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ABSTRACT • RÉSUMÉ

Infantile esotropia is a common ophthalmic disorder in childhood. It is often accompanied by profound
maldevelopment of stereopsis, motion processing, and eye movements, despite successful surgical realignment
of the eyes.The proper timing of surgery has been debated for decades.There is growing evidence from clinical
and animal studies that surgery during the early critical periods enhances sensory and ocular motor
development.The Congenital Esotropia Observational Study has defined a clinical profile of infants who will
benefit most from early surgery, and several other studies have shown that early surgery does not lead to
adverse long-term effects. Clinicians now should consider offering early surgery to patients with large-angle,
constant infantile esotropia at or before 10 months of age.

L’ésotropie infantile est une maladie ophtalmique courante chez les enfants. Elle s’accompagne souvent d’un
développement anormal profond de la vision stéréoscopique, de la motilité et des mouvements oculaires,
malgré la réussite du réalignement chirurgical des yeux. Le débat sur le moment opportun de pratiquer la
chirurgie se poursuit cependant depuis des décennies. Les études cliniques sur les animaux présentent de plus
en plus de données probantes démontrant que la chirurgie pratiquée dès le début des périodes critiques
améliore le développement sensoriel et oculomoteur. L’étude fondée sur l’observation de l’ésotropie
congénitale définit un profile clinique des enfants qui bénéficient le plus d’une chirurgie précoce et plusieurs
autres études démontrent que la chirurgie précoce n’a pas d’effets indésirables à long terme. Les cliniciens
devraient maintenant songer à offrir la chirurgie précoce pour les patients qui ont une ésotropie infantile
constante à angle ouvert, à l’âge de 10 mois ou avant.

Infantile esotropia is a nasalward eye misalignment that
begins in the first 6 months of life. It affects 1 in every

100 to 500 persons.1,2 Infantile esotropia is characteristi-
cally large in magnitude (>20 prism diopters [PD]) and
cosmetically conspicuous. While there is uniform agree-
ment among pediatric ophthalmologists that a large-angle,
constant infantile esotropia requires surgical correction, the
proper timing of surgery has been debated for decades.3,4 In
North America, the typical age at surgery ranges from 11 to
18 months, and in many parts of Western Europe, surgery
is delayed until 2 to 4 years of age.5 Despite successful sur-
gical realignment of the eyes, a number of sensory-motor
deficits often persist into adulthood.6,7 They include abnor-
mal stereopsis,8,9 latent fixation nystagmus,10–12 dissociated
vertical deviation,12,13 abnormal eye movements (e.g.,
nasotemporal asymmetries of optokinetic nystagmus
[OKN]14–16 and smooth pursuit,12,17 and abnormal ver-
gence18–20), as well as abnormal visual motion process-
ing7,21–23 and global motion perception.24–27

In the last decade, advances in pediatric anesthesia and
surgical techniques have made it possible to realign the eyes
of strabismic infants at weeks or months of age.28,29 The

rationale for early surgery stems from research in animals
showing that the earlier within the critical periods the eyes
are aligned, the more likely it is that normal binocular
vision will develop.30–32 Indeed, a number of clinical
studies have shown that the sensory and ocular motor out-
comes of children who had early surgery are substantially
better than those who were repaired at the current standard
age of surgery (referred to as surgery from 11 to 18 months
of age in this review). This paper reviews the basic and clin-
ical science literature on the critical periods of sensory and
ocular motor development, then discusses the neural mech-
anisms that underlie the deficits typically seen in infantile
esotropia. Following this, it examines current evidence in
support of early surgery and discusses the clinical profile of
infants who will most likely benefit from early surgery.

CRITICAL PERIODS OF SENSORY AND MOTOR DEVELOPMENT

Stereopsis
The critical period for binocular visual development

occurs around the first 4 to 6 months of life.33–35 Binocular
disparity sensitivity and fusion are absent in infants
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younger than several months of age.33,34,36–38 Stereopsis
emerges abruptly during the first 3 to 5 months of life, and
is nearly mature by 6 months of age.33,34,39,40 Humans with
a history of infantile esotropia have abnormal binocular-
ity.9,41–47 Experimental findings in cats and monkeys
showed that a short period of deprivation during the criti-
cal period of binocular development results in severe, irre-
versible deficits in stereopsis48–52 and permanent loss of
binocular cortical neurons.32,53,54

Optokinetic nystagmus
The development of the ocular motor systems, including

OKN, smooth pursuit, and vergence, is also exquisitely sen-
sitive to the effects of early abnormal binocular visual expe-
rience. OKN is a reflexive pattern of eye movements that
tracks the motion of large regions of the visual field. It is
believed to be mediated by a subcortical system that
includes the pretectal nucleus of the optic tract (NOT) and
the dorsal terminal nucleus (DTN) of the accessory optic
system.55,56 During monocular viewing, normal neonates
exhibit asymmetric monocular OKN that favours nasalward
over temporalward motion.57,58 This nasotemporal asym-
metry disappears by 6 months of age.57–59 In children16,59,60

and adults14,59–63 with a history of infantile esotropia, asym-
metric monocular OKN persists. OKN asymmetry is also
evident in cats64,65 and monkeys66 that experience various
forms of monocular or binocular deprivation early in life. It
is generally believed that at birth only the subcortical system
is functional. The monocular OKN is asymmetrical in the
neonatal period because neurons in the NOT-DTN are
innately selective for ipsiversive target motion.67 As binocu-
larity emerges and as an indirect ipsilateral cortical projec-
tion from the middle temporal area (MT) to the NOT
matures,68 monocular OKN becomes symmetrical because
of the dominating effects of this binocular cortical pathway
over the subcortical pathway.67,69

Smooth pursuit
Smooth pursuits are slow-tracking eye movements that

hold the image of a moving target on the fovea. Humans and
monkeys with early-onset strabismus have a striking
nasotemporal asymmetry of pursuit favouring nasalward
motion during monocular viewing.12,14,17,70–72 The asymme-
try is exhibited transiently in normal human and monkey
infants before the onset of binocularity,58,59 but it persists
permanently if strabismus develops in the neonatal
period.12,70 It is not seen in strabismus that develops after
infancy.17,73 When patients were asked to judge the speed of
moving targets, they systematically underestimated the speed
of a temporalward-moving target and overestimated that of a
nasalward-moving target, even though the targets moved at
identical speed.12,74 Taken together, these observations
suggest a link between aberrant binocularity and abnormal
visual motion processing that affects pursuit pathways during
the critical period for ocular motor development.70,75–81

However, motion perception biases both similar82 and oppo-

site62,82 to those reported earlier,12,74 as well as no or small
motion biases,83,84 have also been reported.

Vergence
Vergence eye movements are disjunctive movements that

move the eyes in opposite directions (i.e., convergence and
divergence), so that the images of a single object fall on the
fovea of both eyes simultaneously. Two major visual cues
that stimulate vergence are image displacement on the
retinae (i.e., binocular disparity) and image defocusing (i.e.,
accommodative blur).85,86 Vergence,87–89 accommoda-
tion,88,89 and disparity sensitivity are all immature at
birth33,36,37 but develop rapidly in the first few months of
life. Humans18–20 and monkeys90 with a history of infantile
esotropia have major deficits in disparity-induced vergence,
but they have normal accommodative vergence. During
binocular viewing with far and near targets placed in the
subjects’ midline (i.e., symmetric vergence stimuli), normal
humans respond predominantly with symmetric vergence.
In contrast, strabismic patients respond predominantly
with asymmetric vergence, accompanied by a disjunctive
saccade.19,20 During monocular viewing, the vergence
behaviour in strabismic patients does not change, whereas
vergence in normal humans becomes remarkably strabis-
mic-like, with a 4- to 5-fold increase in asymmetric sac-
cadic vergence.19,20 These findings suggest that vergence in
strabismic humans during binocular viewing is achieved by
monocular, accommodative vergence driven chiefly by
visual inputs to the dominant eye.19,20

Motion visual evoked potentials
Abnormal motion processing, measured by recording the

visual evoked potential (VEP) responses to monocularly
viewed oscillating horizontal gratings, has also been demon-
strated in patients with infantile esotropia.7,21,22,26,91–94

Motion VEP (mVEP) arises predominantly from binocular,
direction-selective neurons within the primary visual cortex
(V1).7,93 Normal neonates (≤1 month) exhibit symmetric
mVEPs, indicating that their cortical responses are equally
strong to nasalward and temporalward directions of
motion.21 Nasotemporal mVEP asymmetry emerges in
normal infants at 2 to 3 months of age, but it rapidly dimin-
ishes and becomes adult-like by 6 to 8 months.7,21,22,26

mVEP asymmetry is typically observed in
patients7,21,22,26,91–94 and monkeys with a history of infantile
esotropia.95 In addition, there is a strong association
between abnormal binocularity and mVEP asymmetry
during normal maturation and in infantile esotropia.21

Because mVEP signals are inherently ambiguous regarding
direction, attempts to reveal the perceptual directional bias
of mVEP asymmetry have yielded inconclusive or opposite
findings, with some studies finding a nasalward bias26,62 and
others a temporalward bias.96

Global motion perception
Global motion refers to an overriding perception of a
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single direction in complex textured displays that consist of
a large number of small elements moving in different direc-
tions. During normal development, very young (5–6
weeks) infants have symmetric global motion perception
during monocular viewing.25,26,97 Asymmetric global
motion perception favouring nasalward movements first
appears at 2 months and disappears by about 6 months of
age.25,26,97 Asymmetry of global motion perception is
observed in patients with a history of infantile
esotropia.24–27 Physiologic,98,99 psychophysical,100–102 and
neuropsychologic103–106 studies indicate that global motion
perception is mediated via specific visual pathways (mag-
nocellular, dorsal extrastriate) and extrastriate areas (MT).

NEURAL MECHANISMS OF THE SENSORY-MOTOR

DEFICITS IN INFANTILE ESOTROPIA

What are the neural mechanisms that underlie the
sensory-motor deficits typically seen in infantile esotropia?
At present, it is generally accepted that horizontal binocu-
lar connections in V1 play a critical role.

Visual signals from each eye are completely segregated in
the lateral geniculate nucleus and at the input layer 4C of
V1.107,108 Binocular visual processing first occurs via hori-
zontal binocular connections in layers 4B and 2–6, above
and below input layer 4C, which link ocular dominance
columns (ODCs) of opposite ocularity (i.e., the right and
left eyes).79,107,109 Maturation of horizontal binocular con-
nections in V1 requires correlated activity between the
inputs from the right and left eye.110 Infantile strabismus
results in decorrelated inputs from the eyes and hence, a
loss of horizontal binocular connections.79,109 The reduc-
tion of horizontal binocular connections in V1 results in
deficits in disparity sensitivity and binocular responsiveness
in V1 neurons,31,50,111 which manifest behaviourally as
poor fusional vergence and stereopsis.77,112

Binocular signals from layer 4B of V1, in turn, are pro-
jected onto the extrastriate cortex, MT, and medial superior
temporal (MST) areas.113 Neurons in MT and MST are
sensitive to motion direction and to binocular disparity.114,115

MT and MST mediate smooth pursuit/OKN,116,117 ver-
gence,115,118 as well as complex motion perception.98,99

MST in each cerebral hemisphere encodes ipsiversive
pursuit/OKN and gaze holding. In newborns, the outputs
from V1 to each MST are monocular, with an innate con-
nectivity bias favouring the contralateral MST.70 For
example, inputs from the viewing left eye make a stronger
connection, through V1 of both hemispheres, to MST of
the right hemisphere. MST on the side ipsilateral to the
viewing eye can only be accessed through binocular hori-
zontal connections in V1 and in MT;70 however, these
binocular horizontal connections are weak at birth and
require correlated visual activity in order to mature during
the first few months of life.

This innate, monocular, contralateral-MST connectivity
bias provides a plausible mechanism for the nasalward

pursuit/OKN bias, evident before onset of binocularity, in
infant monkeys and humans. Left eye viewing activates left
eye ODCs in each primary visual cortex. Left eye ODCs
make stronger connections to the right MST. The right
MST mediates ipsiversive (rightward) pursuit/OKN,
which are nasalward movements with respect to the
viewing left eye. During normal development, horizontal
binocular connections mature so that the left eye ODCs
also gain access to the left MST, and the nasalward bias dis-
appears. However, decorrelated visual activity in infantile
strabismus leads to a loss of horizontal binocular connec-
tions; hence, the nasalward bias persists and is amplified.
This bias is manifested clinically as nasotemporal asymme-
tries of smooth pursuit and OKN, as well as nasalward drift
of gaze holding (i.e., latent fixation nystagmus).

EARLY VERSUS STANDARD SURGERY

In light of the myriad scientific and clinical evidence that
showed the devastating effects of infantile strabismus on
early visual and ocular motor development, as well as the
poor functional outcomes of these patients despite success-
ful realignment of the eyes, a logical question is whether
early surgery performed during the critical periods of devel-
opment would be beneficial. Specifically, can early surgery
restore correlated visual inputs between the 2 eyes and
promote maturation of horizontal binocular connections in
V1, thereby enhancing the development of fusion, stereop-
sis, and various eye movements? To answer these questions,
we fitted prism goggles in infant macaques at day 1 of life
to induce an optical strabismus.77,79–81,119–123 The early cor-
rection group wore the prism goggles for 3 weeks (the
equivalent of 3 months before surgical repair in
humans124). The standard/delayed correction group wore
the prism goggles for 3 or 6 months (the equivalent of 12
or 24 months before surgical repair in humans). We found
that standard/delayed correction resulted in deficits typi-
cally associated with infantile esotropia, including abnor-
mal stereopsis,120 long-term eye misalignment,121 latent fix-
ation nystagmus,123 as well as nasotemporal asymmetries of
monocular smooth pursuit, OKN, and mVEPs.77,80 In
contrast, none of the animals with early correction devel-
oped these abnormalities.

Our neuroanatomic data, furthermore, indicated that
both the behavioural and mVEP recoveries in early correc-
tion monkeys were associated with normal development of
area V1, whereas standard/delayed correction and unre-
paired naturally strabismic monkeys had striking struc-
tural and metabolic abnormalities in V1.120,122 The major
structural deficit was a paucity of binocular connections
between ODCs of opposite eyes.120,122 This defect of
binocular connectivity was apparent in layer 4B and in
interpatch compartments of layers 2/3 in V1. Most inter-
estingly, these behavioural and anatomical deficits were
tightly linked; the animals with the most severe sensory,
ocular motor, and mVEP abnormalities also had the
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largest reduction in horizontal binocular connections in
V1.120,122 Our data also suggested that the critical periods
for normal maturation are different from those for func-
tional recovery; extrapolating from our animal data, it
appears that normal development of stereopsis and eye
movements occurs most rapidly in the first 6 months of
life in humans, whereas the critical periods of functional
recovery occur sometime between the first 3 and 12
months postnatally.

New knowledge about sensory and ocular motor devel-
opment in humans in the 1980s provided further support
for early surgery. Costenbader,125 Parks,4 and others126 are
all notable advocates for early surgery. Their early work has
inspired a number of classic clinical studies9,127–130 that
showed that surgical realignment of the eyes during the first
2 years of life is associated with a higher prevalence of stere-
opsis than surgical alignment later in life. Recent studies
suggest that surgical alignment during the first year of life
may enhance stereopsis further,8,9,127–129,131–135 and that
surgical alignment during the first 6 months of life may be
optimal (Fig. 1).28,29,127,131–133 Interestingly, although both
age at alignment and duration of misalignment are linked
to better stereoacuity outcomes, Birch et al.132,133 found
that the duration of misalignment appears to be the more
important factor. Better stereoacuity, in turn, is associated
with more stable long-term eye alignment.133

The effects of early surgery on other outcomes are less
well studied in humans. Birch et al.21 found that only rare
patients with surgery during the first 10 months of life
achieved symmetric mVEPs. Recent mVEP data from our
group136,137 are more promising. Eight patients with early
surgery at ≤11 months of age, 8 with standard surgery at 11
to 18 months of age, and 7 age-matched controls were
studied prospectively. We found that the normal controls

and patients with early surgery exhibited symmetric
mVEPs, whereas patients with standard surgery exhibited
asymmetric mVEPs (Fig. 2).

In another study26 that investigated the codevelopment
of motion detection and mVEPs, early surgery during the
first year of life was found to improve the nasotemporal
asymmetries of both motion detection and mVEPs.
Interestingly, although this same research group suggested
that duration of misalignment is better than age at surgery
in predicting stereopsis outcome,133 they found no differ-
ence in these 2 other outcomes, mVEPs and motion detec-
tion, between patients with a short duration (3–6 months)
versus a long duration (6–12 months) of misalignment.26

We also found that patients with early surgery developed
more symmetric OKN (Fig. 3) and motion detection than
those with standard surgery.

WHO WILL BENEFIT FROM EARLY SURGERY?

A frequently cited rationale against early surgery is the
possibility of spontaneous resolution. This concern has led
to 2 studies: the Congenital Esotropia Observational Study
(CEOS)138 and the Early Surgery for Congenital Esotropia
(ESCET) collaborative clinical trial,134 which was a pro-
posed multicenter randomized clinical trial. The CEOS138

found that infantile esotropia persists in 98% of infants who
have large-magnitude (≥20° or 40 PD) constant esotropia
with onset after 10 weeks of age and refractive error ≤3.00
diopters. Thus, the CEOS138 and other studies134,139,140 suc-
cessfully defined a clinical profile of infants most likely to
benefit from early surgery (Fig. 4). The ESCET, unfortu-
nately, was not funded because experience from the CEOS
indicated that recruitment of eligible patients would be too
low to make a randomized clinical trial feasible.134
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Fig. 1—Summary of stereopsis outcome by age
at surgery. Each circle indicates the prevalence of
stereopsis from each study cited. Short horizon-
tal dashes represent mean prevalence of stere-
opsis for different age groups. (1, Birch et al.21;
2, Ing29; 3, Ing127; 4, Ing and Okino131; 5,Wright
et al.28; 6, Birch et al.134; 7, Birch and Stager132;
8, Birch et al.9; 9, Birch et al.8; 10, Kushner and
Fisher129; 11, Hiles et al.135; 12, Zak and
Morin128; 13,Taylor.130)

Fig. 2—Motion visual evoked potential (mVEP)
outcome by age at surgery. The symmetry of
mVEP is measured by an asymmetry index.The
higher the asymmetry index, the more abnormal
and asymmetric the mVEP responses.The mean
asymmetry index in the early surgery group was
similar to that in age-matched control subjects,
and was significantly lower than that in the stan-
dard surgery group.



Another concern regarding early surgery is the lack of sta-
bility of deviation in young infants.3,134,138,141,142 This issue
was addressed by a recent prospective study,132 which found
that neither the instability of misalignment nor the accuracy
of orthoptic measurement had any negative impact on long-
term eye alignment in patients who had early surgery.132

CONCLUSION

Infantile esotropia is a common health problem in child-
hood. It is important to clinicians because it is difficult to
treat and it is almost always associated with abnormal
sensory and ocular motor outcomes despite standard
surgery. It is important to vision scientists because it is

accompanied by profound maldevelopment of stereopsis,
motion processing, and eye tracking. The proper timing of
surgery has been debated for decades. There is mounting
evidence from clinical and animal studies that surgery
during the early critical periods of development enhances
sensory and ocular motor outcomes. The CEOS138 has
defined a clinical profile of infants who will benefit most
from early surgery, and several studies132,139 have shown
that early surgery poses no adverse long-term effects.
Clinicians now should consider offering early surgery to
infants with infantile esotropia who fit the clinical profile
described by the CEOS.138
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