, and then streptavidin-coated magnetic beads in buffer A were infused.
After 10min, unbound beads were washed out with buffer A. Finally, buffer A was
infused with the indicated amount of ATP or Pi. The rotating beads were observed
under a phase-contrast microscope (IX-70 or IX-71; Olympus, Japan) with a � 100
objective lens. The rotation assay was performed at 23 �C.

Manipulation with magnetic tweezers. The stage of the microscope was
equipped with magnetic tweezers that were controlled using custom-made software
(Celery, Library, Japan). The rotary motion of the bead was recorded at 30 and
3,000 frames per second, simultaneously (FC300M, Takex, Japan; FASTCAM
1024PCI-SE, Photron, Japan). Images were stored in the hard disk drive of a
computer as an AVI file and analysed using custom-made software. From the
recorded images at 3,000 frames per second, we judged whether the operations
precisely arrested the g subunit at the targeted angle or not.
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