
Timing Violation Induced Faults
in Multi-Tenant FPGAs

Dina Mahmoud and Mirjana Stojilović
School of Computer and Communication Sciences

École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
{dina.mahmoud, mirjana.stojilovic}@epfl.ch

Abstract—FPGAs have made their way into the cloud, allowing
users to gain remote access to the state-of-the-art reconfigurable
fabric and implement their custom accelerators. Since FPGAs
are large enough to accommodate multiple independent designs,
the multi-tenant user scenario may soon be prevalent in cloud
computing environments. However, shared use of an FPGA raises
security concerns. Recently discovered hardware Trojans for use
in multi-tenant FPGA settings target denial-of-service attacks,
power side-channel attacks, and crosstalk side-channel attacks.
In this work, we present an attack method for causing timing-
constraints violation in the multi-tenant FPGA setting. This type
of attack is very dangerous as the consequences of timing faults
are temporary errors, which are often impossible to notice.
We demonstrate the attack on a set of self-timed true random
number generators (STRNGs), frequently used in cryptographic
applications. When the attack is launched, the STRNG outputs
become biased and fail randomness tests. However, after the
attack, STRNGs recover and continue generating random bits.

Index Terms—FPGA, cloud, multi-tenancy, security, random
number generator, timing fault, voltage drop

I. INTRODUCTION

FPGAs are used in a variety of computing domains: embed-
ded platforms for automotive, military, or aerospace industry
and, since recently, cloud computing. As FPGAs are growing
in size, nothing prevents them from accommodating multiple
applications from independent cloud users. Yet, this multi-
tenant use of FPGAs cannot happen until all possible security
risks are discovered and mitigated. In this paper, we show how
an already known security vulnerability can be used to create a
much more insidious type of attack: a timing violation induced
fault attack (or, in short, a timing-fault attack). Timing faults
are dangerous as they can cause potentially undetectable errors
in computation or communication. To demonstrate the effects
of timing faults, we attack a set of self-timed true random
number generators (STRNGs).

Other researchers have demonstrated that it is possible, from
inside the FPGA, to create power supply voltage drops in a
way that can cause FPGA to reset [1]. We build our work on
this approach, but we control the voltage drop amplitude and
duration so that the reset is avoided. By creating a voltage
drop, we cause an increase in the delay of the FPGA logic,
i.e., longer combinational path delays. As a consequence, a
clock edge may violate the setup time of a flip-flop, resulting
in an incorrect output data sample or metastability.

To present our work, we structure the paper as follows. After
discussing the related research (Section II), we give the details

of our models of the adversary and the target (Section III).
Then, we describe the experimental setup (Section IV), present
the experimental results (Section V) and discuss them (Sec-
tion VI). We end the paper with the ideas on the future work
(Section VII) and with the conclusions (Section VIII).

II. RELATED WORK

Research contributions on the security vulnerabilities of
FPGAs in multi-tenant setting are all very recent. Gnad et
al. [1] were the first to configure the FPGA logic to create
malicious voltage drops and use them to demonstrate a denial-
of-service attack. Schellenberg et al. [2] and Zhao et al.
[3], followed by demonstrating a multi-tenant power side-
channel attack. Ramesh et al. [4] and Giechaskiel et al. [5]
demonstrated a side-channel attack leveraging the crosstalk
effects between the neighboring long wires of the FPGA.
Our work differs from these in that we use the voltage-drop
attack with the aim to cause timing constraints violations.
Additionally, we aim at producing transient effects, with the
device operation returning to normal after the attack.

III. ADVERSARY AND TARGET MODEL

A. Adversary

Zussa et al. demonstrated that both power supply glitches
and clock glitches induce timing constraints violations [6]. In
a multi-tenant FPGA setting, creating glitches in the clock
signal of another tenant is not feasible because one has no
control over that clock. However, creating power glitches is
possible, as demonstrated by Gnad et al. [1].

1) Causing Voltage Glitches: In this work, similarly to the
work by Gnad et al. [1], we employ ring oscillators (ROs) to
internally create voltage variations. ROs consist of an inverter
whose output is connected back to its input. To add a control
signal, we insert an AND gate at the output of the RO, and
connect both the inverter output and the enable signal to its
inputs. The ROs are implemented using LUTs. To have better
control over the voltage drop, we choose to instantiate two
groups of ROs and control them independently. Fig. 1 shows
the two groups of ROs and the control circuit, connected to
the clock and a trigger.

2) Controlling Voltage Glitch Duration: If the ROs are
activated using a high-frequency signal, the power distribution
circuitry compensates for the drop and the drop itself does not
last sufficiently long to cause reset [1]. Conversely, if the ROs



CLOCK

TRIGGER
ACTIVITY CONTROL

RING OSCILLATORSRING OSCILLATORS

EN ENEN_RO1 EN_RO2

Fig. 1: Adversary design.

Fig. 2: Waveforms of the RO enable signals. Initially (tA, tB),
all ROs are controlled using a fast-changing signal. Then, one
RO group remains active until the end of activity at tD, while
the other is first disabled, to become active at tC .

are activated using a low-frequency signal, the voltage drop is
higher but the power supply tends to recover from the shock
and, if the drop does not last too long, reset does not happen.

Our goal is to keep the board from resetting by carefully
controlling the duration of the voltage drop. This is why we
propose a particular activation pattern shown in Fig. 2. At first,
during the time interval (tA, tB), we enable all ROs using a
fast-changing signal; this causes a notable but not dangerous
voltage drop, sufficient to start disturbing the power supply
circuit. Then, we keep the first group of ROs active, causing
a stronger and longer-lasting voltage drop. Before the power
supply manages to recover, we initiate a second strike by
activating the second group of ROs and keeping it active until
the end of the attack. This activation scheme is easily tuned
for a given board and the FPGA device.

3) Sensing Delay Changes: To evaluate and monitor the
effect of the voltage drop on the delay of FPGA logic,
we implement an integrated delay-line based sensor [7], [8].
The sensor is composed of a chain of buffers driven by
a clock signal. Buffer outputs are connected to a register,
clocked at the same frequency but with a 90◦ phase shift.
Hence, the falling clock edge propagates through the delay
line during a quarter of the period, when the buffer outputs
are registered. Effectively, the sensor records the delay-line
propagation depth. A change in voltage affects the sensor
output, because it affects the buffer delay too:

d ∝ 1

Vdd − Vdrop
. (1)

Here Vdd is the steady-state voltage, Vdrop is the voltage drop,
while d is the delay of a buffer [9]. To reduce the width of the
sensor output, we add a priority encoder [8], whose output is

1 1 1 0 0

CLOCK

PHASE-SHIFTED
CLOCK

REGISTER

PRIORITY ENCODER

OUTPUT

DELAY LINE

Fig. 3: Voltage-drop sensor design.

CLOCK
L-bit REGISTER

OUTPUT FF

1 2 3 L-1 L

Self-Timed 
Ring

XOR
TREE

Fig. 4: Self-timed true random number generator design.

the position of the highest ’1’ in the delay line (Fig. 3). In the
rest of the paper, we refer to these sensors as voltage sensors.

B. Target

The attack target was chosen with the following criteria in
mind: it should be a circuit useful in many applications and
whose output can not be easily verified for occasional errors.
Thus, an ordinary arithmetic unit would not make a suitable
attack target because its result can be easily validated. Finally,
we wanted a target whose output would be a critical input to
the rest of the victim’s design. Following the above criteria, we
chose a self-timed true random number generator (RNG). True
RNGs are used in many cryptographic applications to generate
random numbers for security protocols, for ephemeral keys, or
for countermeasure implementations [10].

We implemented a self-timed true RNG by Cherkaoui et
al. [11], composed of a self-timed ring, intermediate registers,
an XOR tree, and an output flip-flop (Fig. 4). The ring consists
of Muller gates (or stages), implemented using instances of
LUT5. Each of the L stages is fed an input from the previous
stage as well as a feedback signal from the following stage.
Then, the chain of the stages is closed to form a ring. The jitter,
occurring at each stage, results in a jitter in the output signals
of the stages. The intermediate registers capture samples of
these jittery signals, which, once XOR-ed, produce the random
bit output [11]. We implemented a 512-stages ring [10], the
XOR tree composed of instances of LUT2, and connected the
last XOR stage to the output 1-bit register.



C. Causing Timing Violations

The amplitude of the voltage drop caused by the current
drawn by the FPGA depends on several factors: power-delivery
network of the FPGA and the board, the number of the circuits
toggling, and the waveform of the enable signals. To create
a timing fault, the attacker needs to be able to cause an
increase in the victim’s critical path to the point that it becomes
longer than the clock period, and yet prevent the FPGA from
resetting. Consequently, the attacker needs to be able to sense
and monitor the voltage drop and the delay increase.

We use the voltage sensor output for the delay estimate as
follows. For the average delay of a single buffer in the carry
chain d, the clock period TCLK, and the critical path delay of
the victim TCRIT, the voltage drop required to cause a timing
fault corresponds to the following change in sensor readings:

∆S = SOUT, INACTIVE − SOUT, MIN ≥
TCLK − TCRIT

d
, (2)

where SOUT, INACTIVE is the sensor output when ROs are
disabled and SOUT, MIN is the sensor output when the attack is
achieving the strongest effect. Since d is very small, the attack
is easier to achieve if TCLK and TCRIT are close.

IV. EXPERIMENTAL SETUP

For experiments, we used a Virtex-7 FPGA VC707 eval-
uation board and Vivado Design Suite 2018.2. The clock
frequency was set to 150 MHz (we experimentally found that
this frequency allows us to use a reasonable length of the
sensor for measuring the voltage drop required for a successful
attack). The integrated logic analyzer (ILA) was used to
capture sensor readings and RNG output bitstreams. The ILA
and the registers of the voltage sensor were connected to a
clock signal delayed 90◦ relative to the main clock signal. The
placement of ROs and RNGs was controlled using placement
block (Pblock) constraints of Vivado. Triggering the attack was
done manually, for simplicity, via an on-board DIP switch.

A. Design Floorplanning

We conducted three groups of experiments, each with a
somewhat different design floorplan (Fig. 5).

1) Two-Sided Attack: In the initial experiment, we placed
the ring oscillators on both sides of the RNGs, which were
all vertically aligned (Fig. 5a). Although this is an unlikely
floorplan for two partitions of an FPGA (as the victim is
entirely surrounded by the attacker), we chose this unfavorable
setup to test whether it is at all possible to bias the RNG
outputs. To observe the voltage drop created by the ROs, we
placed one sensor close to the central RNG.

2) Attack from the Left: In this set of experiments, we
placed the ROs along the left edge of the device. The RNGs
remained vertically aligned. Two voltage sensors were used,
one in the upper and the other in the bottom half of the device.
The floorplan of the first attack in this series is shown in
Fig. 5b. Then, we translated along the x-axis the sensors and
the RNGs to increase the distance between them and the ROs.
In total, three equidistant positions were tested: RNGs in the
left half, in the middle, and in the right half of the FPGA.

TABLE I: Worst-case critical path delay of the RNGs, for
system clock frequency of 150 MHz and setup in Fig. 5b.

Critical path delay (ns)

RNG0 RNG1 RNG2 RNG3 RNG4

5.886 5.806 5.927 5.923 5.784

3) Attack from the Top: In the third set of experiments, ROs
were placed along the top edge of the FPGA. The RNGs were
aligned horizontally. Initially, RNGs were close to the ROs, as
shown in Fig. 5c. Two voltage sensors were used, one on the
side of the leftmost RNG and one on the side of the rightmost
RNG. Then, we translated the sensors and the RNGs along the
y-axis, to increase the distance between them and the ROs. In
total, five configurations were tested, one for every y-region
(Y0, Y1, Y2, Y3, and Y4).

B. Tuning the Voltage Drop Duration
Fig. 2 illustrates the waveform of the RO enable signals. In

the time period (tA, tB), we chose to have two clock periods
of inactivity after every ten clock periods of activity, 15 times,
for a total of 180 clock cycles. After that, the first block of
ROs would become active for 104 clock cycles (≈66.67µs).
The second block of ROs would become active at time instant
tC , 2.5 ·103 clock cycles (≈16.67µs) after tB . At time instant
tD, 104 clock cycles after tB , all ROs would be disabled. One
can choose different values for tB , tC , and tD, as long as the
attack does not last too long, as otherwise the FPGA would
reset. We configured the attack to last ≈68µs (less than 150µs,
or else the FPGA resets itself [1]).

C. Tuning the Amplitude of the Voltage Drop
For VC707 evaluation board, the system clock frequency of

150 MHz, the RNG critical path delay through the XOR tree
as in Table I, and the average delay of a CARRY4 element of
72.3 ps (equivalent to 4d), the voltage drop required to cause
a timing fault should create a change in the sensor reading
∆S of at least 40–50 bits. Knowing that, the only missing
information is the number of ROs required to achieve the
desired ∆S. For that purpose, we ran a set of experiments
in which we instantiated only the ROs and the voltage sensors
in the floorplan shown in Fig. 5a. We would observe the
sensor output, measure the ∆S and check whether it satisfies
Eq. 2. As long as it did not, we increased the number of ROs
and reran the experiment. Empirically, we found that a good
number of ROs is ≈140,000 (24.5% of the available LUTs).

D. Data Collection and Validation
For every RNG, we collected twenty output bitstreams of

214 (16,384) bits each: ten times without ROs being active and
ten times with ROs active (100 bits were collected prior to the
attack start in this case), and tested both for randomness. For
that purpose, we applied the NIST statistical test suite [12]:

• The frequency test is used for measuring the frequency
of ’1’s and ’0’s in the output; this test fails if the output
is too biased towards one value.



X0Y0

X0Y6

X0Y1

X1Y2

X1Y3

X0Y2

X0Y3

X0Y5
RNG4

RNG3

RNG2

RNG1

RNG0

X0Y4

Pblock RO1

Ring
oscillators

X1Y4

X1Y5

Pblock RO2

Ring
oscillators

S
e
n
s
o
r

X1Y6

X1Y1

X1Y0

S
e
n
s
o
r

X1Y2

X1Y3

X0Y2

X0Y3

X0Y5
RNG4

RNG3

RNG2

RNG1

RNG0

X0Y4

Pblock RO1

Ring
oscillators

X1Y4

X1Y5

Pblock RO2

Ring
oscillators

S
e
n
s
o
r

X0Y6

X0Y1

X0Y0

X1Y6

X1Y1

X1Y0

X1Y2

X1Y3

X0Y2

X0Y3

X0Y5

RNG0 RNG1 RNG2 RNG3 RNG4

X0Y4

X0Y6

Pblock RO1

Ring
oscillators

X1Y4

X1Y5

X1Y6

Pblock RO2

Ring
oscillators

S
e
n
s
o
r

X0Y1

X0Y0

X1Y1

X1Y0

S
e
n
s
o
r

(a) (b) (c)

Fig. 5: Design floorplans: (a) the two-sided attack, (b) attack from the left, and (c) the attack from the top.

• The block frequency evaluates the same criteria for a
block of bits of specified length; we chose the length of
165, in accordance with the test suite’s constraints [12].

• Other tests included the runs test, to check the number
of uninterrupted sequences of identical bits, and the
template matching, to check the number of occurrences
of specified templates in the bitstream [12].

Additionally, we created figures of bitstreams (bitmaps),
where ’1’s are black and ’0’s are white, to see if there is
any observable change in the output bit pattern.

V. EXPERIMENTAL RESULTS

In this section, we present and discuss the results of the
experiments.

1) Two-Sided Attack: The floorplan of the two-sided attack
is shown in Fig. 5a. We varied the number of ROs and
observed both the RNG outputs and the voltage sensor outputs.
All RNGs had 512 stages. When the number of ROs reached
140,000 it was possible to detect visually—by looking at the
output bitstreams—that the outputs of all five RNGs were
biased. In most of the trials, the bias was towards ‘1’, but
not always. The outputs of the RNGs in the upper half of the
FPGA would become biased even before the activation of the
second (lower) group of ROs. The outputs of the RNGs in the
lower half of the FPGA would become biased only after the
activation of the lower group of the ROs. The output of the
sensor and the bitstream of the RNG3 are shown in Fig. 6.

For the same experimental setup, we decreased the number
of levels in every RNG to 256 and gradually decreased
the number of ROs, while observing the bitstreams. For
120,000 ROs (≈ 20% of all LUTs), RNG0, RNG1, and RNG4
failed statistical tests for randomness. RNG2 bitstreams had
some visible bias, and failed only two statistical tests (block
frequency and runs). RNG3 passed the statistical tests and
showed no visible bias.

2) Attacks from the Left and from the Top: Table II summa-
rizes the effects that the position of the ROs, the position of
the RNGs, and the activity of ROs (Section IV-B) had on the

S
en

so
r 

ou
tp

u
t

120

110

100

90

80

70

60

50

0 20 40 60 80 100
time (μs)

Fig. 6: The sensor output during the attack (left) and the
visibly biased output of the RNG3 (right), for the two-sided
attack with 140,000 ROs. ROs were activated as in Fig. 2 and
(tA, tB) = 1.6µs, (tB , tC) = 10µs, while (tB , tD) = 40µs.

output bitstreams. The results indicate that varying the position
of the ROs and the position of the RNGs affects the observable
bias and randomness of the output bitstream. Depending on
their placement, the RNGs were either affected or not: when
affected, they would fail statistical test (sometimes with and
sometimes without the observable bias).

3) Varying the Duration of the Attack: To test whether the
duration of the attack influences the duration of the observable
bias, we repeated the tests with half of the activity period (the
time between tB and tD reduced by half). Fig. 7 shows the
bitstream of the output of RNG2 when attack-from-the-top
scenario is applied and the RNGs are aligned horizontally at
y-coordinate Y1. The bias starts to appear after the activation
of the second block of ROs. Additionally, the bias remains
observable until the end of the ROs activity. Hence, the bias
duration is affected by the duration of the RO activity.

4) Increasing the Clock Frequency: For the setup in Fig. 5b,
we repeated the experiment, this time with the clock frequency
increased to 180 MHz. Moreover, we let Vivado decide the
implementation and placement—within the pblock—of the
LUTs in the XOR trees of the RNGs, to obtain the best critical
path delays. This resulted in the average critical path becoming
shorter: 4.6 ns. And, due to the unconstrained implementation



TABLE II: Effect of the ROs on the five RNGs for attack-from-
the-left and attack-from-the-top scenario (? = failed statistical
tests and observable bias in the generated bitmap, × = failed
statistical tests, – = no effect, n/a = failed statistical tests in
the absence of the attack).

Output bitstream properties

Location RNG0 RNG1 RNG2 RNG3 RNG4

X-left – ? × ? –

X-middle – ? ? × n/a

X-right ? n/a n/a × ?

Y4 ? – – – ?

Y3 ? × × ? –

Y2 – ? ? ? n/a

Y1 ? ? ? ? –

Y0 ? ? ? × n/a

Fig. 7: The bitmaps of the outputs of the RNG2 when the
attack-from-the-top scenario is applied and the RNGs are
aligned horizontally at y-coordinate Y1. On the left, the
duration of the activity period of the ROs (tA, tD) is twice
longer than the activity period of the ROs on the right.

and placement of the XORs, the critical path of different
RNGs varied more: ±0.4 ns. These changes were only slightly
reflected in the RNG outputs: RNG3 exhibited observable bias,
while RNG1 and RNG2 exhibited observable bias a tad later.

VI. DISCUSSION

In our experimental setup, several factors were controllable:
1) Parameters of the attack: number of ROs, their imple-

mentation, placement, activation pattern, and period.
2) Parameters of the target: placement of the RNGs, num-

ber of stages, and implementation of the XOR tree.
In a realistic multi-tenant FPGA scenario, the attacker has
limited freedom and can control only the parameters of the
attack. All the target parameters will be out of the attacker’s
control and knowledge. Yet, our experiments demonstrate that
these attacks can be effective even when the target is on the
opposite side of the FPGA.

A. Non-uniform Effects

With all the controllable factors we took advantage of in
the experiments, there was a difference in the observable bias

L-bit 
LFSR

Shift 
REGISTER

L-bit 
REGISTER

OUTPUT FF

XOR
TREE

CLOCK

Fig. 8: Alternative target design in which the self-timed
ring is replaced by a pseudo-random number generator. The
pseudo-random bitstream is generated by a linear-feedback
shift register and used to fill in an equally long shift register.

among RNGs. The variation arose between different RNGs
and different relative placements of ROs and RNGs. This could
be due to various reasons. First, the placement of the RNGs
with respect to the ROs has a notable effect. Gnad et al. [8]
have reached to the similar conclusions: they analyzed the
spatial impact of a transient voltage drop and suggested that
the location of the activity can have different effects on the
delay increase on the chip. In the experimental setup in this
paper, we measured the delay increase near the RNGs and
found it to always be sufficient for the critical path delay
through the XOR chain to exceed the clock period.

Another reason for the variability could be the placement of
the target with respect to other components on the FPGA that
also draw current, e.g., PLL, ILA, the reset system processor.
With the activation of the ROs, the effect of both the RO
blocks and other working logic could accumulate and affect
the random bit outputs.

B. Excluding the Effects of the Self-Timed Ring

The observed bias in the output bitstream may not be
due exclusively to the timing-fault attack at the XOR-tree,
as the asynchronous nature of Muller gates makes the self-
timed ring susceptible to delay changes caused by the voltage
drop [10]. To exclude the influence of the timing-sensitive
ring, we attempt the attack on a modified target illustrated
in Figure 8. Instead of the 512-stages ring we instantiate a
512-bit linear-feedback shift register [13] and store the bits
it generates in an equally long shift register. Once full, the
shift register contains a sequence of pseudo-random bits. The
rest of the design is identical to that of the self-timed RNG:
an intermediate register, followed by an XOR tree, and an
output flip-flop. Then, we repeat the attack scenario in Fig. 5b
by replacing all RNGs with pseudo-RNGs. Figure 9 shows
the results for pseudo-RNG2 before (left) and after the attack
(right). The effects of the timing-fault attack are again clearly
visible.

VII. FUTURE WORK

There are various future research directions, of which we
will mention those that we find most promising.



Fig. 9: The bitmaps of the outputs of the pseudo-RNG2 when
the attack-from-the-left scenario in Fig. 5b is applied and all
self-timed RNGs are replaced with pseudo-RNGs. Left, before
the attack. Right, during the attack.

A. Automating the Attack

In this work, we performed a series of experiments in which
we varied the relative position of the attacker and the victim,
and used the sensor output as guidance for choosing the
activation waveform parameters and for setting the required
number of ROs. In reality, all this can be automated, and this
will be our next step. In the automated attack, instead of using
two block of many ROs, one can split them into many smaller
groups and provide an activation signal for every group. Then,
based on the target delay increase ∆S, the sensor readings
could be used to decide on the fly how many of the ROs to
activate, when to do it and for how long (to prevent reset).

B. Know Thy Neighbor

More work can be carried out to understand better how the
location of the target with respect to the attacker influences
the delay increase. This investigation can be followed by
an analysis of the combined effects of the RO number, the
floorplan, and the activity pattern on the delay increase.

C. Detecting the Attack

In this work, we focused on performing a timing-fault
attack from inside FPGA; we did not investigate how one
could detect that the attack is taking place or protect from
it. Protection from the attack is not obvious [1]. However, one
might be able to design a circuit for detecting a potentially
dangerous situation. For example, for a given critical path and
design clock frequency, one could use the same voltage sensor
to estimate whether a timing fault might have happened. If
the probability that the timing fault had happened is high,
one could choose to discard the data from the previous clock
cycles, if at all possible, or restart the computation.

VIII. CONCLUSION

In this work, we described how malicious FPGA users can
create subtle timing faults in the circuits sharing the same
FPGA die. As an adversary, we used a large number of ring
oscillators (ROs), carefully controlled to avoid resetting the
FPGA. As a target, we used self-timed true random number
generators. We experimentally demonstrated that, while the

attack is taking place, ROs create a voltage drop that induces
increased logic delay. The latter, if high enough, causes the
critical path of the RNGs to become longer than the clock
period, often resulting in a non-random and visibly biased
output. Future work will focus on automating the attack,
detecting it, and protecting from it.

ACKNOWLEDGMENT

We thank Dennis R.E. Gnad (Karlsruhe Institute of Tech-
nology) for sharing his design of the delay-based voltage-
fluctuation sensor for Xilinx FPGAs and Markus Ding (École
Polytechnique Fédérale de Lausanne) for performing the ex-
periments involving pseudo-RNGs.

REFERENCES

[1] D. R. Gnad, F. Oboril, and M. B. Tahoori, “Voltage drop-based fault
attacks on FPGAs using valid bitstreams,” in Proceedings of the 27th
International Conference on Field-Programmable Logic and Applica-
tions, Ghent, Belgium, Sep. 2017, pp. 1–7.

[2] F. Schellenberg, D. R. Gnad, A. Moradi, and M. B. Tahoori, “An inside
job:remote power analysis attacks on FPGAs,” in Proceedings of the
Design, Automation and Test in Europe Conference and Exhibition,
Dresden, Mar. 2018, pp. 1111–1116.

[3] M. Zhao and G. E. Suh, “FPGA-based remote power side-channel
attacks,” in Proceedings of IEEE Symposium on Security and Privacy,
San Francisco, CA, US, May 2018, pp. 805–820.

[4] C. Ramesh, S. B. Patil, S. N. Dhanuskodi, G. Provelengios, S. Pillement,
D. Holcomb, and R. Tessier, “FPGA side channel attacks without phys-
ical access,” in Proc. of the 26th IEEE Symp. on Field-Programmable
Custom Computing Machines, Boulder, CO, USA, May 2018, pp. 1–8.

[5] I. Giechaskiel, K. B. Rasmussen, and K. Eguro, “Leaky wires: Informa-
tion leakage and covert communication between FPGA long wires,” in
Proceedings of 13th ACM ASIA Conference on Information, Computer
and Communications Security (ASIACCS), Songdo, Incheon, Republic
of Korea, Jun. 2018, pp. 15–27.

[6] L. Zussa, J.-M. Dutertre, J. Clédière, and A. Tria, “Power supply
glitch induced faults on FPGA: An in-depth analysis of the injection
mechanism,” in On-Line Testing Symposium (IOLTS), Chania, Greece,
Sep. 2013, pp. 110–115.

[7] K. M. Zick, M. Srivastav, W. Zhang, and M. French, “Sensing
nanosecond-scale voltage attacks and natural transients in FPGAs,” in
Proceedings of the 21st ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, Monterey, Calif., Feb. 2013, pp. 101–04.

[8] D. R. Gnad, F. Oboril, S. Kiamehr, and M. B. Tahoori, “Analysis of
transient voltage fluctuations in FPGAs,” in Proceedings of the IEEE
International Conference on Field Programmable Technology, Xi’an,
China, Dec. 2016, pp. 1–8.

[9] K. Arabi, R. Saleh, and X. Meng, “Power supply noise in SoCs: Metrics,
management, and measurement,” IEEE Design and Test of Computers,
vol. 24, no. 3, pp. 236–44, Aug. 2007.

[10] H. Martı́n, T. Korak, E. S. Millán, and M. Hutter, “Fault attacks
on STRNGs: Impact of glitches, temperature, and underpowering on
randomness,” IEEE Transactions on Information Forensics and Security,
vol. 10, no. 2, pp. 266–277, Feb 2015.

[11] A. Cherkaoui, V. Fischer, L. Fesquet, and A. Aubert, “A very high speed
true random number generator with entropy assessment,” in Crypto-
graphic Hardware and Embedded Systems - CHES 2013, G. Bertoni
and J.-S. Coron, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
Aug. 2013, pp. 179–196.

[12] L. Bassham, A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker,
S. Leigh, M. Levenson, M. Vangel, D. Banks, N. Heckert, and J. Dray,
“A statistical test suite for random and pseudorandom number generators
for cryptographic applications,” Apr. 2010.

[13] H. Wallker, “Table of linear feedback shift registers,” 2017. [Online].
Available: http://courses.cse.tamu.edu/walker/csce680/lfsr table.pdf


