
Timing Predictability of
Cache Replacement Policies

Jan Reineke, Daniel Grund, Christoph Berg, and Reinhard Wilhelm

Universität des Saarlandes, Saarbrücken, Germany
{reineke,grund,cb,wilhelm}@cs.uni-sb.de

Abstract. Hard real-time systems must obey strict timing constraints.
Therefore, one needs to derive guarantees on the worst-case execution
times of a system’s tasks. In this context, predictable behavior of system
components is crucial for the derivation of tight and thus useful bounds.
This paper presents results about the predictability of common cache
replacement policies. To this end, we introduce three metrics, evict, fill,
and mls that capture aspects of cache-state predictability. A thorough
analysis of the LRU, FIFO, MRU, and PLRU policies yields the respec-
tive values under these metrics. To the best of our knowledge, this work
presents the first quantitative, analytical results for the predictability
of replacement policies. Our results support empirical evidence in static
cache analysis.

1 Introduction

Embedded systems as they occur in application domains such as automotive,
aeronautics, and industrial automation often have to satisfy hard real-time con-
straints. Timeliness of reactions is absolutely necessary. Off-line guarantees on
the worst-case execution time of each task have to be derived using safe methods.
Execution times of a task vary depending on the task’s inputs and the initial
hardware state. The vast number of cases prohibits exhaustive testing to exactly
determine the worst-case execution time. Instead approximative methods have
to be applied. Such methods must be conservative, i.e., they must never underes-
timate the worst-case execution time, they must statically overapproximate the
dynamic behaviour of a task on all possible inputs and hardware states.

Caches, deep pipelines, and all kinds of speculation are increasingly used in
todays embedded systems to improve average-case performance. At the same
time they increase the variability of execution times of instructions due to the
possibility of timing accidents with high penalties: a cache miss may take 100
times as long as a cache hit. Thus, the precision (tightness of upper bounds) of a
static analysis greatly depends on its ability to statically exclude as much detri-
mental behaviour to the timing of the program’s instructions as possible: cache
misses, mispredicted branches, pipeline stalls, etc. Exclusion of these so-called
timing accidents tightens the upper bound by the associated timing penalty,
e.g., the cache miss penalty or the time to refill the pipeline. Examples of static
analyses to exclude timing accidents can be found in [1,2,3].

count

timeBCET ACET WCET upper
bound

uncertainty ×
penalty

Fig. 1. Execution times of tasks vary depending on inputs and the initial state of
the hardware they are executed on. The figure depicts a distribution of execution
times. The border cases are known as Best- and Worst-Case Execution Time
(BCET and WCET). A correct timing analysis obtains a safe upper bound on
all possible execution times.

A designer that introduces caches, deep pipelines, or other performance
boosting components into his system may find himself in the paradoxical sit-
uation that he has successfully improved the average-case performance of the
system, but fails to derive sufficient timing guarantees despite his best efforts.
This may be for two reasons: although the system’s average-case behavior has
improved, its worst-case performance has deteriorated. Even if the worst-case
performance is sufficient, the provable bound may be too imprecise due to low
predictability of the new components. Hence, a system with good average-case,
but with poor worst-case performance or low predictability will not be certifi-
able. [4] describes threats to the predictability of systems and proposes design
principles that support timing predictability.

The timing predictability of a system is a measure for the possibility of de-
termining tight bounds on execution times. As depicted in Figure 1, timing
predictability is composed of uncertainty and associated penalties. Uncertainty
comprises timing accidents that cannot be excluded statically but never happen
during execution. High penalties do not automatically make a system unpre-
dictable: if there is no uncertainty this is not a problem. On the other hand,
high levels of uncertainty only become harmful to timing predictability if the
associated penalties are large.

Caches As noted before, the processor caches have a strong influence on both
the average-case and the worst-case performance. Due to the high cache-miss
penalties they have a potentially strong impact on the predictability of a sys-
tem. Several properties of the processor caches influence predictability: associa-
tivity, replacement policy, write policy, and whether there are separated data
and instruction caches, see [5]. Of these, the cache replacement policy has by
far the strongest influence on the predictability of the cache behavior. We will

2

investigate the following widely used replacement policies regarding their timing
predictability:

– Least Recently Used (LRU) used in Intel Pentium I and MIPS 24K/34K
– First-In First-Out (FIFO or Round-Robin) used in Intel XScale, ARM9,

ARM11
– Most Recently Used (MRU) as described in [6,7]
– Pseudo-LRU (PLRU) used in PowerPC 75x and Intel Pentium II-IV

The cache miss penalty is the same for all of the considered replacement poli-
cies. Timing predictability of cache replacement policies therefore only depends
on the amount of uncertainty.

1.1 Contributions

We introduce two metrics, evict and fill, that capture our notion of the pre-
dictability of cache replacement policies.

Every cache analysis has to cope with a certain amount of uncertainty re-
sulting from various sources explained in Subsection 3.1. The two metrics, evict
and fill indicate how quickly knowledge about cache hits and misses can be
(re-)obtained. They mark a limit on the precision that any cache analysis can
achieve. A thorough analysis of the LRU, FIFO, MRU, and PLRU policies
yields the respective values under these metrics.

Further analyses elaborate on these results and yield a more refined view on
the limits of cache analyses: While evict and fill constitute milestones in the
recovery of information, supplementary results show how information evolves in
between.

To the best of our knowledge, this work presents the first quantitative, ana-
lytical results about the predictability of replacement policies.

2 Caches

Caches are commonly employed to hide the speed gap between main memory
and the CPU by exploiting locality in memory accesses. They are very fast but
small memories that store a subset of the main memory’s contents. On today’s
architectures a cache miss may have an associated penalty of several hundred
CPU cycles. Future architectures are expected to exhibit even larger cache miss
penalties.

To reduce traffic and management overhead, the main memory is logically
partitioned into memory blocks of size B bytes. Memory blocks are cached as a
whole in cache lines of equal size. Usually, B is a power of two. This way the
block number is determined by the most significant bits of a memory address.

When accessing a memory block one has to determine whether the memory
block is stored in the cache (cache hit) or not (cache miss). To enable an efficient
look-up, each memory block can be stored in a small number of cache lines only.

3

For this purpose, caches are partitioned into equally-sized cache sets. The size of
a cache set is called the associativity k of the cache. Again, k is usually a power
of two, such that the set number is determined by the least significant bits of
the block number. The remaining bits, known as the tag are stored along with
the data to finally decide, whether and where a memory block is cached within
a set.

Since the number of memory blocks that map to a set is far greater than
the associativity of the cache, a so-called replacement policy must decide which
memory block to replace upon a cache miss. To facilitate useful replacement
decisions a number of status bits is maintained that store information about
previous accesses. We only consider replacement policies that have independent
status bits per cache set. Almost all known policies comply with this.

3 Cache Analysis

In cache analysis there is a concept of may and must cache information at
program points: may- and must-caches are upper and lower approximations,
respectively, to the contents of all concrete caches that will occur whenever
program execution reaches a program point. So, the must-cache at a program
point is a set of memory blocks that are definitely in each concrete cache at
that point. The may-cache is a set of memory blocks that may be in a concrete
cache whenever program execution reaches that program point. May and must
cache information is obtained by static analysis. [3], for instance, presents cache
analyses based on abstract interpretation.

Must cache information is used to derive safe information about cache hits;
in other words it is used to exclude the timing accident “cache miss”. The com-
plement of the may cache information is used to safely predict cache misses. The
more cache hits can be predicted, the better the upper bound on the worst-case
execution time will be. Vice versa, predicting more cache misses will result in
a better lower bound on the best-case execution time. Observe the asymme-
try between may- and must : while a greater must-cache means more precise
information, a greater may-cache means less precise information.

3.1 Sources of Uncertainty

There are several reasons for uncertainty about cache contents:

– Static cache analyses usually cannot make any assumptions about the initial
cache contents. Cache contents on entrance depend on previously executed
tasks. Even assuming a completely empty cache may not be conservative as
shown in [2]. The only safe initial must-cache is the empty set, whereas the
only safe initial may-cache must contain every memory block that may be
mapped to the particular cache set.

– At control-flow joins, analysis information about different paths needs to be
safely combined. Intuitively, one must take the intersection of the incoming

4

must-information and the union of the incoming may-information. A mem-
ory block can only be in the must-cache if it is in the must-caches of all
predecessor control-flow nodes, correspondingly for may-caches.

– If the analysis cannot exactly determine the address of a memory access it
must conservatively account for all possible addresses. This especially dete-
riorates may-information.

– Statically undetermined preempting tasks may change the cache state at
preemption points.

Since information about the cache state may thus be unknown or lost, it is
important to recover information quickly to be able to classify memory accesses
safely as cache hits or misses. Fortunately, this is possible for most caches. The
speed of this recovery greatly depends on the cache replacement policy employed
and influences uncertainty about cache hits and misses. Thus, it is an indicator
of timing predictability.

4 Cache Predictability Metrics

For a timing analysis the data that is actually cached is irrelevant. Only the ad-
dress ranges that are cached influence timing. In the following, if we talk about
cache contents, we only really talk about the addresses of the cached memory
blocks. We show how quickly cache contents become known when accessing a
sequence of memory blocks starting from an unknown cache state. For the re-
placement policies we consider, an access to a cache set does not affect the state
of other sets. Thus, we consider the recovery of information about single cache
sets.

4.1 Notation and Basic Notions

We use the following generic names and notations:

a, b, c ∈ A the set of memory addresses
[b, e, c, f], q ∈ Cpk the set of cache-set states

of associativity k under policy p
〈b, c, d〉, s ∈ S ⊆ A∗ the set of access sequences

with pairwise different accesses

◦ : S × S → S concatenation of two sequences
CCpk : Cpk ∪ S → 2A the set of memory addresses

of memory blocks of a cache-set state
or of an access sequence

updatepk : Cpk × S → Cpk cache-set state after accessing a sequence
under policy p

Individual cache-set states are denoted by [b, e, c, f]. Depending on the re-
placement policy additional status bits as e.g. in [e, b, c, d]0010 are used to fully

5

describe a state. Their meaning will become clear in the description of the par-
ticular policy.

We assume all memory accesses in the regarded sequences to be pairwise dif-
ferent. This is sensible because recurring accesses do not contribute additional
information about the cache contents. Another reason is that arbitrarily long
access sequences can be constructed for two of the considered replacement poli-
cies, namely PLRU and MRU, that never recover complete information about
the cache contents if repetitive accesses are allowed. In other words, there are
access sequences such that different initial states result in different states for an
arbitrary number of accesses; they never converge.

May- and must-information available after observing an access sequence s
without knowing the initial set state can be defined as follows:

Maypk(s) :=
⋃

q∈Cpk

CCpk(updatepk(q, s))

Mustpk(s) :=
⋂

q∈Cpk

CCpk(updatepk(q, s))

Maypk(s) is the set of cache contents that may still be in the cache set af-
ter accessing the sequence s, regardless of the initial cache state. Analogously,
Mustpk(s) is the set of cache contents that must be in the cache set after ac-
cessing the sequence s. Since we take into account every initial state, Mustpk(s)
is always a subset of CCpk(s).

The following two definitions show how much may- and must-information is
available after observing any access sequence s of length n:

maypk(n) := |Maypk(s)|,where s ∈ S, |s| = n

mustpk(n) := |Mustpk(s)|,where s ∈ S, |s| = n

Note that maypk(n) and mustpk(n) are well-defined: For all sequences s of
length n, |Maypk(s)| is equal (the same goes for |Mustpk(s)|). The sequences
contain pairwise different accesses only and are thus equal up to renaming. Thus,
Maypk(s1) equals Maypk(s2) up to renaming, too. In the following proofs we
may therefore always restrict our attention to one representative access sequence.

4.2 Metrics

Based on maypk(n) and mustpk(n) we are ready to define evict and fill that
indicate how quickly may- and must-information can be recovered:

evictp(k) := min{n : maypk(n) ≤ n}

fillp(k) := min{n : mustpk(n) = k}

Figure 2 illustrates the two metrics. evictp(k) tells us at which point we
can safely predict that some elements are no more in the cache, i.e. they are
in the complement of may-information. Any element not contained in the last

6

evict
fill

[d, c, x]
[f, d, c]

[h, g, f][f, e, c]

[g, f, e]

[f, e, d]

Fig. 2. Initially different cache sets converge when accessing a sequence
〈a, b, c, d, e, f, g, h, . . .〉 of pairwise different memory blocks. After evict accesses,
any set contains only elements from the access sequence. fill accesses are re-
quired to converge to one completely known cache set. Selected cache sets are
annotated with their respective contents.

evictp(k) accesses cannot be in the cache set: If some element not contained in
the sequence could have “survived” then any other element not contained in the
sequence could have “survived” as well. Then maypk(n) = c > n where c is the
number of blocks that map to the cache set. Less than evictp(k) accesses do not
allow to predict any misses. The greater evictp(k), the longer it takes to gain
may-information, and furthermore, the obtained may-information is less precise.
The obtained may-information is less precise, because any of the greater number
of evictp(k) elements may still be in the cache set.

After fillp(k) pairwise different memory accesses we know exactly what is
contained in the cache set, namely the last k accesses, i.e., we obtain com-
plete may- and must-information. This allows us to precisely predict cache hits
and misses. In contrast to may-information, some must-information is directly
obtained with the first memory accesses. At least the most recently accessed
element is in the cache set. Thus, it is pointless to define a counterpart to evict
for must-information, since min{n | mustpk(n) ≥ 1} = 1 for all policies.

Consider the implications of these metrics on any cache analysis. They mark
a limit on achievable precision: no analysis can infer any may-information (com-
plete must-information) given an unknown cache-set state and less than evict(k)
(fill(k)) pairwise different memory accesses. At the same time the metrics allow
us to investigate the quality of different analyses. Does an analysis need longer
access sequences to derive safe information about the cache set contents, or is it
optimal with respect to the metrics?

Another application of these metrics is to determine the minimal effort to
establish a desired cache-set state, assuming that no explicit instructions are
available to do so. This may be used to eliminate initial uncertainty in cache
analyses by prepending load instructions. Or simply to create uniform condi-
tions for performance measurements. For this special purpose, it is interesting

7

to investigate access sequences resulting in cache misses only. In such a case,
a desired cache-set state can be obtained faster. We therefore distinguish M-
and HM-access sequences: if we assume all accesses in the regarded sequences
to be cache misses we denote this by the subscript M, otherwise by HM. Thus
fillLRU

HM (8) is the number of pairwise different accesses (hits or misses) needed
to know the exact contents of an 8-way cache set using LRU replacement. For
brevity, we will also use e(k) and f(k) for evict(k) and fill(k).

As we have noted above, some must-information can be immediately obtained
with one individual access. The following definition of the minimal life-span
captures how this generalizes:

mlsp(k) := max{n : mustpk(n) = n}

The minimal life-span is the minimal number of accesses necessary to evict
an element out of a cache set that has just been accessed (not counting the access
that possibly brought the element into the set). In other words, it tells us how
many of the most-recently accessed elements are always in the cache.

Based on the minimal life-span of a policy, it is easy to determine some
must-information: the last mls(k) accessed elements are always in the cache set.
Therefore, one can construct a must-analysis that remembers the last mls(k)
accesses. A high value of mls(k) would make this a reasonably precise must-
analysis. Depending on the replacement policy, optimal analyses that eventually
obtain complete must-information may be much more expensive.

4.3 Equalities

The definitions given in the previous subsection were chosen to be as uniform
as possible: they all relate mustpk(n) and maypk(n) with k and n. However, for
the following proofs we need to establish some equalities to ease argumentation
about evict, fill, and mls.

Lemma 1. evictp(k) is the minimal length of access sequences such that only
elements of the sequence may be contained in the cache set.

evictp(k) = min{n | ∀s ∈ S, |s| = n : Maypk(s) ⊆ CCpk(s)}

Proof. We need to show maypk(n) ≤ n ⇔ ∀s ∈ S, |s| = n : Maypk(s) ⊆
CCpk(s).
⇐ is clear since |CCpk(s)| = |s| = n and therefore |Maypk(s)| ≤ n.
⇒: Assume Maypk(s) 6⊆ CCpk(s) for some s. Then at least one element a

not contained in s must have survived. Upon an access, the update process of
the status bits is independent of the tag bits of all non-accessed elements. Thus,
the tag bits of a can be chosen arbitrarily. I.e. any other element b 6∈ CCpk(s)
could have survived as well. Then, maypk(n) = c > n where c is the number of
blocks that map to the cache set.

8

Lemma 2. This following equation makes explicit that the cache set is filled
with the last k accesses of the access sequence s, once its state is known.

fillp(k) = min{n | ∀s ∈ S, |s| = n, s = s1 ◦s2, |s2| = k : Mustpk(s) = CCpk(s2)}

Proof. One needs to show mustpk(n) = k ⇔ ∀s ∈ S, |s| = n, s = s1 ◦ s2, |s2| =
k : Mustpk(s) = CCpk(s2).

The⇐ direction of the equivalence is obvious. For⇒ one needs to show that
whenever mustpk(n) = k then for any sequence s of length n ≥ k, Mustpk(s) =
CCpk(s2). This holds because CCpk(s2) ⊇Mustpk(s): For any sequence there is
an initial state, such that the sequence will result in misses only. Therefore, one
of the intersected sets is always equal to CCpk(s2). In addition |CCpk(s2)| = k.
As |Mustpk(s)| = k, CCpk(s2) and Mustpk(s) must be equal.

Lemma 3. An address a that has just been accessed will at least remain in the
cache set for the mlsp(k) subsequent accesses.

mlsp(k) = max{n | ∀s ∈ S, |s| ≤ n : a ∈Mustk(a ◦ s)}

Proof. We need to show mustpk(n) = n⇔ ∀s ∈ S, |s| ≤ n : a ∈Mustk(a ◦ s).
⇒: ∀s : Mustpk(s) ⊂ CCpk(s). Since mustpk(n) = n all accessed elements,

including the first must be in Mustpk(s).
⇐: mustpk(n) ≥ n since the last n elements are always contained in the cache

set. Obviously mustpk(n) ≤ n.

5 LRU Caches

LRU replacement conceptually maintains a queue of length k for each cache set,
where k is the associativity of the cache. If an element is accessed that is not yet
in the cache (a miss), it is placed at the front of the queue. The last element of
the queue is then removed if the set is full. It is the least-recently-used element
of those in the queue. At a cache hit, the element is moved from its position in
the queue to the front, in this respect treating hits and misses equally.

The contents of LRU caches are very easy to predict. For memory access
sequences with pairwise different accesses and a strict least-recently-used re-
placement, we obtain the tight bounds

evictLRU
HM (k) = evictLRU

M (k) = fillLRU
HM (k) = fillLRU

M (k) = mlsLRU(k) = k.

evict(k) and fill(k) tell us at which point any may- and complete must-
information can be determined. However, the metrics do not tell us how may-
and must-information evolves before and after these points. For the common
case of an 8-way associative cache, we have precisely determined how much
may- and must-information is available as a function in the number of accesses.
Note that these functions mark the maximum information that can be obtained;
a particular analysis may be less precise. Figure 3 shows plots of these functions.

9

In the case of LRU replacement these functions are quite obvious, which will be
different in the following cases of FIFO, MRU, and PLRU. Must-information
rises with every access up to the minimal life-span mlsLRU(8), which is equal to
fillLRU

HM (8) and evictLRU
HM (8). Up to evict(k) accesses, any memory block mapped

to the cache set may reside in the set.
We have determined these functions by exhaustively generating all successor

states of all possible initial cache-set states, exploiting symmetries. For LRU
and FIFO replacement this could have been done analytically, but for the other
cases this would have been very tedious. This automatic computation was only
possible up to associativity 8 as the number of states grows rapidly with rising
associativity.

#accesses5 10 15 208
mls

evictHM

fillHM

88

mayLRU8

mustLRU8

2

4

6

88

c

Fig. 3. Evolution of may- and must-information of a 8-way LRU cache set. c
is the number of blocks that can be mapped to the cache set. May- and must-
information is shown by the dashed and the solid curve, respectively. From fill(k)
on the two functions have the same value.

6 FIFO Caches

FIFO cache sets can also be seen as a queue: new elements are inserted at the
front evicting elements at the end of the queue. In contrast to LRU, hits do not
change the queue. Our representation of FIFO cache sets has to be interpreted
in this way: In [b, c, e, d], d will be replaced on a miss resulting in [x, b, c, e].

Implementations use a round-robin replacement counter for each set pointing
to the cache line to replace next. This counter is increased if an element is inserted
into a set, while a hit does not change this counter.

In the case of misses only, FIFO behaves like LRU. Thus, the following tight
bounds are obvious:

evictFIFO
M (k) = fillFIFO

M (k) = k.

10

Lemma 4 (Surviving Elements). Of i ≤ 2k − 1 pairwise different accesses,
at least

⌈
i
2

⌉
survive in a FIFO cache set.

Proof. Assume there were m misses and h hits, m+h = i. First, assume m ≥ h.
Every miss places an element at the front of the queue, and the number of known
elements is min(m, k) ≥

⌈
i
2

⌉
.

If m ≤ h, we use the fact that each miss evicts at most one ‘known’ element
from the cache set, while inserting itself. Hence, with h ≤ k the number of
known elements in the set at the end of the sequence of accesses is at least
m + (h−m) = h ≥

⌈
i
2

⌉
.

Theorem 1 (evictFIFO
HM). After accessing 2k − 1 pairwise different elements in

a k-way FIFO set, the set contains only elements from these 2k − 1 accesses.
This bound is tight.

Proof. Using Lemma 4 with i = 2k − 1 gives eFIFO
HM (k) ≤ 2k − 1. The following

example shows the tightness. The access sequence 〈x1, . . . , xk−1, y1, . . . , yk−1〉 of
length 2k− 2 conducted on the initial cache-set state [z, x1, . . . , xk−1] results in
the state [yk−1, . . . , y1, z]. Since z survived, eFIFO

HM (k) > 2k − 2.

Theorem 2 (fillFIFO
HM). One needs at most 3k−1 accesses for any initial cache-

set state to reach a completely known cache-set state. This bound is tight.

Proof. Theorem 1 states that after 2k − 1 accesses no more hits can occur.
Since the next k accesses will be misses, 3k − 1 is a bound on fFIFO

HM (k). It
is also a tight bound as shown by a similar example as in the proof of The-
orem 1. Again, assume initial cache-set state [z, x1, . . . , xk−1]. The sequence
〈x1, . . . , xk−1〉◦ 〈y1, . . . , yk−1〉◦ 〈z, w1, . . . , wk−1〉 of length 3k − 2 results in the
cache-set state [wk−1, . . . , w1, yk−1], which does not contain z, fFIFO

HM (k) > 3k−2.

Theorem 3 (mlsFIFO). The minimum life-span of an element in a FIFO-
cache is 1.

Proof. Since the queue is not changed on a hit, the element just accessed may
reside at the end of the queue. Thus, it may be evicted with the next access.

As in the LRU-case we have determined the evolution of must- and may-
information experimentally. Figure 4 illustrates the results. Disappointingly from
a predictability point-of-view, must-information exceeding the minimal life-span
of 1 is only attained after 17 accesses.

7 MRU Caches

MRU stores one status bit for each cache line. In the following, we call these
bits MRU-bits. Every access to a line sets its MRU-bit to 1, indicating that the
line was recently used. Whenever the last remaining 0 bit of a sets status bits is
set to 1, all other bits are reset to 0. This asymmetry in the last bit set to 1 will

11

#accesses5 10 15 201
mls

15
evictHM

23
fillHM

mayF IF O8

mustF IF O8

2

4

6

8

10

12

14
15

c

Fig. 4. Evolution of may- and must-information of a 8-way FIFO cache set. c
is the number of blocks that can be mapped to the cache set.

play a role as we will see later. At cache misses, the line with lowest index (in
our representation the left-most) whose MRU-bit is 0 is replaced.

We represent a sample state of an MRU cache set as [a, b, c, d]0101, where 0101
are the MRU-bits and a, . . . , d are the contents of the set. On this state an access
to e would yield a cache miss and the new state [e, b, c, d]1101. Accessing d leaves
the state unchanged. A hit on c forces a reset of the MRU-bits: [e, b, c, d]0010.

Theorem 4 (evictMRU
M and evictMRU

HM).

evictMRU
M (k) = evictMRU

HM (k) = 2k − 2

gives a tight bound on the number of misses/accesses sufficient to evict all entries
from a k-way set-associative MRU cache set.

Proof. We prove the tight bounds by showing 2k − 2 to be an upper bound for
evictMRU

HM and a lower bound for evictMRU
M . This suffices to prove the tightness

for both, since by definition evictM ≤ evictHM.
For the lower bound, consider the initial cache-set state s = [x1, . . . , xk]0...001

and access sequence 〈y1, . . . , yk−1〉◦〈z1, . . . , zk−2〉. After the first part, the MRU-
bits are reset, and state s′ = [y1, . . . , yk−1, xk]0...010 results. The second part
of the sequence replaces the elements y1, . . . , yk−2 resulting in the state s′′ =
[z1, . . . , zk−2, yk−1, xk]1...110. xk is still part of the set proving evictMRU

M (k) >
2k − 3.

For the upper bound, notice that at some point during any k pairwise different
accesses (hits or misses), the MRU-bits are reset. MRU-bits of lines that have
not been accessed until this point are then set to 0. If it took k accesses to reset
the bits, exactly these k elements make up the cache set. Otherwise (less than k
accesses), after the reset k− 1 MRU-bits are 0, and an additional k− 1 accesses
are sufficient because accesses to elements with MRU-bit 1 are impossible, from

12

the reset point on. They would be hits and violate the property of pairwise
different accesses.

Theorem 5 (fillMRU). For the MRU replacement policy it is impossible to
give a bound on the number of accesses needed to reach a completely known
cache-set state:

fillMRU
HM (k) = fillMRU

M (k) =∞

Proof. Consider an access sequence of pairwise different accesses. After at most
2k − 2 accesses there will be only misses. Therefore a cache-set state s =
[x1, . . . , xk]0...01 will eventually occur for some x1, . . . , xk. It will take 2k−2 fur-
ther misses to eliminate xk, hence future states following s will not consist of the
last k accessed elements. Even worse, we will reach similar states [y1, . . . , yk]0...01

over and over again.

The next two lemmas compensate this gap in the results by giving results
similar to fillMRU(k).

Lemma 5. Consider an MRU cache-set state [x1, . . . , xk]0...010...0 and an ac-
cess sequence that only produces misses. Every element from that sequence will
remain in the cache set for at least k − 1 accesses.

Proof. Consider an arbitrary element e of the sequence. Since elements are in-
serted from left to right, all elements in the set left of e will be replaced earlier
(after the next reset). Right to e there can be at most one element with MRU-bit
1. Thus, at least k − 2 other cache lines will be accessed before the next reset
and thus before e is replaced.

Theorem 6. Let k > 2. After at most 2k − 4 misses the last k − 1 accessed
elements are present in the cache set, and the set is stable with respect to this
weaker property. This bound is tight.

f̃ ill
MRU

M (k) := min{n | mustpk

M (n) = k − 1} = 2k − 4

Proof. The first reset of the MRU-bits occurs after at most k − 1 accesses. If it
takes exactly k − 1 accesses the initial cache-set state fits the requirements of
Lemma 5 proving the theorem for this case. Otherwise, the reset takes place after
at most k − 2 accesses. k − 2 additional accesses are sufficient due to Lemma 5
because the miss causing the reset has an MRU-bit of 1 and cannot be evicted
by the next k − 2 misses.

Tightness is shown by the initial state [x1, . . . , xk]0...011 and the sequence
〈y1, . . . , yk−2〉 ◦ 〈z1, . . . , zk−3〉: [x1, . . . , xk]0...011 → [y1, . . . , yk−2, xk−1, xk]0...0100

→ [z1, . . . , zk−3, yk−2, xk−1, xk]1...100. yk−2, z1, . . . , zk−3 are the last k− 2 misses
but neither xk−1 nor xk which are still in the cache set belong to the last k − 1
misses.

Theorem 7. Let k > 2. After at most 3k − 4 accesses (hits or misses) the last
k − 1 accessed elements are present in the cache set, and the set is stable with
respect to this weaker property. This bound is tight.

13

f̃ ill
MRU

HM (k) := min{n | mustpk

HM(n) = k − 1} = 3k − 4

Proof. Due to our general assumption about pairwise different accesses it holds
that after the MRU-bits have been reset the second time, no more hits are
possible because every line has been accessed at least once: every MRU-bit must
have been 0 at some time and 1 later on. Now, Lemma 5 is applicable and k− 2
further accesses are sufficient.

The first reset occurs after at most k accesses, the second one after exactly
k− 1 additional accesses. Adding the k− 2 accesses after the second reset yields
3k− 3. We now exclude the cases where k accesses are needed for the first reset
proving the upper bound of 3k−4: if exactly k accesses were needed to reset the
bits for the first time every cache line with MRU-bit 1 must have been accessed.
Thus there are no further hits possible after the first reset, already.

Consider the following cache-set states and access sequences:
[x1, . . . , xk−1, xk]0...00011

→ 〈xk, u1, . . . , uk−2〉
→ [u1, . . . , uk−2, xk−1, xk]0...00100

→ 〈v1, . . . , vk−4, xk−1〉
→ [v1, . . . , vk−4, uk−3, uk−2, xk−1, xk]1...10110

→ 〈vk−3, vk−2〉
→ [v1, . . . , vk−4, vk−3, uk−2, xk−1, vk−2]0...00001

→ 〈w1, . . . , wk−3〉
→ [w1, . . . , wk−3, uk−2, xk−1, vk−2]1...11001.

The last k−1 accesses were vk−3, vk−2, w1, . . . , wk−3, but vk−3 has just been
evicted by wk−3. Only the next access (evicting uk−2) will make sure the last
k − 1 accessed elements are present in the cache set.

This shows tightness for k > 2. Note that for k = 4 the accesses v1, . . . , vk−4

and the MRU-bit prefixes 0 . . . 0 and 1 . . . 1 do not exist.

Theorem 8 (mlsMRU). The minimum life-span of an element in a MRU-
cache is 2.

Proof. The MRU-bit of an accessed element e is always set to 1 resulting in
mlsMRU(k) > 1. But the next access may reset all the MRU-bits. If e is the left-
most element it will be replaced with the next access, which yields mlsMRU(k) =
2.

The evolution of may- and must-information is depicted in Figure 5. As com-
plete must-information is never attained, the must-curve peaks at 7. Interest-
ingly, may-information never drops from the 14 = 2k−2 memory blocks that are
reached after evict accesses. This can be explained quite easily: the element that
causes the reset of the MRU-bits remains in the set for 2k − 2 further accesses.
Due to the unknown initial state any access could have caused the reset. This
behaviour is in contrast to that of LRU, FIFO, and PLRU, where eventually
only the last k accessed elements may reside in a cache set.

14

#accesses5 10 15 202
mls

14
evictHM

20
fill′HM

mayMRU8

mustMRU8

2

4

6

8

10

12

1414

c

Fig. 5. Evolution of may- and must-information of a 8-way MRU cache set. c is
the number of blocks that can be mapped to the cache set. Note that complete
must-information can not be obtained, thus fill′.

8 PLRU Caches

PLRU (Pseudo-LRU) is a tree-based approximation of the LRU policy. It ar-
ranges the cache lines at the leaves of a tree with k − 1 “tree bits” pointing
to the line to be replaced next. A 0 indicating the left subtree, a 1 indicating
the right. See Figure 6 for an explanation of the replacement policy. PLRU is
much cheaper to implement than true LRU in terms of storage requirements
and update logic. This comes at a price: it does not always replace the least-
recently-used element. This property reduces predictability.

PLRU also tracks invalid lines. On a cache miss, invalid lines are filled from
left to right, ignoring the tree bits. The tree bits are still updated.

Since illustrating the states of these cache sets is rather complicated we intro-
duce the notion of a normalized cache-set state. With no invalid lines, equivalent
cache-set states with same content and same order of replacements can be ob-
tained by interchanging neighboring subtrees and flipping the corresponding tree
bit. We represent a concrete cache set by the equivalent one with all tree bits set
to 1. For instance the concrete cache-set state [a, b, c, d]010 with tree bits 010 in
Figure 6 is represented by [d, c, a, b]

∼=. Disregarding invalid lines the right-most
element will be replaced in the normalized representation on a cache miss; it is
pointed at by the tree bits. An access moves an element to the left-most position.

An access path to a cache line is a sequence of bits indicating the directions
one has to take to walk from the root to this line in the normalized repre-
sentation of the cache set; 0 for left, 1 for right. E.g. the access path of d in
[a, b, c, d, e, f, g, h]

∼= is 011.
We will interpret access paths as binary numbers. We will use two operators:

←−−−−−p1 . . . pn = pn . . . p1 to reverse the order of bits and 1100101 = 0011010 to invert
bits on paths.

15

Observation 9 (Access Path Update) Consider elements a 6= b with access
paths pa and pb. Let pa = pre◦p1 ◦posta and pb = pre◦p1 ◦postb, where |p1|, i.e.
pa and pb have a common (possibly empty) prefix until they diverge and finish
with (possibly empty) suffixes posta and postb, respectively. Accessing b moves it
to the front with access path p′b = 0 . . . 0. Since a and b share a prefix, flipping the
bits on the path to b also affects a’s prefix: its new access path is 0 . . . 01 ◦ posta.

1

1 0

a b c ⊥

(a) Initial cache-set
state [a, b, c,⊥]110

with representation
[a, b,⊥, c]

∼=.

0

1 0

a b c d

(b) After a miss on
d it becomes
[d, c, a, b]

∼=.

0

1 1

a b c d

(c) After a hit on c
it becomes
[c, d, a, b]

∼=.

1

0 1

a e c d

(d) After a miss on
e it becomes
[e, a, c, d]

∼=.

Fig. 6. Three accesses to a set of a 4-way set-associative PLRU cache: a miss
on d followed by a hit on c and a miss on e. On a miss, one allocates invalid lines
from left to right. If all lines are valid one replaces the line the tree bits point
to. After every access all tree bits on the path from the accessed line to the root
are set to point away from the line. Other tree bits are left untouched.

Definition 1 (Miss Replacement Distance). The miss replacement dis-
tance mrd(e) of an element e is the minimum number of consecutive misses
that are necessary to evict an element from a cache set q. For elements e 6∈ q we
define mrd(e) = 0.

Lemma 6 (Miss Replacement Distance). A cache line e with access path
p1 . . . pn has miss replacement distance mrd(e) = pn . . . p1 + 1 assuming no in-
valid lines.

Proof. Assuming no invalid lines, all misses will go to access path 1 . . . 1. Each
miss decrements pn . . . p1 by 1 for p1 . . . pn 6= 1 . . . 1: consider the dissection of
p1 . . . pn into 1 . . . 10ppost. A miss updates p1 . . . pn to 0 . . . 01ppost by Observa-
tion 9. For pn . . . p1 this means going from ←−−ppost10 . . . 0 to ←−−ppost01 . . . 1.

The cache line d with access path 011 from the example above will be replaced
after 001 + 1 = 2 consecutive misses: 011→ 111→ replaced.

Theorem 10 (mlsPLRU). The minimum life-span of an element in a PLRU-
cache is mls(k) = log2k + 1. In other words, the last log2k + 1 accesses to a
cache set always reside in the set.

16

Proof. After the access to an element its access path is 0 . . . 0. To replace this
element all bits on its access path must be flipped to 1 . . . 1. By Observation 9
each access to other elements flips at most one of the bits of the access path to 1.
To reach the lower bound of log2k + 1 one must access the neighboring subtrees
in a bottom-up fashion, to avoid flipping bits back to 0.

8.1 Eviction

Theorem 11 (evictPLRU
M).

evictPLRU
M (k) =

{
2k −

√
2k : k = 22i+1, i ∈ N0

2k − 3
2

√
k : otherwise

is a tight bound on the number of misses to evict all entries from a k-way
set-associative PLRU cache set.

Proof. Assuming no invalid lines, this proof is easy. It is a simple consequence
of Lemma 6 that k misses suffice to evict a complete set. If all lines are invalid,
the problem is equally easy. It becomes more complicated if some subset of size
0 < i < k of the lines is invalid. The first i misses will then go into these invalid
lines instead of following the standard PLRU replacement policy. These accesses
do however modify the tree bits in the standard way, as if they had been hits.

The number of misses needed to completely evict the cache set is then deter-
mined by the positions of the remaining k′ = k− i non-accessed lines. Each line
can be associated with the number of misses necessary to replace the content of
that line. By Lemma 6 the line with access path p1 . . . pn will be replaced after
pn . . . p1 + 1 consecutive misses, i.e. the number of trailing 0s in p1 . . . pn mainly
determines the miss replacement distance. To have m trailing 0s none of the
2m − 1 neighbors in the particular subtree of height m may have been accessed
in the first phase, filling up the invalid lines. Any access in the subtree would
have flipped at least one of the final m bits. If k′ lines have not been accessed
yet, the maximal number of trailing 0s in any of these lines’ access paths may
be blog2k

′c.
So, the maximal distance to eviction of any untouched line is bounded by

0 . . . 0︸ ︷︷ ︸
blog2k′c

10 . . . 0 + 1 = 1 . . . 1︸ ︷︷ ︸
blog2k′c

01 . . . 1 + 1

= 1 . . . 1︸ ︷︷ ︸
blog2k′c+1

0 . . . 0 = 1 . . . 1︸ ︷︷ ︸
log2k

− 1 . . . 1︸ ︷︷ ︸
log2k−(blog2k′c+1)

= (2log2k − 1)− (2log2k−(blog2k′c+1) − 1) = k − k

2blog2k′c+1

All in all, we get z = i+k− k
2blog2k′c+1 = 2k−k′− k

2blog2k′c+1 as an upper bound
for the number of accesses to evict a PLRU-set with misses only. Obviously, z is
maximized by a power of two (for any non power of two k′ = 2l + δ, 0 < δ < 2l,

17

k′′ = 2l results in a higher value of z), which allows us to simplify the formula
to 2k − k′ − k

2k′ , assuming k′ is a power of two. Maximizing this yields

evictPLRU
M (k) =

{
2k −

√
2k : k = 22i+1, i ∈ N0

2k − 3
2

√
k : otherwise

with

k′ =
{

1
2

√
2k : k = 22i+1, i ∈ N0√

k : otherwise

This proves the given evictPLRU
M (k) to be an upper bound. To prove its tight-

ness we can give access sequences and initial cache configurations that exactly
reach the bounds. Assume [⊥1, . . . ,⊥k−k′ , x1, . . . , xk′] with arbitrary tree bits as
the initial configuration. Then, the access sequence 〈y1, . . . , yk−k′〉 results in the

normalized cache-set state
[
yi1 , . . . , yik′ , xi1 , . . . , xik′ , yik′+1

, . . . , yik−k′

]∼=
. Since

k′ is a power of two the xi1 , . . . , xik′ make up a complete subtree. Therefore,
they are not torn apart by accessing other lines in the normalized representa-
tion. Furthermore, yk−k′ fills ⊥k−k′ which is adjacent to xi1 , . . . , xik′ , moving
the xi-subtree to second position from the left. Observe that the access path
0 . . . 01 0 . . . 0︸ ︷︷ ︸

log2k′

leads to xi1 . By Lemma 6, it takes 1 . . . 1︸ ︷︷ ︸
log2k′

01 . . . 1 + 1 = k − k
2k′

further misses to eliminate xi1 . Together with the k− k′ previous accesses to fill
the invalid lines, it sums up to the given upper bound, proving its tightness.

If one cannot assume that only misses will occur, the number of accesses
for eviction gets even larger. However, we do not have to consider invalid lines
because allocations to invalid lines are equivalent to hits at those position.

For the case of hits and misses we need a simple lemma that relates the
number of accesses to the two halves of a cache set:

Lemma 7. The number of accesses to the two halves c1, c2 of a 2k-way cache
set differs by at most k.

Proof. Consider a situation with hi hits and mi misses to ci. For each but the
first miss on c2 there must be an access to c1 to flip the bits back to c2: h1+m1 ≥
m2−1. Thus the difference d = (h2+m2)−(h1+m1) ≤ m2+h2−m2+1 = h2+1.
If h2 < k then d ≤ k. The last possible case is h2 = k, in which all hits h2 must
have preceded all misses m2 due to the accesses in the sequence being pairwise
different. But every further access to c2 must then be directly preceded by at
least one access to c1 again yielding d ≤ k. (h1 + m1) − (h2 + m2) ≤ k by a
similar argument.

Theorem 12 (evictPLRU
HM). It takes at most k

2 log2 k + 1 pairwise different ac-
cesses to evict all entries from a k-way set-associative PLRU cache set. Again,
this is a tight bound.

18

Proof. Claim: let z(k) be an upper bound for the number of accesses needed to
evict a cache set of associativity k. Then z(2k) = 2z(k)+k−1 is an upper bound
for a set of associativity 2k.

We consider a set of size 2k to be composed of two halves c1, c2 of size k.
Wlog. let c1 be the first half with no initial contents left. Let a1 and a2 be the
number of accesses on c1 and c2 respectively to reach this state. Then c2 needs
at most z(k)− a2 further accesses. Since c1 consists of elements from the access
sequence only, every subsequent access to c1 will be a miss. Therefore, there can
be at most one access to c1 between two consecutive accesses to c2 from now on.

Combining the last two statements there can be at most 2(z(k) − a2) − 1
further accesses until c2 is completed, too. Adding the first a1 + a2 accesses
results in a1 + a2 + 2(z(k)− a2)− 1 = 2z(k) + a1 − a2 − 1. Using Lemma 7 this
is bounded by 2z(k) + k − 1.

Solving the recurrence for z with the trivial value z(2) = 2 proves the upper
bound.

To prove tightness assume a worst-case initial cache-set state ck and a worst
case access sequence sk = 〈u1, . . . , uz(k)〉 for associativity k are known. The
access sequence 〈x1, . . . , xk, u1, v1, . . . , uz(k)−1, vz(k)−1, uz(k)〉 evicts the contents
of the cache set with initial state [x1, . . . , xk] ◦ ck with no less than k +2z(k)− 1
accesses.

For k = 2 all cache sets states and all access sequences of length 2 are worst
case initial cache-set states serving as a basis for the recursion.

8.2 Fill

Theorem 13 (fillPLRU
M). After at most fillPLRU

M (k) = 2k−1 misses the cache-
set state is completely known. This bound is tight for k > 2. For k = 2, 2 is an
obvious tight bound for fillPLRU

M .

Proof. At most k misses can go into invalid lines. The last of these accesses
resides in the line with access path 0 . . . 0 in the normalized cache set. Ac-
cording to Lemma 6, it will be evicted after k further misses, i.e. the k − 1
subsequent misses fill up the cache set. Further misses result in a FIFO behav-
ior. The following example proves tightness: assume the initial cache-set state
c = [⊥1, . . . ,⊥k] consisting of invalid lines only. Now, consider the access se-
quence 〈x1, . . . , xk〉 ◦ 〈y1, . . . , yk−2〉. After processing 〈x1, . . . , x k

2
〉 x k

2
has access

path 0 . . . 0. The next accesses xi go to the other half of c. Thus, the access
paths of x k

2
and xi have no common prefix. By Observation 9, x k

2
has access

path 10 . . . 0 after 〈x k
2 +1, . . . , xk〉. By Lemma 6, it will take 1 . . . 10 + 1 = k − 1

further misses to eliminate it, after k−2 accesses it is still in the cache set. Thus,
the cache set does not consist of the last k accessed elements, in particular it
has not stabilized yet.

Lemma 8. If it takes evictPLRU
HM (k) accesses to evict a cache set, the last two

accesses must have gone to different halves of the cache set.

19

Proof. Assuming this is false one could insert an additional miss-access between
the last two accesses on the half not accessed. Thus the number of accesses for
eviction would be increased by one contradicting the assumption of a worst case.

Theorem 14 (fillPLRU
HM). After at most k

2 log2 k + k− 1 pairwise different ac-
cesses the PLRU cache-set state is completely known. This bound is tight.

Proof. We want to prove the given bound based on our results for evictPLRU
HM (k).

The difference fillPLRU
HM (k)− evictPLRU

HM (k) is k− 2. Since the last access to a set
always resides in the left-most position with access path 0 . . . 0, k− 1 additional
misses suffice to fill the set due to Lemma 6. This still leaves us one short of the
given bound if eviction took exactly evictPLRU

HM (k) steps. In that case, however,
the last two accesses must have gone to different halves due to Lemma 8. Thus,
they have access paths 0 . . . 0 and 10 . . . 0. Due to Lemma 6 they will be replaced
after k and k − 1 misses. Thus k − 2 further accesses suffice.

Tightness is shown by modifying a generic worst-case example for ePLRU
HM (k).

Let s = 〈x1, . . . , xe〉 be this worst-case access sequence (assuming the same
initial cache-set state). Let | denote the center of the cache set. Then s′ =
〈x1, . . . , xe−2, h〉 ◦ 〈y1, . . . , yk−2〉 of length evictPLRU

HM (k) + k− 3 results in the in-
termediate cache-set state [h, . . . , xe−2, . . . |xe−3, . . .]

∼=. The final cache-set state
is

[
yi1 , . . . , yik−2 , xe−3

]∼=.
Effectively, we remove the last two accesses from the old example and insert

a hit h into the access sequence accessing the left side of the (normalized) cache
set. Knowing that the last two accesses xe−3, xe−2 accessed different halves of
the set1, the hit h changes the order in which these two elements will be replaced.
Thus xe−3 must be evicted from the set to stabilize it. Due to Lemma 6 this
takes k − 1 additional accesses because xe−3 has access path 10 . . . 0 after the
hit. Carrying out s′ only, will result in the cache-set state depicted above, which
is not yet stabilized.

The evolution of may- and must-information for a PLRU-set of associativity
k = 8 is depicted in Figure 5. As in every policy, must-information initially rises
up to mls(k) and reaches k after fill(k) accesses; may-information drops to evict
after evict accesses. The further development of both curves is less uniform than
in the other cases, which might be attributed to the more complicated policy.

9 Related Work

Sleator and Tarjan [8] consider replacement policies from a different point of
view. They investigate the amortized efficiency of the list update and paging
rules LRU, FIFO, LIFO, and LFU. As a reference they take Belady’s [9] opti-
mal offline policy OPT. They show that any online algorithm must fare worse
than OPT by a certain factor and go on to prove that LRU and FIFO do per-
form as well as possible for an online algorithm. Their work concerns theoretical
performance limits rather than predictability of replacement policies.
1 this is due to the construction of our former worst-case example, cf. Theorem 12

20

#accesses5 10 15 204
mls

13
evictHM

19
fillHM

mayP LRU8

mustP LRU8

2

4

6

8

10

12
13

c

Fig. 7. Evolution of may- and must-information of a 8-way PLRU cache set. c
is the number of blocks that can be mapped to the cache set.

Al-Zoubi et al. [6] perform measurements using the SPEC CPU2000 bench-
marks, comparing the performance of different associativities and replacement
policies including FIFO, LRU, PLRU, MRU, and OPT. They conclude that
LRU, PLRU, and MRU show nearly the same performance. These policies are
approximately as good as a cache of half the size with OPT policy while clearly
outperforming FIFO. This interesting experimental result yields insights con-
cerning average-case performance in practice. It does however, not deal with
predictability.

In [5] Heckmann et al. provide must- and may-analyses for LRU, PLRU, and
a pseudo round-robin replacement policy in the context of worst-case execution
time tools. Cache lines are assigned ages where “old” lines are close to eviction.
Newly introduced lines assume the minimum age 0. Updates change these ages
to account for all possible concrete scenarios: in the may-analysis, the minimal
possible age is taken, in the must-analysis the maximal. For LRU, this yields very
precise and efficient analyses. For PLRU, the must-analysis loses precision while
staying efficient. It can maximally infer 4 of the 8 lines of an 8-way set-associative
PLRU cache set which is strongly related to our Theorem 10. The may-analysis
becomes useless since only ages 0 and 1 are reachable. They also give an example
for a replacement policy with very poor predictability: pseudo round-robin used
in the Motorola ColdFire 5307. It is effectively a FIFO replacement except
that the replacement counter is shared among all cache sets. The inability to
analyze the sets independently results in an even lower predictability than for
the FIFO policy.

The manual of the PowerPC 75x series [10] gives the number of uniquely
addressed misses to flush an 8-way PLRU cache set used in these CPUs, which
is an instance of evictPLRU

M .
Putting it all together, Al-Zoubi et al. [6] provide empirical performance

results whereas Sleator and Tarjan [8] present a theoretical performance analysis
that is independant of any particular benchmark.

21

Table 1. Summary of the main results for all policies.

Policy eM(k) fM(k) eHM(k) fHM(k) mls(k)

LRU k k k k k
FIFO k k 2k − 1 3k − 1 1

MRU 2k − 2 ∞/2k − 4† 2k − 2 ∞/3k − 4† 2

PLRU


2k −

√
2k

2k − 3
2

√
k

ff
2k − 1 k

2
log2 k + 1 k

2
log2 k + k − 1 log2 k + 1

Table 2. Examples for evict and fill for k = 4, 8.

k = 4 k = 8
Policy eM fM eHM fHM mls eM fM eHM fHM mls

LRU 4 4 4 4 4 8 8 8 8 8
FIFO 4 4 7 11 1 8 8 15 23 1
MRU 6 ∞/4 6 ∞/8 2 14 ∞/12 14 ∞/20 2
PLRU 5 7 5 7 3 12 15 13 19 4

In contrast to performance, predictability in the sense of this paper is con-
cerned with the obtainable precision of provable upper and lower bounds on
execution times. Static analysis is used to determine such bounds. Heckmann et
al. [5] provide specific static cache analyses for several replacement policies and
compare their precision. Our work presents the theoretical limits of any static
cache analysis.

10 Conclusions and Future Work

An important part in the design of hard real-time systems is the proof of timeli-
ness, which is determined by the worst-case performance of the system. Perfor-
mance boosting components like caches have an increasing impact on both the
average and the worst-case performance. We investigated the predictability of
four popular cache replacement policies. To this end, we introduced the metrics
evict and fill and determined their values.

In these metrics, no policy can perform better than LRU because k is an
obvious lower bound for any replacement policy. The other policies under in-
vestigation, PLRU, MRU, and FIFO, perform considerably worse: in the more
interesting cases of evictHM(k) and fillHM(k), FIFO and MRU exhibit linear
growth in terms of k, while PLRU grows super-linearly. However, instantiating
k with the common values 4 and 8 shows a different picture, see Table 2. Here,
PLRU even fares slightly better than FIFO and MRU. Yet, compared to 8-way
LRU, PLRU, MRU, and FIFO take more than twice as long to regain complete
information. In particular, this differs from the worst-case performance results
obtained in [8], where FIFO and LRU fared equally well.

† See Theorem 6 and Theorem 7.

22

Our analysis of the evolution of may- and must-information further substan-
tiates the findings: MRU and even more so FIFO should not be considered for
use in hard-real time systems. These results support previous practical experi-
ence in static cache analysis [5].

The metrics allow us to investigate the precision of different analyses. Does
an analysis ever regain any may- or complete must-information? If so, does it
need longer access sequences to derive safe information about the cache contents
than suggested by fill(k) and evict(k), or is it optimal with respect to these
metrics?

Future work could drop the restriction that all elements of access sequences
are different. This could allow for the construction of precise and efficient (as pos-
sible) cache analyses, as we are now aware of the limits. A first step would be to
investigate the normalization of arbitrary access sequences, e.g. 〈x1, . . . , xn, y, y〉
can be simplified to 〈x1, . . . , xn, y〉 in all replacement policies we considered.
For LRU it suffices to keep the last access to each element within the sequence,
which means keeping at most k elements. Can we do something similar regarding
FIFO or PLRU? If perfect analyses turns out to be too expensive, our results
on the minimal life-span suggest an alternative.

Acknowledgements

This work has profited from discussions within the ARTIST2 Network of Ex-
cellence. It is supported by the German Research Foundation (DFG) as part of
SFB/TR AVACS and by a scholarship in the GK 623.

We would like to thank Raimund Seidel, Kurt Mehlhorn, Sebastian Hack,
and the anonymous referees for helpful comments and fruitful discussions.

The original publication is available at SpringerLink:
http://www.springerlink.com/content/l128713825873h30/

References

1. Langenbach, M., Thesing, S., Heckmann, R.: Pipeline Modeling for Timing Ana-
lysis. In: Proceedings of the Static Analyses Symposium (SAS). Volume 2477.,
Madrid, Spain (2002)

2. Thesing, S.: Safe and Precise WCET Determinations by Abstract Interpretation
of Pipeline Models. PhD thesis, Saarland University (2004)

3. Ferdinand, C., Wilhelm, R.: Efficient and Precise Cache Behavior Prediction for
Real-Time Systems. Real-Time Systems 17(2-3) (1999) 131–181

4. Thiele, L., Wilhelm, R.: Design for Timing Predictability. Real-Time Systems
28(2-3) (2004) 157–177

5. Heckmann, R., Langenbach, M., Thesing, S., Wilhelm, R.: The Influence of Pro-
cessor Architecture on the Design and the Results of WCET Tools. Proceedings
of the IEEE 91(7) (2003) 1038–1054

6. Al-Zoubi, H., Milenkovic, A., Milenkovic, M.: Performance Evaluation of Cache
Replacement Policies for the SPEC CPU2000 Benchmark Suite. In: ACM-SE 42:
Proceedings of the 42nd annual Southeast regional conference, New York, NY,
USA, ACM Press (2004) 267–272

23

http://www.springerlink.com/content/l128713825873h30/

7. Malamy, A., Patel, R., Hayes, N.: Methods and Apparatus for Implementing a
Pseudo-LRU Cache Memory Replacement Scheme With a Locking Feature. United
States Patent 5029072 (October 1994)

8. Sleator, D.D., Tarjan, R.E.: Amortized Efficiency of List Update and Paging Rules.
Commun. ACM 28(2) (1985) 202–208

9. Belady, L.: A Study of Replacement of Algorithms for a Virtual Storage Computer.
IBM Systems Journal 5 (1966) 78–101

10. Freescale Semiconductor Inc.: MPC750 RISC Microprocessor User Manual, Section
3.5.1. http://www.freescale.com/files/32bit/doc/ref manual/MPC750UM.pdf

(1 2002)

24

http://www.freescale.com/files/32bit/doc/ref_manual/MPC750UM.pdf

	Jan Reineke, Daniel Grund, Christoph Berg, Reinhard Wilhelm (Universität des Saarlandes)

