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ABSTRACT 
Logic replication for placement level timing optimization is 

studied in the context of FPGAs.  We make the observation that 
critical paths are dominated by interconnect delay and are 
frequently highly circuitous.  We propose a systematic replication 
technique to “straighten” such paths.  The resulting algorithm has 
several components: cell selection, slot selection for a duplicate 
cell, fanout partitioning and placement legalization. This 
algorithm is described and promising preliminary experimental 
results are reported with up to 29% improvement in critical path 
delay.   
Categories and Subject Descriptors 

B.7.2 [Integrated Circuits]: Design Aids 

General Terms 
Algorithms, Performance  

Keywords 
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1. INTRODUCTION 
The idea behind logic replication is that by making copies of 

one or more logic cells, one can maintain the logical behavior of a 
netlist while, hopefully, enabling additional optimization.  
Consider a logic cell a and suppose that we have created a 
duplicate cell a'. The cell a' takes precisely the same inputs as a 
and produces exactly the same boolean function of those inputs as 
its output. In this situation, the pins in the circuit that need to 
receive this signal may now obtain it from either the output of a 
or a'. This added freedom has been exploited in numerous 
previous works in the literature. 

Perhaps the most common way in which such freedom has 
been exploited in past work is for min-cut partitioning. Here, it is 
observed that by selectively replicating certain logic cells, or 
clusters of cells, the crossing count of a bipartition can often be 
significantly reduced, while of course maintaining logical 
equivalence. Representative work in this area includes [1], [2], [3] 
and [4].  Neumann et al. [12] integrate this idea into a timing-
driven partitioning-based placement flow. Replication has also 
been exploited to enhance the performance of high fanout logic 

cells. It has been observed that by replicating such a cell so that, 
roughly speaking, one of the copies drives the non-critical sinks 
(and therefore can be comparatively small), and the other drives 
the critical sinks, overall performance and/or area improvements 
can be had. Thus, in such a formulation, finding a suitable 
partition of the sinks is the crucial task. Work in this area includes 
[6] and [7].  

In this paper we exploit the ability to relocate the replicated 
cell so as to better optimize the paths flowing through it. There 
are two main premises motivating this idea.  First, performance is 
increasingly determined not just by cell delays, but by 
interconnect delays; as a result meandering (non-monotone) 
signal paths from memory element to memory element degrade 
the clock period substantially. Figure 1 shows such an example. 
We say that such a path is non-monotone because the coordinates 
of the cells on the path do not follow a monotone order. Second, 
there is often a limit to the degree to which a timing driven 
placement tool can “straighten” such paths regardless of the 
sophistication of such a tool. Intuitively, this is because of 
structural properties of the netlist itself and the result is groups of 
cells that have multiple critical or near-critical paths flowing 
through them; the optimization of one such path (by moving said 
cell or cells) is at odds with the other paths. Replication with 
relocation gives a way to deal with this situation by allowing 
replicated cells to better serve various sub-paths without 
degrading others. 

 

 
Figure 1: Example of non-monotone critical path (benchmark circuit 

Frisc placed with timing-driven VPR) 
 
The work of Gosti et al. [10][11] has also used this idea at the 

level of Boolean network optimization coupled with placement.  
The present work differs in several ways.  First, the stage of 
design at which the technique is applied is different in that we 
always operate on a mapped netlist rather than a Boolean 
network.  Additionally, [11] has a different objective in that it 
attempts to optimize all input to output paths so that the block can 
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perform well in any context when interfaced with other systems 
(this is an IP-based approach) while our focus is on the clock 
period of a single system and thus we consider only critical paths.  
The work differs in some technical areas as well including criteria 
and methodology for replication and legalization procedures.  

For an initial case study of the potential of such techniques we 
focus on the FPGA domain for several reasons.  From a pragmatic 
experimental point of view it is comparatively easy to construct a 
full FPGA design flow all the way to detailed routing for greater 
confidence in the effects of the optimization. This is enabled 
largely by the existence of the Versatile Place and Route system 
[5]. This allows us to easily track the effects on other design 
criteria such as wire-length.  In practice, FPGA logic resources 
are also typically underused.  This is because of the fixed 
architecture of FPGAs and as a result a typical placement will 
have many unused logic blocks. The existence of such blocks is a 
necessary enabler of logic replication.  Finally, the delay 
characteristics of modern FPGAs is quite predictable due in part 
to the high degree of signal buffering and segmentation in most 
routing architectures.  As a result, rectilinear distance is a 
reasonably effective first-order predictor of delay and this makes 
the notion of monotonicity an especially useful and clean 
abstraction for an initial study (as an aside, such an abstraction 
would seem particularly suitable for the standard cell domain for 
placement and replication optimization performed before buffer 
insertion which tends to linearize delay). 

The contributions of the paper are summarized as follows. We 
first perform a preliminary analysis of the timing characteristics 
of placed FPGA circuits and conclude that, even in a timing-
driven environment, critical paths are typically severely non-
monotone; further we see that it is often the case that a relatively 
small fraction of the cells contribute to critical or near-critical 
path delays (thus indicating that a small amount of replication 
may have significant impact). Given these promising analyses, we 
propose an iterative algorithm that selectively replicates cells and 
perturbs the placement. The key components of this algorithm are 
as follows:  (1) its incremental coupling with Static Timing 
Analysis to find a critical path (2) its notion of local monotonicity 
as a guide for replication decisions, the resulting notion of a 
feasibility zone and the careful placement of the cell within that 
zone (3) its careful attention to fanout partitioning to avoid 
degradation of other paths and (4) its legalization procedure to 
incrementally remove any cell overlaps induced by cell 
replication. As implied, we do not require that a replicated cell be 
placed in a currently vacant slot in the FPGA for this would be 
excessively limiting. Rather we let such cells be placed in near 
ideal slots regardless of the occupancy of such slots and use an 
incremental legalizer to resolve the overlaps with minimal change 
to the placement. Experimental results achieved from this 
approach are very promising with average improvements in 
critical path delay of 13% and over 25% on some large circuits. 

2. MOTIVATION AND DEFINITIONS  

2.1 An Example 
A simple example illustrating the potential of replication with 

relocation is given in Figures 2 and 3. Suppose that cells A, B, D 
and E cannot be moved (maybe because they are pads or they are 
strongly connected to other blocks in their neighborhood). Cells B 
and D are inputs to this sub-network, cells A and E are output 
cells and cell C is intermediate. Thus, there are 4 distinct paths 

flowing through cell C. In this simple example assuming a linear 
delay model, minimization of the maximum path delay occurs 
with cell C placed in the center. Deviation from this point will 
degrade at least one of the paths. Thus, in this situation, this is the 
best we can hope for the placer to do. Also note that if the IO cells 
are in the corners of the unit square, the path lengths are 2 units 
for all 4 paths. On the other hand, Figure 3 shows what can 
happen if we duplicate cell C using one copy to drive cell A and 
the other to drive cell E. Once cell C has been replicated, we have 
more freedom in the placement of it and its copy.  The result is 
that the placement can more easily be tuned to the needs of the 
various subpaths. In this case, we can obtain a dramatic 
improvement; in fact all 4 paths are roughly half the length as 
before and approach the lower-bound induced by the rectilinear 
distances between all input/output pairs – all of which are 1 unit.  
Also note that the total wire-length does not increase in the 
placement with replication. 

Essentially, what has happened in this toy example is that 
replication allowed us to “straighten” non-monotone paths.  From 
our initial experimental studies, we have seen that such non-
monotonicity is frequently the limiting factor in clock period even 
for highly optimized designs (see Figure 1 for an example).    

 

 
Figure 2: Example sub-circuit with timing-optimal placement of cell 

C. Assuming the other cells are fixed, any deviation from C’s location 
will degrade at least one of the four paths. 

 

 
Figure 3: Optimized equivalent sub-circuit with replication of cell C 

and relocation. 

2.2 Definitions 
Throughout the paper we use the following terminology.  

Path: sequence of interconnected modules with a starting point 
(input pad or memory element) and an ending point (output 
pad or memory element). 

Critical Path: the path of the circuit with the largest total delay. 
Criticality of a Module (or of an interconnection): ratio between 

the delay of the slowest path flowing through the module (or 
through the interconnection) and the current clock period.  

Local Critical Sub Path: given a module, it’s the sequence 
defined by the most critical preceding module the module 
itself and the most critical following module. 

197



 

 

Monotone Local Sub Path: a sub path in which the distance 
between the first and the last module is equal to the distance 
between the first and the central module plus the distance 
between the central and the last module (monotone because 
the sequences of x and y coordinates are monotone 
sequences). 

Monotone Region: given a sub path, it’s the set of slots in which 
the central module of the sub path can be placed so that the 
sub path is monotone. 

Arrival Time: given a pin, it’s the time in which all the input 
signals are stable at the input pins of the module. 

Downstream Time: given a pin, it’s the maximum delay among all 
paths from that module to memory elements or output pads.   

3. OBSERVATIONS  
In this section we give background information on static 

timing analysis of placed circuits, reasonable delay models for 
FPGAs and some preliminary experiments which indicate high 
potential for logic replication. 

3.1 Our Timing Analyzer and Delay Modeling 
We have implemented a timing analyzer similar to that of 

VPR. The inputs of the timing analyzer are: connectivity of the 
modules of the circuit; placement of the modules; estimated pin-
to-pin delay of each interconnection. The outputs of the timing 
analyzer are: arrival times of each module; downstream time of 
each module; critical path of the circuit, delays of the sinks on the 
circuits (output pads and memory elements). The complexity of 
the timing analyzer is linear. We implemented our own analyzer 
because it was easy to integrate with the replication algorithm.  

In this study we consider a target architecture in which all the 
switches of the FPGA are buffered and interconnect resources are 
uniform (i.e., it is not a “segmented” architecture). With buffered 
switches, RC effects are localized to switch-to-switch 
connections; this has the effect of making segment delays 
independent of the rest of the net. Moreover, if the fanout of a net 
is low and the FPGA is not very congested, usually the router is 
able to route each interconnection on a monotone path. Thus the 
delay of an interconnection can be approximated by a linear 
function of the Manhattan length of the interconnection.  Note, 
however that this linearity is not a property of the timing 
analyzer, but rather a property of the delay calculator that could 
be modified for other architectures. 

3.2 Preliminary Analyses 
Performing timing analysis on circuits placed by timing 

driven 
VPR has yielded three interesting observations. First, we studied 
the distribution of arrival times at sinks of the timing graph. What 
we see is that a relatively small number of sinks in the timing 
graph are near the critical path delay. This can be seen in Figure 
4.  This would seem to imply that optimization of a few critical 
sinks can have significant impact (though the number of paths to 
those sinks may still be large).  
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Figure 4: Sink delays of Frisc (sinks sorted by delay) 

 
We draw a similar conclusion from a second set of 

experiments. For each individual cell in the netlist we can 
compute the maximum delay path through the cell. We are 
interested in how many such cells are near-critical. Suppose we 
say a cell is near-critical if the maximum delay through it is at 
least 90% of the critical path delay. It is interesting to know how 
many cells are near critical. Table 1 gives this data for several 
benchmarks. Only some 5% of the cells are near-critical and thus 
this would also seem to be a promising sign for a technique such 
as replication (e.g., the overhead may be manageable).  
 

Table 1: Number of modules with criticality greater than 0.9 

 
A third interesting piece of data is the physical locality of the 

near-critical cells. As shown in Figure 5, it is often the case that 
high criticality cells tend to be clustered. This suggests that our 
optimization procedure needs to be careful in such regions to 
avoid actually degrading performance. Our legalization procedure 
presented later in the paper is designed in part to help minimize 
such detrimental effects by being very incremental in nature. 

 

 
Figure 5: Positions of the nodes with criticality greater than 0.9 in 

Frisc 

Circuit Number Cells Number Critical Percentage 
Frisc 3692 342 9.263272 
Spla 3752 68 1.812367 
s298 1941 186 9.582689 
Elliptic 3849 189 4.910366 
s38417 6541 150 2.293227 
Des 2092 176 8.413002 
bigkey 2133 13 0.60947 
Average   5.269199 
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4. ALGORITHM DESCRIPTION 

4.1 Overview 
The algorithm, starting from an initial placement, iteratively 

generates a perturbation to the placement trying to relocate or 
duplicate a cell on the critical path in order to enforce 
monotonicity on the sub paths flowing through it. The algorithm 
chooses the new position for the cell taking into consideration 
only the timing constraints (a target clock period that must be 
reached) and not the physical constraints of the placement (cell 
overlapping). Possible overlaps are eliminated in a second 
legalization operation. The algorithm terminates when it fails 
getting an improvement for a certain number of iterations in row; 
the only accepted modifications are those that lead to a timing 
improvement of the circuit and the modifications are evaluated 
step by step. In Figure 6 there is the global view of the algorithm. 

 
Replication () { 

Static_Timing_Analysis ()  
while (!Exit_Criterion()) { 

Old_Clock = Current_Clock 
while(Cells_Available&& !T_Constraints_Satisfied)

{  
Cell = Find_Cell () 
Slot = Find_Slot (Cell) 
if (Target_Clock < Current_Clock) { 

Timing_Constraints_Satisfied = TRUE 
New_Cell = Generate_New_Cell (Slot) 
Fanout_Partitioning (Cell, New_Cell) 
if (Is_Overlap) { 

Empty_Slot =Find_Empty_Slot() 
Legalize (New_Cell, Empty_Slot) } 

Static_Timing_Analysis ()   }                } }  
if (Current_Clock > Old_Clock) 

Restore_Old_Situation ()                               } } 
Figure 6: Global View of the Algorithm 

4.2 Cell Selection 
The algorithm tries to improve the local monotonicity of the 

critical paths. Thus the cells that must be considered for 
optimization are those more greatly outside the monotone regions 
of the sub paths. The first intuitive idea is to take the cell that 
induces the greatest non-monotonicity on the sub paths that 
constitute the critical path. A measure of how much a cell is 
distant from its monotone region is its deviation. Deviation of a 
node i can be defined as: 

))(),(())(,()),(()( inextiprevdistinextidistiiprevdistideviation −+=
The distance is intended as Manhattan distance and next(i) and 
prev(i) are the next and the preceding nodes on the critical path. 
This is the measure of how much a node is outside of its 
monotone region.  

In order to choose the node, the algorithm evaluates for each 
node of the critical path its deviation from the monotone region. 
The vector is sorted by deviation from the biggest one to the 
smallest one. The selection of the cells will follow the order 
induced by the sorted vector. In order to make the algorithm non-
deterministic the vector of the deviations is weighted with a 

random vector of values between 0 and 1. Then the resulting 
vector is sorted and gives the order for the cell selection. The 
algorithm can be made more or less deterministic manipulating 
the randomization routine. The reason why we make the 
algorithm non-deterministic is that with a randomized exploration 
of the solution space is possible a random restart scenario. We can 
run the algorithm more than once on the same circuit and then we 
can choose the best solutions. Experimental results confirm that 
the random restart framework is more effective than the simple 
greedy strategy. 

4.3 Slot Selection 
After cell selection the algorithm must find which is the best new 
placement for the cell.  

The objectives that must be considered in this phase are to 
obtain the maximum performance gain on the critical path and to 
avoid that other paths flowing through the cell become more 
critical than the current critical path. The adopted routine is: 
generate a target clock; if, by relocation or replication of the 
selected cell, you can generate a new placement able to respect 
that maximum delay on all the paths flowing through the selected, 
accept that configuration; otherwise increase the target clock. The 
generated placements can violate the physical constraints because 
the legalizer will enforce them. If the procedure can’t find a slot 
with a target clock better than the current clock, another cell is 
selected and the routine starts again. In Figure 7 there is the sub 
routine. 

The Generate_New_Slot() routine generates candidate slots in   
breadth first order starting from the center of the monotone region 
defined by the sub path that has as its central cell the cell that is 
under consideration for replication.  

 
Find_Slot (Cell) { 

Target_Clock=Generate_ Initial_Clock(Cell) 
while(Target_Clock<Current_Clock) { 

while (!All_Slots_Inspected && !Done) { 
Slot = Generate_New_Slot (Cell) 
Done=check_t_constraints(Cell,Slot, Target_Clock)  } 

if (Done) 
Return (Slot) 

else 
Target_Clock+=epsilon                                                 } 

Return (Failure) 
Figure 7: Find Slot Routine 

 
The Check_T_Constraints() routine checks if the selected slot 

satisfied the requirements of the target clock on all the sub paths 
that flow through the cell toward the critical output. It needn’t to 
check also for the other outputs because they are automatically 
satisfied by the original slot and can only be improved by the new 
slot. The Check_T_Constraints() needn’t to check the timing 
constraints for the non-critical successor because if they are not 
met for the replicated cell, they will be satisfied by the original 
one. It’s here that the additional freedom degree of logic 
replication is exploited. 

4.4 Fanout Partitioning 
When we replicate a cell, we must decide from which copy 

each sink should receive the signal.  This process is called fanout 
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partitioning.  There is a degenerate case in which all of the 
fanouts are assigned to only one of the copies; in this case, the 
other copy is redundant and reduces to simply relocating the 
original cell.  

A naïve partitioning approach might simply connect each 
fanout to the nearest copy (note that the copy has been placed at 
this point).  This approach is the wire length driven approach.  
However while this approach leads to a local wire length 
improvement, it can lead to timing performance degradation 
because it is oblivious to the requirements of paths flowing 
through the cells. An example appears in Figure 8. The dotted 
edges represent the two possible pin-to-pin connections. If you 
connect the cell 3 to the cell 2 you are reducing the wire length on 
that pin-to-pin interconnection; however, the path 1-2-3-4 is 
longer than the path 1-2R-3-4. Thus you are inducing degradation 
in timing performance. 

 

 
Figure 8: Failure scenario for wire length driver fanout partitioning 

 
Our algorithm takes into account such a situation. It checks 

which is the best timing configuration for each pin-to-pin 
interconnection and select the best one. If at the end the old cell 
has 0 fanout, it is deleted.  

4.5 Legalization 
The purpose of the legalizer is, starting from an illegal 

placement (with overlap of modules), to obtain a placement 
without any overlap. There is a danger that perturbations done by 
a legalizer may degrade the performance of other paths.  If you 
consider that the critical nodes are usually very close to each 
other, the degradation of near critical paths seems to be a common 
situation during legalization. In our algorithm legalization occur 
after each placement perturbation and so we must only solve one 
violation cell at a time. 

Our approach tries to limit degradation by inducing only 
small modifications to the current placement. Toward this end, we 
adopt a “ripple-move” approach similar to that in [8].  In such an 
approach we identify the overlap slot and a vacant slot 
somewhere in the region.  By a sequence of cell movements from 
the overlap slot toward the vacant slot, we can resolve the 
violation.  Further, note that no cell moves more than one slot in 
such an approach; the incremental nature would seem to limit the 
amount of degradation on other paths.  Notice also that there may 
be many possible ripple sequences.  We choose the sequence 
which gives the maximum gain in wire-length (which may be 
negative).  This is achieved by finding a longest path in a gain-
graph as in [8]. 

Figure 9 illustrates such a gain graph. For the computation of 
the wire length gain the model that is used is the source-to-sink 
length model because is better for timing purposes.   Edge labels 

are wire-length gains for the associated move.  Though we 
currently use wire-length as the guide, we note that other edge 
labels may be useful (e.g., those relating to timing). 

 
Figure 9: Cost Graph for Legalization 

5. EXPERIMENTAL RESULTS 
Table 2 shows the experimental results for 20 MCNC 

benchmark circuits. The circuits are placed using VPR in timing 
driven mode. Then they are optimized with our algorithm and 
routed using VPR in timing driven mode. The data that we 
compare are the maximum delay through the circuit (as reported 
by VPR) after and before optimization by replication, the total 
routed wire length and the number of logic blocks. The circuits 
were placed on the minimum square FPGA able to contain the 
circuit and routed with a number of tracks per channel that is 20% 
more than the minimum required in order to route the circuit. The 
experimental framework is the same described in [9] in order to 
test the timing driven placer of VPR. The circuits are divided in 
two sets: the smallest ones (less than 3000 blocks) and the largest 
ones (more than 3000 blocks). Our algorithm works better with 
the largest ones. In fact as you can see the average timing 
improvement is 15.29% on the largest circuits and 11.69% on the 
smallest circuits. At the same time the wire length degradation 
and the amount of replication is smaller for the biggest circuit.   
We believe this to be a promising trend as typical circuits tend 
toward the larger side. These results are the best of three runs of 
our algorithm. The run time overhead introduced by our algorithm 
to the timing driven placer of VPR is less than 0.5%. 

The reader may notice that on two smaller circuits there is 
actually a small degradation in delay.  This can be understood by 
the fact that our timing optimizer is pre-routing and thus there is 
bound to be some deviation from this estimate post-routing. This 
is also confirmed by the fact that pre-routing timing analysis 
reports a timing improvement that is on average 1% better than 
the post-routing timing analysis. Fortunately, post-routing 
degradations seem to be small and the placement-level predictors 
behave quite well in general.  

6. CONCLUSIONS 
We have presented a preliminary study of placement-level 

logic replication with relocation applied to FPGA timing 
optimization.  We developed a path-based algorithm that exploits 
replication trying to optimize the local monotonicity of the most 
critical paths. Experimental results are encouraging showing 
consistent improvement in critical path delay, particularly as 
circuit size increases; reductions in critical path delay of up to 
29% were observed. 
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Table 2 
 Circuit Before Timing Optimization After Timing Optimization Percentage Modification 
  Worst Delay WL Blocks Worst Delay WL Blocks Worst Delay WL Blocks 

ex5p 111.51 18656 1135 85.17 20197 1146 23.63% 7.63% 0.96% 
tseng 76.34 9143 1221 69.77 9201 1228 8.61% 0.63% 0.57% 
apex4 113.62 22143 1290 99.29 22155 1312 12.61% 0.05% 1.68% 
misex3 105.15 21989 1425 85.11 22700 1439 19.06% 3.13% 0.97% 
alu4 120.35 20785 1544 97.82 22106 1553 18.72% 5.98% 0.58% 
diffeq 80.86 14963 1600 74.80 15164 1605 7.49% 1.33% 0.31% 
dsip 74.93 15311 1796 74.97 16454 1797 -0.05% 6.95% 0.06% 
seq 117.96 28148 1826 95.73 29281 1840 18.84% 3.87% 0.76% 
apex2 132.42 31080 1919 99.58 33369 1936 24.80% 6.86% 0.88% 
s298 130.58 21910 1941 130.93 22855 1946 -0.27% 4.13% 0.26% 
des 82.93 27244 2092 82.32 28291 2092 0.73% 3.70% 0.00% 
bigkey 69.01 20667 2133 64.83 21432 2134 6.06% 3.57% 0.05% 

 
 

S 
M 
A 
L 
L 
E 
S 
T 

AVERAGE       11.69% 3.99% 0.59% 
frisc 154.64 60119 3692 124.86 60617 3700 19.26% 0.82% 0.22% 
spla 129.69 67278 3752 126.78 69356 3778 2.24% 3.00% 0.69% 
elliptic 112.08 49123 3849 107.90 49738 3857 3.73% 1.24% 0.21% 
ex1010 212.68 71165 4618 173.84 73177 4644 18.26% 2.75% 0.56% 
pdc 255.05 102557 4631 179.45 107980 4680 29.64% 5.02% 1.05% 
s38417 123.01 65621 6541 123.01 65621 6541 0.00% 0.00% 0.00% 
s38584_1 122.92 54952 6789 95.62 55207 6791 22.21% 0.46% 0.03% 
clma 239.85 138244 8527 175.20 145167 8583 26.95% 4.77% 0.65% 

 
L 
A 
R 
G 
E 
S 
T 

AVERAGE       15.29% 2.26% 0.43% 
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