

Timing Optimization of FPGA Placements by Logic
Replication

Giancarlo Beraudo
ECE Department, University of Illinois at Chicago

851 S. Morgan St.,
Chicago IL, 60607

gberaudo@ece.uic.edu

John Lillis
CS Department, University of Illinois at Chicago

851 S. Morgan St.,
Chicago IL, 60607

jlillis@cs.uic.edu

ABSTRACT
Logic replication for placement level timing optimization is

studied in the context of FPGAs. We make the observation that
critical paths are dominated by interconnect delay and are
frequently highly circuitous. We propose a systematic replication
technique to “straighten” such paths. The resulting algorithm has
several components: cell selection, slot selection for a duplicate
cell, fanout partitioning and placement legalization. This
algorithm is described and promising preliminary experimental
results are reported with up to 29% improvement in critical path
delay.
Categories and Subject Descriptors

B.7.2 [Integrated Circuits]: Design Aids

General Terms
Algorithms, Performance

Keywords
Timing Optimization, Logic Replication, Programmable

Logic, Placement

1. INTRODUCTION
The idea behind logic replication is that by making copies of

one or more logic cells, one can maintain the logical behavior of a
netlist while, hopefully, enabling additional optimization.
Consider a logic cell a and suppose that we have created a
duplicate cell a'. The cell a' takes precisely the same inputs as a
and produces exactly the same boolean function of those inputs as
its output. In this situation, the pins in the circuit that need to
receive this signal may now obtain it from either the output of a
or a'. This added freedom has been exploited in numerous
previous works in the literature.

Perhaps the most common way in which such freedom has
been exploited in past work is for min-cut partitioning. Here, it is
observed that by selectively replicating certain logic cells, or
clusters of cells, the crossing count of a bipartition can often be
significantly reduced, while of course maintaining logical
equivalence. Representative work in this area includes [1], [2], [3]
and [4]. Neumann et al. [12] integrate this idea into a timing-
driven partitioning-based placement flow. Replication has also
been exploited to enhance the performance of high fanout logic

cells. It has been observed that by replicating such a cell so that,
roughly speaking, one of the copies drives the non-critical sinks
(and therefore can be comparatively small), and the other drives
the critical sinks, overall performance and/or area improvements
can be had. Thus, in such a formulation, finding a suitable
partition of the sinks is the crucial task. Work in this area includes
[6] and [7].

In this paper we exploit the ability to relocate the replicated
cell so as to better optimize the paths flowing through it. There
are two main premises motivating this idea. First, performance is
increasingly determined not just by cell delays, but by
interconnect delays; as a result meandering (non-monotone)
signal paths from memory element to memory element degrade
the clock period substantially. Figure 1 shows such an example.
We say that such a path is non-monotone because the coordinates
of the cells on the path do not follow a monotone order. Second,
there is often a limit to the degree to which a timing driven
placement tool can “straighten” such paths regardless of the
sophistication of such a tool. Intuitively, this is because of
structural properties of the netlist itself and the result is groups of
cells that have multiple critical or near-critical paths flowing
through them; the optimization of one such path (by moving said
cell or cells) is at odds with the other paths. Replication with
relocation gives a way to deal with this situation by allowing
replicated cells to better serve various sub-paths without
degrading others.

Figure 1: Example of non-monotone critical path (benchmark circuit

Frisc placed with timing-driven VPR)

The work of Gosti et al. [10][11] has also used this idea at the

level of Boolean network optimization coupled with placement.
The present work differs in several ways. First, the stage of
design at which the technique is applied is different in that we
always operate on a mapped netlist rather than a Boolean
network. Additionally, [11] has a different objective in that it
attempts to optimize all input to output paths so that the block can

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 2003, June 2-6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006…$5.00.

196

13.1

perform well in any context when interfaced with other systems
(this is an IP-based approach) while our focus is on the clock
period of a single system and thus we consider only critical paths.
The work differs in some technical areas as well including criteria
and methodology for replication and legalization procedures.

For an initial case study of the potential of such techniques we
focus on the FPGA domain for several reasons. From a pragmatic
experimental point of view it is comparatively easy to construct a
full FPGA design flow all the way to detailed routing for greater
confidence in the effects of the optimization. This is enabled
largely by the existence of the Versatile Place and Route system
[5]. This allows us to easily track the effects on other design
criteria such as wire-length. In practice, FPGA logic resources
are also typically underused. This is because of the fixed
architecture of FPGAs and as a result a typical placement will
have many unused logic blocks. The existence of such blocks is a
necessary enabler of logic replication. Finally, the delay
characteristics of modern FPGAs is quite predictable due in part
to the high degree of signal buffering and segmentation in most
routing architectures. As a result, rectilinear distance is a
reasonably effective first-order predictor of delay and this makes
the notion of monotonicity an especially useful and clean
abstraction for an initial study (as an aside, such an abstraction
would seem particularly suitable for the standard cell domain for
placement and replication optimization performed before buffer
insertion which tends to linearize delay).

The contributions of the paper are summarized as follows. We
first perform a preliminary analysis of the timing characteristics
of placed FPGA circuits and conclude that, even in a timing-
driven environment, critical paths are typically severely non-
monotone; further we see that it is often the case that a relatively
small fraction of the cells contribute to critical or near-critical
path delays (thus indicating that a small amount of replication
may have significant impact). Given these promising analyses, we
propose an iterative algorithm that selectively replicates cells and
perturbs the placement. The key components of this algorithm are
as follows: (1) its incremental coupling with Static Timing
Analysis to find a critical path (2) its notion of local monotonicity
as a guide for replication decisions, the resulting notion of a
feasibility zone and the careful placement of the cell within that
zone (3) its careful attention to fanout partitioning to avoid
degradation of other paths and (4) its legalization procedure to
incrementally remove any cell overlaps induced by cell
replication. As implied, we do not require that a replicated cell be
placed in a currently vacant slot in the FPGA for this would be
excessively limiting. Rather we let such cells be placed in near
ideal slots regardless of the occupancy of such slots and use an
incremental legalizer to resolve the overlaps with minimal change
to the placement. Experimental results achieved from this
approach are very promising with average improvements in
critical path delay of 13% and over 25% on some large circuits.

2. MOTIVATION AND DEFINITIONS

2.1 An Example
A simple example illustrating the potential of replication with

relocation is given in Figures 2 and 3. Suppose that cells A, B, D
and E cannot be moved (maybe because they are pads or they are
strongly connected to other blocks in their neighborhood). Cells B
and D are inputs to this sub-network, cells A and E are output
cells and cell C is intermediate. Thus, there are 4 distinct paths

flowing through cell C. In this simple example assuming a linear
delay model, minimization of the maximum path delay occurs
with cell C placed in the center. Deviation from this point will
degrade at least one of the paths. Thus, in this situation, this is the
best we can hope for the placer to do. Also note that if the IO cells
are in the corners of the unit square, the path lengths are 2 units
for all 4 paths. On the other hand, Figure 3 shows what can
happen if we duplicate cell C using one copy to drive cell A and
the other to drive cell E. Once cell C has been replicated, we have
more freedom in the placement of it and its copy. The result is
that the placement can more easily be tuned to the needs of the
various subpaths. In this case, we can obtain a dramatic
improvement; in fact all 4 paths are roughly half the length as
before and approach the lower-bound induced by the rectilinear
distances between all input/output pairs – all of which are 1 unit.
Also note that the total wire-length does not increase in the
placement with replication.

Essentially, what has happened in this toy example is that
replication allowed us to “straighten” non-monotone paths. From
our initial experimental studies, we have seen that such non-
monotonicity is frequently the limiting factor in clock period even
for highly optimized designs (see Figure 1 for an example).

Figure 2: Example sub-circuit with timing-optimal placement of cell

C. Assuming the other cells are fixed, any deviation from C’s location
will degrade at least one of the four paths.

Figure 3: Optimized equivalent sub-circuit with replication of cell C

and relocation.

2.2 Definitions
Throughout the paper we use the following terminology.

Path: sequence of interconnected modules with a starting point
(input pad or memory element) and an ending point (output
pad or memory element).

Critical Path: the path of the circuit with the largest total delay.
Criticality of a Module (or of an interconnection): ratio between

the delay of the slowest path flowing through the module (or
through the interconnection) and the current clock period.

Local Critical Sub Path: given a module, it’s the sequence
defined by the most critical preceding module the module
itself and the most critical following module.

197

Monotone Local Sub Path: a sub path in which the distance
between the first and the last module is equal to the distance
between the first and the central module plus the distance
between the central and the last module (monotone because
the sequences of x and y coordinates are monotone
sequences).

Monotone Region: given a sub path, it’s the set of slots in which
the central module of the sub path can be placed so that the
sub path is monotone.

Arrival Time: given a pin, it’s the time in which all the input
signals are stable at the input pins of the module.

Downstream Time: given a pin, it’s the maximum delay among all
paths from that module to memory elements or output pads.

3. OBSERVATIONS
In this section we give background information on static

timing analysis of placed circuits, reasonable delay models for
FPGAs and some preliminary experiments which indicate high
potential for logic replication.

3.1 Our Timing Analyzer and Delay Modeling
We have implemented a timing analyzer similar to that of

VPR. The inputs of the timing analyzer are: connectivity of the
modules of the circuit; placement of the modules; estimated pin-
to-pin delay of each interconnection. The outputs of the timing
analyzer are: arrival times of each module; downstream time of
each module; critical path of the circuit, delays of the sinks on the
circuits (output pads and memory elements). The complexity of
the timing analyzer is linear. We implemented our own analyzer
because it was easy to integrate with the replication algorithm.

In this study we consider a target architecture in which all the
switches of the FPGA are buffered and interconnect resources are
uniform (i.e., it is not a “segmented” architecture). With buffered
switches, RC effects are localized to switch-to-switch
connections; this has the effect of making segment delays
independent of the rest of the net. Moreover, if the fanout of a net
is low and the FPGA is not very congested, usually the router is
able to route each interconnection on a monotone path. Thus the
delay of an interconnection can be approximated by a linear
function of the Manhattan length of the interconnection. Note,
however that this linearity is not a property of the timing
analyzer, but rather a property of the delay calculator that could
be modified for other architectures.

3.2 Preliminary Analyses
Performing timing analysis on circuits placed by timing

driven
VPR has yielded three interesting observations. First, we studied
the distribution of arrival times at sinks of the timing graph. What
we see is that a relatively small number of sinks in the timing
graph are near the critical path delay. This can be seen in Figure
4. This would seem to imply that optimization of a few critical
sinks can have significant impact (though the number of paths to
those sinks may still be large).

Sink Delay (ns)

0
20
40
60
80

100
120
140
160

1 69 13
7

20
5

27
3

34
1

40
9

47
7

54
5

61
3

68
1

74
9

81
7

88
5

95
3

Sink

Figure 4: Sink delays of Frisc (sinks sorted by delay)

We draw a similar conclusion from a second set of

experiments. For each individual cell in the netlist we can
compute the maximum delay path through the cell. We are
interested in how many such cells are near-critical. Suppose we
say a cell is near-critical if the maximum delay through it is at
least 90% of the critical path delay. It is interesting to know how
many cells are near critical. Table 1 gives this data for several
benchmarks. Only some 5% of the cells are near-critical and thus
this would also seem to be a promising sign for a technique such
as replication (e.g., the overhead may be manageable).

Table 1: Number of modules with criticality greater than 0.9

A third interesting piece of data is the physical locality of the

near-critical cells. As shown in Figure 5, it is often the case that
high criticality cells tend to be clustered. This suggests that our
optimization procedure needs to be careful in such regions to
avoid actually degrading performance. Our legalization procedure
presented later in the paper is designed in part to help minimize
such detrimental effects by being very incremental in nature.

Figure 5: Positions of the nodes with criticality greater than 0.9 in

Frisc

Circuit Number Cells Number Critical Percentage
Frisc 3692 342 9.263272
Spla 3752 68 1.812367
s298 1941 186 9.582689
Elliptic 3849 189 4.910366
s38417 6541 150 2.293227
Des 2092 176 8.413002
bigkey 2133 13 0.60947
Average 5.269199

198

4. ALGORITHM DESCRIPTION

4.1 Overview
The algorithm, starting from an initial placement, iteratively

generates a perturbation to the placement trying to relocate or
duplicate a cell on the critical path in order to enforce
monotonicity on the sub paths flowing through it. The algorithm
chooses the new position for the cell taking into consideration
only the timing constraints (a target clock period that must be
reached) and not the physical constraints of the placement (cell
overlapping). Possible overlaps are eliminated in a second
legalization operation. The algorithm terminates when it fails
getting an improvement for a certain number of iterations in row;
the only accepted modifications are those that lead to a timing
improvement of the circuit and the modifications are evaluated
step by step. In Figure 6 there is the global view of the algorithm.

Replication () {

Static_Timing_Analysis ()
while (!Exit_Criterion()) {

Old_Clock = Current_Clock
while(Cells_Available&& !T_Constraints_Satisfied)

{
Cell = Find_Cell ()
Slot = Find_Slot (Cell)
if (Target_Clock < Current_Clock) {

Timing_Constraints_Satisfied = TRUE
New_Cell = Generate_New_Cell (Slot)
Fanout_Partitioning (Cell, New_Cell)
if (Is_Overlap) {

Empty_Slot =Find_Empty_Slot()
Legalize (New_Cell, Empty_Slot) }

Static_Timing_Analysis () } } }
if (Current_Clock > Old_Clock)

Restore_Old_Situation () } }
Figure 6: Global View of the Algorithm

4.2 Cell Selection
The algorithm tries to improve the local monotonicity of the

critical paths. Thus the cells that must be considered for
optimization are those more greatly outside the monotone regions
of the sub paths. The first intuitive idea is to take the cell that
induces the greatest non-monotonicity on the sub paths that
constitute the critical path. A measure of how much a cell is
distant from its monotone region is its deviation. Deviation of a
node i can be defined as:

))(),(())(,()),(()(inextiprevdistinextidistiiprevdistideviation −+=
The distance is intended as Manhattan distance and next(i) and
prev(i) are the next and the preceding nodes on the critical path.
This is the measure of how much a node is outside of its
monotone region.

In order to choose the node, the algorithm evaluates for each
node of the critical path its deviation from the monotone region.
The vector is sorted by deviation from the biggest one to the
smallest one. The selection of the cells will follow the order
induced by the sorted vector. In order to make the algorithm non-
deterministic the vector of the deviations is weighted with a

random vector of values between 0 and 1. Then the resulting
vector is sorted and gives the order for the cell selection. The
algorithm can be made more or less deterministic manipulating
the randomization routine. The reason why we make the
algorithm non-deterministic is that with a randomized exploration
of the solution space is possible a random restart scenario. We can
run the algorithm more than once on the same circuit and then we
can choose the best solutions. Experimental results confirm that
the random restart framework is more effective than the simple
greedy strategy.

4.3 Slot Selection
After cell selection the algorithm must find which is the best new
placement for the cell.

The objectives that must be considered in this phase are to
obtain the maximum performance gain on the critical path and to
avoid that other paths flowing through the cell become more
critical than the current critical path. The adopted routine is:
generate a target clock; if, by relocation or replication of the
selected cell, you can generate a new placement able to respect
that maximum delay on all the paths flowing through the selected,
accept that configuration; otherwise increase the target clock. The
generated placements can violate the physical constraints because
the legalizer will enforce them. If the procedure can’t find a slot
with a target clock better than the current clock, another cell is
selected and the routine starts again. In Figure 7 there is the sub
routine.

The Generate_New_Slot() routine generates candidate slots in
breadth first order starting from the center of the monotone region
defined by the sub path that has as its central cell the cell that is
under consideration for replication.

Find_Slot (Cell) {

Target_Clock=Generate_ Initial_Clock(Cell)
while(Target_Clock<Current_Clock) {

while (!All_Slots_Inspected && !Done) {
Slot = Generate_New_Slot (Cell)
Done=check_t_constraints(Cell,Slot, Target_Clock) }

if (Done)
Return (Slot)

else
Target_Clock+=epsilon }

Return (Failure)
Figure 7: Find Slot Routine

The Check_T_Constraints() routine checks if the selected slot

satisfied the requirements of the target clock on all the sub paths
that flow through the cell toward the critical output. It needn’t to
check also for the other outputs because they are automatically
satisfied by the original slot and can only be improved by the new
slot. The Check_T_Constraints() needn’t to check the timing
constraints for the non-critical successor because if they are not
met for the replicated cell, they will be satisfied by the original
one. It’s here that the additional freedom degree of logic
replication is exploited.

4.4 Fanout Partitioning
When we replicate a cell, we must decide from which copy

each sink should receive the signal. This process is called fanout

199

partitioning. There is a degenerate case in which all of the
fanouts are assigned to only one of the copies; in this case, the
other copy is redundant and reduces to simply relocating the
original cell.

A naïve partitioning approach might simply connect each
fanout to the nearest copy (note that the copy has been placed at
this point). This approach is the wire length driven approach.
However while this approach leads to a local wire length
improvement, it can lead to timing performance degradation
because it is oblivious to the requirements of paths flowing
through the cells. An example appears in Figure 8. The dotted
edges represent the two possible pin-to-pin connections. If you
connect the cell 3 to the cell 2 you are reducing the wire length on
that pin-to-pin interconnection; however, the path 1-2-3-4 is
longer than the path 1-2R-3-4. Thus you are inducing degradation
in timing performance.

Figure 8: Failure scenario for wire length driver fanout partitioning

Our algorithm takes into account such a situation. It checks

which is the best timing configuration for each pin-to-pin
interconnection and select the best one. If at the end the old cell
has 0 fanout, it is deleted.

4.5 Legalization
The purpose of the legalizer is, starting from an illegal

placement (with overlap of modules), to obtain a placement
without any overlap. There is a danger that perturbations done by
a legalizer may degrade the performance of other paths. If you
consider that the critical nodes are usually very close to each
other, the degradation of near critical paths seems to be a common
situation during legalization. In our algorithm legalization occur
after each placement perturbation and so we must only solve one
violation cell at a time.

Our approach tries to limit degradation by inducing only
small modifications to the current placement. Toward this end, we
adopt a “ripple-move” approach similar to that in [8]. In such an
approach we identify the overlap slot and a vacant slot
somewhere in the region. By a sequence of cell movements from
the overlap slot toward the vacant slot, we can resolve the
violation. Further, note that no cell moves more than one slot in
such an approach; the incremental nature would seem to limit the
amount of degradation on other paths. Notice also that there may
be many possible ripple sequences. We choose the sequence
which gives the maximum gain in wire-length (which may be
negative). This is achieved by finding a longest path in a gain-
graph as in [8].

Figure 9 illustrates such a gain graph. For the computation of
the wire length gain the model that is used is the source-to-sink
length model because is better for timing purposes. Edge labels

are wire-length gains for the associated move. Though we
currently use wire-length as the guide, we note that other edge
labels may be useful (e.g., those relating to timing).

Figure 9: Cost Graph for Legalization

5. EXPERIMENTAL RESULTS
Table 2 shows the experimental results for 20 MCNC

benchmark circuits. The circuits are placed using VPR in timing
driven mode. Then they are optimized with our algorithm and
routed using VPR in timing driven mode. The data that we
compare are the maximum delay through the circuit (as reported
by VPR) after and before optimization by replication, the total
routed wire length and the number of logic blocks. The circuits
were placed on the minimum square FPGA able to contain the
circuit and routed with a number of tracks per channel that is 20%
more than the minimum required in order to route the circuit. The
experimental framework is the same described in [9] in order to
test the timing driven placer of VPR. The circuits are divided in
two sets: the smallest ones (less than 3000 blocks) and the largest
ones (more than 3000 blocks). Our algorithm works better with
the largest ones. In fact as you can see the average timing
improvement is 15.29% on the largest circuits and 11.69% on the
smallest circuits. At the same time the wire length degradation
and the amount of replication is smaller for the biggest circuit.
We believe this to be a promising trend as typical circuits tend
toward the larger side. These results are the best of three runs of
our algorithm. The run time overhead introduced by our algorithm
to the timing driven placer of VPR is less than 0.5%.

The reader may notice that on two smaller circuits there is
actually a small degradation in delay. This can be understood by
the fact that our timing optimizer is pre-routing and thus there is
bound to be some deviation from this estimate post-routing. This
is also confirmed by the fact that pre-routing timing analysis
reports a timing improvement that is on average 1% better than
the post-routing timing analysis. Fortunately, post-routing
degradations seem to be small and the placement-level predictors
behave quite well in general.

6. CONCLUSIONS
We have presented a preliminary study of placement-level

logic replication with relocation applied to FPGA timing
optimization. We developed a path-based algorithm that exploits
replication trying to optimize the local monotonicity of the most
critical paths. Experimental results are encouraging showing
consistent improvement in critical path delay, particularly as
circuit size increases; reductions in critical path delay of up to
29% were observed.

200

Table 2
 Circuit Before Timing Optimization After Timing Optimization Percentage Modification
 Worst Delay WL Blocks Worst Delay WL Blocks Worst Delay WL Blocks

ex5p 111.51 18656 1135 85.17 20197 1146 23.63% 7.63% 0.96%
tseng 76.34 9143 1221 69.77 9201 1228 8.61% 0.63% 0.57%
apex4 113.62 22143 1290 99.29 22155 1312 12.61% 0.05% 1.68%
misex3 105.15 21989 1425 85.11 22700 1439 19.06% 3.13% 0.97%
alu4 120.35 20785 1544 97.82 22106 1553 18.72% 5.98% 0.58%
diffeq 80.86 14963 1600 74.80 15164 1605 7.49% 1.33% 0.31%
dsip 74.93 15311 1796 74.97 16454 1797 -0.05% 6.95% 0.06%
seq 117.96 28148 1826 95.73 29281 1840 18.84% 3.87% 0.76%
apex2 132.42 31080 1919 99.58 33369 1936 24.80% 6.86% 0.88%
s298 130.58 21910 1941 130.93 22855 1946 -0.27% 4.13% 0.26%
des 82.93 27244 2092 82.32 28291 2092 0.73% 3.70% 0.00%
bigkey 69.01 20667 2133 64.83 21432 2134 6.06% 3.57% 0.05%

S
M
A
L
L
E
S
T

AVERAGE 11.69% 3.99% 0.59%
frisc 154.64 60119 3692 124.86 60617 3700 19.26% 0.82% 0.22%
spla 129.69 67278 3752 126.78 69356 3778 2.24% 3.00% 0.69%
elliptic 112.08 49123 3849 107.90 49738 3857 3.73% 1.24% 0.21%
ex1010 212.68 71165 4618 173.84 73177 4644 18.26% 2.75% 0.56%
pdc 255.05 102557 4631 179.45 107980 4680 29.64% 5.02% 1.05%
s38417 123.01 65621 6541 123.01 65621 6541 0.00% 0.00% 0.00%
s38584_1 122.92 54952 6789 95.62 55207 6791 22.21% 0.46% 0.03%
clma 239.85 138244 8527 175.20 145167 8583 26.95% 4.77% 0.65%

L
A
R
G
E
S
T

AVERAGE 15.29% 2.26% 0.43%

7. REFERENCES
[1] L.T. Liu, M.T. Kuo, C.K. Cheng, and T.C. Hu. A

Replication Cut for Two-Way Partitioning, IEEE Trans. on
CAD, 1995

[2] J. Hwang and A. El Gamal. Optimal replication for min-cut
partitioning. ICCAD 1992

[3] W. K. Mak and D. F. Wong. Minimum replication min-cut
partitioning. IEEE Transactions on CAD,. October 1997

[4] C. Kring and A. Newton. A cell-Replicating Approach to
Mincut-Based Circuit Partitioning. ICCAD 1991

[5] V. Betz and J. Rose.VPR: A New Packing, Placement and
Routing Tool for FPGA Research. 7th International
Workshop on Field-Programmable Logic and Applications,
1997

[6] J. Lillis, C.-K. Cheng, T.-T. Y. Lin. Algorithms for Optimal
Introduction of Redundant Logic for Timing and Area
Optimization. Proc. IEEE International Symposium on
Circuits and Systems, 1996

[7] A. Srivastava, R. Kastner, M. Sarrafzadeh.Timing Driven
Gate Duplication: Complexity Issues and Algorithms.
ICCAD 2000

[8] S.-W. Hur and J. Lillis.Mongrel: Hybrid techniques for
standard cell placement. ICCAD 2000.

[9] A. Marquardt, V. Betz and J. Rose. Timing-Driven
Placement for FPGAs. International Symposium on FPGAs,
2000

[10] W. Gosti, A. Narayan, R. K. Brayton, A. L. Sangiovanni-
Vincentelli. Wireplanning in logic synthesis. ICCAD 1998

[11] W. Gosti, S. P. Khatri, A. L. Sangiovanni-Vincentelli.
Addressing The Timing Closure Problem By Integrating
Logic Optimization And Placement. ICCAD-2001

[12] Neumann, D. Stoffel, H. Hartje, W. Kunz. Cell Replication
and Redundancy Elimination During Placement for Cycle
Time Optimization. ICCAD 1999

201

