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Locked Loop Postprocessor
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Abstract—We consider the problem of timing recovery for
bandlimited, baud-rate sampled systems with intersymbol inter-
ference and a timing offset that can be modeled as a combination
of a frequency offset and a random walk. We first derive the
Cramér–Rao bound (CRB), which is a lower bound on the es-
timation error variance for any timing estimator. Conventional
timing recovery is based on a phase-locked loop (PLL). We com-
pare the conventional timing-recovery method with the CRB for
realistic timing parameters for the magnetic recording channel,
and observe a 7 dB signal-to-noise ratio gap between the two.
Next, we propose a PLL postprocessor based on the maximum
a posteriori estimation principle that performs to within 1.5 dB
of the CRB. This postprocessor performs time-invariant filtering
and time-varying scaling of the PLL timing estimates. The refined
timing estimates from the postprocessor are then used to get
refined samples by interpolating the samples taken at the PLL’s
timing estimates. Finally, we present suboptimal implementations
that allow a performance-complexity tradeoff.

Index Terms—Cramér–Rao bound (CRB), maximum a pos-
teriori (MAP), phase-locked loop (PLL), random walk, timing
recovery.

I. INTRODUCTION

T
IMING recovery is an integral part of communication and

data storage systems. Most physical communication chan-

nels are analog in nature, whereas the data to be communicated

is usually digital and discrete. At the transmitter, the data to be

transmitted is used to modulate an analog waveform to suit the

channel characteristics. At the receiver, the analog waveform

needs to be converted back into the digital domain for further

processing. This is achieved with the aid of a sampling device

that samples the received waveform at instants determined by a

timing-recovery device. The quality of the samples, and hence,

the performance of the receiver, depend strongly on the perfor-

mance of the timing-recovery device.
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In this paper, we consider the problem of timing recovery
for bandlimited, baud-rate sampled systems with intersymbol
interference (ISI). A baud-rate sampled system is one where
the receiver collects one sample per transmitted symbol, as is
common in high-rate communication systems and high-density
magnetic recording. At the high data rates and storage densities
of these systems, the sampling devices [analog-to-digital con-
verters (ADCs)] are usually run at as high a sampling rate as
possible, and the operating speed of the ADCs ends up being the
limiting factor that determines the maximum operating data rate
of the overall system. For a given ADC sampling rate, oversam-
pling requirements due to the algorithms employed lead to a cor-
responding reduction in the maximum data rate for the overall
system. In general, oversampling leads to performance improve-
ment, when compared with baud-rate sampling [1]. However,
with careful design, this performance loss for baud-rate sampled
algorithms can be reduced to a minimum, while allowing signif-
icantly higher data rates than those possible with algorithms that
require oversampling [1], [2].

The timing-offset model considered here consists of a fre-
quency offset and a random walk. A popular method of timing
recovery is based on the phase-locked loop (PLL) [3]. A PLL
is a feedback-control system that adapts the sampling instants
based on an error signal derived from the samples. A PLL con-
sists of a sampling device, a timing-error detector (TED) (also
called a phase-error detector), a loop filter, and a voltage-con-
trolled oscillator (VCO). The samples from the sampling de-
vice are used by the TED to generate estimates of the timing
error. These timing-error estimates are filtered by the loop filter,
which is usually a lowpass filter, to generate the PLL timing esti-
mates. The VCO finally uses these timing estimates to generate
the sampling instants at which the sampling device is activated.
The conventional timing-recovery method, for the system model
considered here, involves a second-order loop filter.

The PLL is well known in the literature, and is an integral part
of communication and control systems, largely due to its sim-
plicity and good performance. However, the PLL does not nec-
essarily lead to the lowest estimation error possible. The PLL’s
loss of performance can be quantified by comparing its error
variance to that predicted by the Cramér–Rao bound (CRB),
which is a lower bound on the error variance of any unbiased
estimator [4]. The CRB is well known in the literature for con-
stant-offset [5] and frequency-offset timing models [6]. In this
paper, we derive the CRB for a general timing-offset model con-
sisting of a frequency offset and a random walk. For a mag-
netic recording channel with realistic system parameters, the

0090-6778/$20.00 © 2006 IEEE
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PLL performs around 7 dB worse than the CRB, and this large
gap motivates the search for better timing-recovery methods.

Considerable effort in the literature on improving timing-re-
covery methods has focused on improving components of the
PLL, such as the TED [7] or the decisions used by the TED [8].
Postprocessing or feedforward techniques have been proposed
in the literature for oversampled systems (with two to four sam-
ples per symbol duration) involving techniques like square non-
linearities and conditional maximum-likelihood (ML) estima-
tion [9]–[11]. In this paper, we propose a postprocessor, based
on the maximum a posteriori (MAP) estimation principle, that
processes the PLL timing estimates for the whole received block
to generate refined timing estimates with reduced error vari-
ance. This method is especially attractive for baud-rate systems
that employ iterative processing at the receiver, where the re-
quirement of causality can be relaxed, and the timing estimates
from the current iteration can be used in the next iteration of the
receiver’s processing. Examples include high-rate communica-
tion and data-storage systems that employ iterative decoding,
equalization, and synchronization [8], [12]–[14].

The PLL postprocessor is derived as the MAP estimator [4]
for a linearized model of the PLL outputs. The vector of timing
estimates from the PLL is projected onto the underlying timing-
offset model using a matrix operation on the PLL outputs. To
reduce complexity, we propose an approximation that allows
replacing the matrix operation by a time-invariant filtering fol-
lowed by a time-varying scaling, without any perceptible perfor-
mance degradation. The PLL postprocessor performs to within
1.5 dB of the CRB, a gain of around 5.5 dB. Finally, we present
suboptimal implementations of the algorithm that allow a per-
formance-complexity tradeoff.

The postprocessor developed here can be viewed in a more
general context. For any system characterized by a nonlinear
measurement equation, the traditional approach to estimating
system parameters has been to linearize the measurement equa-
tion using Taylor series techniques, and then use the Kalman
filtering approach [15], [16]. We take an alternative approach.
With a suitably chosen TED, the PLL gives access to linear ob-
servations. Then the projection operator defined by the MAP
estimator can be used to get the desired estimates.

The rest of the paper is organized as follows. Section II in-
troduces the system model under consideration. In Section III,
the CRB is derived. In Section IV, the conventional PLL-based
timing-recovery method is reviewed, and its simulated perfor-
mance is compared with the CRB. In Section V, the MAP-based
PLL postprocessor is derived, and the performance improve-
ment possible is demonstrated by simulation. In Section VI,
suboptimal implementations of the PLL postprocessor are
proposed, and the corresponding performance-complexity
tradeoff is discussed. Finally, the conclusions are presented in
Section VII.

II. SYSTEM MODEL

Consider the pulse amplitude modulated system shown in

Fig. 1. The channel output waveform is given by

(1)

Fig. 1. System block diagram with timing offsets, channel distortion, and ad-
ditive noise.

where is the bit period, are the independent,

identically distributed (i.i.d.) data symbols equally likely to be

1 or 1, is the channel impulse response, is additive

white Gaussian noise, and is the unknown timing offset for the

th symbol. The timing-offset model is given by

(2)

where is the initial timing offset, is the frequency-offset

parameter, and the random variables characterize a

random walk and are i.i.d. zero-mean Gaussian random vari-

ables of variance . This timing model has been considered

in the literature for magnetic recording applications [17], [18].

The parameter determines the severity of the random walk,

and represents the receiver’s a priori knowledge regarding

the random walk component. Also assumed is the a priori

knowledge that is a zero-mean Gaussian random variable

with variance , and is a zero-mean Gaussian random

variable with variance .

The channel response is assumed to be bandlimited to

the frequency range , with the result that baud-

rate samples taken at a sampling rate of provide sufficient

statistics. To eliminate out-of-band noise at the receiver, the re-

ceived waveform is filtered by a front-end filter with im-

pulse response to get the waveform .

III. CRB FOR THE TIMING PROBLEM

The resulting waveform is sampled at instants to ar-

rive at baud-rate samples given by

(3)

where , is the signal component of ,

and are zero-mean i.i.d. normal random variables with

variance . The signal-to-noise ratio (SNR) is defined to be

SNR , where is the energy in

the channel impulse response . A total of sam-

ples are collected and stacked in an observation vector

, where eventually .

Also constructed are the vectors ,

, , the param-

eter vector of size , and the vector of

the estimates that the receiver generates based on , given by

.



2006 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 54, NO. 11, NOVEMBER 2006

In the trained case, where the transmitted symbols are

known at the receiver, the problem is simpler, and the receiver

only needs to estimate . However, communication systems

can not be fully trained, and the receiver has no knowledge of

the transmitted data in this case. The general timing-recovery

problem can be phrased as one of estimating and ,

given and knowledge of the channel response . The

CRB for this problem is given by [4]

(4)

where is the total information matrix, defined by [4]

(5)

where is the joint probability density of and . The

estimation-error variance for the th parameter is bounded by

the th diagonal entry of .

Let be the distribution of , given . Also, let

be the a priori distribution of . The total information can

then be rewritten as [4]

(6)

where the Fisher information matrix is given by [4]

(7)

and the a priori information matrix is

(8)

Since the distribution is multivariate normal, given by

, can be simplified to [19]

(9)

where is the sensitivity matrix

(10)

and the column vector denotes the vari-

ation in the mean with respect to , the th element of . In

addition, if is partitioned as , where corre-

sponds to the derivatives with respect to the timing parameters

, and corresponds to the data parameters , then takes

the following block diagonal form [20]:

(11)

where and . For the

specific system model considered here, evaluates to [20]

(12)

where we let and is the

energy in the derivative of the pulse shape . (See Appendix

for proof.) Since the data symbols are zero-mean and indepen-

dent of the timing parameters, the a priori information matrix

has a block diagonal form as well, given by

(13)

where and are the a priori information matrices

corresponding to the timing and the data parameters, respec-

tively. With a priori information that is and

is , the a priori timing information matrix

evaluates to [20]

. . .
...

. . .
. . .

. . .
...

. . .

where (14)

(15)

Combining (6), (11), and (13), the total information matrix

is block diagonal, as well, given by

(16)

where represents the total timing information matrix. The

matrix needs to be inverted to arrive at the CRB. To get the

CRB on timing estimation, it is sufficient to evaluate and invert

, which is given by

(17)

Combining (17), (12), and (14) leads to

. . .
...

. . .
. . .

. . .
...

. . .

where (18)

and (19)

The a priori information parameters and occur in the

denominator of the fractions in [see (19) and (15)]. Both of

these parameters being zero leads to perfect knowledge of the

initial timing offset and the frequency offset, and the estimation

problem is simply that of estimating the random walk. If
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, , as written out in (18), is not invertible. Therefore, the

special cases of one or more of the parameters , , and

being zero are dealt with separately.

Assuming that these parameters are nonzero, we arrive at the

CRB by inverting using the Cholesky decomposition [20],

[21]. First, is factorized as , where is a

lower triangular matrix. Next, we solve the equation

for . Finally, we solve for , leading to

, and this is given by

(20)

where

(21)

Finally, the Cramér–Rao lower bound on the timing estimation

error variance for the th timing offset evaluates to

(22)

If and , then this represents the case of a

pure random walk. This leads to the following expression for

:

. . .
...

. . .
. . .

. . .
...

. . .

where (23)

(24)

Inverting this, following the procedure for the earlier case, leads

to a similar expression [21], where

(25)

where

(26)

In this case, further simplification is possible, and the CRB is

given by

(27)

where

(28)

(29)

(30)

Here, is the steady-state value of the CRB, and is the

-dependent term, and this represents the variation of the CRB

with the index . For moderately high SNR and high enough

, is approximately unity in the center of the packet, and

therefore, in this region. As the SNR

and increase, the steady-state value becomes more represen-

tative of the CRB for all the indices .

The case with represents a combination of an initial

timing offset and a frequency offset, and has been dealt with in

the literature [5], [6]. Therefore, it is omitted here for the sake

of brevity.

IV. CONVENTIONAL PLL-BASED TIMING RECOVERY

As opposed to sampling the signal at the precise time instants

, as in the previous section, conventional timing recovery

employs a PLL to arrive at the sampling instants .

After front-end filtering, the channel received waveform

to remove out-of-band noise, the resulting continuous-time

waveform can be modeled as

(31)

where is bandlimited to . The contin-

uous-time waveform is then sampled at timing instants

based on the estimates of produced by

the timing-recovery system, leading to samples . Ideally,

sampling would occur at instants . The samples are

given by

(32)

where are i.i.d. zero-mean Gaussian random variables of

variance .

Conventional timing recovery is based on a PLL. A first-order

PLL updates its estimate of according to

(33)
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where is the PLL gain, and where is the receiver’s esti-

mate of the estimation error . For zero steady-state

error while tracking a frequency offset, a second-order PLL is

employed, which updates the estimate of according to

(34)

where there is an additional gain parameter .

The receiver employs a TED to arrive at timing-error esti-

mates. The widely used Müller and Mueller (MM) TED [22]

generates according to

(35)

where is the receiver’s estimate of the noiseless, perfectly

timed th sample given by

(36)

As an example, consider the following partial-response channel

occurring in digital magnetic recording applications, denoted

as the PR-IV channel. Full-response equalization leads to noise

enhancement for longitudinal recording channels due to the

spectral null around zero frequency. For this reason, partial-re-

sponse equalization targets are usually prefered. Equalization

is carried out in two steps, where the first step equalizes the

received channel waveform to the partial-response target. The

target chosen is such that it is spectrally similar to the channel

response, and also has relatively few taps. The first property

reduces noise enhancement, and the second property allows

for ML trellis-based detection. This technique is popularly

known as the partial-response maximum-likelihood (PRML)

technique [23]. It is customary to treat the first stage of equal-

ization as part of the front end of the receiver, with the result

that the equivalent discrete-time overall channel, combining

the magnetic recording channel and the front-end filter, is the

partial-response target chosen. For the PR-IV channel that has

the pulse shape [23]

(37)

the noiseless, perfectly timed samples are given by

(38)

Performance of the MM TED can be improved by using soft

estimates in place of hard estimates [24]. For the PR-IV

channel, a memoryless soft slicer of the form [24]

(39)

Fig. 2. Conventional timing recovery employs a PLL.

Fig. 3. Trained PLL is 7 dB away from the CRB.

leads to reduced timing-estimation-error variance. With a hard

slicer for the PR-IV channel, the estimates take on one of

three values, 0, 2. With the soft slicer, as , ,

and as , . When , we have , as

well. However, when the noise is such that is near its decision

thresholds, the hard quantizer is more likely to make errors. The

soft slicer outputs a soft estimate of that conveys the relia-

bility information, as well, and this additional information helps

in reducing the timing-estimation-error variance.

The conventional timing-recovery method is summarized in

Fig. 2. Fig. 3 compares the performance of the trained PLL with

the CRB for the PR-IV channel. For simplicity, the timing-offset

model was chosen to be a plain random walk characterized by

, , and . Fig. 3 plots the

steady-state CRB of (27) versus the timing-estimation error of

the trained PLL averaged over all symbol positions. A first-order

PLL is chosen, with the gain parameter chosen at each SNR to

minimize the timing-estimation-error variance [17]. The results

are averaged over 1000 blocks of length 500 each. The PLL with

ideal decisions is about 7 dB away from the CRB,

and this gap motivates the PLL postprocessor proposed in the

next section.

V. PLL POSTPROCESSOR

It has been shown in [18] and [25] that the PLL can be

modeled as a modified Kalman filter. For a linear Gaussian

system, the Kalman filter is the optimal causal processing

to minimize the mean-square estimation-error variance, and

it has been shown [17], [18], [25] to be equivalent to a PLL

with time-varying gain parameters. In the tracking mode, the

gains are time-invariant, and the Kalman filter reduces to a

PLL with constant gains [17]. Therefore, to outperform the

constant-gain PLL in the tracking mode, it is necessary to relax
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the causality constraint and to perform block processing. In the

rest of this section, we develop a simplified linear model for the

PLL outputs, and propose a PLL postprocessor based on MAP

estimation for the linear model.

For any TED, we can write

(40)

(41)

where is the TED’s measurement noise, which could depend

on is a nonlinear fashion. Constructing a new observation

leads to the following observation model:

(42)

An ideal TED would output . In the presence of noise, a

linear TED would output , where is independent

of . Practical TEDs are linear only in an SNR-dependent range

around . However, in the tracking mode, the operating

values are usually small enough for the linearity assumption to

hold.

The PLL outputs an estimate of based on only the prior

observations . This is, therefore, an a priori estimate of

. To this, , which is based on the present observation , as

well, is added. Therefore, is an a posteriori estimate of ,

and the quality of this estimate depends on the quality of the

TED output.

In vector notation, the measurement model can be written as

follows:

(43)

where , , and

.

To get the linear measurement model, it is assumed that

is independent of , and also that is , where

is the TED error variance. To get the statistics of , consider

the general case where the timing offsets consist of an initial

phase offset , a frequency offset characterized by , and a

random walk characterized by , . Let

. Then

. . .
...

...
...

...
. . .

...

(44)

is assumed to be where

. Therefore, is Gaussian,

as well, with a covariance matrix given by [4]

(45)

Fig. 4. S-curve for the trained MM TED on the PR-IV channel.

Evaluating this leads to

(46)

for . The MAP estimator for this linear

Gaussian model is [4]

(47)

An alternative representation of this estimator is using the eigen-

decomposition of . Let represent this decomposition

such that , where is a diagonal matrix, with the

main diagonal entries being , the eigenvalues of ,

and is a unitary matrix with the th row being the eigenvector

of corresponding to the eigenvalue . The MAP estimator

can then be rewritten as

(48)

The MAP estimator for this linear Gaussian system is effi-

cient, i.e., it achieves the CRB for the linear model of (43) [4].

Let be the estimation error. The error variance

for the MAP estimator is given by [4]

(49)

The error variance of the PLL postprocessor is a function of the

TED noise variance . To evaluate , the so-called S-curve

is used [22], [23], which is the plot of the average timing-error

estimate as a function of the actual timing error .

Ideally, this is a straight line of unit slope passing through the

origin.

The normalized timing function (i.e., versus )

(labeled “Ideal” and “Trained MM,” corresponding to the ideal

timing function and that of the trained MM TED, respectively)

for the PR-IV channel is plotted in Fig. 4 for SNR = 10 dB.

The timing function for the MM TED defined by (35) does not

have unit slope at origin, as desired. Therefore, it is normalized



2010 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 54, NO. 11, NOVEMBER 2006

Fig. 5. Second moment of timing error for the trained MM TED on the PR-IV
channel.

Fig. 6. MM TED measurement error variance.

by a multiplicative factor. For the PR-IV channel, this factor is

, and the TED equation now is

(50)

The timing function plotted in Fig. 4 is for this normalized MM

TED, and this is close to the ideal timing function for a wide

range of .

In Fig. 5, the second moment of the trained MM TED timing

error is plotted as a function of the normalized timing error

for SNR = 10 dB for the PR-IV system. The second moment

is not independent of . Also, from Fig. 4, it is clear that the

estimator is not unbiased over the entire range of . To simplify

the analysis, unbiasedness of the TED is assumed. Also, the

value of the timing-error second moment at the origin is picked

as , i.e., . This is a good approximation to

the actual TED measurement noise in the tracking mode, where

is small, and also gives a lower bound on the actual TED

measurement noise, since .

Fig. 6 plots the measurement-error variance for the trained

MM TED for the PR-IV channel as a function of SNR. The mea-

surement-error variance monotonically decreases with SNR, as

expected. These values of are finally used in (48) to com-

pletely define the postprocessor. The refined timing estimates

Fig. 7. Postprocessor timing estimates can be used to refine samples.

Fig. 8. PLL postprocessor 1.5 dB away from the steady-state CRB.

from the postprocessor can then be use to get new sam-

ples by interpolating based on samples taken at the PLL’s

timing estimates , as shown in Fig. 7.
Fig. 8 compares the performance of the trained PLL postpro-

cessor with the trained PLL performance and the steady-state
CRB for a random walk timing-offset model with

, averaged over 1000 blocks of length . The
channel model is the same as before, namely, the PR-IV channel.
The postprocessor performs to within 1.5 dB of the CRB, and is
around 5.5 dB better than the trained PLL. This 1.5 dB gap has to
be put in perspective by the fact that the CRB is not attainable for
the overall nonlinear system with a PR-IV channel and a random
walk timing model [21], and therefore, the performance loss of
the postprocessor, compared with the minimum-error-variance
estimator is less than 1.5 dB. An additional contributor to the
performance gap is the inaccuracy of the linear model, due to
the limited linear range of the TED.

VI. SUBOPTIMAL LOW-COMPLEXITY IMPLEMENTATIONS

The postprocessor described above involves matrix opera-
tions, and becomes infeasible, or at least computationally bur-
densome, for reasonable block lengths of around 5000, which
are common in the magnetic recording industry. In this section,
suboptimal implementations of the postprocessor are proposed
that allow a tradeoff between performance and complexity.

First consider the MAP estimator error-covariance matrix
. In terms of the eigendecomposition, this eval-

uates to

(51)

From (48) and (51)

(52)
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Fig. 9. Shaping function has steady-state value of unity.

Fig. 10. Except for shifting and scaling, this is a typical row ofKKK .

Let be the vector containing the elements of the main
diagonal of , and let . (It is assumed that
is even. For odd , pick .) Call the shaping function.
Fig. 9 shows the shaping function for the PR-IV channel with
a random walk timing offset characterized by ,
SNR = 10 dB, and .

Fig. 10 plots row 250 of with same parameters as above.
In general, let represent the th row
of . (It is again assumed that is even. For odd , pick

.) The first approximation is to replace the other rows
of by suitably zero-padded, shifted, and scaled versions of

. Specifically, denote the th row of by row , and let
. Let shift denote the operator whose output is the

vector formed by suitably zero-padding the vector and shifting
it by units to the left or right, depending on whether left
or right, respectively. Then

row shift left (53)

The case for is similar.
Essentially, the postprocessor has been approximated by the

following structure:

(54)

Fig. 11. Approximate PLL postprocessor.

Fig. 12. Various suboptimal strategies.

where is a diagonal matrix with the th main diagonal entry
being , and is the matrix whose rows are the shifted
rows defined by (53) neglecting the multiplicative factor .
This simplifies the implementation greatly, since represents
a convolution matrix, and can be implemented as a time-in-
variant filter whose impulse response is . can be imple-
mented as time-varying scaling of the filter output. The approx-
imate postprocessor is shown in Fig. 11.

To reduce complexity further, the factor can be neglected
altogether, and also the filter can be truncated to a manage-
able length. The losses associated with these simplifications are
shown in Fig. 12 for the PR-IV channel with a random walk
timing-offset model with , and . The
CRB shown is the steady-state value . The error variances
plotted for the different methods being compared are arrived at
by a time average of all the error variances corresponding to the

timing offsets.
The approximation of (54) performs as well as the matrix op-

eration of (48) leading to significant reduction in the memory re-
quirement. As opposed to the memory elements needed for
the matrix, now only elements are needed. Neglecting the
shaping function and implementing only the filtering reduces
the memory requirement to , but, more importantly, allows a
time-invariant filter implementation. This approximation leads
to a 1.5 dB loss. Further reduction in complexity by truncating
the filter to a total of 100 terms, as opposed to 500, leads to a fur-
ther loss of less than 0.5 dB at , still around
4 dB better than the PLL. Also, this approximation shows a
crossover with respect to the performance of the PLL for SNR
around 5 dB, i.e., for SNR 5 dB, this performs worse than the
PLL. This crossover threshold varies with the number of filter
coefficients used.
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VII. CONCLUSION

The problem of timing recovery for a baud-rate sampled, ban-

dlimited channel that suffers from ISI and timing offsets is con-

sidered. For a general timing-offset model consisting of a fre-

quency offset and a random walk, the CRB is derived. This is

a lower bound on the timing-estimation-error variance for any

estimator. The conventional PLL performs about 7 dB away

from the CRB in simulations with realistic system parameters

for a magnetic recording channel. Next, a PLL postprocessor

is proposed as a method of gaining better performance when

compared with conventional PLL-based timing recovery. This

postprocessor is based on MAP estimation for a linear model of

the PLL outputs, and takes the form of a matrix operation on

timing estimates from the PLL. The postprocessor is then sim-

plified to take the form of a time-invariant filtering, followed by

a time-varying scaling. Finally, suboptimal implementations are

presented that allow a performance-complexity tradeoff.

APPENDIX I

PROOF OF (12)

We start by defining the accumulation process where the
timing offsets are as follows:

(55)

where the sequence is formed by accumulating . If
we assume that the elements of are i.i.d. zero-mean normal
random variables, we get the random walk model. For the model
of (2), we set

(56)

For the present, we assume that we have no a priori informa-
tion about the variables . The channel model with uniform
sampling is

(57)

where is the noiseless received value. The parameter to be
estimated is . Instead of directly com-
puting the Fisher information matrix , we define the param-
eter , compute , and then use the linear
transformation relating and to get .

We proceed with evaluating the sensitivity matrix of (10)
for the parameter . We have

(58)

The derivative of with respect to is

zero if does not occur in the summation inside the term.
Therefore

(59)

Next, is given by

(60)

To get the averaged Fisher information, we need to take the ex-
pectation of over all data sequences . Assuming uncor-
related data symbols in (60) and simplifying, we get

(61)
where the expectation is over . Letting , the bracketed
term is the energy in normalized by the symbol duration

, denoted by . Therefore

(62)

To get from , we use the relationship between and .

Recall that . In vector notation

(63)

where

(64)

Using this relationship between and , we can write [19]

(65)

To compute , recognize the fact that we need now the in-

verse mapping of , which is .
Therefore

else.

(66)

is a lower triangular Toeplitz matrix with only two nonzero
diagonals, the main diagonal and an adjacent one. Using (62),
(65), and (66), we get

(67)

which is the same as (12).
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