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Abstract. In the last decades, the use of Multi-Agent Systems (MAS) resulted in

being the most relevant approach to foster the development of systems perform-

ing distributed reasoning, automated/autonomous actions, and regulating compo-

nent interactions in unpredictable and uncertain scenarios. The scientific commu-

nity provided numerous innovative contributions about resource and task alloca-

tion seeking for optimal/sub-optimal solutions. The adoption of MAS in Cyber-

Physical Systems (CPS) is producing outstanding results. However, in current

MAS, the actual task execution is still delegated to traditional general-purpose

scheduling algorithms running within the agent (local scheduler of behaviors).

The main consequence is the incapability to enforce compliance with strict tim-

ing constraints (i.e., the impossibility of providing any guarantee about the sys-

tem’s behavior in the worst-case scenario). Therefore, the adoption of MAS is

hampered, excluding significant application scenarios such as safety-critical en-

vironments.

This paper proposes the schedulability analysis of various task-sets, that are fea-

sible using real-time schedulers, on top of traditional general-purpose solutions.

In particular, the study of deadline-missing rate occurring in general-purpose se-

tups, evaluated on an agent-based simulator developed on OMNET++, named

MAXIM-GPRT, is presented. The obtained results strengthen the motivations for

adopting and adapting real-time scheduling mechanisms as the local scheduler

within agents.

Keywords: Timing-Reliability, Deadline-Missing Rate, Scheduling Simulation,

Multi-Agent Simulator, Agent Local Scheduler

1 Introduction

Cyber-Physical Systems (CPS) can be composed of a multitude of electronic devices

with any sort of size. Therefore, they can be considered as the maximal expression

of distributed systems pervading humankind’s daily living [11]. Continuously interact-

ing with their surrounding, CPS can collect data exploiting ever-increasing types of



distributed sensors. Feedback and data elaborated locally or remotely feed both net-

works of simple sensors/actuators and intelligent, more complex, distributed entities.

The agent-based paradigm is definitely one of the most prominent and promising ap-

proaches supporting a broad range of distributed applications. Multi-Agent Systems

(MAS) are profusely contributing to domains such as energy [19], manufacturing [16],

e-health [7, 8], and telerehabilitation [10]. However, regardless of application scenarios,

dimensions, and distribution, the safety of the system and its users is a crucial require-

ment.

To operate in safety-critical scenarios, the absence of hardware failures and coding

errors is not a sufficient guarantee. Hence, a system is considered able to guarantee its

correct execution if it can deliberate the right output at or within a given time, even in

the worst-case scenario [5]. Hereafter, such a feature is referred as “timing-reliability”.

It is the fundamental property of the real-time computation systems, i.e., those systems

capable to react within precise time constraints to events in the environment where they

operate.

Concerning MAS, a multitude of elements operate simultaneously. Individually or

collectively, they have to be able to provide primitive mechanisms guaranteeing timing-

reliability. In particular, such components are: (i) an “intelligent/strategic” layer (i.e.

allows single components and the CPS as a whole to achieve their goals), (ii) a commu-

nication middleware (i.e. to allow the exchange of information and requests among the

components of the CPS), and (iii) local policies (i.e. schedulers and heuristics enabling

each component to execute its tasks). MAS have been employed in automatic, semi-

automatic and highly unpredictable and uncertain environments. Nevertheless, mecha-

nisms such as negotiation, communication, and local scheduling have to operate safely

in either one. Moreover, current agent-based frameworks cannot yet support the devel-

opment of a MAS able to guarantee full compliance [11]. In fact, according to the study

proposed in [9], most of the solutions composing the state of the art take the execution

of the allocated task for granted. Such an assumption is naive and unsustainable if deal-

ing with real safety-critical applications.

Contributions.

This paper studies qualitatively and quantitatively the behaviors of the local schedulers

employed in the most relevant agent-based platforms [9] and the most common nego-

tiation protocols. The obtained results have been compared and discussed with respect

to real-time scheduling algorithms.

In particular, considering that general-purpose scheduling algorithms neither con-

sider the deadline notion nor can provide any timing guarantee, to enable a performance

analysis we have:

(i) Developed an OMNET++ based simulator implementing: a dynamic number of

agents, Contract Net (CNET) and Contract Net With Confirmation (CNCP) ne-

gotiation protocols, First Come First Served (FCFS), Round Robin (RR), Earliest

Deadline First (EDF), and Constant Bandwidth Server (CBS) local schedulers.

(ii) Generated random tasks-sets characterized by parameters computed according to a

uniform distribution.

(iii) Analyzed and discussed the obtained outputs.



The paper is organized as follows: Section 2 presents and elaborates the state of

the art, Section 3 describes the simulator, Section 4 presents the tests generation and

execution. Moreover, it organizes, describes, and discusses the experimental results,

and finally Section 5 concludes the paper.

2 State of the art

In the MAS panorama, the notion of scheduling applies mainly to mechanisms of

task/resources allocation among the agents within one or more platforms. Although

such studies provided significant results, they took for granted the task/behavior exe-

cution after allocation and the compliance with the agreements (or commitment) stip-

ulated during the negotiation phase [6]. Such optimistic assumption has been shown to

be unpredictable, thus unacceptable for safety-critical applications [11].

In most of the cases, existing MAS are powered by platforms supporting the devel-

opment of agent-based systems. Hence, considering the study proposed by Kravari and

Bassiliades [17] as common ground, Calvaresi et al. [9] investigated the local schedulers

adopted/proposed by the most relevant agent platforms: almost all have implemented at

least one local scheduler. NetLogo [22] and Cormas [4] are two exceptions, delegating

the development of local schedulers to programmers. In fact, fostering the implemen-

tation of custom versions of behavior schedulers should promote a broader set of al-

gorithms. However, despite such flexibility, the dynamics of the customized schedulers

can be attributed to classic algorithms. In particular, MaDKit [14], RePast [12], and

Swarm [20] implement the FCFS, GAMA [13] and MASON [18] implement a priority

scheduler (e.g. SJF-like), Jason implements an RR applied to structured behaviors, and

finally JADE implements a non-preemptive RR [21]. The Jason and Jade implementa-

tions of RR result in being FCFS of intentions [3] in the first case and of behaviors in

the second. The FCSF and RR scheduling algorithms are two of the most known algo-

rithms and inspired a multitude of variants.

FCFS (also referred as FIFO) executes tasks in the exact order of their arrival (accord-

ing to their position in the ready queue). The absence of preemption or re-ordering in

this mechanism allows to classify the FCFS as “the simplest scheduling policy with

minimal scheduling overhead”.

RR slices the tasks’ computing time on the processor in equal time-quantum. Thus,

the tasks in the ready queue are cycled to get the CPU. If a running task is completed,

the processor directly computes the next one; otherwise, it saves the task status and

puts it back in the ready-queue before computing the next one (context switch). RR

is mainly appreciated for its fairness, preventing the tasks’ starvation. However, these

basic mechanisms, as they are, cannot be employed in safety-critical and real-time op-

erating systems because of the long waiting time, significant response time (which has

to be recalculated for any new task arrival [24]) and the lack of mechanisms for dealing

with strict-timing constraints.



In light of these factors, for both FCFS and RR, the risk of missing deadlines (how-

ever neglected) might dramatically increase, thus degrading system performance and

compromising its safety and reliability.

Concerning real-time compliant scheduling algorithms4, differently from FCFS and

RR, it is mathematically possible to prove the respect of strict timing constraints by per-

forming the task admission control [5]. The study of the behavior of MAS employing

general-purpose algorithms dealing with tasks characterized by deadlines reveals con-

crete risks and possibilities of failure.

The next section presents the simulator that has been realized to test different setups

and measure the recorded deadline-missing rate.

3 The Simulator: MAXIM-GPRT

The objective of this study is to evaluate the timing-reliability of the scheduling algo-

rithms at the bottom of currently available agent-based platforms. To perform such an

evaluation, a new Multi-Agent System SIMulator for General-Purpose and Real-Time

algorithms, named MAXIM-GPRT, has been realized.

MAXIM-GPRT relies on OMNET++ [23], which is a multi-platform component-

based framework written in C++, supporting the development of simulators for distributed-

like systems, and providing a crucial support for realizing (i) basic components (nodes),

(ii) interactions, and (iii) network and communication means. It is extensible, mod-

ular, and provides several simulation libraries, integrating a graphical development,

run-time environment, and, most importantly, enabling the development of real-time

simulations [2].

3.1 MAXIM-GPRT Structure

The simulator is composed of simple modules communicating with each-other by ex-

changing messages. Coded in C++, such active modules embody the agents. The basic

template offers extendable initialization procedure and primitives to handle the message

exchange. The modules have been extended to represent the agents’ knowledge, desires,

behaviors, and connections. Moreover, the modules are organized in a fully connected

network, structured using the specific NED (NEtwork-Description) language. For the

purposes of this study such NED-coded network involves two main types of agents:

– Classic agent: 0 to n agents sharing only a common generic structure, but charac-

terized by diverse and pliable features;

– Directory Facilitator (DF): borrowing the notion by the FIPA specifications about

agent platforms [1], the DF contains the mapping of the agents and the related

services offered. In the current view, it is meant to be 1 per community.

Figure 1 represents the agent composition. In such a way, it is possible to associate

a given task-set, scheduler, desires/goals, knowledge, a negotiation protocol (which is

the same for the entire community), and any required heuristic to every agent during

their initialization phase.

4 Schedulers able to guarantee that scheduled tasks will meet their timing constraints.
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Fig. 1: Agent composition.

In particular, Listing 1 shows the initialization function called only once for each

agent at the beginning of the simulation. Lines 3 to 11 load the simulator’s settings (e.g.,

the maximum dimension of the services vector). Then, a task generator and a needs5

handler, dealing respectively with a tasks vector and needs vector, are created. At line

15 “If the agent is the DF” follows, the service handler (containing all the services pub-

lished by the agents at run-time) is created. Otherwise, from line 18 to 21, the initializa-

tion function creates all the other objects used by the classical agents: the connections

table (mapping the in/out-ports), the heuristic handler (containing the heuristics used

in the negotiation phase), and the report files (used to track information such as dead-

line misses and response time). Finally, from line 22 to 31 the agent’s task-set setting,

the agent’s internal scheduler, the agent’s offered services, and its needs are configured

(Figure 1).

In the current version of MAXIM-GPRT, the agents can be equipped with:

– Scheduler: FCFS, RR, EDF, and CBS;

– Negotiation prot: CNET and CNCP;

– Heuristics: Considering that the output of the negotiations is not central in this

study, seeking simplicity and reproducibility we have: (H1) - if an agent can satisfy

a request, it will bid for it, (H2) - the first bidding agent is acknowledged for the

task execution.

5 given tasks which execution is delegated to other agents via negotiation



1 vo id a g e n t : : i n i t i a l i z e ( ) {
2 i f ( ! a g s i m h a s s e t t i n g s ) {
3 t r y {
4 EV << ” Loading g l o b a l s e t t i n g s . . . \ n ” ;

5 l o a d a g s i m s e t t i n g s f r o m x m l ( ) ;

6 } c a t c h ( e x c e p t i o n c o n s t& ex ) {
7 c e r r << ” E r r o r l o a d i n g t h e XML c o n f i g u r a t i o n f i l e \n ” ;

8 e x i t ( EXIT FAILURE ) ;

9 }
10 } e l s e

11 EV << ” G lo ba l s e t t i n g s a l r e a d y l o a d e d \n ” ;

12 a g s e t t i n g s = new A g s e t t i n g s ;

13 tGen = new TaskGen ;

14 a g N e e d s H a n d l e r = new NeedsHandle r ;

15 i f ( s t r c mp ( ”DF” , getName ( ) ) == 0) {
16 d f S e r v i c e H a n d l e r = new S e r v i c e H a n d l e r ;

17 }
18 e l s e {
19 a g s e t t i n g s −>s e t a g c o n n t a b l e ( g e t I n d e x ( ) , g e t V e c t o r S i z e ( ) ) ;

20 a g H e u r i s i c H a n d l e r = new Hhand le r ;

21 i n i t i a l i z e x m l r e p o r t ( ) ;

22 agentMSG ∗ g e t a g t a s k s m s g = s e t a g t a s k s ( ) ;

23 s c h e d u l e A t ( 0 . 0 , g e t a g t a s k s m s g ) ;

24 agentMSG ∗ g e t a g s c h e d m s g = s e t a g s c h e d u l e r ( ) ;

25 s c h e d u l e A t ( 0 . 0 , g e t a g s c h e d m s g ) ;

26 agentMSG ∗ s e t a g s e r v i c e s m s g = s e t a g s e r v i c e s ( ) ;

27 s c h e d u l e A t ( 0 . 0 , s e t a g s e r v i c e s m s g ) ;

28 agentMSG ∗ s e t a g n e e d s m s g = s e t a g n e e d s ( ) ;

29 s c h e d u l e A t ( 0 . 0 , s e t a g n e e d s m s g ) ;

30 }
31 }

Listing 1: Initialize configuration of MAXIM-GPRT

To study “timing reliability of general-purpose scheduler in MAS”, it has been de-

cided to employ CNET as the negotiation protocol, focusing on the deadline-missing

rate of the two most employed scheduling algorithms. Thus, the two main configura-

tions that have been tested in the several setups presented in Section 4 are (C1): FCFS

+ CNET, and (C2): RR + CNET.

3.2 MAXIM-GPRT Internal Mechanisms

The agent knowledge is represented by a set of tasks it is able to execute. Moreover,

from the same set of tasks, some or all of them can be marked as public, which means

that they are “services exposed to other agents in the case of necessity”. The execution

of such tasks is subject to the negotiation mechanisms.

Whenever a task is released (put into the ready queue), the deadline-check is trig-

gered. When a task is activated (getting the CPU) a check for its completion is triggered.



Depending on the scheduling algorithm, if preemption occurs, the completion check is

updated (whilst the deadline-check remains unaltered). These mechanisms enable to

monitor the evolution of the system, tracking its behaviors over the time.

Concerning the agents needs, they can be hard-coded or dynamically generated/re-

leased at run-time. In the scope of this study, seeking for reproducibility, the needs

have been (randomly) generated off-line and then released at run-time (according to the

task-sets generations constraints, see Section 4).

To ensure fairness, the needs have been uniformly distributed and generated accord-

ingly to the possibilities offered by the platform in a given setup.

Concerning the negotiation, the CNET has been employed in this study. At the start-

up of the platform (or whenever an agent decides to make a given service available)

the agent communicates to the DF the details about the exposed services which are

published on the DF table (in the format: agent - service(s)). Exploiting the classic

message exchange protocol, whoever needs a service gets the list of possible executors.

Then, according to the CNET mechanism, the negotiation takes place, employing the

heuristics H1 or H2 (presented in Section 3.1 respectively for selecting the possible

contractor and acknowledging the winning bid).

4 Experimental Setup and Results

In the scope of investigating the timing reliability, the deadline-missing rate recorded

by agents employing FCFS and RR as the local scheduler has been analyzed. The study

focuses on the execution of periodic tasks. All the generated task-sets are schedulable

under the EDF conditions (Processor Utilization Factor U ≤ 1). According to the se-

tups defined in Section 4.1, each task-set ranges regarding agent-utilization and single

task-utilization have been fixed. In particular, the values of Ui and Ci have been gener-

ated randomly applying a uniform probability distribution. The related periods Ti have

been computed according to Equation (1). The task-set generation included the needs

generation, which is subject to Equation (1) and to the heuristics H1 and H2.

Ti =
Ci

Ui

(1)

By doing so, and considering periodic tasks, all the task sets are feasible (i.e., no

deadline are missed), utilizing the EDF real-time scheduler that has been employed as

a term of comparison.

Such an algorithm manages the priority according to the absolute deadline (D) of

the tasks. Therefore, EDF’s ready queue is sorted accordingly, and the task getting the

CPU is always the one with the earliest deadline. In the event that a task with a closer

deadline than the deadline of the running task is released, a preemption is triggered.

According to Horn [15], given a set of n independent tasks with arbitrary arrival times,

any algorithm that at any instant executes the task with the earliest absolute deadline

among all the ready tasks is optimal with respect to minimizing the maximum lateness.

It is worth to recall that the processor utilization factor U is the fraction of pro-

cessor time spent in the execution of the task set [5], and it is calculated according to

Equation (2). If U is U > 1, the schedule is not feasible for any algorithm. If U ≤ 1,



the schedule is surely feasible for EDF and, depending on the task set features, it might

be schedulable for the other algorithms.

U =
n∑

i=1

Ci

Ti

(2)

The schedulability test performed by EDF relies on the calculation of U. It is quite

easy to be computed, sustainable to be done at run-time, and incremental. For example,

if the U of a given running task-set is 0.5, according to Equation 2, by adding a task τi
with computation time Ci = 2 and period T = 20 it increases to U = 0.6. Checking if a

new task can be added at run-time to the task-set has a considerably low computational

impact on the CPU and does not require to recompute the whole algorithm.

Missing both the notions of deadline and schedulability test (that can prove off-

line the respect of the timing constraints), the behaviors of FCFS and RR have been

investigated using the simulator presented in Section 3. The setups employed for such

a study are presented in the next section.

4.1 Simulation setups

The parameters characterizing the simulated scenarios employed for both FCFS and

RR are: (i) number of agents, (ii) single agent utilization factor, and (iii) single task uti-

lization factor6. Concerning the number of agents (Na), the configurations are: 3, 5, 10
(DF excluded). To better understand the impact of the agent utilization factor (Ua) on

the deadline-missing rate, three distributions have been tested: low Ua
l = (0.1 − 0.5),

medium Ua
m = (0.6− 0.8), and high Ua

h = (0.9− 1). Concerning the utilization factor

(Uτ ) of the single tasks composing the task-sets, three distribution have been defined:

(i) low Uτ
l = (0.1− 0.3), (ii) high Uτ

h = (0.4− 0.6), and (iii) mixed Uτ
x = Uτ

l ∪ Uτ
h .

Thus, by combining the parameters mentioned above and generating three configura-

tions for each set of parameters, a total amount of 486 task sets has been tested with

both FCFS and RR simulations and mathematically proved exploiting the EDF schedu-

lability test.

4.2 Results Presentation

The percentages of deadlines missed obtained in the first run, denoted as (x.x.x.17), is

executed for all the nine configurations over 10000 seconds of simulation, are shown in

Table 1 for FCFS, and in Table 2 for RR.

Figure 2 shows the number of deadline misses, comparing all the different setups

of the first of the analyzed runs (for both FCFS and RR). As expected, the configura-

tion with low utilization for both agents and single tasks does not produce any deadline

miss. Similarly, with both agent utilization and single task utilization high, few deadline

misses have been recorded. In particular, 8% in configuration 3.2.2.1 (FCFS) and 16%

6 The single contribution (Ci/Ti) given by a single task to the task-set of the agent executer is

referred as single task utilization factor.
7 The compact format x.x.x.x stands for (Na) . (Ua) . (Uτ ) . (N. of run)



Table 1: Deadlines missed by FCFS in run x.x.x.1 (simulated time 10000 seconds)

FCFS [%] (ddl-miss/tot-exec)

Na Ua Uτ

l Uτ

h Uτ

x

Ua

l [0%] (0/7987) [0%] (0/5497) [0.5%] (24/4175)

3 Ua

m [12%] (1665/13988) [0%] (0/4662) [10%] (499/5159)

Ua

h [16%] (2665/16319) [8%] (417/5328) [9%] (499/5660)

Ua

l [0%] (0/9276) [0%] (0/10711) [4%] (195/5502)

5 Ua

m [14%] (2201/15353) [0%] (0/4756) [13%] (1091/8500)

Ua

h [14%] (2612/18315) [0%] (0/15450) [18%] (1677/9335)

Ua

l [0%] (0/12147) [0%] (0/16810) [3%] (324/9927)

10 Ua

m [9%] (2781/31366) [0%] (0/27100) [5%] (642/13049)

Ua

h [13%] (4167/33026) [0%] (0/22938) [26%] (3950/15090)

Table 2: Deadlines missed by RR in run x.x.x.1 (simulated time 10000 seconds)

RR [%] (ddl-miss/tot-exec)

Na Ua Uτ

l Uτ

h Uτ

x

Ua

l [0%] (0/7987) [0%] (0/5497) [1%] (48/4175)

3 Ua

m [12%] (1664/13988) [0%] (0/4662) [10%] (502/5159)

Ua

h [16%] (2665/16319) [16%] (833/5328) [10%] (585/5660)

Ua

l [0%] (0/9276) [0%] (0/10711) [6%] (328/5502)

5 Ua

m [7%] (1067/15353) [0%] (0/4756) [17%] (1434/8500)

Ua

h [15%] (2667/18315) [0%] (0/15450) [23%] (2165/9335)

Ua

l [0%] (0/12147) [0%] (0/16810) [6%] (588/9927)

10 Ua

m [1%] (333/31366) [0%] (0/27100) [7%] (970/13049)

Ua

h [3%] (1000/33026) [0%] (0/22938) [28%] (4239/15090)

in 3.2.2.1 (RR). Such results might be due to the possibility of having harmonic execu-

tions8. Finally, considering a scenario closer to real-applications (high agent utilization

and task-set composed by mixed utilization factors) the occurrence of deadline misses

increases dramatically. Hence, with both FCFS and RR, Uτ
x record deadline misses with

any tested load (particularly in Ua
h ).

For example, Figure 3 presents the snap-shot of the first 200 seconds of the simula-

tion with 5 agents, Ua
m and Aτ

l in FCFS. It is visible, that task4 for agent 2 and task6
for agent 4 systematically miss multiple deadlines. According to the task-sets of such

simulation (see Table 3), it means that executing the tasks accepted throughout the ne-

gotiation destabilized the internal scheduler, thus causing the generation of the plotted

deadline misses.

8 A task set is said to be harmonic if the tasks have periods that are positive multiple with each

other. Given an utilization U ≤ 1, an harmonic task set is always schedulable and does not

produce deadline misses.
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Fig. 2: Overall deadlines missed: run x.x.x.1

Fig. 3: Deadlines missed for: 5 agents, Ua
m, and Aτ

l [0-200s].

Table 3: Task-set for simulation 5 agents Ua
m and Uτ

l

A0 A1 A2 A3 A4

time ti Ci Ti Ui ti Ci Ti Ui ti Ci Ti Ui ti Ci Ti Ui ti Ci Ti Ui

1 6 30 0.2 1 6 30 0.2 1 6 30 0.2 1 6 30 0.2 1 6 30 0.2

2 2 10 0.2 3 3 15 0.2 4 1 5 0.2 5 4 20 0.2 6 5 25 0.2

t=0 0.4 0.4 0.4 0.4 0.4

t=1 2 2 10 0.2 3 6 15 0.2 4 1 5 0.2 5 4 20 0.2 6 5 25 0.2

2 2 10 0.2 3 6 15 0.2 4 1 5 0.2 5 4 20 0.2 6 5 25 0.2

0.8 0.8 0.8 0.8 0.8



Similarly, concerning FCFS, Figure 4c shows per which tasks missed their deadlines

agent over the time (first 200 seconds). The analyzed configuration is 10 agents, Ua
h ,

and Uτ
x (see task-set in Table 4). Such setup shows that long tasks can be delayed due

to the interference caused by the execution of smaller tasks.

Table 4: Task-sets for: 10 agents, Ua
h , and Uτ

x .

A0 ti Ci Ti Ui A1 ti Ci Ti Ui A2 ti Ci Ti Ui A3 ti Ci Ti Ui A4 ti Ci Ti Ui

1 6 11 0.54 2 5 9 0.55 3 4 7 0.57 4 10 17 0.58 5 7 12 0.58

(*) 11 6 30 0.2 (*) 12 5 25 0.2 (*) 13 4 20 0.2 (*) 14 10 50 0.2 (*) 15 7 35 0.2

A5 ti Ci Ti Ui A6 ti Ci Ti Ui A7 ti Ci Ti Ui A8 ti Ci Ti Ui A9 ti Ci Ti Ui

6 5 9 0.55 7 11 19 0.57 8 4 7 0.57 9 13 22 0.59 10 12 21 0.55

(*) 16 5 25 0.2 (*) 17 11 55 0.2 (*) 18 4 20 0.2 (*) 19 13 65 0.2 (*) 20 12 60 0.2

Aggregating the output obtained from all the simulations executed with 10 agents,

Figure 4a plots the amount of deadlines missed by the task-set with Uτ
l , Uτ

h , and Uτ
x

with respect to the variation of Ua obtained with FCFS.

Except for the task-sets with Uτ
h which do not miss any deadline, as mentioned at

the beginning of Section 4.2, the task-sets with Uτ
l have a higher miss ratio with respect

to the task-sets with Uτ
x .

This behaviour can be explained considering that to reach a utilization factor of

about 0.8, many small tasks are required (many more with respect to Uτ
h and Uτ

x ), thus

increasing the probability of competing for the processor due to their different execution

frequency.

Nevertheless, for Ua
h mixed task-sets record more deadline-misses with respect to

the others, since for higher U, it is possible to allocate more combinations of tasks hav-

ing Uτ
l and Uτ

h . Figure 4d plots a linear trend of the deadline-missed in the first 1200

seconds for the setup composed by 10 agents with Ua
h and Uτ

x .

Exploiting the same data aggregated to realize Figure 4a (i.e., deadline missed in all

the setups with 10 agents), the distribution of the deadline missed grouped for Ua
l , Ua

m,

and Ua
h over Uτ

l , Uτ
h , and Uτ

x is shown (see Figure 4b). Thanks to this visualization, it

is possible to emphasize the variation of the deadline-misses by the types of task-sets

over the distribution of the Ua. In particular, it is noticeable that the gap between the

deadlines missed by Uτ
l and Uτ

x with Ua
m is considerably greater than the gap the same

Uτ
l and Uτ

x counted with Ua
h .
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Fig. 4: Results of the deadline miss analysis.

4.3 Discussion

Analyzing the results provided in Section 4, it is possible to understand that: (i) there is

no correlation between FCFS and RR’s behaviors, and (ii) in both FCFS and RR there

is a tight connection between the features of the task-sets and the performance of the

schedulers. Given this strong dependency, and the impossibility of providing any off/on-

line guarantee, the employment of such scheduling algorithms makes existing MAS

platforms non suitable for safety-critical applications. Nevertheless, such a variability

of behaviors could be tolerated in soft real-time systems, which however would be

forced to be over-dimensioned and empirically tested (when possible) in every expected

scenario.

Concerning the case of periodic tasks, EDF outperforms considerably FCFS and

RR, guaranteeing no deadline misses in all the tested setups. However, it still cannot

fully suite the MAS requirements. Hence, recalling that MAS can also negotiate the ex-

ecution of one-shot (aperiodic/sporadic) tasks, it emphasizes that requirements such as

(i) having mechanisms to handle aperiodic requests (major outcome of sporadic and un-



predictable negotiations) and (ii) guaranteeing isolation among tasks (in real-case sce-

narios, the tasks’ computational time cannot always be considered ideal and be trusted

by default), cannot be met solely by EDF.

Thus, to deal with the dynamic tasks’ activations and arrival times unknown a pri-

ori, the Constant Bandwidth Server (CBS) [5] is considered eligible. Moreover, it can

deal with dynamic admission tests (whenever it is required to add a new task to the sys-

tem) ensuring isolation among the tasks (thanks to an efficient bandwidth reservation

strategy), and finally, being based on EDF, it maintains the same advantages mentioned

above.

Table 5 summarizes its most characterizing features together with those of the

schedulers analyzed and discussed in the paper.

Table 5: Improvements required for Local Scheduler.

FCFS RR EDF CBS Features

§ § © © No deadline missed for U ≤ 1

§ § © © Utilization based acceptance test

§ § § © Providing schedulability test for aperiodic request

§ § § © Isolation between sporadic and periodic tasks9

§ § § © Server support and admission test

5 Conclusions

The proposed study analyzes the deadline miss ratio of general-purpose scheduling

algorithms employed by the most used multi-agent platforms. To investigate the so-

called timing-reliability in MAS, a MAS simulator named MAXIM-GPRT has been

developed. Being able of tuning parameters such as agent utilization factor, single task

utilization factor, and task-set composition revealed to be a crucial support for the per-

formance analysis.

This study produced evidence eliciting that the employment of MAS in scenarios

demanding mandatory compliance with strict-timing constraints is not safe yet. Thus,

adoption and adaption of real-time scheduling models in MAS are enforced.

The ongoing work consists in extending the presented study to other task models

such as periodic in an interval, aperiodic, and sporadic tasks.
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