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Abs t r ac t .  We present an algorithm for verifying that a model M with timing constraints 
satisfies a given temporal property T. The model M is given as a composition of w-antomata Pi, 
where ench automaton Pi is constrained by the bounds on delays. The property T is given as 
an w-automaton as well, and the verification problem is posed as a language inclusion question 
s C_ s In constructing the composition M of the constrained automata Pi, one needs to 
rule out the behaviors that are inconsistent with the delay bounds, and this step is (provably) 
computationally expensive. We propose an iterative solution which involves generating successive 
approximations Mj to M, with containment s C_ s and monotone convergence s  ---, 
s within a bounded number of steps. As the succession progresses, the Mj become more 
complex, but at auy step of the iteration one may get a proof or a counter-example to the original 
language inclusion question. 

We first construct Ms, the composition of the Pi ignoring the delay constraints, and try to 
prove the language inclusion s C s If this succeeds, then s  C s C_ s If 
this fails, we can find x E s163 of the form x = a'o "~. We give an algorithm to check 
for consistency of x with respect to the delay bounds of M: the time complexity of this check 
is linear in the length of ,r'r and cubic in the number of automata. If x is consistent with all 
the delay constraints of M, then x provides a counter-example to s  C_ s Otherwise, we 
identify an "optimal" set of delay constraints D inconsistent with x. We generate an automaton 
Po which accepts only those behaviors that are consistent with the delay constraints in the set 
D. Then we add PD as a restriction to Ms, forming Mr, and iterate the algorithm. 

In the worst case, the number of iterations needed is exponential in the number of delay 
constraints. Experience suggests that in typical cases, however, only a few delay constraints 
are material to the verification of any specific property T. Thus, resolution of the question 
s  C_ s may be possible after only a few iterations of the algorithm, resulting in feasible 
language inclusion tests. This algorithm is being implemented into the verifier COSPAN at 
AT&T Bell Laboratories. 

1 Overview 

We address the problem of automata-theoretic verification of coordinating proceaes, in the case that 
the coordinating processes have certain associated events undemtood as "delays", and these delays are 
constrained by lower and upper bounds on their allowed duration in time. 

Given a "system ~ modeled by an w-automaton M, and a temporal property modeled by an w-automaton 
T, we want to verify that M has the property T, or more precisely, that the language inclusion s C_ s 
holds. The language s can be understood as the set of "behaviors" possible in the system M, while 
s can be interpreted as the set of all behaviors consistent with the property T. 

While our development here is fairly general, we make one basic requirement on the semantic nature of 
the automata used to model the system (M above). We require that the automata (over a common alphabet) 
are closed under a composition operator, denoted by | supporting the language intersection property: 

s | N) = s A s . (1) 

We will refer to any such d a ~  of automata as processes. Examples of proce~ r are L-processes 
[Kur87, Kurg0] with composition defined by the tensor product, determinisiic Moiler awtomata [Cho74] and 
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deterministic Rabin-Scott acceptors (conventional automata accepting strings) with composition defined by 
the Cartesian - product (more precisely, the A operator defined in [Kur87]). Such processes support models 
of both synchronous and asynchronous coordination, including interleaving semantics [Kur90]. 

A "system" M is commonly defined in terms of coordinating components, each component restricting the 
behavior of the other components with which it coordinates. Therefore, processes provide a natural class of 
automata for modeling such coordination. We make further use of this property when we consider processes 
subject to timing constraints: the timing constraints not only constrain the process itself, but also the other 
processes with which it coordinates. 

While we impose no requirements of associativity on | in the following development, for simplicity, we 
will write successive compositions without parentheses. Furthermore, we assume that if ~ is the underlying 
alphabet, then there exists a process 1 with s = ~+ or s = Y-'~. 1 

In this paper we address the issue of verification subject to timing constraints imposed upon the compo- 
nent processes. We begin with a system model P expressed as a composition of processes: P = | with 
no reference yet to timing constraints. Next, suppose that certain events z E E correspond to the beginning 
or the end of a "delay event ~ relative to various Pi. Specifically, for each Pi we are given a finite set Ai of 
delays; let Ap be UiAi. The association between the events in ~ and the delays is given, for each Pt, by two 
partial functions bt ("begin") and et ("end"), mapping some of the events in E to the delays in Ai. For an 
event z E E, ifbi(z) = 5, then this means that process Pt begins delay 6 E Ai at event z, and if et(z t) = 6 
then Pt ends this delay at z'. For example, z may correspond to the receipt of a signal by Pt, marking the 
onset of an internal delay 5 E At: hi(z) m 5; ort z may correspond to the subsequent emission of a signal 
from Pt marking the end of that delay: e~(z) = 5. If process P~ did not begin a delay at event z, then b~(z) 
is undefined; likewise for el(z). If processes/~ and ~ both begin a delay at event z, then bt(z) E At and 
bj(z) E Aj are defined. For example, z may correspond to the simultaneous receipt of a signal by Pt and 
emission of a (perhaps unrelated) signal from Pj. For more examples of how this arises naturally in'modeling 
systems of concurrent processes, see [Kur87, Kur90]. 

Now, recall that the verification problem is to prove s  C_ s for some process T. However, it may 
be the case that while s ~= s it nonetheless holds that s C s for the subset s C s which is 
consistent with timing constraints we impose on the delays. Specifically, suppose that each delay 5 E Ap 
has associated with it two nonnegative numbers: 0 < a(~) _< ~(6) where a(5) is rational and ~(5) is rational 
or is co. The intended interpretation is that the delay 5 has duration at least cY(5) and at most fl(5). A 
delay constraint is a 3-tuple D = CA, a,/~) where A _ Ap. Now we define the notion of timing consistency: 

A sequence x E s is titular-consistent with respect to a delay constraint D = (A,a,  fl), 
provided there exist real numbers tl < tz < " "  such that for all processes Pt, and any 6 E ANAt, 
if bi(zj) = 6, ei(zk) = 6 for k > j and both bt(zt) and ei(zl) are undefined for j < I < k, then 

In other words, x is timing-cousistent if it is possible to assign an increasing succession of real times 
to the events of P modeled by x, in such a way that the durations of delays of the respective component 
processes Pi as given by these time assignments are within the allowed bounds. For any delay constraint D, 
let 

s = {x  E s [ x is timing-consistent with D}. 

For convenience, we define any string ~ = ( z t , . . . ,  zn) to be timing-consistent (with D) provided there are 
real numbers tl  < . . .  < t ,  satisfying these same conditions. 

We seek an algorithm to answer the language inclusion question 

s  C_ s (2) 

for D = (Ap,a ,~) .  Such an algorithm is already known, because using the method of tAD90], we can 
construct an automaton PD which rules out timlng-inconsistent sequences; that is, s | Pz~) = s 

lln this p~per we refer both to strings: finite words over ~, and sequencr infinite words over E. 



139 

Unfortunately, the size of PD is exponential in the number of processes comprising P and is proportional 
to the magnitudes of tile bounds given by a and ~. Furthermore, it was shown there that this problem is 
PSPACE-complete. The purpose of this paper is to develop a heuristic for circumventing this computational 
complexity. Our heuristic works like this. We first try to prove the language inclusion 

s C_ s . (3) 

If this succeeds, then surely (2) holds, as f~D(P) C s If (3) fails, then for some x E s x r s 
Let us first consider the case that the counter-example x has a finite prefix ~r such that every extension 

of r does not belong to s This is the case, for instance~ when the temporal property defined by T is a 
"safety" property. The problem of testing consistency of ~ can be reduced to the problem of finding negative 
cost cycles in a weighted graph as described in the next section. In this case, the timing-consistency ofx  can 
be checked in time O(H.K2), where K is the number of processes. For the general case with x infinite (e.g., 
T specifics a "liveness" property) we can find a counter-example x of the form x = r ~ for strings o, and o J. 
The algorithm for testing consistency of x in this ease is of time complexity O((]o' l + IoD.Ka+ KS-[log K]). 

I fx  is timing-consistent, then x provides a counter-example to (2). Otherwise, we identify first a minimal 
set of processes, and for tho~e, a minimal set of delays A1, giving a delay constraint D' = (Al ,a ,~)  with 
respect to which x is not timing-consistent. Next, we relax the delay bound maps a and ~' by decreasing 
respective c~(5)'s and increasing/~(6)'s, in a fashion which preserves the non-timing-consistency of x but 
which, after dividing each bound by their collective greatest common divisor, results in bounds which are 
as small as possible. The result of these operations gives an "optimized" delay constraint DI with respect 
to which x is timing inconsistent. Using an algorithm from [ADg0], we generate a proofs Pol such that 
s = s (1), where 1 is a process satisfying s = L "~. We apply state minimization to P/)~, getting 
El with s = s (1). If Dl involves only a few processes, then the size of El is small. In fact, experience 
suggests that in typical cases, only a few delay hounds are material to the verification of any specific property 
T, especially in case T is a "local" property (derived, perhaps, through decomposition [Kurg0] of a global 
property). 

We test the language inclusion 
s | El) C_ s (4) 

and proceed as before, either verifying (4) and thus (2), or finding a counter-example x to (4). In the 
latter ease, either x is a counter-example to (2), or it is not timing-consistent. In this last case, we find 
a set of delays D2 as before, with respect to which x is not timing-consistent, and generate an E~ with 
s = s We minimize El | E~ giving E2, and test s | E2) C_ s 

The outline of the algorithm is shown in Figure 1. Note that as A/, = UAi is finite, there are only 
finitely many choices for A(x) at step 4. The optimization heuristic used at step 5 can construct only a 
finitely many choices of the bounding functions cJ and/~' for a given set A(x) of delays. This guarantees 
termination. To ensure faster convergence, a and ~ ate optimized only once for a specific choice of A(x). 
With this restriction, this algorithm terminates in at most n = 21,~'1 steps, in the worst case generating 
EI,.. . ,E~ with 

s D s174 El) :) s174 D.." D s174 = s (5) 

2 Checking Timing Consistency 

In this section, we address the problem of checking timing consistency ofx with respect to a delay constraint 
D = (A, ~,/~). 

2.1 A g r a p h - t h e o r e t i c  f o r m u l a t i o n  o f  t h e  p r o b l e m  

Consider a sequence r = xlx~ .... Recall that o is timing consistent with respect to D if and only if we can 
assign "time" values t~ to tile respective events xl such that 
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Input: Processes Pt . . . .  Pt,T, and a delay constraint D = (Ap,a,p). 
Output: Decides whether the inclusion ~o(| C s holds. 
Algorithm: 
Initially: P -- | and E = 1. 
Loop forever  

1. If s | E) C_ s then stop (the d~ired inclusion holds). 
2, Cho~e x = ~ in s | E) - s 
3. If x is timing consistent with the delay constraint D 

then stop (the desired inclusion does not hold). 
4. Find a minimal set of delays A(x) _C A n, such that 

x is timing inconsistent with (A(x), a ,p) .  
5. Find an optimal delay constraint D(x) ~- ( A ( x ) , a ' , ~ )  such that 

x is timing inconsistent with D(x). 
6. Construct the region automaton P/)(x). 
7. Set E to th~ minimized version of the product E | Po(x). 

Figure 1: Algorithm for timing verification 

- a l S l )  

Figure 2: The weighted graph for r = blb2e2el 

1. tl < t2 < .. . ,  and 

2. if process Pi begins a delay 6 E A at zj (i.e., b~(zj) = ~), and the matching end is at zk (i.e., ei(zk) = 6 
and both bi(:r) and e~(zl) are undefined for j < I < k), then 

~(6) < t ,  - t~ _< ~(6). 

Checking feasibility of this system of inequalities can be reduced to detecting negative cost cycles in a 
weighted graph. Let us first consider an example. 

Example  1 Consider two proce~es Pi and Pa. The process P1 has a delay 61, and the proce~ P~ has 
a delay 62. Let b~ and el denote the beginning and ending of the respective delays of Pi. Consider the 
string o" -- (bl, b~, e2, el). Checking consistency of r corresponds to testing consistency of the following set 
of inequalities: 

q < t~ < t3 < t4, a(6a) _< (t4 - t~) <_ ~(61), a(62) < (t3 - t~) < p(6~). 
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The graph associated with these inequalities is shown in Figure 2. The graph has a node vi for each t~, and 
each inequality gives rise to an edge. Thus, the constraint a(6t) ~ (t4 - it) ~ ~(61) gives rise to two edges: 
a forward edge from vl to v4 with weight -a(51) and a backward edge from v4 to vl with weight +fl(61). 
Similarly the constraint c~(62) ~ (is - t2) _~ ~(62) gives rise to two edges. For every constraint ti < t/+l, 
i.e. ti - ti+l < 0, there is an edge from vi to vi+l with weight 0- .  The superscript " - "  indicates that, on 
account of the strict inequality, nonzero time must have elapsed. 

The cost of a cycle is the sum of the costs of its edges. While adding the costs we need to account for 
the superscripts also: the sum of two costs has the superscript ~-"  ill" one of the costs has the superscript 
" - ' .  It is easy to see that the string r is timing inconsistent if[" the graph has a negative cost cycle (the cost 
0-  is considered to be negative). Assuming a(6t) _~ ~(61) and a(62) ~_ ~(62), the graph has a negative cost 
cycle iff a(62) ~_ ~(~1). Note that if a(/~2) -- ~(51), then there is a negative cost cycle with co~t 0- .  �9 

T h e  d o m a i n  o f  b o u n d s  

The above example illustrates that the cost of an edge reflects whether the corresponding constraint is a 
strict or a nonstrict inequality. In order to deal with different types of bounds uniformly, we define the 
domain of bounds, similar to [Di189], to be the set 

B -- { .... 2,-I,0,1,2,...} U { .... 2-,-1-,0-,I-,2-,...} t./ {-o%oo}. 

Tile costs of the edges of the graph will be from the domain/~. To compute shortest paths, we need to 
add costs and compare costs. The ordering < over the integers is extended to B by the following law: for 
any integer a, - oo  < a -  < a < (a -I- 1)- < oo. The addition operation -I- over integers is extended to B by: 
(i) for all b E B, b + oo = co, (it) for all b E B with b ~ 0% b + ( -co)  = -oo,  and (iii) for integers a and b, 
a - F b - - - a -  + b m a -  +b-  = ( a + b ) - .  

Now the constraints corresponding to a sequence r can be rewritten as follows. A constraint of the form 
ti < ti+l is written as t ! - t~+! _~ 0- .  A constraint of the form al ~ t~ - tj _~ bs gives rise to two constraints: 
t ~ - t j _ ~ b l a n d t j - [ k _ ~ - a l .  

T h e  weighted  g r a p h  G(x) 

For a sequence x, now we define an infinite weighted graph G(x), where the costs of the edges are from the 
set B, as follows. The graph G(x) has a node vi for every variable ti; for each constraint tj - t~ _~ b, b E B, 
there is an edge from vj to vk with cost b. Thus if a process begins its delay at zl with a matching end at z$, 
then the graph has a forward edge from vi to vj with negative cost showing the lower bound and a backward 
edge from vj to vi with positive cost showing the upper bound. The problem of checking consistency reduces 
to finding negative cost cycles in this graph: 

L e m m a  1 TAe segnenre x is timing inconsistent iff the graph G(x) has a negative cost cycle. 

For a string ~ of length N, a weighted graph G(~r) with N vertices is defined similarly, and the corre- 
sponding iemma holds as well. 

2 .2  T e s t i n g  c o n s i s t e n c y  o f  s t r i n g s  

For a string r of length N, the graph G(r is finite with N vertices and O(N.K) edges, where K is the number 
of processes. There exist standard polynomial-time algorithms to detect negative cost cycles. However, the 
best known time complexity is O(N~.K). Since N is much larger than K, we prefer an alternative solution 
with time complexity O(K2.N). 
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Input: A string ~, = Xh . . . zN .  
Output: Decides if r is timing consistent, and if so, outputs the reduced graph G*(o'). 
AIgorilhm: 

Initially: Let G he the graph with a single vertex vl. 
For j := 2 to N do 

{ C o m m e n t :  G equals G'(x l  . . . .  x,~-l).} 
1. To G, add the vertex vj and all edges of G(r 

that connect v /wi th  the vertices of G. 
2. Compute new shortest distances within G; 

if a negative cost cycle is detected, stop (0" is timing inconsistent). 
3. Remove all the vertices not in V * ( x h . . . x j ) .  

Figure 3: Algorithm for testing consistency of finite strings 

T h e  reduced  g r aph  G*(~) 

Consider a string r = z lz2 . . .x~v.  The graph G(~) has N vertices ~l,v~ . . . .  v~,. Let V~*(a) consist of 
vertices vj sudl that some process Pi finishes a delay 5 at z /wi th  no prior matching beginning of the delay 
(i.e., e~(zj) -- 6 and for all 1 _< k < j,  both bi(z~) and ci(z~) are undefined). Similarly, let F~*(cr) consist of 
vertices vj such that some process Pi begins a delay t~ at zj and there is no matching end of the delay (i.e., 
bi(zj) = 5 and for all j < h _< N, both bi(zk) and ei(zk) are undefined). Let V*(~) be the union of I/~'(r 
and V'(r Observe that the size of V*(cr) is at most 2K. Now consider a superstring ~'. Clearly, the graph 
G(~) is a subgraph of G(cr'). A vertex in the subgraph G(r has an edge going out of this subgraph only if 
this vertex is in g*(#). Thus the vertices not in V'(~) are "internal" to the subgraph G0r ). 

From the graph G(~) let us define another weighted graph G*(~), called the reduced graph of tr, as 
follows: the vertex set is V'(cr), and for every pair of vertices vj and vt in V*(~) there is an edge from vj to 
vt with cost equal to the cost of the shortest path from v.~ to vk in the graph G(r (note that this cost can 
be oo if there is no path from t~j to vt, and can be -oo  if there is no %hottest" path because of a negative 
cost cycle). Thus, the graph G*(~) is obtained from G(~) by first computing the shortest paths and then 
discarding the internal vertices. Thus, if we replace the subgraph G(r by G*(~') in G(M), the resulting 
graph has a negative cost cycle iff G(a') does. 

Cons t ruc t i ng  t he  r educed  g r aph  

Using these ideas, the consistency of strings call be checked eff• using a dynamic programming 
approach. The outline of the algorithm is shown in Figure 3. Given a string ~, it checks if the graph G(~) 
has a negative cost cycle, and if not, computes the reduced graph G*(~). While implementing the algorithm, 
a graph will be represented by a matrix that gives, for every pair of vertices, the cost of the edge connecting 
them (the entries in tile matrix are from the domain/~). 

Consider a matrix A representing the reduced graph G*(zl . . . .  zj-1). Step l corresponds to adding an 
extra row and column to A. At step 2, we need to check if the updated matrix has a negative cost cycle, 
and if not, compute the new shortest distances. Observe that, for any pair of vertices v and v', the new 
shortest distance between u and v' is different from the old one, only if the new shortest path visits the new 
vertex vj. This fact can be used to compute tile new shortest distances efficiently: in time O(m2), where m 

is the number of vertices in the current graph. Step 3 ensures that the updated matrix A stores only the 
vertices that are external to Z h . . . x j ,  and hence at most 2K vertices. Thus, the overall time complexity of 
the algorithm is O(N.K2) .  

T h e o r e m  i The problem of deciding whether a string ~r i8 liming consistent can be 8olved in time O([~[-K~). 
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2 .3  T e s t i n g  c o n s i s t e n c y  o f  s e q u e n c e s  

If the language inclusion s  C_ s fails, since P and T have finite state spaces, we can find a sequence 
x E s of the form x = r (for strings o J, r E E+). 

First observe that it is possible that a '~ is consistent, while for some i, Me 'i is not. 

Example  2 Consider two processes Pt and P2. The process PI has a delay 61, and the process P2 has 
a delay 62. We use bi and ei to denote the beginning and ending of the delays of the processes Pi, as in 
Example 1. Let 

r  = (bl) 

r -_ (b2,{ehbl},c2). 

If c~(61) = ~(151) = n and ~(62) =/~(62) = n + 1, it is easy to see that r  is consistent iff i < n. �9 

Now we proceed to develop an algorithm for checking consistency of x. We start by showing how to 
reduce the problem of checking consistency of a sequence to checking consistency of its subsequences. 

Combin ing  two reduced  g r aphs  

Consider a string crl that is the concatenation of two strings r and ca. If either ~2 or r is timing inconsistent 
then so is ui.  Consider the reduced graphs G'(crz) and G*(#a). We can put these two graphs together by 
connecting the vertices in V~'(o'7) to the vertices in V6*(o'a ) hy the appropriate edges (i.e., by connecting the 
begin-delay events in ~2 with their matching end-delay events in ~a). If the resulting graph has a negative 
cycle, then ~rl is timing inconsistent. Otherwise, we can compute the shortest distances in this new graph, 
and then delete the vertices not in V'(r  to obtain G'(r  This step takes only time O(Ka). 

L e m m a  2 For a string ~, the reduced graph G*(O "m) can be computed in time O(I~I 'K a + K s` [log m]). 

The lemma follows from the facts ~ that G~ can be computed in time O([r and the reduced graph 
G*(~ m) can be computed from G'(cr "nlz) in time O(Ka). 

Now consider a sequence x that is the concatenation of a string r and a sequence x ~. In the previous 
section, we defined reduced graphs for strings, we can define reduced graphs for sequences similarly (note 
that for a sequence x ~, V*(x') = Vb*(x')). Now we can test consistency of x by putting together the reduced 
graphs G'(c,') and G*(x'). From this, it follows that 

If there is an algorithm which tests whether o ~ is timing consistent, and if so, computes the 
reduced graph G'(o~), then it is possible to check timing consistency of r162 with additional 
time complexity O( l r  2 + Ks).  

C o m p u t i n g  t he  sho r t e s t  d i s t ances  wi th in  t he  per iodic  g r a p h  G(o ~)  

The periodic graph G(o ~) can be considered as the concatenation of infinitely many copies of  the graphs 
G*(~). S u p p l e  G*(o') has m vertices, m < 2K, and let us denote the vertices in the j - th  copy of G*(0") 
by ~l . . . .  ta n. We will use G~, 1 _</~ _< I, to denote the subgraph of G(a ~) consisting of I copies of G*(~) 
starting from k-th copy, and G k to denote the subgraph consisting of infinite number of copies starting from 
k-th copy. It should be clear that for every k,/t I,I, the graphs Gt k and G/k' are isomorphic, and the graphs 
G k and G ~' are also isomorphic. 

Now the problem of computing G' (a  ~) can be rephrased as computing the shortest distances between 
every pair of vertices vl and u~ in tile first copy. Let dk(i,j) denote the shortest distance between v~ and v~ 
in the subgraph G~ (i.e., the graph with m~l'y first k copies), and let d(i, j)  be the shortest distance between 
vl and v~ in the entire graph G(o~). Equivalently, dk(i,j) is tile shortest distance between v[ and v~ in the 
subgraph G~, and d(i,j)  the shortest distance between v[ and v~ in the subgraph G I, for any I > 0. 
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Figure 4: The splitting of the path p 

The question is whether d(i,j) can be determined by computing the values of dk(i,j) up to a small k. 
The following lemma gives the answer in the case where there is a shortest path between v~ and vJ (i.e., 
the case where d(i,j) ~ -oo). It shows that if the shortest distance between v t and vJ can be reduced 
by considering additional copies of G(r beyond m ~ copies, then, in fact, it can be reduced repeatedly by 
"pumping" appropriate paths, and hence, is unbounded. 

L e m m a  3 For every pair of verlices v~ and vJ , either d( i, j)  is -oo or equals dm2 ( i, j).  

Proof.  Consider a pair of vertices v~ and v) such that d(i,j) < d~( i , j ) .  We will show that, in such a case, 
d(i,j) is -oo.  Let p be the smallest, in terms of the number of edges, path between v t and v t such that the 

cost o fp  is less than dm2(i,j). Let us denote the cost by c(p). 
Let us say that a pair ( i ' , j ' )  belongs to the path p, ifffor some/~, p can be written as 

such that the path p2 lies entirely in the subgraph G t.  Since there are only m 2 such pairs, and the path p 
does not lie entirely within Glm2, it follows that there exists a pair ( i ' , f )  that belongs to p and also to 92. 
That  is, the path p can be split as: 

v~ ~-~' ~ '-~v~, - -~ ,,~, ' -~  ,,.~ 

such that the path p~ lies entirely within the subgraph G k' and the path p~ = ~p~p~ lies entirely within G t 
(see Figure 4). 

Recall that the subgraphs G t and G t '  are isomorphic, and hence ~ can be considered to be a path 
between v~ and v~, (to be precise, the superscripts of the vertices appearing on p~ need to be shifted by 
(k' - k), but we will slightly abuse the notation). In fact, for every u >_ 0, we have the path (p't)np~(p~) n 
between v~ and v~,. 

Now consider the path Plf2Pa between v/t and v]. If e(pt~p3) _< c(p) then we have a path from ~ and 

u) with cost less than dm~(i,j) and with less edges than p. Hence, by the choice of p, e(pt~pa) > e(p). This 
implies that e(p'l) + c(p~) < 0. This means that the segments ~ and p~ can be apumped" to reduce the cost" 
further and further: c((p~)np~(p'3) ") forms a strictly decreasing sequence with increasing values of u. This 
implies that there is no "shortest" path between the vertices v~ and v~,, and hence, d(i,j) = -oo. �9 

The next question is to determine the pairs of vertices v/t and v~ for which there is no "shortest" path 
and d(i,j) is -co .  Clearly, ifd2m~(i,j) < dm3(i,j) then d(i,j) is - c ~  by the above lemma. But the converse 
of this statement does not hold. 
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Figure 5: The periodic graph of Example 3 

Example  3 Consider the graph shown in Figure 5. A single copy consists of 3 vertices. Note that the 
distance between the vertices v~ and va I decreases at every step: dk(2,3) = - k +  1. Thus diS(2,3) < d~ 
and this allows us to correctly conclude that d(2, 3) = -oo.  The situation is quite different for the distance 
between v~ and v~: d~(1,3) = 0 for k _< n + 4 and dk(1,3) = n + 4 - k for k > n + 4. Thus the shortest 
distance does not change in the beginning. If the cost n exceeds 14, then d~S(l,3) = d~ and yet, 
d ( 1 , 3 )  = -co .  Thus a different criterion is required to conclude d(1,3) = -co ;  it should follow from the 
facts that d(2, 3) = - c o  and there exists a finite cost edge from e~ to v~ and from v~ to va 1 . �9 

The next lemma characterizes pairs (i , j)  such that d(i,j) = -oo. 

L e m m a  4 Let v~ and v~ be a pair of vertices such thai d(i,j) = -co  and dm= (i,j) ~ -oo. Then there ezis~ 
s*ome pair (i~,j ') such that d~m=(i',j I) < dm2(i',j ') and in the graph G | there czist paths from v~ to v~, and 
from v~o to v~, for some k > O. 

Proof.  Consider a pair of vertices v~ and v~ such that d(i,j) < dm~(i,j). The proof is very similar to the 
proof of Lemma 3. Let p be the smallest, in terms of the number of edges, path between v~ and v~ such that 

the cost of p is less than dm~(i,j). Let ( i ' , j ' )  he a pair such that the path p can be split as 

such that the path ~ = p~p~p~ visits least number of different copies. This added restriction on the choice 
of (i~,f) implies that the path p~ lies within the suhgraph G~, .  Let p~ he the shortest pnth between ve 
and vf  that lies within m ~ copies, that is, c(p~)  = d ~ ( / ' , f ) .  Now the path p~,r lies within 2m 2 copies, 
and, since c (~)  + c(p~) < 0 (as in the proof of Lamina 3), has cost lees than e(p~). This means that 
d2m=(i',f) < dm2(i~,j'), and this proves the lemma. �9 

To find all pairs (i , j)  with d(i,j) = - c o  using the above lamina, we construct an edge-labeled graph 
Gin! over the vertex set {el,..-Vm} with the labels {a,b,c,d} as follows: 

1. If G*(cr) has an edge from vi to vj then Gin] has u-labeled edge from v~ to vj. 

2. Ifd2m2(i,j) < dm*(i,j) then Gin/ has b-labeled edge from vi to vj. 

3. If G2 t has an edge from vl to v~ then'Gi,! has c-labeled edge from vl to vj. 

4. If G x has an edge from v~ to v~ then Gin/has d-labeled edge from vi to vj. 

Next we define a language Lm! over the alphabet {a, b, c, d} to consist of all the words w such that 
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1. the number of e's is equal to the number of d's; 

2. in every prefix of w, the number of e's is at least as large as the number of d's; 

3. there is at least one b. 

From the graph Ginl we build the desired set Sinl: 

(i , j)  E Sin! iff there exists a path p from v~ to vj in Giny such that p spells a word in Li,f .  

The next lemma follows from the previous lemmas and the definitions: 

L e m m a  5 For every pair of vertices v I and v), i f  ( i , j )  E Sinl lhen d(i,j)  = -oo,  olherwise d(i , j)  = 
d'n'(i,j). 

C o m p u t i n g  t h e  se t  S/n/ 

Given an edge-labeled graph and a language L, the L-transitive closure problem is to compute all pairs of 
nodes (vi, vj) for which there exists a path from vi to vj that spells a word in L. Thus computing the set 
Sin! corresponds to computing the Li,y-transitive closure of tile graph Gi,y. 

It is easy to see that the language Li~! can be recognized by a deterministic l-counter machine A ( a  
special case of a pushdown automaton). Let A be a machine which reads the symbols of the input word 
one by one and does the following: on symbol a it does nothing, on b it moves to a state that  signifies that 
A has seen at least one b, on symbol e it increments the counter (staying in the same state), and on d it 
decrements the counter if it was positive and rejects the whole input if the counter was 0. The machine 
accepts if after processing the input word it has seen some b and the counter is 0. Thus, the language Lin.t 
is context-free. Tile L-transitive clo6ure problem for a context-free language can be solved in cubic time 
O(m "~) in the number m of nodes [Yan90] giving the following lemma: 

L e m m a  6 The set of pairs SinI can be computed in time O(mS). 

The algorithm is derived from a context-free grammar for Lin! in Chomsky normal form. We will describe 
now in more concrete terms the algorithm for our case. It  uses the following grammar: 

A -~ a [ b [ A A [ A ~ d  

A' .--, e l e A  

B --, b I B A I A B [ B ' d  

B ~ ~ cB 

We will compute iteratively four sets A,A ' ,B ,  B' of pairs of nodes. A pair (v~,vj) will be in A at the 
end of the algorithm iff there is a path from vi to vj which spells a word that satisfies conditions 1 aud 2 
in the definition of Li,$ (but possibly not 3); it will be in A' iff the word satisfies the following modified 
conditions: lq the number of c's is one more than the number of d's; and 2 ~. in every prefix the number 
of c's is strictly larger than the number of d's. The sets B and B I are defined analogously except that, in 
addition, the word must also contain one b (i.e., satisfy condition 3 in the definition of Li,l).  Thus, the 
desired set Sinf is given by the final value of B. These sets are represented by Boolean matrices whose rows 
and columns are indexed by the nodes of the graph. In addition, for each of the four sets we have a llst of 
"unprocessed" "pairs, SA, SA, etc. 

The data structures are initialized as follows: For every a-labeled edge, insert the corresponding pair of 
nodes to A (i.e., set the corresponding entry of matrix A to 1) and to the list SA. For every b-labeled edge, 
insert the corresponding pair to A, B, SA, SB. For every c-labeled edge, insert the pair to A ~ and SA,; we do 
nothing for the d-labeled edges. 

In the iterative step, we remove a pair from one of the lists and "process" it; the algorithm terminates 
when the lists are empty. A pair (vl, vj) is processed as follows depending on the list it is taken from. 
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Input: Two strings r and ~r. 
Output: Decides if r ~ is timing consistent. 
Algorithm: 

1. If o J is timing inconsistent then stop 
else compute G*(~t). 

2. If ~r is timing inconsistent then stop 
else compute G*(r (with vertex set {ut , . .  "Vm}). 

3. Compute G*(# m2) and G*(~r2m~). 
4. Compute the set of pairs Sial. 
5. Construct G*(o ~)  using the rule: 

= m~ (,,:). if (i, j )  ~ s , , , l  then d(i ,  j )  = -eo else d(i, j )  ~ " ' 
6. Check if G*(o a) connected with G*(o ~') has a negative cost cycle. 

Figure 6: Algorithm for testing consistency of infinite sequences 

�9 Case 1: List SA. For every member (vj, vt) of A (respectively B), if (vi, v~) is not in A (reap. B), then 
add it to A and to SA (reap. B and SB). For every member (vk, vt) of A (respectively B), if (vk, vj) 
is not in A (resp. B), then add it to A and to SA (resp. B and SD). For every edge (vk,vi) labeled c, 
if (vk,vj) is not in A', then add it to A I and to SA0. 

�9 Case 2: List SB. For every member (vj,vt) of A, if (vi,vk) is not in B, then add it to B and to SB. 
For every member (v~, vi) of A, if (vt, vj) is not in B, then add it to B and to SB. For every edge 
(vk, vi) labeled c, if (v~, vj) is not in B I, then add it to B t and to Sw. 

�9 Case 3: List SAO. For every edge (v./, vt) labeled d, if (vi, vk) is not in A, then add it to A and to SA. 

�9 Case 4: List Sw. For every edge (vj, v~) labeled d, if (vi, vt) is not in B, then add it to B and to SB. 

Removing a pair from a list and processing it takes time O(m). Since every pair is inserted (and therefore 
also removed) at most once in each list, it follows that the time complexity is O(ma). 

A l g o r i t h m  for t e s t i ng  cons i s tency  of  x 

Now we can put together all the pieces to obtain the algorithm of Figure 6. Algorithm of Figure 3 is 
used to test the consistency of 0r ~ and #, and to compute the reduced graphs G*(r ~) and G*(~). Step 3 takes 
time O(ma.[Iog m]). Computing the set Sin! at step 4 can be performed in time O(m s) as outlined earlier. 
Combining the two graphs G*(~r ~) and G*(o~), and testing for negative cost cycles is easy. This gives the 
following theorem: 

T h e o r e m  2 The problem of decidin9 whether a sequence ae~  is timing consistent is solvable in time 
O((I,," I + Io'l).K 2 + K3.rlog K1). 

3 F i n d i n g  t h e  o p t i m a l  d e l a y  c o n s t r a i n t  

Given a delay constraint D = (A,~,/~) it is possible to construct an automaton PD that accepts precisely 
those sequences that are timing-consistent with respect to D. This is done by using tile algorithm for 
constructing the region automaton of [AD90]. The size of tile region automaton grows exponentially with 
the size of the delay constraints as follows. Let I be the set {i [ A f3 Ai ~ 0}, and for a delay 5, let 3'(6) be 
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/~(5) when it is not oo, and a(6) otherwise. Then the number of states of the region automaton is bounded 
by 

Izl!'1"I l A, n A I . m ~ , ~  {~(~) + 1}. 
iEl 

On finding that x is timing inconsistent with the delay constraint D = (Ap, or, ~), the next step is to find 
an %ptimal" delay constraint, namely a delay constraint D(x) with PD(x) as small as p~sibie, subject to: 

I. x is timing inconsistent with D(x), and 

2. L:(Po) C_ Z:(P~(x)). 

Notice that the condition 2 ensures that to prove that the implementation augmented with ,Do satisfies the 
specification, it suffices to prove that the implementation augmented with PD(x) satisfies the specification. 

We find the desired delay constraint in two steps: in the first step we find a small set A(x) of delays such 
that x is timing inconsistent with the delay constraint (A(x), a ,  ~'); and in the second step we try to modify 
the bounds a and/~ to obtain D(x) = (~(x) ,a~,ff) .  Our approach does not guarantee the minimality of 
the size of Po(x); it is only a heuristic to reduce the size. 

3 .1  F i n d i n g  a m i n i m u m  s e t  o f  i n c o n s i s t e n t  d e l a y s  

First observe that, i f D  = (A,~,/~) and /~  -- (AI ,a ,~)  with A I C_ A, then s  C_ s Thus we can 
discard delays that do not contribute to the inconsistency of x. Consequently, we try to find a minimal set 
of delays that is necessary for the timing inconsistency of x. This is done in two steps. 

First we find a set A of delays such that x is timing inconsistent with (A, a,  ~), and A involves the least 
number of procesees, that is, ]{i I A n A ~  ~ 0}J is minimum. We, therefore, look for a minimum size subset 
I C_ {1 ..... K] ,  such that x is inconsistent also with the delay constraint Dt = (UiEt~,  ~,/~). That  is to say, 
if we run the algorithm of the previous section ignoring the delay events of the processes not in I, we should 
still end up with timing inconsistency. 

We can show that 

The problem of finding a subset I C_ {1 , . . .K}  of minimum size such that a string r is timing 
inconsistent with respect to (UIEIAi~ a,/3) is NP-complete. 

Therefore, we exhaustively consider subsets of {1, ..., K]  in order of increasing size, starting with subsets of 
size 2. If the smallest I has size n, then the time complexity increases by a factor of rain{2 g ,  Kn}. Hopefully, 
n will indeed be small. When n is much larger, then the region automaton is far too large to implement in 
general, and thus, this exhaustive search is not a bottleneck of the algorithm. 

Having identified the minimal set I of processes, the second step is to find a minimal subset A(x) of 
Ui~l~i preserving the timing-inconsistency of x. This is again done by an exhaustive search over all the 
subsets of Ui~lAi. Clearly, the set A(x) consists of only the delays corresponding to the edges involved in 
the negative cost cycle. 

3 . 2  R e l a x i n g  t h e  b o u n d s  

Having identified the optimal set A(x) of delays, we want to adjust the hounding functions a and/~ so as 
to reduce the sizes of the constants. 

We start with a simple observation that dividing all hounds by a common factor does not affect timing 
consistency. Let D be a delay constraint (A, a, ~), and k be the greatest common divisor of all the constants 
hounding the delays in A. Define new lower and upper hounds for the delays by: al(6) -- a(6)/k and 
if(5) =/~(5)/k. It is easy to prove that s  = s This property can be used to reduce the size of 
the region automaton. Instead of using the delay constraint D = (A(x), a,/~) we use scaled down versions 
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of a and 8, and construct the region automaton Po'. If the greatest common divisor/r is large, this leads to 
a big saving: the size of Pw is smaller than that of Po by a factor of kill. 

It is unlikely that we can apply the optimization of dividing by the greatest common divisor, by itself. 
However, the situation may improve dramatically if we "preprocess" the bounding functions by relaxing th e 
lower and upper bounds. Again let D -- (A,a ,p )  be a delay constraint. Consider a delay 5 6 A with lower 
bound a and upper bound b. Suppose we replace these bounds by a' ~_ a and b' > b, respectively; that is, we 
relax the delay bounds by decreasing the lower bound and increasing the upper bound. Let/Y be the new 
delay constraint. It is obvious that any sequence that is timing-consistent with D is also consistent with/Y 
(bu not vice versa). Rence, s C_ s However, if we use/Y obtained by this transformation as it 
is, there is no computational benefit; in fact, since we are increasing the upper bounds the size of the region 
automaton increases. But note that the scaling transformation may be applicable to the new delay bounds 
in a more effective way than it was to the original bounds. Thus the objective of changing the bounds is to 
make them all integral multiples of some large common factor. However we should not relax the bounds too 
much: in particular, we require that the counter-example x is timing inconsistent with respect to /Y also. 
This can be easily understood by an example: 

Example 4 Consider two delays: delay 6x of Pl with lower bound 0 and upper bound 2, and delay 6z of P2 
with lower bound 5 and upper bound oo. Suppose in the counter-example x both Pl and Pa begin their delays 
at the first step, and end their delays at the second step: bi(zl) = el(z~) = 61, and b2(zl) = ca(z2) = 62. 
Clearly this scenario is timing inconsistent. If we construct a region automaton, the number of states is 2.5.1 
(for some I). To reduce the size, we first replace the lower bound a(6a) by 4 which imposes a weaker bound. 
Now we can divide all bounds by their common factor, 2. Then 61 has lower bound 0 and upper bound 1, 
whereas 62 had lower bound 2 and upper bound oo. The number of states in the new region automaton is 
1.2.1, a saving by a factor of 5. Note that had we replaced the original lower bound for 62 by 2, we could 
have eventually reduced all bounds to 1 after sealing. But this would not have been helpful because x would 
have been timing-consistent with the new constraints. �9 

Thus the problem is to construct new lower and upper bound maps a '  and ff from the delay constraint 
(A(x),a,~) by replacing, for each delay 6 6 A(x), its lower bound a(#) by 0'(6) _~ a(6), and its upper 
bound 8(6) by if(6) >_ ~(6), such that x is timing inconsistent with ( A ( x ) , a ' , f ) ,  so as to minimize the 
magnitudes of constants after scaling (dividing by the greatest common divisor of all the bounds). Recall 
that the algorithm to test consistency of x reports that x is inconsistent when it finds a negative cost cycle 
in the associated weighted graph G(x). We adjust the delay bounds so that the negativeness of the cost of 
this cycle is preserved. Recall that in the weighted graph all upper bounds appear as positive costs and all 
lower bounds appear as negative costs. Now the optimization problem can be stated precisely as follows. 

Given a set of noanegative integers C = {al , . . .  am, bl . . . .  bn } such that ~ b j  < ~iai find another 
I I I set of nonnegative integers C' -- {az,... am, b I . . . .  b'~} such that 

I. a~ <_ ai for 1 _< i _< m, 

2. b~ > bj for l _ < j < , ,  
3. ~tb; < ~.~a~ 

so as to minimize the maximum of the set {n/gcd(C') I n 6 C'}. 

We solve the problem using the following facts: 

1. The greatest common divisor of the optimal solution set C' cannot exceed the maximum of a h . . .  am. 

2. If the greatest common divisor of the optimal solution set is k then it is easy to find the optimal 
solution. First, choose a~ = [ai/kJ and b~ = [bj/lr and then keep subtracting k from tile largest a~ 
as long as condition 3 holds (this does not involve much computation assuming that ai's are sorted 
initially). 
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Putting these two pieces together, we get a pseudo-polynomial algorithm which runs in time O[(m + n). 
mu~{u4]. 

Now the delay constraint D(x) = (A(x), ct', i f)  is chosen as follows. For a delay 6 E A(x), if t~(6) equals 
some u~ E C then we set ct'(6) to be at of the optimal solution; if t~(6) is not in C (that is, the lower hound 
edge is not in the negative cost cycle) then we set a'(6) = 0. Similarly, if/~(5) = bj then we set a'(6) = b); 
if fl(6) is not in C then we set if(6) = oo. 
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