
VU Research Portal

TIMP: An R package for modeling multi-way spectroscopic measurements

Mullen, K.M.; van Stokkum, I.H.M.

published in
Journal of Statistical Software

2007

DOI (link to publisher)
10.18637/jss.v018.i03

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Mullen, K. M., & van Stokkum, I. H. M. (2007). TIMP: An R package for modeling multi-way spectroscopic
measurements. Journal of Statistical Software, 18(3). https://doi.org/10.18637/jss.v018.i03

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 24. Aug. 2022

https://doi.org/10.18637/jss.v018.i03
https://research.vu.nl/en/publications/3a8b730e-107e-44af-b0b8-6aa60cf53f66
https://doi.org/10.18637/jss.v018.i03

JSS Journal of Statistical Software
January 2007, Volume 18, Issue 3. http://www.jstatsoft.org/

TIMP: An R Package for Modeling Multi-way

Spectroscopic Measurements

Katharine M. Mullen
Vrije Universiteit Amsterdam

Ivo H. M. van Stokkum
Vrije Universiteit Amsterdam

Abstract

TIMP is an R package for modeling multiway spectroscopic measurements. The pack-
age allows for the simultaneous analysis of datasets collected under different experimental
conditions in terms of a wide variety of parametric models. Models arising in spectroscopy
data analysis often have some parameters that are intrinstically nonlinear, and some pa-
rameters that are conditionally linear on estimates of the nonlinear parameters. TIMP

fits such separable nonlinear models using partitioned variable projection, a variant of the
variable projection algorithm that is described here for the first time. The of the parti-
tioned variable projection algorithm allows fitting many models for spectroscopy datasets
using much less memory as compared to under the standard variable projection algorithm
that is implemented in nonlinear optimization routines (e.g., the plinear option of the R

function nls), as is shown here. An overview of modeling with TIMP is also given that
includes several case studies in the application of the package.

Keywords: spectroscopy, separable nonlinear least squares, superposition model, compartmen-
tal model, global analysis, target analysis.

1. Introduction

TIMP
1 is an R package for modeling multiway spectroscopic measurements. It is a fully cross-

platform problem-solving environment for fitting a wide range of models to spectroscopy data,
and is freely available under the GNU General Public License (GPL).

This paper outlines the capabilities, structure, and application of the package. The intro-
duction gives an overview of the problems in scientific model discovery that the package has
been designed to address. Section 2 describes some aspects of the implementation, and in-

1The name of the package references its origins in the tim collection of FORTRAN routines developed over

the past fifteen years by the latter author to model time-resolved spectroscopy data; TIMP stands for tim

package.

http://www.jstatsoft.org/

2 TIMP: Modeling Multi-way Spectroscopic Measurements in R

cludes a description of the partitioned variable projection algorithm that allows application
of the variable projection functional to parameter estimation problems in the absence of large
memory resources. Section 3 describes in brief user-accessible functions. Section 4 describes
general model options. Section 5 contains descriptions of kinetic models and their specifica-
tion, fitting and validation with the package, and includes a case study in the application of a
kinetic model to the simultaneous analysis of two datasets. Section 6 describes spectral mod-
els and their specification, fitting and validation in TIMP, and includes a case study in the
application of a spectral model to the description of time-dependent change in spectral band-
shapes. Section 7 discusses in brief the extension of TIMP to new model types. Conclusions
are contained in Section 8.

1.1. Interactive scientific model-discovery

We term scientific model discovery the identification

Figure 1: Scientific model discov-
ery is often an iterative process of
model specification, parameter esti-
mation and validation.

of a statistical model able to reproduce experimentally
collected measurements to a satisfactory degree of ac-
curacy, with the additional constraint that the model
be well-interpretable according to physico-chemical
theory. Scientific model discovery very often requires
iterating the steps of formulation of a candidate model,
model fitting, and model validation. Postulation of
a candidate model is guided by a priori knowledge
of the system underlying the data as well as by ex-
ploratory analysis of the dataset (e.g., with decom-
position techniques like the singular value decompo-
sition). Fitting provides estimates for free parame-
ters that are more statistically likely than the start-
ing estimates provided during postulation of the can-
didate model. Validation considers whether the fit-
ted parameter values are precise and likely to be cor-
rect according to physico-chemical theory, whether
the residuals are sufficiently small and unstructured,
and whether adjustment of the candidate model is desirable. The cycle of model formulation,
fitting and validation is often iterative because validation often results in the identification of
a new candidate model.

Scientific model discovery is interactive in the case that the time to complete the model for-
mulation, fitting, and validation cycle is determined primarily by the ability of the researcher
to postulate and validate candidate models. To allow for interactive scientific model discovery
the applied computer hardware and software must enable the researcher to quickly specify
and fit a model, and must provide information for model validation that allows for efficient
evaluation of model fit and physical feasibility. The primary goal of the TIMP package for the
R system for statistical computing (R Development Core Team 2006) is to provide software
for interactive scientific model discovery in the multiway spectroscopy data modeling problem
domain.

Journal of Statistical Software 3

1.2. Multiway spectroscopy data and models

Let Ψq denote a spectroscopic dataset arising under experimental conditions q. Ψq may be
represented as the matrix

Ψq =

λ1 λ2 . . . λn

t1 ψ(t1, λ1) ψ(t1, λ2) . . . ψ(t1, λn)
t2 ψ(t2, λ1) ψ(t2, λ2) . . . ψ(t2, λn)
...

...
...

. . .
...

tm ψ(tm, λ1) ψ(tm, λ2) . . . ψ(tm, λn)

(1)

Each row of Ψq is a spectrum in the spectral variable λ (which is often wavelength, but may be
wavenumber or magnetic field strength; Laptenok, Mullen, Borst, van Stokkum, Apanasovich,
and Visser (2007) describe the case that the variable is location). Spectra are represented
at m instances of independent experimental variables t such as time, pH, pD, temperature,
excitation wavelength or quencher concentration. The independent experimental variables
are chosen so as to monitor spectral change in a manner that provides information on the
dynamics of the underlying system.

Ψq represents a contribution from nncomp spectrally distinct components. The concentration
and spectral property of each component may be represented as column l of matrices C and
E, respectively, in the superposition model

Ψq =

1 . . . nncomp

t1 c(t1, 1) . . . c(t1, nncomp)
t2 c(t2, 1) . . . c(t2, nncomp)
...

...
. . .

...
tm c(tm, 1) . . . c(tm, nncomp)

1 . . . nncomp

λ1 ǫ(λ1, 1) . . . ǫ(λ1, nncomp)
λ2 ǫ(λ2, 1) . . . ǫ(λ2, nncomp)
...

...
. . .

...
λn ǫ(λn, 1) . . . ǫ(λn, nncomp)

⊤

(2)

= CE⊤ (3)

Each column of C represents a concentration profile of a component in the independent
variable t in which spectra are resolved. Likewise, each column of the matrix E represents a
spectrum of a component.

In modeling multiway spectroscopy data Ψq, the inverse problem of recovery of the entries
of C or E in terms of physically significant parameters (descriptive of, e.g., the decay rate
of a component, or the location of the maximum of a spectrum) using Equation 3 is often of
interest. Adequate parameterizations of either C or E are nonlinear, and are usually com-
prised of many submodels to represent various model aspects. Such parameterizations have
been reviewed for the case of time-resolved spectroscopy data by van Stokkum, Larsen, and
van Grondelle (2004). Very often, a model-based description is possible for either C or E, but
not both matrices. Then the variable projection algorithm (Golub and LeVeque 1979; Golub
and Pereyra 2003) allows the estimation of the entries of the matrix for which a model-based
description is unavailable as conditionally linear parameters (clp). The resulting reduction
in the size of the nonlinear parameter search space is very significant for problems arising in
typical spectroscopy data modeling applications, as is discussed further in Section 2.3. TIMP

includes an implementation of a refinement of the standard variable projection implementa-
tion, which we call partitioned variable projection that allows the application of the variable

4 TIMP: Modeling Multi-way Spectroscopic Measurements in R

projection functional to large estimation problems in the absence of large memory resources.
Partitioned variable projection is discussed further in Section 2.3. Is is compared to the stan-
dard variable projection implementation (implemented in R in the plinear option of the nls

function) in detail in Appendix A.

Multiway spectroscopy experiments often result in measured datasets Ψ1, . . . ,Ψx collected
under similar but not identical experimental conditions 1, . . . , x. Ψ1, . . . ,Ψx may vary with
one experimental condition, in which case the data is three-way, or with multiple experimental
conditions, in which case the data is four-or-higher-way. In the latter case, distinct groups
of datasets in Ψ1, . . . ,Ψx represent variance with respect to each experimental condition
representing a dimension of the data Ψ as a whole, (for an example of five-way data Ψ
resolved with respect to time, wavelength, temperature, pH, and polarization see e.g., van
Stokkum and Lozier (2002)). It may be desirable to parameterize a model for all datasets
Ψ = {Ψ1, . . . ,Ψx} so as to extract information regarding some model parameters from all
available data, while fitting other model parameters on a per-dataset basis. Parameters fit
per-dataset may then be used to describe the effects of variances in experimental conditions
on the underlying system.

TIMP is designed to efficiently specify, fit and validate models for multiway spectroscopy
data Ψ from possibly many experiments simultaneously. The package currently implements
a wide variety of model options for the parameterization of kinetic and spectral models.
Extension to other model types requires a minimum of additional code. An overview of the
goals, structure and capabilities of the package is contained in this paper, along with two case
studies its application.

1.3. An introduction to modeling with TIMP

The application of TIMP to a very simple parameter estimation task on a single simulated
spectroscopy dataset will introduce the use of the package. As discussed in the previous
section, a spectroscopy dataset Ψq can be considered to represent a superposition of the
concentration profiles C and spectral properties E of components, so that Ψq = CE⊤ (Equa-
tion 3).

We will simulate a dataset in which two spectrally distinct components contribute to Ψq,
where C represents concentration in time and E represents spectra resolved with respect to
wavenumber. The simplest realistic model for C lets the time-profile of each component cl be
described by an exponential decay with decay rate parameter kl, so that

cl(t) = exp(−klt), (4)

where t is time. (for elaboration on the use of exponential models for kinetic processes, see
e.g., the review by Istratov and Vyvenko (1999)). We let the two components contributing to
Ψq have associated decay rate parameters .5 and 1, and let the concentrations be measured
at 51 timepoints equidistant in the interval 0-2 ns. Then the following R commands calculate
C.

R> C <- matrix(nrow = 51, ncol = 2)

R> k <- c(.5, 1)

R> t <- seq(0, 2, by = 2/50)

R> C[, 1] <- exp(- k[1] * t)

R> C[, 2] <- exp(- k[2] * t)

Journal of Statistical Software 5

The most basic model for the spectrum el associated with a single component in wavenumber
ν̄ is a Gaussian with parameters µν̄ , ∆ν̄ , and al, for the location, full width at half maximum
(FWHM), and amplitude, respectively, so that

el(ν̄) = al exp

(

− ln(2)

(

2
(ν̄ − µν̄)

∆ν̄

)2
)

, (5)

(see e.g., van Stokkum (1997) and references therein regarding the ubiquity of Gaussian
models for spectra). Let us consider spectra represented by 51 wavenumbers equidistant in
the interval 18000 - 28000 cm−1, with locations 25000 and 20000, FWHMs 5000 and 7000,
and amplitudes 1 and 2, respectively. In R we can then calculate E as

R> E <- matrix(nrow = 51, ncol = 2)

R> wavenum <- seq(18000, 28000, by=200)

R> location <- c(25000, 20000)

R> delta <- c(5000, 7000)

R> amp <- c(1, 2)

R> E[, 1] <- amp[1] * exp(- log(2) * (2 * (wavenum - location[1])/delta[1])^2)

R> E[, 2] <- amp[2] * exp(- log(2) * (2 * (wavenum - location[2])/delta[2])^2)

Given these R expressions for C and E, a dataset Ψq with Gaussian noise with zero mean
and width σ = .001 may be simulated as

R> sigma <- .001

R> Psi_q <- C %*% t(E) + sigma * rnorm(dim(C)[1] * dim(E)[1])

Plots of C and E are shown in Figure 2. The simulated dataset Ψq is shown in Figure 3

0.0 0.5 1.0 1.5 2.0

0
.2

0
.4

0
.6

0
.8

1
.0

time

c
o
n
c
e
n
tr

a
ti
o
n

18000 22000 26000

0
.0

0
.5

1
.0

1
.5

2
.0

wavenumber

a
m

p
lit

u
d
e

(a) (b)

Figure 2: (a) Simulated concentrations (b) simulated spectra. Component 1 is in black;
component 2 is in red.

Given a dataset such as the simulated Psi_q shown in Figure 3 it is often the case that either
a kinetic model for C or a spectral model for E is known to apply whose parameters are
nonlinear. Given estimates for the nonlinear model parameters that determine one of the two
matrices, the entries of the other matrix may be solved for as clp. Let us assume that the

6 TIMP: Modeling Multi-way Spectroscopic Measurements in R

time

w
a

v
e

n
u

m
b

e
r

0.0 0.5 1.0 1.5 2.0

1
8

0
0

0
2

0
0

0
0

2
2

0
0

0
2

4
0

0
0

2
6

0
0

0
2

8
0

0
0

Figure 3: Simulated data; model fitting will resolve the two contributing components.

kinetic model used in simulating the data is known to describe Psi_q, and that approximate
starting values for the two rate constants are known. Then the following R commands can be
used to estimate the rate constants k and clp E.

TIMP is loaded with

R> library("TIMP")

The simulated dataset is placed into an instance of the class “dat” which is used to store
data and model objects in TIMP. The “dat” object contains not only the data but also some
information like its dimensions.

R> Psi_q_data <- dat(psi.df = Psi_q, x = t, nt = length(t),

+ x2 = wavenum, nl = length(wavenum))

A model to be applied to the data is initialized with the initModel function. The seqmod=FALSE
option indicates that the components decay in parallel; the starting values for the decay rates
are given in the vector kinpar.

R> kinetic_model <- initModel(mod_type = "kin", seqmod = FALSE,

+ kinpar = c(.1, 2))

With the next command model parameters are optimized over the course of four iterations
using the fitModel function of TIMP.

Journal of Statistical Software 7

R> kinetic_fit <- fitModel(data = list(Psi_q_data), model = kinetic_model,

+ opt = list(iter=4, paropt=list(mar=c(2,2,2,2),mgp=c(1,.2,0))))

The call to the fitModel function results in a composite plot displaying the fit of the model
to the data at each wavenumber, a window showing parameter estimates for the two rate
constants and information regarding the residuals, and a summary figure showing the esti-
mated spectra and rates constants. For the case considered here the estimated spectra and
concentration profiles well-approximate the entries of E and C used in simulation. TIMP em-
ployed the nls function in estimating the nonlinear parameters k = {k1, k2}; examination of
the summary object returned by nls, as below, verifies that the standard errors of estimated
parameters are low.

R> kinetic_fit$sumonls

Formula: 0 ~ rescomp(t, d)

Parameters:

Estimate Std. Error t value Pr(>|t|)

t1 0.4997107 0.0007933 629.9 <2e-16 ***

t2 1.0002352 0.0005581 1792.1 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.000999 on 2497 degrees of freedom

Number of iterations till stop: 4

Achieved convergence tolerance: 0.1151

Reason stopped: number of iterations exceeded maximum of 4

This introduction to the application of TIMP shows how, given a single dataset Ψq, a para-
metric description of the concentration profiles of contributing components can be fit, while
the spectra E are solved for as clp. Subsequent sections will describe the application of TIMP

to fitting more complex models to possibly many datasets.

1.4. Hierarchical models for possibly many datasets

Let Ψ = {Ψ1, . . . ,Ψx} denote multiway spectroscopy data collected over the course of possibly
many experimental conditions indexed 1, . . . , x. Let Θ denote the nonlinear parameters of
the multidataset model applied to Ψ. The goal of model fitting is to solve min ‖Ψ̂(Θ)−Ψ‖F 2 ,
e.g., to minimize the residuals associated with the fit of the model to the data. The model
specifies a prescription to determine residual matrices Z1(Θ), . . . , Zx(Θ), where Zq(Θ) are
those residuals associated with dataset Ψq. Z1(Θ), . . . , Zx(Θ) are concatenated together in
vectorized form to form the residual vector to be minimized with respect to Θ by a nonlinear
optimization routine, (such as the nls function from R, which is employed by TIMP). The
multidataset model may be such that residual matrix Zq depends on only a subset of Θ.
Parameters in Θ that determine the residuals associated with multiple datasets are said to be
linked. Parameters that determine the residuals of only one dataset are said to be unlinked.

8 TIMP: Modeling Multi-way Spectroscopic Measurements in R

Models applied to data Ψ may be comprised of many submodels, each of which describe
a distinct aspect of the underlying system giving rise to the measurements. Examples of
submodels include a parametric description of an instrument response function (IRF), a co-
herent artifact, or the shape of a spectrum. Submodels may also include a prescription for
the transformation of parameters in order to enforce constraints or apply relations between
parameters, as illustrated in the case study contained in Section 5.6.

Submodels may themselves be comprised of submodels. For instance, a multidataset model
is comprised of a model for each dataset, which is in turn comprised of submodels, for, e.g.,
an IRF, a kinetic model, etc. Description in terms of a tree is often well-representative of
such parameterizations. As an example, a tree representation for a model describing two
datasets Ψ = {Ψ1,Ψ2} is given in Figure 4. The parameters associated with models for the
individual datasets Ψ1 and Ψ2 are themselves comprised of submodels for various aspects of the
underlying system. Note that distinct submodels may depend on the same parameter θi ∈ Θ,
so that parameters are linked between datasets, as Figure 5 illustrates diagrammatically.

Figure 4: A hierarchical model Θ for datasets Ψ = {Ψ1,Ψ2}. The model is comprised of
a submodel for each dataset with associated nonlinear parameters ΘΨ1 and ΘΨ2. These
submodels are each comprised of a submodel for the kinetic decay rates parameterized with
ΘK1 and ΘK2, a submodel for the IRF, parameterized with ΘI1 and ΘI2, and a submodel for
a coherent artifact parameterized with ΘC1 and ΘC2.

2. The implementation of TIMP

TIMP has been designed to facilitate interactive scientific model discovery of the multidataset
hierarchical models introduced in Section 1.4 and reviewed in van Stokkum et al. (2004). In
this section we attempt to give a brief overview of the design of the package.

2.1. The role of S4 classes and methods in TIMP

S4 classes and methods are the preferred means by which object-oriented programming is
implemented in R. See e.g., Chambers (1998) for a review of the S4 classes and methods

Journal of Statistical Software 9

}

ΘΨ1

ΘΨ2

ΘL

= {Θ

Figure 5: The vector of nonlinear model parameters Θ may parameterize a model for multiple
datasets. Some parameters θ ∈ Θ may be used to model more than one dataset, so that θ
is linked between datasets, while other parameters may be used to model only one dataset.
Still other parameters may be used to model a relationship between datasets, such as a linear
scaling. In the above figure, the vectors of parameters ΘΨ1

and ΘΨ2
parameterizing the

models for datasets Ψ1 and Ψ2, respectively, include some of the same elements from the full
vector of nonlinear model parameters Θ. Parameters to determine a relationship between
datasets are written as ΘL, and apply to how the model functions associated with datasets
are scaled.

system, and e.g., Bates and DebRoy (2003) for a description of their utility within a large R

package.

S4 classes and methods are central to the implementation of TIMP. Slots of S4 classes are used
to store each component of a hierarchical model. In the course of optimization (initiated with
the fitModel function), an object is associated with the parameterization of the multidataset
model and the current values of the parameters associated with this model, respectively.
The object containing a prescription for the multidataset model is initialized to the (hidden)
global variable .currModel, and is of class multimodel. The object used to store the current
parameter estimates associated with this model is initialized to the (hidden) global variable
.currTheta, and is of class multitheta.

During each iteration of parameter estimation, TIMP updates the object representing the
current nonlinear parameter estimates .currTheta using the updated vector of non-linear
parameter estimates and the model prescription object .currModel. The update is performed
by the function getThetaCl. The object .currTheta is subsequently used to form the residual
vector to be minimized with respect to the nonlinear parameter vector. By determining the
residuals as a function of .currTheta as opposed to as a direct function of the “raw”vector of
nonlinear parameter estimates Θ (which is typically of length 101−102), the residual function
implementation is relatively concise and readable. All bookkeeping necessary to account for

10 TIMP: Modeling Multi-way Spectroscopic Measurements in R

S4 classes defined by TIMP

class represents

dat single dataset Ψq and an associated model
kin kinetic model specification, inherits from dat

spec spectral model specification, inherits from dat

theta parameter estimates associated with model for single dataset Ψq

multitheta parameter estimates associated with (possibly) multiple dataset model
multimodel all information associated with multiple dataset model and fit
res results of fitting (possibly) many datasets

Table 1: Classes currently used in TIMP. These classes are initialized in the package by
functions prefaced by init., followed by the name of the class in the table above.

fixed parameters, parameter relations, and parameter constraints is performed in getThetaCl,
not the residual function, further facilitating its implementation and readability. This also
allows for the rapid implementation of support for model types associated with new residual
functions, as elaborated in Section 7.

As elaborated in Section 4, aspects of model parameterization not specific to model type (e.g.,
a weighting specification, constraints, or a specification of fixed parameter values) are specified
in the slots of the class dat. Aspects of model parameterization specific to a given sort of
model (e.g., a model in which the nonlinear parameters apply to the kinetics) are specified in
the slots of classes inheriting from dat. S4 methods switch the definition of the function that
determines the residuals and the output/plotting based on the class of the model type.

2.2. Model specification

Model specification in TIMP has possibly two steps. First, a model applicable to one dataset
in Ψ = {Ψ1, . . . ,Ψx} is specified via the function initModel. If no per-dataset model differ-
ences are required, the model and the dataset list become arguments to the function fitModel,
the call of which fits the model to the data, and outputs this fit and information for model
validation. In the case that the model varies per-dataset, a second specification step de-
scribing per-dataset model differences from the model defined in initModel is required. The
description of per-dataset model differences takes the form of a list input to fitModel. An
example of this two-step process is found in Section 5.6.

Note that when the fitModel function is called, its arguments are used to initialize a list of
objects of class dat, stored in the slot modellist of the (hidden) global variable .currModel.
Element i of modellist stores dataset i and the model associated with dataset i. Many TIMP

functions index into modellist.

Breaking the model specification into two steps allows the datasets associated with a given
model to be specified just prior to fitting, as an argument to the fitModel function. This
is convenient for applying the same model to many different combinations of datasets, but
is not convenient when there are many differences between datasets, as the differences must
be respecified with each call to fitModel. In the next version of TIMP a function to allow
multidataset model specification to be performed in a single step will be included to avoid this
inconvenience. This function will also facilitate the specification of model differences between
groups of datasets.

Journal of Statistical Software 11

2.3. Parameter estimation

The variable projection algorithm that allows for the solution of separable nonlinear param-
eter estimation problems is central to parameter estimation with TIMP. Separable nonlinear
parameter estimation problems often arise in spectroscopy data modeling due to the bilinear
form of the superposition model Ψ = CE⊤, and the fact that it is often possible to well-
describe either the concentration profiles C or the spectra E, but not both matrices, with a
parameterized model. By separating the parameters into intrinsically nonlinear parameters
and clp descriptive of the entries of the matrix that is not described in terms of a parametric
model, the nonlinear search space is often very significantly reduced, since datasets Ψ are
often large (of dimension on the order of 103 × 103) with on the order of 101 contributing
components. Furthermore, a parametric description of C or E is also often of interest in its
own right, insofar as the model and parameter estimates may be assigned physical significance,
and thereby serve as a simplified system description.

Let X denote the matrix (either C or E) directly determined by nonlinear parameters Θ, and
let β denote the matrix determined as conditionally linear on X. The estimation problem
associated with fitting Θ to Ψ = X(Θ)β such that the residuals ‖ Ψ−X(Θ)β ‖2 are minimal
may be formulated as

Minimize ‖ (I −X(Θ)X+(Θ))Ψ ‖2 . (6)

This is the variable projection functional for which Golub and Pereyra (1972, 1973) determined
an analytical gradient by deriving the derivative of the pseudoinverse X+.

Given starting estimates for Θ, a solution to Equation 6 may be approached iteratively using
gradient-based techniques. TIMP uses a finite difference approximation for the gradient.

TIMP’s parameter estimation technique to solve Problem 6 can be summarized as follows,
where “convergence” is some appropriate stopping criterion.

Algorithm Finite Difference VarPro:

1. choose starting Θ approximately

2. for s := 1, 2 . . . until convergence do

determine gradient in Θ-space with finite diff. approx. of d(I−XX+)
dΘ Ψ

Θs+1 := step(Θs, gradient, . . .)

Implementation in TIMP of the finite difference variable projection algorithm described above
is via the nls function of R. nls is given as input starting values for Θ and a residual function
that returns the vectorized version of (I −X(Θ)X+(Θ))Ψ. Then the numericDeriv function
is used by nls to determine the finite difference approximation of the gradient of this residual
vector in Θ-space. The determination of the step-size to move Θ in the gradient direction each
iteration (the algorithm step) is also performed by nls. Section 2.4 describes the extension
of this methodology to the case in which X is dependent on conditions such as the wavelength
or timepoint of the data, and to multiple datasets.

2.4. Partitioned variable projection

For application to multiway spectroscopy modeling problems domain we seek to address,
the algorithm for finite difference variable projection given in the previous section must be

12 TIMP: Modeling Multi-way Spectroscopic Measurements in R

generalized to the case of simultaneously modeling multiple datasets, and to the case where
the model for the matrix X is dependent on condition, where a condition is an instance of a
variable with respect to which the data is resolved, such as wavelength, time, temperature,
etc. The desired extension must operate on (i.e., perform QR-decomposition on, for instance)
small matrices, so as to allow parameter estimation to be performed on computer systems
lacking large memory resources.

Let Xq be the matrix determined by nonlinear parameters Θ that is associated with dataset
Ψq. The model for Xq may be a function of Θ that is different for distinct datasets in
Ψ1, . . . ,Ψx. The clp may be equated between datasets, so that β1 = β2 = . . . = βx (the “link
clp” case in the following description of PartitionedVarPro) or the clp may be estimated
per-dataset, or per-group of datasets, so that βp 6= βq for datasets Ψq and Ψp in Ψ. These
two possibilities for the clp correspond to the equations

Ψ1
...

Ψx

=

X1
...
Xx

β = Xsuper β (7)

and

Ψ1
...

Ψx

=

X1β1
...

Xxβx

(8)

In the case that the matrix Xq is dependent on a data condition (as in wavelength-dependent
kinetic models, for instance, or in time-dependent spectral models), Xq must be re-calculated
for every condition with which it varies, so that Models 7 and 8 are

ψsuper p =

ψ1p
...
ψxp

=

X1p
...

X1p

βp = Xsuper βp (9)

and

ψ1p
...
ψxp

=

X1pβ1p
...

Xxpβxp

(10)

where p is the condition index, ψqp is a vector comprising the pth row or column of dataset
Ψq, βqp is the pth row of βq, and Xqp is associated with dataset q at condition p.

In general p need not represent a single condition, but may represent a collection of conditions
(e.g., wavelengths or times) for which the matrix X is constant.

The residuals associated with Equations 9 and 10 may be calculated using the variable projec-
tion function under the partitioned variable projection algorithm. This algorithm is presented
for the general case in which p may represent a single condition or a group of conditions as-
sociated with the same prescription for X. A group of conditions associated with the same

Journal of Statistical Software 13

prescription for X is termed in the algorithm description a part. If Equation 7 or 9 are
desired, then (link clp) is true. If Equation 8 or 10 are desired, then (link clp) is false.

Note that the variable projection functional is (I−CC+)Ψ = Q2Q
⊤
2 Ψ using theQR-decomposition,

and that these residuals are formulated in Q-space as Q⊤
2 Ψ.

PartitionedVarPro(model, Θ)
for parts p in 1:n:

if(link clp)
get(Xsuper p(model, Θ))
QR(Xsuper p)
append Q⊤

2 ψsuper p to Z
else

for q in 1:x
get(Xpq(model, Θ))
QR(Xpq)
append Q⊤

2 ψpq to Z
return: Z

After formation of the residual vector Z, a finite difference method may be applied to deter-
mine an update of Θ as described in Section 2.3 for Finite Difference VarPro.

The ability to apply the variable projection functional without operating on large matrices
is the main motivation for introduction of PartitionedVarPro. PartitionedVarPro
results in the same residuals as under the standard variable projection algorithm as imple-
mented in, e.g., the plinear function of nls. The advantage of PartitionedVarPro is that
significantly less memory resources are required, allowing application of the algorithm on large
datasets on a personal computer. The memory resources required by PartitionedVarPro
and the standard variable projection implementation are considered in detail in Appendix A.

To examine the implementation of partitioned variable projection in TIMP, see the rescomp

function which collects the residual vector Z and one of the S4 methods for residPart, which
returns the residuals (with a contribution from possibly many datasets) associated with a
single part p.

2.5. Validation

Model validation in TIMP may be performed via a variety of means. Nonlinear parameter
estimates as returned by nls may be validated via the linear approximation standard error
estimates returned. Relatively large standard errors indicate an over-parameterization of the
model.

For each model type, an S4 method plotter is implemented to output model type-specific
results, both in the form of plots and in the form of ASCII files representing the model fit
and other estimates.

Analysis of the residuals is an important aspect of model validation. This analysis is often
facilitated by taking a singular value decomposition (SVD) of the residual matrix, which
allows structure in the misfit of the model to the data to be readily observed. Also important
to an evaluation of the model fit are plots of the fit of the model to the data for each row or

14 TIMP: Modeling Multi-way Spectroscopic Measurements in R

column of the data (possibly for each of multiple datasets).

It is often desirable in scientific modeling applications to perform model validation after the
application of the fitting algorithm (in the case of TIMP, nls) results in the satisfaction of
stopping criteria, as opposed to convergence criteria. For example, it is often desirable to
validate the model fit after a set number of iterations, or at the starting values of parameters
to be optimized. In order to allow validation to be performed after a set number of iterations,
the nls function of R was extended with new options, which are described in Appendix B.
These options allow the fitModel of TIMP to return information validating model fit after
any desired number of iterations.

3. User-accessible functions

TIMP is currently structured around five core user-accessible functions, described in this
section in turn. More complete information regarding function arguments and output is
found in the help functions of the package; here a higher-level description of the purpose and
structure of the arguments and output is given.

3.1. readData

readData takes as an argument a string containing the path to an ASCII-file containing
data and reads the data into R. There are currently three supported data formats, which are
described in Appendix C. The data (and inferred attributes, such as the number of wavelengths
by which spectra are represented, etc.) are returned as an object of class dat.

3.2. preProcess

preProcess takes an argument of class dat and a specification of the desired data sampling,
selection, baseline correction, or axis scaling, and the dimension in which to perform the
preprocessing (which may be the spectral dimension or the dimension in which spectra are
resolved, e.g., time). The preProcess function returns an object of class dat.

3.3. initModel

The initModel function is used to specify a model. A string mod_type giving the class of the
model being specified, ("kin" for kinetic models, "spec" for spectral models, and so forth)
is a mandatory argument. Additional arguments may be any model options described in the
help page for the dat class, plus options described on the help page of the desired model
class given as mod_type. Output is an object of the desired model class, which inherits from
dat.

3.4. fitModel

fitModel performs optimization of a model to an arbitrary number of datasets. Arguments
to fitModel include a list of datasets to be fit, a model that is applied to all datasets, a
list specifying any model differences to apply per-datasets, and a list of control and printing
options. A call to this function results in optimization of free parameters. By default results
are then printed to the screen, and optionally to text files and/or postscript. Returned is a list

Journal of Statistical Software 15

whose elements include the output of the call to the function nls that is used to iteratively
improve the starting estimates for nonlinear parameter values.

3.5. examineFit

examineFit takes as input the list returned by fitModel and re-calls the plotting and func-
tions to write output. This function is useful for the comparison of fit of several models. An
output object is not returned.

4. General model options

This section seeks to outline at a higher level than that found in the package’s help pages
model parameterization options that may be applied to all model types. The specification
of each such option becomes a slot in the class dat, possibly after processing (within the
initModel or getModel functions). Options that are specific to a given model type that
inherits from dat (e.g., the class kin for kinetic model options or the class spec for spectral
model options) are described in later sections.

The function initModel takes as arguments a specification of model options. Note that
for multidataset models, any aspect of a parameterization of a model possible to specify
in initModel may be modified, removed or added to the prescription of per-dataset model
differences given as the modeldiffs argument to the fitting function fitModel.

4.1. Data weighting

A weighting scheme W has the form of an m by n matrix (where m by n is the dimension of
the data matrix Ψ). W may lessen the weight of portions of the data known to contain less
information regarding the model parameters. Such data may result from noisy experimental
conditions, for instance. The application of a weighting scheme may also be desirable from
first principles, e.g., in the case that the data are known to have a variance related to their
magnitude as in single photon counting (SPC) experiments, in which the data are Poisson
distributed, with

σ̂Ψ(ti,λj) =
√

Ψ(ti, λj). (11)

For the case of Poisson distributed count data, W (i, j) is

W (i, j) =
1

σ̂Ψ(ti,λj)
. (12)

Once W has been determined, the Hadamard product (element-by-element product) of W
and Ψ is taken, so that

ΨW (ti, λj) = Ψ(ti, λj) ∗W (ti, λj) (13)

which we write as
ΨW = Ψ ◦W (14)

In the case that Ψ is transformed by a weight matrix W into ΨW , the associated concentration
matrix becomes CW where

CW
λj

(ti, l) = Cλj
(ti, l)W (ti, λj) = C ◦W (15)

16 TIMP: Modeling Multi-way Spectroscopic Measurements in R

ΨW and CW may then be used in place of Ψ and C in parameter estimation.

Specification in TIMP: Weighting

The list argument weightpar specifies a prescription for the matrix of weights to be applied
to the dataset. weightpar is a list of vectors. The vectors have form
c(first_x, last_x, first_x2, last_x2, weight). first_x and last_x are the least and
greatest timepoints (or other variable with which spectra are resolved) having weight weight;
first_x2 and last_x2 are the least and greatest values of the spectral variable having weight
weight.

Note that if vector elements 1-4 are NA, the first-most point of the data is taken for ele-
ments 1 and 3, and the last-most points are taken for 2 and 4. For example, for a dataset in
which spectra are measured in wavelength at many different times in picoseconds, the specifi-
cation weightpar = list(c(40, 1500, 400, 600, .9), c(NA, NA, 700, 800, .1)) will
weight data between 40-1500 ps and 400 and 600 nm by .9, and will weight data at all times
between 700 and 800 nm by .1.

For single photon counting data or other types of count datasets, weightpar = list(poisson

= TRUE) will apply Poisson weighting to all non-zero elements of the data.

4.2. Fixed parameters

It is often of interest to set nonlinear model parameters to fixed values. Fixing model param-
eters may make use of a priori knowledge of true parameter values, or may be performed to
decrease the number of free parameters of the model.

Specification in TIMP: Fixed parameters

Every model parameterization option with an associated list or vector of nonlinear parameter
starting values is named. For instance, the name of the starting values for kinetic decay rates
is "kinpar". In order to fix nonlinear parameters, the name of their list or vector of starting
values is given, along with the indices into the list or vector at which parameter values should
be fixed. This specification is contained in a list fixed.

For instance fixed = list(kinpar = c(1,3,5), parmu = list(c(1,1), c(1,2), c(1,3)))

will fix the 1st, 3rd, and 5th elements of the kinpar vector of starting values for kinetic decay
rates, and the 1st, 2nd, and 3rd elements of the 1st list of parameters in the parmu list of
starting values for parameters describing wavelength-dependence of the IRF.

4.3. Constraint of clp

The basic superposition model Ψ = CE⊤ (Equation 3) is of bilinear form, where the matrix
C describes concentrations and the matrix E describes spectra. A nonlinear model may be
used to describe either C or E, and the entries of the remaining matrix estimated as clp, as
described in Section 2.3.

It is often desirable to constrain clp to account for a priori knowledge or to reduce the
number of free parameters in the model. TIMP currently allows clp to be constrained to a
linear relationship with a scaling parameter (that may be fixed at 1 to equate clp), or to be
constrained to zero.

Journal of Statistical Software 17

It is often useful to name the clp to be constrained in terms of the component they represent,
(i.e., the column of C or E they are contained in).

Specification in TIMP: Constraint of clp to zero

The list clp0 contains lists that specify clp to constraint to zero. The elements of these lists are
named low, high, comp, specifying the least and greatest absolute values of the clp dimension
to constrain to zero, and the component to which to apply the zero constraint, respectively.
For example, where clp represent spectra in wavelength, clp0 = list(list(low=400, high

= 600, comp=2), list(low = 600, high = 650, comp=4)) applies zero constraints to the
spectra associated with component 2 between 400 and 600 nm, and to the spectra associated
with component 4 between 600 and 650 nm.

Specification in TIMP: Constraint of clp to a linear relationship

The list clpequspec contains lists that specify collections of clp to relate. The elements of
these lists are named to, from, low, high. An optional element named dataset specifies the
dataset from which to get the reference clp determining the relationship. to is the component
from which clp are to be fixed in relation to clp from some other component; from is the
reference component. low and high are the least and greatest absolute values of the clp di-
mension to constrain. For example, where clp represent spectra in wavelength, clpequspec =

list(list(low = 400, high = 600, to = 1, from = 2)) will constrain the spectra asso-
ciated with the first and the second components to equality between 400 and 600 nm according
to ǫ1 ← ǫ2θǫ where ǫ1 and ǫ2 are the spectra associated with components 1 and 2,← indicates
that ǫ1 is dependent on ǫ2, and θǫ parameterizes the linear relation.

The vector clpequ contains length(clpequspec) numerics, where the ith numeric is a
starting value θǫi

parameterizing the linear relation specified between clp by the ith list in
clpequspec. Fixing the starting value of an element of clpequ at 1 constrains the associated
clp to equality.

4.4. Relations between nonlinear parameters

It may be desirable to enforce a relationship between two nonlinear parameters θ1 and θ2 so
that θ2 = f(θ1). The relationship of nonlinear parameters is usually performed in order to
take into account a priori knowledge of the system being modeled.

A linear relationship between parameters is currently implemented, (and other functional
relationships will be added).

Specification in TIMP: Nonlinear parameter relations

As in the case of fixing parameters, in order to relate nonlinear parameters, the name of the
associated list or vector of starting values is given, along with the indices into the list or vector
at which parameter values are related. This specification is contained in a list prelspec.

Each element of prelspec is a list having elements named what1 (a character string de-
scribing the parameter type to relate, e.g., "kinpar"), what2 the parameter type on which
the relation is based; usually the same as what1), ind1 (an index into what1) and ind2 (an
index into what2), and the optional argument rel (a character string to specify the func-
tional relation type, by default "linear"). For examples, prelspec = list(list(what1 =

18 TIMP: Modeling Multi-way Spectroscopic Measurements in R

"kinpar", what2 = "kinpar", ind1 = 1, ind2 = 5)) relates the 1st element of kinpar
to the 5th element of kinpar according to kinpar[2] ← kinpar[1] where ← indicates that
kinpar[2] is dependent on kinpar[1].

The vector prel is of length length(prelspec) and contains numeric starting values param-
eterizing the linear relationships described in prelspec.

4.5. Constraint of nonlinear parameters to positivity

It may be known a priori that the nonlinear parameters associated with a submodel should
be positive. Then optimizing on the log of these parameters and transforming the results by
exponentiation of the estimated parameters is a means of enforcing the desired constraint.

Specification in TIMP: Constraint of parameters to positivity

The vector positivepar includes a character string containing the name of the vector or
list of starting parameters that should be constrained to positivity, e.g., positivepar =

c("kinpar").

5. Kinetic models

Kinetic models describe the concentrations of components in time. For multiway spectroscopy
data modeling applications the basic model for the kinetics of each component (i.e., each
column of the matrix C) is an exponential decay in time t, so that

Ψ = CE⊤ =

nncomp
∑

l=1

clǫ
⊤

l =

nncomp
∑

l=1

(exp(−φlt) ⋆ i(t))ǫ
⊤

l (16)

where i is the instrument response function (IRF) and ⋆ is convolution. The parameter es-
timation problem of optimal values for the amplitudes ǫl of the exponential decays (i.e., the
spectra E) along with the decay rates φl under least squares criteria is called the multiexpo-
nential analysis problem, and is ubiquitous in physics applications in which data is modeled
by the solution of first-order differential equations, as Istratov and Vyvenko (1999) review.

Kinetic models are represented in TIMP with the class kin. Options for the parameterization
of kinetic models in TIMP are here outlined.

5.1. Model for the decay of components

The basic model for the concentration matrix C is a sum of nncomp exponential decays pa-
rameterized as ΘK = (k1, . . . , knncomp

), so that the entries of the concentration matrix C(i, l)
are given as

C(i, l) = e−klti . (17)

Specification in TIMP: Kinetic decay rates

The vector kinpar contains numeric starting values for the kinetic decay rates, which in the
absence of a compartmental scheme parameterize exponential decays. The number of values
given determines nncomp, the number of components dedicated to modeling kinetic decays.

Journal of Statistical Software 19

5.2. Instrument response models

Multiway spectroscopy experiments often employ a short laser pulse to excite the system
under study and measure the resulting spectra in time. The convolution of the shape of
this exciting pulse and the detector response is the IRF. With pump-probe spectroscopy the
IRF is given by the convolution a pump and a probe pulse. With Gaussian-shaped pump and
probe pulses, the convolution of the two will again be Gaussian-shaped, but with an increased
width.

An IRF may either be parameterized in the model, or measured. A parametric model for the
IRF i as a Gaussian in the time dimension t gives the following model for the concentration
matrix C

C(t, kl, µ,∆) = e−klt ⋆ i(t) =
e−klt

2
ekl(µ+kl∆̃

2/2)

{

1 + erf

[

t− (µ+ kl∆̃
2)√

2∆̃

]}

(18)

where t is time, kl is the lth kinetic component, µ and ∆ are the location and full width half
maximum (FWHM) parameters of the Gaussian distribution, respectively, ∆̃ is the Gaussian
width parameter (such that ∆̃ = ∆/2

√
2 ln 2), and ⋆ is convolution. Recall that the FWHM

of the Gaussian distribution is related to the standard deviation σ as FMWM = 2
√

2 ln 2σ.

In the case that a measured IRF is used as opposed to a model for the IRF with parameters
to be estimated, its numerical convolution with the exponential decay function yielding the
kinetic decays is required. TIMP allows for either methods of including the effects of the IRF
to be applied.

Specification in TIMP: Gaussian IRF

The vector irfpar contains starting values for the parametric description of the IRF in terms
of a Gaussian. The vector is ordered irfpar = c(µ,∆). For example, irfpar = c(-2, .05)

specifies a starting location parameter µ as -2 and a width ∆ as .05, where the starting values
are in the unit of time of the timepoints in the data, e.g., picoseconds.

Specification in TIMP: Measured IRF

The vector measured_irf is of length equal to the number of timepoints in the data, and
contains the measured IRF; if specified, it will be applied to the data.

The integer convalg is between 1-4 and determines the numerical convolution algorithm used.
convalg=1 is the default and is recommended.

5.3. Models for dependence of IRF parameters on spectral variable

In the case that an IRF is included in the model using a parametric description, it is often
desirable that the parameters involved are dependent on spectral variable (e.g., wavelength).
The dependence of IRF on the spectral variable is termed dispersion.

Time-gated spectra are measurements of an optical property (e.g., emission or absorption)
as a function of a spectral variable like wavelength taken simultaneously across some range,
repeated at many distinct times. In kinetic models of time-gated spectra, dispersion is often
well-modeled as a smooth function of the spectral variable. Polynomial functions of degree

20 TIMP: Modeling Multi-way Spectroscopic Measurements in R

nparmu and npartau are often used to describe the variance in the spectral variable of the IRF
location parameter µ and FWHM parameter ∆, the coefficients of which become additional
parameters of ΘI . Then the IRF µ and ∆ are calculated per wavelength as

µ(λ) = µ0 +

nparmu
∑

i=1

µi

(

λ− λc

100

)i

, (19)

∆(λ) = ∆0 +

npartau
∑

i=1

∆i

(

λ− λc

100

)i

(20)

where µ is a function that takes a wavelength or wavenumber and gives the location of the IRF,
µ0 is the location of the IRF at λc, ∆ is a function that takes a wavelength or wavenumber
and gives the scaled width of the IRF, and ∆0 is the scaled width of the IRF at λc.

For data collected by measuring decay traces at many different wavelengths dispersion is often
well-modeled by shift parameters for µ and ∆ per-wavelength. Where nl is the number of
points whereby spectra are represented, this results in nl shift parameters parameterizing
the dispersion of µ and nl shift parameters parameterizing the dispersion of ∆. We refer to
models of dispersion employing a shift parameter per-wavelength as discrete.

Specification in TIMP: Dispersion models

The character strings dispmufun and disptaufun determine the functional form of the dis-
persion of the IRF location parameter. The default is a polynomial description. If dispmufun
or disptaufun is equal to ”discrete” a discrete model for dispersion of the corresponding vari-
able is applied. For the discrete case parmu or partau should contain a starting value for the
shift for every point by which spectra are represented (e.g., for each wavelength).

The numeric lambdac is supplied if a polynomial description of either dispersion of location or
FWHM is applied. Then lambdac is the center-wavelength in this description (λc in Equations
19 and 20).

The list parmu contains starting values for the parameters of the model for dispersion of the
IRF location. The vector partau contains starting values for the parameters of the model for
dispersion of the IRF FWHM.

5.4. Coherent artifact/scatter models

Should the measurements contain an instantaneous response or coherent artifact due to Ra-
man scatter, it may be desirable to include in the model for the concentrations C its description
in time. This is done by adding components (which are columns of the C matrix) to represent
its contribution.

A commonly used model for coherent artifact/scatter has the time characteristics of the IRF,
in which case a single column is appended to the concentration matrix with the IRF time
profile. A variation of this model maintains separate coherent artifact spectra for each of x
datasets Ψq.

Another commonly used model type employs a sequential scheme with, e.g., femtosecond life-
times, in which the signs of the amplitude of consecutive components alternates. This model
type often well-describes an oscillatory coherent artifact. In the case that the instantaneous

Journal of Statistical Software 21

response of the exciting pulse has both scatter and coherent response components, a linear
superposition of the model that follows the IRF time profile and a model based on a sequential
scheme may be applied.

An aside on the implementation of ultra-fast coherent artifact lifetimes

Models for the coherent artifact model type that employ a sequential kinetic scheme are often
well-fit with ultra-fast lifetimes, and hence large exponential decay rates. For very large
decay rates under Equation 18, it may be desirable to employ the exponentially scaled error
function exp(x2)erfc(x), as in the decayirf function of TIMP. An implementation of the
exponentially scaled error function (erfce) is currently unavailable within R. Its use in TIMP

is made possible by porting the implementation found in the Cephes Mathematical Library
(Moshier 1992) to an R shared library in C.

Specification in TIMP: Coherent artifact/scatter models

The list cohspec describes the model for coherent artifact/scatter component(s). If cohspec$type
is "irf", the coherent artifact/scatter has the time profile of the IRF. If cohspec$type

is "freeirfdisp" the coherent artifact/scatter has a Gaussian time profile whose location
and width are parameterized in the vector coh (independent from the IRF parameters).
If cohspec$type is "irfmulti" the time profile of the IRF is used for the coherent ar-
tifact/scatter model, but the IRF parameters are taken per dataset (for the multidataset
case), and cohspec$numdatasets must be equal to the number of datasets modeled. If
cohspec$type is "seq" a sequential exponential decay model is applied, whose parameters
are contained in coh. If cohspec$type is “mix” a sequential exponential decay model is ap-
plied along with a model that follows the time profile of the IRF; the coherent artifact/scatter
contribution is then a linear superposition of these two models.

The vector coh contains starting values for the parameterization of a coherent artifact/scatter
model.

5.5. Compartmental models

A linear time-invariant compartmental model may be used to describe allowed transitions
between components, as Godfrey (1983) reviews. Transitions between compartments are
described by microscopic rate constants which constitute the off-diagonal elements of the
transfer matrix K. The diagonal elements of K contain the total decay rates of each com-
partment. The concentrations of the compartments in continuous time are described by a
vector c(t) = [c1(t), . . . , cnncomp

(t)]⊤. Thus, a linear compartmental model with nncomp com-
partments is described by a differential equation for these concentrations

d

dt
c(t) = Kc(t) + j(t) (21)

where the input to the system is described by a vector j = i(t)[j1 j2 . . . jnncomp
] such that

∑nncomp

l=1 jl = 1, and jnncomp
≡ 1−

∑nncomp−1
l=1 jl. Also, generally jl ≥ 0. The IRF i(t) describes

the time-profile of the inputs. Under the assumption that the eigenvalues of K are different,
and that c(−∞) = 0, Equation 21 is solved as

c(t) = eKt ⋆ j(t). (22)

22 TIMP: Modeling Multi-way Spectroscopic Measurements in R

Equation 22 is used as the prescription for the concentrations of the components in discrete
time. Note that Equation 22 requires evaluation of the exponential of the K matrix. This
exponentiation is implemented in TIMP as described in van Stokkum (2005).

Analysis in the absence of a compartmental model is equivalent to the application of a K
matrix with non-zero elements only on the diagonal (Figure 6). A commonly applied com-
partmental model is termed a sequential model, in which nncomp − 1 components decay to a
single other component, one component decays directly to the ground state and no loops are
present (Figure 7).

Figure 6: Diagram of a compartmental model of three components, all of which decay in
parallel to the ground state.

Figure 7: Diagram of a compartmental model of three components sequentially decaying to
the ground state.

Specification in TIMP: Parallel/sequential compartmental model

The logical seqmod determines whether a sequential compartmental model is applied. If
seqmod=FALSE then a parallel compartmental model is applied. The default is seqmod=TRUE.

Specification in TIMP: Full compartmental model

The array kmat contains an array with dimension attribute c(2, n_ncomp, n_ncomp). That
is, kmat contains two matrices of dimension nncomp × nncomp. The matrix in kmat[1, 1 :
n_ncomp, 1 : n_ncomp] contains i at position kmat[1, j, i] if a transition from component i to
component j is allowed, and else 0.

The matrix in kmat[2, 1 : n_ncomp, 1 : n_ncomp] contains k at position kmat[2, j, i] if the
transition from component i to component j is parameterized by a branching parameter from
kinscal with index k, and else 0.

The vector jvec contains the j vector descriptive of the inputs to the transfer matrix K.

The vector kinscal is descriptive of starting values for branching parameters of K.

Journal of Statistical Software 23

5.6. Case study: Multiexperiment analysis

An example of multiexperiment kinetic modeling of data Ψ = {Ψ1,Ψ2} is considered in this
section. Datasets Ψ1 and Ψ2 were collected under the same experimental conditions except
the excitation laser intensity was doubled during collection of Ψ1 relative to the laser intensity
used during collection of Ψ2. The challenge in modeling is to obtain a parametric description
of the kinetics of the underlying system as evidenced by both datasets, as well as a parametric
description of how the difference in laser intensity affects the system. The system underlying
the data and physical evidence informing formulation of the initial model and interpretation
of model fit will be described elsewhere (manuscript in preparation).

Figure 8: (Left) Dataset Ψ1 measured using twice the laser intensity used to measure
(Right) dataset Ψ2. The color palette used to display these datasets is generated with the
diverge_hsv function of the vcd package (Meyer et al. 2006).

Data input

The data Ψ = {Ψ1,Ψ2} is read into TIMP in the time explicit format described in Appendix C
via the commands

R> psi_1 <- readData("psi_1.txt")

Read 1 item

Read 2385 items

R> psi_2 <- readData("psi_2.txt")

Read 1 item

Read 2385 items

24 TIMP: Modeling Multi-way Spectroscopic Measurements in R

where Ψ1 is stored in the file“psi_1.txt”and Ψ2 is stored in the file“psi_2.txt”(distributed
with this paper).

Data preprocessing

The wavelength axis of the data is scaled via the prescription x = 3.78x+ 643.5.

R> psi_1 <- preProcess(data = psi_1, scalx2 = c(3.78, 643.5))

R> psi_2 <- preProcess(data = psi_2, scalx2 = c(3.78, 643.5))

An initial model

Figure 9: Kinetics are described by a five-component sequential compartmental model with
identical decay rate parameters for both datasets.

It is known a priori that the underlying system is likely to contain five components decaying
sequentially, that a Gaussian IRF model is likely to be appropriate, and that a contribution
from a coherent artifact must be accounted for. Approximate starting estimates for parameter
values are also known.

This leads to the following model specification in TIMP.

R> model1 <- initModel(mod_type = "kin",

+ kinpar=c(7.9, 1.08, 0.129, .0225, .00156),

+ irfpar=c(-.1018, 0.0434),

+ parmu = list(c(.230)),

+ lambdac = 650, seqmod=TRUE,

+ positivepar = c("kinpar"), title="model 1",

+ cohspec = list(type = "irf"))

The vector kinpar contains the starting values for five kinetic components. These param-
eters are constrained to positive values during fitting by including "kinpar" in the vector
argument positivepar. The seqmod argument determines that the kinetics are described
with a sequential compartmental model. The irfpar argument gives starting values for the
parameters of the default Gaussian IRF model. The parmu argument gives starting values
for the default model for dispersion in terms of a polynomial, in this case of first-order. The
lambdac argument gives the center wavelength for the polynomial description of dispersion.
The cohspec argument determines that a model for a coherent artifact/scatter component is
to be added with the time-profile of the IRF.

Journal of Statistical Software 25

Fitting and validating the initial model

For simultaneous analysis a list is initialized to group dataset Ψ1 and dataset Ψ2 together.

R> psi <- list(psi_1, psi_2)

In the absence of information regarding the effect of laser intensity on the underlying system,
the model initialized in Section 5.6.3 may be fit to both dataset Ψ1 and dataset Ψ2 simulta-
neously, with the addition of a dataset scaling parameter ΘL to account for the difference in
amplitude between datasets due to laser intensity.

A call to the fitting function fitModel fits the initial model model1 to both datasets, with
the argument modeldiffs specifying per-dataset differences in the applied model. By visual
inspection of the data it is clear that the intensity of dataset Ψ2 is approximately half that
of dataset Ψ1. It is not obvious from visual inspection what other per-dataset differences to
include in the model. Therefore modeldiffs only specifies that the second dataset is scaled to
.5 times the first dataset (via the argument dscal = list(list(to=2,from=1,value=.5))).
The input argument opt specifies plotting and output options.

R> res_model1 <- fitModel(psi, model1,

+ modeldiffs = list(dscal = list(list(to=2,from=1,value=.5))),

+ opt=list(iter=5, superimpose = c(1,2), divdrel = TRUE, linrange = .2,

+ makeps = "den1", selectedtraces = c(1,5,10), plotkinspec =TRUE,

+ xlabel = "time (ps)", ylabel = "wavelength",

+ paropt=list(cex.main=1.2,cex.lab=1.2,cex.axis=1.2)))

Figure 10 shows the fit of selected traces after fitting for five iterations. Large misfits are
present. Misfits around time zero are likely to be due to an insufficient IRF model, whereas
misfits at later times are likely to be due to differences in the kinetics of the two measured
datasets. The root mean square (RMS) error associated with this fit is .040. Note that the
datasets appear to have the same amplitudes due to the argument divrel to opt in the call
to fitModel, which divides Ψ2 and and the fit of the model to Ψ2 by the estimate for the
dataset scaling parameter.

Model refinement and re-validation

Fitting the IRF location parameters and the slowest two kinetic decay rate parameters per-
dataset attempts to address the inadequacies of the model identified in validation.

R> res_model1_refined <- fitModel(psi, model1,

+ modeldiffs = list(dscal = list(list(to=2,from=1,value=.5)),

+ free = list(

+ list(what = "irfpar", ind = 1, dataset = 2, start=-.1932),

+ list(what = "kinpar", ind = 5, dataset = 2, start=.0004),

+ list(what = "kinpar", ind = 4, dataset = 2, start= .0159)

+)),

+ opt=list(iter=5,superimpose = c(1,2), divdrel = TRUE, linrange = .2,

+ makeps = "den2", selectedtraces = c(1,5,10),

+ paropt=list(cex.main=1.2,cex.lab=1.2,cex.axis=1.2)))

26 TIMP: Modeling Multi-way Spectroscopic Measurements in R

Figure 10: A plot of three selected traces resulting from the fit of the initial model to the
data Ψ = {Ψ1,Ψ2}. Black represents data Ψ1 (solid) and the fit of the initial model to Ψ1

(dotted); Red represents data Ψ2 (solid) and the fit of the initial model to Ψ2 (dotted). The
RMS error associated with this fit is .040.

The resulting fit is improved over the initial model, though a misfit remains evident at early
times. The data has an oscillatory nature in some traces indicative of a contribution from a
coherent artifact, as evident in Figure 11. The RMS error associated with this fit is .027.

A satisfactory model

The model for the coherent artifact has followed the time profile of the IRF, which is not suffi-
cient to account for the oscillatory nature of its apparent contribution to the data. Therefore
the coherent artifact model is replaced via a re-definition of the model (which could also
be performed by specifying a different model prescription for both datasets in the model
differences list):

R> model2 <- initModel(mod_type = "kin",

+ kinpar=c(7.9, 1.08, 0.129, .0225, .00156),

+ irfpar=c(-.1018, 0.0434),

+ parmu = list(c(.230)),

+ lambdac = 650,

+ seqmod=TRUE,

+ positivepar = c("kinpar", "coh"),

+ title="Model 2",

+ cohspec = list(type = "seq", start = c(8000, 1800)))

Journal of Statistical Software 27

Figure 11: A plot of three selected traces resulting from the fit of the refined model to the
data Ψ = {Ψ1,Ψ2}, with the IRF location parameters and the two slowest decay rates fit
per-dataset. Black represents data Ψ1 (solid) and the fit of the initial model to Ψ1 (dotted);
Red represents data Ψ2 (solid) and the fit of the initial model to Ψ2 (dotted). The RMS error
associated with this fit is .027.

The new model is fit to the datasets. Again the IRF location and the two slowest data rates
are fit per-dataset. The estimated value of the data scaling parameter between Ψ1 and Ψ2

obtained in fitting the refinement of the initial model is used as a starting value.

R> res_model2 <- fitModel(psi, model2,

+ modeldiffs = list(dscal = list(list(to=2,from=1,value=.457)),

+ free = list(

+ list(what = "irfpar", ind = 1, dataset = 2, start=-.1932),

+ list(what = "kinpar", ind = 5, dataset = 2, start=.0004),

+ list(what = "kinpar", ind = 4, dataset = 2,

+ start= .0159))),

+ opt=list(iter=1,superimpose = c(1,2), divdrel = TRUE, linrange = .2,

+ makeps = "den3", selectedtraces = c(1,5,10), plotkinspec =TRUE,

+ xlabel = "time (ps)", ylabel = "wavelength", breakdown = c(1,5,10),

+ paropt=list(cex.main=1.2,cex.lab=1.2,cex.axis=1.2)))

The resulting parameter estimates mapped to a hierarchical representation of the model are
shown in Figure 15. For clarity the standard errors estimates returned by nls have been
omitted. These standard errors are typically 1-5 in the last significant digit reported, except

28 TIMP: Modeling Multi-way Spectroscopic Measurements in R

Figure 12: A plot of three selected traces resulting from the fit of a satisfactory model to
the data Ψ = {Ψ1,Ψ2}, with the IRF location parameters and the two slowest decay rates fit
per-dataset, and under application of an oscillatory coherent artifact model. Black represents
data Ψ1 (solid) and the fit of the initial model to Ψ1 (dotted); Red represents data Ψ2 (solid)
and the fit of the initial model to Ψ2 (dotted). The RMS error associated with this fit is .025.

for θC (which is not of interest) where they are huge.

Figure 13 shows just the estimates of the kinetic decay rates, with the color of each component
the same as in Figure 16 and Figure 14. Figure 14 shows the contribution to the fit of
the kinetic decay components and the coherent artifact (which is in pink) at three different
wavelengths. The fit associated with the model after five iterations shown at three selected
wavelengths in Figure 12 is deemed acceptable. The RMS error associated with this fit is
.025. The spectra associated with the kinetic decay components (Figure 16) have physically
plausible shapes. The discovery of an appropriate model for the data allows the differences in

Figure 13: Transitions between the five components of the compartmental model are now fit
with decay rates as labeled; the slowest two decays are fit independently for each dataset.

Journal of Statistical Software 29

Figure 14: Contributions to fit per component show evolution. Pink represents the coherent
artifact component; key to other colors is in Figure 13. Dashed lines indicate the fit of the
second dataset Ψ2, which has slower decay rate estimates.

the slow rate constant estimates between datasets to be attributed to the effect of a difference
in laser power. The parameter ΘL is also interpretable as quantifying this difference.

6. Spectral models

Spectral models are those models in which the nonlinear parameters determine the matrix of
spectra E. The spectral bandshapes are typically described in terms of a linear superposition
of standard band shapes (e.g., Gaussian, Lorentzian, Voigt, skewed Gaussian) or in terms of
splines. In the case that a superposition of standard band shapes is used, each column of E,
ǫl, is modeled as

ǫl = (amp1)(g1l) + . . .+ (amph)(ghl) (23)

where amp1, . . . , amph are amplitude parameters, and g is the band shape function. The
concentration profiles are then estimated as clp.

Spectral models are represented in TIMP with the class spec. Model parameterization options
for spectral models are here outlined.

30 TIMP: Modeling Multi-way Spectroscopic Measurements in R

Figure 15: Parameter estimates associated with the fit of the satisfactory model mapped
to a hierarchical model representation. ΘL is a dataset scaling parameter descriptive of
the difference in intensity of Ψ2 as compared to Ψ1. Parameter estimates linked between
datasets Ψ1 and Ψ2 are in blue. Parameter estimates fit per-dataset are in magenta and
green respectively, for Ψ1 and Ψ2.

Figure 16: Estimated spectra associated with the five kinetic decays have physically plausible
shapes. The mapping of spectra to kinetic decays is given in the color code of Figures 13 and
14.

Journal of Statistical Software 31

6.1. Bandshape models

The most commonly applied bandshape model is a superposition of skewed Gaussians. This
underlying model for E is chosen because it is a simple model capable of representing real
spectra in practice and because the use of (skewed) Gaussians to represent spectral shapes
is wide-spread, (see, e.g., van Stokkum et al. (2004) and van Stokkum (1997) and references
therein).

The model for ǫl under a single skewed Gaussian distribution where ν̄ = 107/λ is

ǫl(ν̄max,∆ν̄, b) ≡ ν̄−n exp

(

− ln(2)

(

ln

(

1 +
2b(ν̄ − ν̄max)

∆ν̄

)

/b

)2
)

, (24)

except if 1 + (2b(ν̄i − ν̄max))/∆ν̄ ≤ 0, in which case ǫl(ν̄max,∆ν̄, b) ≡ 0. When skewness
b = 0, (and the skewed Gaussian distribution reduces to the Gaussian distribution), ν̄max

corresponds to the maximum of the distribution, and ∆ν̄ corresponds to the full width at half
maximum (FWHM). When b 6= 0, ν̄max and ∆ν̄ do not have this exact correspondence. The
FWHM may then be determined as ∆ν̄ sinh(b)/b. The average wavenumber of the skewed
Gaussian is given by

ν̄avg = ν̄max +
∆ν̄

2b

(

exp

(

− 3b

4 ln(2)

)

− 1

)

(25)

A linear superposition of spectra as in Equation 24 is a common model for a single spectrum
ǫl.

Specification in TIMP: Bandshape model

The list specpar contains vectors of starting values for spectral parameters; the number of
vectors gives the number of components in the resulting spectral model. Each vector con-
tains the parameters associated with a component. e.g., specpar = list(c(20000, 3000,

.3, 21000, 2000, .4), c(18000, 1000, .2)); the parameters in each vector are grouped
c(location_spectra, width_spectra, skew_spectra). The location and width parame-
ters are given in wavenumbers. Note that this means that each component may be modeled
with a superposition of many skewed Gaussians.

The character string specfun specifies the model used in the description of bandshapes.

Inclusion of the amplitude parameters is not yet implemented, so that all skewed bandshapes
contributing to a single component spectrum ǫl contribute equally.

6.2. Dependence of bandshape parameters on independent variable

It is often desirable to model bandshape parameters of spectra as a function of the independent
variable in which spectra are resolved, (e.g., time or temperature). Parameterization of this
variation is a means of studying protein conformational stability (for temperature-resolved
data), and vibrational relaxation (for time-resolved data).

Dependence on the variable in which spectra are resolved may often be well-described by
a polynomial model. Where θ is some parameter contributing to the determination of a
bandshape (i.e., either a location, width, skewness or amplitude parameter), t is a value of
the independent variable with which spectra are resolved, v is the number of coefficients

32 TIMP: Modeling Multi-way Spectroscopic Measurements in R

parameterizing the polynomial (in addition to θ), tref is the center-point of the polynomial,
and α1, . . . , αv parameterize the dependence, then

θ(t) = θ +

v
∑

i=1

αi((t− tref)/100)i. (26)

An exponential model of dependence on the variable in which spectra are resolved is also often
of interest. Then where tref is a reference time, and other variables are as in the polynomial
description,

θ(t) = θ + α1 exp(−α2(t− tref)). (27)

A multiexponential model may also be of use in some cases. For the bi-exponential case

θ(t) = θ + ((θ0 − θ)
exp(−k1(t− tref)) + α2 exp(−k2(t− tref))

1 + α2
), (28)

where θ(t0) = θ0 and θ(∞) = θ.

For the general case of i ≥ 1 multiexponential decays,

θ(t) = θ + (θ0 − θ)
∑

(αi exp(−ki(t− tref)))
∑

αi
(29)

where α1 ≡ 1.

Specification in TIMP: Dependence of bandshape parameters on independent variable

The character string parmufunc determines the function modeling dependence of the band-
shape parameters on the independent variable. Options are "poly" for the polynomial case
(Equation 26) "exp" for the single exponential description (Equation 27) and "multiexp" for
the multiexponential description (Equation 29).

The numeric specref gives the index of the center variable, tref in Equations 26, 27 and 29).

The list specdispindex defines those indices of specpar whose dependence on the variable in
which spectra are resolved is to be modeled. For example, specdispindex = list(c(1,1),

c(1,2), c(1,3)) indicates that parameters 1-3 of spectra 1 are to be modeled as variable.

The list specdisppar contains vectors of the parameters describing time-dependence. One
vector of parameters is given for each vector of indices in specdispindex. These parameters
describe a polynomial time-dependence by default. There are three ways to interpret these
vectors, depending on the value of parmufunc. If parmufunc is "poly" for the polynomial
case, the vectors are of the length of the desired degree of the polynomial parameterization;
e.g., use specdisppar=list(c(-2000, 1, .1), c(1, .1, .01), c(.2, .1)) for a 3rd or-
der dependence of two spectral parameters, and a 2nd order dependence on one spectral
parameter. If parmufunc is "exp" the first parameter is a linear coefficient and the second
is a rate; if all but the first vector have the rate omitted then rates will be linked across
all parameters that are time-dependent; otherwise rates will be fit per-parameter that is de-
pendent on the variable with which spectra are resolved. If parmufunc is "multiexp" an
arbitrary number of vectors of coefficients and rates in the form c(α_1, k_1, α_2, k_2, . . .) may
be specified as elements of the specdisppar list.

Journal of Statistical Software 33

6.3. Case study: Time-dependence of spectral parameters

A spectral model is fit to the time-resolved dataset shown in Figure 17. A goal is the para-
metric description of the relaxation of the bandshape in time. As in the kinetic modeling case
study, (Section 5.6) this section describes the use of TIMP for interactive model discovery. The
system underlying the data and motivation for the initial model as well as physico-chemical
interpretation of model fit will be described elsewhere (manuscript in preparation).

Figure 17: A dataset of time-resolved spectra. We are interested in application of a spectral
model to the selection of this data shown in Figure 18.

Data input

The data Ψ = {Ψ1} is read into TIMP in the time explicit format described in Appendix C
via the command

R> psi_1 <- readData("psitspec.txt")

Read 1 item

Read 181063 items

where Ψ1 is stored in the file “psitspec.txt”, (distributed with this paper).

Data preprocessing

The dataset was truncated to the wavelength range 440-640 nm, and to times after 53 ps
(from time indices 178 to 478), since we are only interested in modeling processes occurring
in this range.

34 TIMP: Modeling Multi-way Spectroscopic Measurements in R

Figure 18: The dataset in Figure 17 selected to include only the range of timepoints and
wavelengths of interest for modeling, and sampled to include only every fifth timepoint to
expedite parameter estimation.

R> psi_1_full <-preProcess(psi_1, sel_time=c(178, 478),

+ sel_lambda_ab = c(440, 640))

To expedite parameter estimation only every fifth timepoint is sampled from the selected
dataset. When a model likely to be satisfactory is identified on the sampled dataset, it may
be applied to the unsampled selected dataset.

R> psi_1_sampled <- preProcess(psi_1, sel_time=c(178, 478),

+ sel_lambda_ab = c(440, 640), sample_time=5)

Figure 18 shows the selected and sampled dataset resulting from the above calls to the
preProcess function.

Initial model: Polynomial dependence of spectral variables on time

A spectra with bandshape model comprised of a single skewed Gaussian is initialized, first
with linear polynomial dependence of the spectral variables on time.

R> model_polylin <- initModel(mod_type = "spec",

+ specpar=list(c(20000,3100,-.3)),

+ specdispindex = list(c(1,1), c(1,2), c(1,3)),

Journal of Statistical Software 35

+ specdisppar=list(c(-2000),c(1), c(.2)),

+ specref=53, specfun="gaus",

+ iter=1, nupow=5, make_ps="badan_lin",

+ title = "Linear")

R> res_polylin <- fitModel(data = list(psi_1_sampled),

+ model = model_polylin,

+ opt=list(iter=7, linrange = 20,

+ makeps = "polylin", nospectra = TRUE,

+ selectedspectra = seq(1, psi_1_sampled@nt, by=7),

+ residplot = TRUE,

+ xlabel = "time", ylabel = "wavelength",

+))

60 100 140

4
5

0
5

5
0

Residuals Dataset 1

time

w
a

v
e

le
n

g
th

60 80 120

−
0

.4
−

0
.1

0
.1

1st left sing. vec. residuals

time

450 550

−
0

.1
0

0
.0

0

1st right sing. vec. residuals

wavelength

0 20 40 60

3
.4

3
.8

4
.2

4
.6

Sing. values residuals

Figure 19: Residuals associated with the fit of the initial spectral model in which dependence
of the spectral bandshape on parameters is described with a first-order polynomial. The
first left and right singular vector and the singular values associated with their SVD are
also plotted. Note the structure in the first left singular vector of the residuals, indicating
inadequacy in the model fit. The RMS error associated with this fit is 414.

36 TIMP: Modeling Multi-way Spectroscopic Measurements in R

Structure in the residuals as evidenced by their SVD in Figure 19 indicates an inadequate
model. A different parameterization of the dependence of spectral parameters on time will
be applied as a model refinement.

Refined model: Exponential dependence of spectral variable on time

The initial model is refined to describe an exponential dependence of spectral variables on
time, in an attempt to address the inadequacy in the fit of the initial model. The applied
model is such that α2 from Equation 27 is equated for all spectral bandshape parameters.

R> model_exp_linkedrates <- initModel(mod_type = "spec",

+ specpar=list(c(18000, 3200, -.1)),

+ specdispindex = list(c(1,1), c(1,2), c(1,3)),

+ specdisppar=list(c(600,1/20), c(400), c(.1)),

+ specref=53, specfun="gaus", parmufunc = "exp",

+ nupow=5,

+ title = "Exponential parameterization of time dep., linked rates")

R> res_model_exp_linkedrates <- fitModel(data = list(psi_1_sampled),

+ model = model_exp_linkedrates,

+ opt=list(iter=5, linrange = 20, residplot=TRUE,

+ makeps = "explinked", nospectra = TRUE,

+ selectedspectra = seq(1, psi_1_sampled@nt, by=7),

+ xlabel = "time", ylabel = "wavelength"))

The fit of the refined spectral model that employs an exponential description of time-dependence
of spectral bandshape parameters is well-fit to the data, as evidenced by plots showing the
fit of the model to the data in Figure 20. Further evidence for the satisfactory model fit is
contained in plots regarding the residuals in Figure 21. An SVD decomposition of the resid-
uals shows little structure in the first left singular vector. Some structure remains evident
in the first right singular vector, indicating that there remains room for improvement in the
model. Despite this, we conclude that the model fit is satisfactorily descriptive of the data.
The exponential rate estimate α1 = .07 is therefore useful as a descriptor of the relaxation of
the spectral bandshape parameters in time.

7. Extension of supported model types

TIMP has been designed to allow for rapid implementation of new options and new model
types. New options can be added by modification of the class definitions associated with
existing model types and the class for parameter estimates theta, and modification of the
associated residual functions to work with slots describing new options. For instance, imagine
that for a model type modelx, a parameterization of an additional sort of submodel is desired.

Journal of Statistical Software 37

Figure 20: (Left) A plot of selected spectra resulting from the fit (dashed line) of a spectral
model in which time-dependence of spectral bandshape parameters is modeled with an ex-
ponential function to data Ψ = {Ψ1} (solid line). Each sub-plot represents the data at the
timepoint on the left axis. The RMS error associated with this fit is 312.

Then two slots are added to the class definition for model type modelx: a slot to represent
options to parameterize the new submodel new, and a slot parnew to represent the starting
values of nonlinear parameters associated with the new submodel. A slot named parnew is
also added to the class theta. Then new and parnew are given as inputs to the inputModel

function. To use the new parameterization to change how the residuals are determined, the
S4 methods associated with determining the residuals for class modelx are modified. The
S4 method plotter determining plotting/output for modelx is also modified to use the new
options as desired. No additional modification of the code is necessary.

The process of adding an entirely new model type newmodel can be described in terms of four
steps:

• definition of a new class for the model type newmodel that inherits from dat

• for every slot par representing a list/vector of nonlinear parameter value starting values
in the definition of newmodel adding a slot for a list/vector of the same name par to
the class theta so that the vector of parameters Θ can be inferred, and so that updated
parameter estimates can be plugged back into the model specification each iteration

38 TIMP: Modeling Multi-way Spectroscopic Measurements in R

60 100 140

4
5

0
5

5
0

Residuals Dataset 1

time

w
a

v
e

le
n

g
th

60 80 120

0
.0

0
0

.1
0

0
.2

0

1st left sing. vec. residuals

time

450 550

−
0

.1
0

0
.0

0
0

.1
0

1st right sing. vec. residuals

wavelength

0 20 40 60

3
.4

3
.8

Sing. values residuals

Figure 21: Residuals associated with the fit of the spectral model, and the first left and right
singular vector and the singular values associated with their SVD. Note the lack of structure
in the first left singular vector of the residuals, a sign that the model fit is satisfactory.
There remains some structure in the first right singular vector, but we accept the model as
satisfactory nonetheless.

• definition of methods for residPart (and/or getClpIndepX depending on whether clp
are involved) that supply a prescription for the calculation of residuals for a single
dataset Ψq given a model

• definition of desired output plots and other information via a method for plotter

The remaining code of TIMP should not require any modification. Planned extensions to ad-
ditional model types will allow the application of the package to fitting models for photocycles
and polarization-dependent effects.

8. Conclusions

TIMP, an R package for interactive scientific model discovery for multiway spectroscopy data
has been introduced. The design of the package has been outlined. The partitioned variable

Journal of Statistical Software 39

projection algorithm that is central to solving separable nonlinear least squares parameter
estimation problems with TIMP was presented.

General options for models in TIMP were introduced, along with options specific to kinetic
and spectral model types. A case study in application of a kinetic model to two datasets
simultaneously illustrated many kinetic model options. A case study in application of a
spectral model illustrated many spectral model options.

TIMP is in active development. Future work includes the development of new model types
for data collected in multipulse laser experiments, anisotropy experiments, and experiments
designed to extract information on photocycles, as well as the implementation of additional
options to support model specification and validation. The development of a GUI to support
interactivity is also planned.

Acknowledgments

This research was funded by Computational Science grant #635.000.014 from the Netherlands
Organization for Scientific Research (NWO). Mikas Vengris, Denitsa Grancharova and Rienk
van Grondelle provided the data modeled in Section 5.6. Rob Koehorst, Bart van Oort, Sergey
Laptenok, Ton Visser and Herbert van Amerongen provided the data modeled in Section 6.3.
Joris Snellenburg is thanked for constructive comments on the text. Uwe Ligges and Martin
Mächler collaborated in the implementation of the nls options described in Section B. Achim
Zeileis contributed helpful suggestions regarding the figures.

References

Bates DM, DebRoy S (2003). “Converting a Large R Package to S4 Classes and Methods.”
In K Hornik, F Leisch, A Zeileis (eds.), “Proceedings of the 3rd International Workshop on
Distributed Statistical Computing, Vienna, Austria,” ISSN 1609-395X, URL http://www.

ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/.

Chambers JM (1998). Programming with Data, A Guide to the S Language. Springer-Verlag,
New York.

Godfrey K (1983). Compartmental Models and Their Application. Academic Press, London.

Golub G, Pereyra V (2003). “Separable Nonlinear Least Squares: the Variable Projection
Method and its Applications.” Inverse Problems, 19, R1–R26.

Golub GH, LeVeque RJ (1979). “Extensions and Uses of the Variable Projection Algorithm for
Solving Nonlinear Least Squares Problems.” In “Proceedings of the 1979 Army Numerical
Analysis and Computers Conference,” volume ARO Report 79-3, pp. 1–12.

Golub GH, Pereyra V (1972). “The Differentiation of Pseudo-inverses and Nonlinear Least
Squares Problems whose Variables Separate.” Technical report, Stanford University, De-
partment of Computer Science.

Golub GH, Pereyra V (1973). “The Differentiation of Pseudoinverses and Nonlinear Least
Squares Problems whose Variables Separate.” SIAM Journal on Numerical Analysis, 10,
413–432.

http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/

40 TIMP: Modeling Multi-way Spectroscopic Measurements in R

Istratov AA, Vyvenko OF (1999). “Exponential Analysis in Physical Phenomena.” Review of
Scientific Instruments, 70(2), 1233–1257.

Laptenok S, Mullen KM, Borst JW, van Stokkum IHM, Apanasovich VV, Visser AJWG
(2007). “Fluorescence Lifetime Imaging Microscopy (FLIM) data analysis with TIMP.”
Journal of Statistical Software, 18(8). URL http://www.jstatsoft.org/v18/i08/.

Meyer D, Zeileis A, Hornik K (2006). vcd: Visualizing Categorical Data. R package version
1.0-2.

Moshier SL (1992). Cephes Mathematical Library. URL http://www.moshier.net/.

R Development Core Team (2006). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org/.

van Stokkum IHM (1997). “Parameter Precision in Global Analysis of Time-Resolved Spec-
tra.” IEEE Transactions on Instrumentation and Measurement, 46(4), 764–768.

van Stokkum IHM (2005). “Global and Target Analysis of Time-resolved Spectra, Lecture
notes for the Troisième Cycle de la Physique en Suisse Romande.” Technical report, De-
partment of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, Amsterdam,
The Netherlands. URL http://www.nat.vu.nl/~ivo/lecturenotes.pdf.

van Stokkum IHM, Larsen DS, van Grondelle R (2004). “Global and Target Analysis of
Time-resolved Spectra.” Biochimica et Biophysica Acta, 1657, 82–104, and erratum, 1658,
262.

van Stokkum IHM, Lozier RH (2002). “Target Analysis of the Bacteriorhodopsin Photocycle
Using a Spectrotemporal Model.” Journal of Physical Chemistry B, 106(13), 3477–3485.

Verveer PJ, Squire A, Bastiaens PIH (2000). “Global Analysis of Fluorescence Lifetime Imag-
ing Microscopy Data.” Biophysical Journal, 78(4), 2127–2137.

http://www.jstatsoft.org/v18/i08/
http://www.moshier.net/
http://www.R-project.org/
http://www.R-project.org/
http://www.nat.vu.nl/~ivo/lecturenotes.pdf

Journal of Statistical Software 41

A. Partitioned vs. unpartitioned variable projection algorithms

This appendix considers in detail the memory requirements of the partitioned variable pro-
jection algorithm introduced in Section 2.4, and compares these requirements to those of the
standard (unpartitioned) variable projection algorithm. The large memory requirements of
the standard variable projection algorithm complicate its application, and sometimes pro-
hibit its use entirely (as e.g., in the experience of Verveer, Squire, and Bastiaens (2000)). The
ability to apply the variable projection functional without operating on large matrices is the
main motivation for introduction of the partitioned variant of the algorithm. Partitioned-
VarPro and the standard implementation of variable projection, as found for instance in the
plinear function of nls, return the same results. The algorithms differ only in the memory
resources required.

Under PartitionedVarPro with free clp (as defined in Section 2.4) for part p, the residual
vector representing dataset Ψq is formed by taking QR(Xpq). The matrix Q⊤

2 associated with
this decomposition is of dimension (m− nncomp)×m. Ψpq is of length m. Hence the residual
for part p, dataset q is of length (m − nncomp). Concatenating the results for all x datasets
at all n parts p yields a total residual of length nx(m− nncomp).

Under unpartitioned variable projection (VarPro), Ψ is not treated by part p. Hence the
entire matrix Ψ is vectorized. Recall that where A, B and C are matrices of compatible
dimensions, vec(ABC) = (C⊤ ⊗ A)vec(B), where vec is the vector representation, and ⊗ is
the Kronecker product. Let Ψsuper be the mx×n matrix comprised of concatenating datasets
Ψ1, . . . ,Ψx. Then

vec(Ψsuper) = vec(Xsuperβ
⊤

superIn) = (In ⊗Xsuper)vec(β
⊤

q), (30)

where

In ⊗Xsuper =

X1super

. . .

Xpsuper

. . .

Xnsuper

(31)

In ⊗Xsuper has zero entries except as noted, and has dimension nmx× nnncomp.

PartitionedVarPro with linked clp performs n QR decompositions on matrices of dimen-
sion mx× nncomp, whereas PartitionedVarPro with free clp performs nx QR decomposi-
tions on matrices of dimension m × nncomp. VarPro performs one QR decomposition on a
matrix of dimension nmx× nnncomp. For m = n = 1000, nncomp = x = 10, the QR decompo-
sition is performed on matrices of dimensions 10000× 10 and 1000× 10 in the case of linked
and free clp, respectively, whereas VarPro performs the QR decomposition on a matrix of
dimension 107× 104. Avoiding storage and manipulation of a large matrix is a primary moti-
vation to prefer PartitionedVarPro over VarPro. In order to make VarPro usable for
realistic problems, storage of only non-zero elements of Inl⊗QR(Xsuper) and operation on the
result with a modified QR-routine could be attempted. However, doing so would provide no
advantage over PartitionedVarPro, (and furthermore, requires implementation of a QR
routine to operate on the special form of the matrix).

42 TIMP: Modeling Multi-way Spectroscopic Measurements in R

A.1. Empirical comparison of partitioned and unpartitioned variable pro-
jection algorithms

The nls function of R allows application of the variable projection algorithm via the plinear
option. We show here how the simple kinetic modeling problem considered in Section 1.3 may
be fit using nls and the plinear option. We then compare the memory requirements under
plinear to those under the partitioned variable projection algorithm implemented in TIMP.

We assume that a dataset Psi_q is simulated in R as described in Section 1.3. Com-
mands to simulate the dataset and set up the workspace are contained in full in the file
“memory_prof_plin.R” (distributed with this paper). In order to use nls under the plinear

option, the model for concentrations is placed into a function calcC, which is also found in
TIMP, as follows.

"calcC" <- function (k, t)

{

conc <- matrix(nrow = length(t), ncol = length(k))

for (i in 1:length(k)) {

conc[, i] <- exp(-k[i] * t)

}

conc

}

The sum-of-exponentials model can then be fit to the data using calcC, with the plinear

option using the standard variable projection functional to determine the residuals, and with
the spectra as conditionally linear parameters.

R> psi_q_vector <- as.vector(Psi_q)

R> onls <- nls(psi_q_vector ~ kronecker(diag(length(wavenum)),

+ calcC(k, t)), data.frame(psi_q_vector),

+ start = list(k = c(.1,2)), alg = "plinear", trace = T)

To profile the memory allocated in the course of solving this problem, we apply the gc function,
(note that more refined memory profiling is possible with the Rprof and Rprofmem functions
under builds of R compiled to enable memory profiling). Before and after the call to nls, the
results of a call gc(verbose=TRUE) on on our system are

Garbage collection 11 = 9+0+2 (level 2) ...

6.4 Mbytes of cons cells used (58%)

0.9 Mbytes of vectors used (14%)

and

Garbage collection 100 = 45+26+29 (level 2) ...

6.6 Mbytes of cons cells used (53%)

13.2 Mbytes of vectors used (32%)

respectively. This shows that under the plinear implementation of variable projection about
12 Mbytes of vector space is allocated in the course of solving this example problem.

Journal of Statistical Software 43

To contrast this with the memory allocated under the partitioned variable projection imple-
mentation found in TIMP on the same system, we load the package and initialize a model
object as described in in Section 1.3 and in the file “memory_prof_pvarpro.R”. A call to
gc(verbose=TRUE) before calling the fitModel function that applies the partitioned variable
projection algorithm to fitting the sum-of-exponentials model with the spectra as clp has the
following result

Garbage collection 35 = 31+2+2 (level 2) ...

7.5 Mbytes of cons cells used (68%)

1.0 Mbytes of vectors used (16%)

Then fitting the model as in Section 1.3 with

R> kinetic_fit <- fitModel(data = list(Psi_q_data), model = kinetic_model,

+ opt = list(iter=4, plot=FALSE))

and subsequently calling gc(verbose=TRUE) results in

Garbage collection 52 = 46+3+3 (level 2) ...

7.8 Mbytes of cons cells used (62%)

1.5 Mbytes of vectors used (25%)

This shows that in the course of applying the partitioned variable projection implementation
to the problem, about .5 Mbytes of vector space is allocated, about 20 times less than under
plinear on the same problem.

The savings in memory allocated via the use of the partitioned variable projection algorithm
found in TIMP is very significant for problems of interest in the multiway spectroscopy model-
ing domain. As larger amounts of data are involved the memory requirements of the standard
non-partitioned implementation found in the plinear option grow so large as to prohibit its use
on a modern personal computer, while the memory requirements of the partitioned version
of the algorithm found in TIMP remain modest.

B. New nls options

It is often desirable in scientific modeling applications to terminate the iterative optimization
of free model parameters when stopping criteria are met, as opposed to when convergence

criteria are met. For instance, it is often desirable to evaluate the fit of a model at a given set
of starting estimates, or after fitting for a modest number of iterations. Then the stopping
criteria is completion of a maximum number of iterations, after which output is desired, even
though the fit may be far from satisfying convergence criteria.

It is often also desirable to examine output in the case that the fitting algorithm encountered
a problem and terminated fitting with an error. For instance, if the gradient of the residual
vector with respect to nonlinear parameter estimates becomes singular, examination of the
current parameter estimates may shed light on how the model can be modified to be better
determined with respect to the data.

The R function nls is widely applied in scientific model discovery and is used in TIMP to
iteratively improve nonlinear parameter estimates. Prior to R version 2.5 nls did not return
output in the case that any of the following conditions are met

44 TIMP: Modeling Multi-way Spectroscopic Measurements in R

• the maximum number of iterations x is met (as specified with nls(. . ., control =

list(maxiter = x, . . .)))

• the step-size is below the minimum x (as specified with nls(. . ., control = list(minFac

= x, . . .)))

• a singular gradient occurs

In all these cases return of the output object may be valuable for scientific model discovery,
for the reasons sketched above. We have implemented the option ‘warnOnly’ to determine
if an output object is returned in the case that one of the above conditions is met. The
implementation of this option has been incorporated into R version 2.5. A logical slot in the
class nls.control is used to toggle the ‘warnOnly’ option. To output a result object even
in the case that an error is triggered, nls is called with nls(. . ., control = list(warnOnly

= TRUE, . . .).

A better understanding of the residual surface on which optimization occurs is sometimes
gained by knowledge of how many times nls halves the step-size in the gradient direction.
We have implemented the option ‘printEval’ to print the number of evaluations (of the
step-size) required each iteration; this option is also included in R version 2.5. A logical slot
in the class nls.control is used to toggle the ‘printEval’ option. To print the number of
evaluations required (as well as the achieved convergence tolerance), nls may be called with
nls(. . ., control = list(warnOnly = TRUE, . . .).

C. Data formats for input into TIMP

Currently TIMP allows the input of data in three formats. More formats will be added in
the future.

C.1. Time explicit format

The time explicit format for data input contains 5 lines and then a matrix of data in which
each row represents a concentration profile, and each column represents spectra.

Heading line 1
Heading line 2
Time explicit
Intervalnr 5

t1 t2 . . . tm−1 tm
λ1 Ψ(t1, λ1) Ψ(t2, λ1) . . . Ψ(tm−1, λ1) Ψ(tm, λ1)
λ2 Ψ(t1, λ2) Ψ(t2, λ2) . . . Ψ(tm−1, λ2) Ψ(tm, λ2)
.
λn−1 Ψ(t1, λn−1) Ψ(t2, λn−1) . . . Ψ(tm−1, λn−1) Ψ(tm, λn−1)
λn Ψ(t1, λn) Ψ(t2, λn) . . . Ψ(tm−1, λn) Ψ(tm, λn)

Data matrix elements are space-delimited. ‘Heading line 1’ and ‘Heading line 2’ are two
lines that may be filled as desired (e.g., with a data file title). The string ‘Time explicit’
indicates the data format. The string ‘Intervalnr’ and a scalar m indicates the number of
distinct points m at which spectra were measured, (note that the number of wavelengths n
need not be specified). The following line contains the real-valued variable values (such as

Journal of Statistical Software 45

times) t1, . . . , tm at which measurements were taken. The first value of each of the remaining
lines represents the wavelength at which the concentration profile contained on that row was
taken. The rest of each remaining row represents a (space-delimited) concentration profile
Ψ(t1, λ),Ψ(t2, λ), . . . ,Ψ(tm, λ).

C.2. Wavelength explicit format

The wavelength explicit format for data input contains 5 lines and then a matrix of data in
which each row represents spectra, and each column represents a concentration profile.

Heading line 1
Heading line 2
Wavelength explicit
Intervalnr 5

λ1 λ2
... λn−1 λn

t1 Ψ(t1, λ1) Ψ(t1, λ2)
... Ψ(t1, λn−1) Ψ(t1, λn)

t2 Ψ(t2, λ1) Ψ(t2, λ2)
... Ψ(t2, λn−1) Ψ(t2, λn)

...
...

...
...

...
...

tm−1 Ψ(tm−1, λ1) Ψ(tm−1, λ2)
... Ψ(tm−1, λn−1) Ψ(tm−1, λn)

tm Ψ(tm, λ1) Ψ(tm, λ2)
... Ψ(tm, λn−1) Ψ(tm, λn)

All entries above are space delimited.‘Heading line 1’ and ‘Heading line 2’ are two lines
that may be filled as desired (e.g., with a data file title). The string ‘Wavelength explicit’
indicates the format that the input data is to take. The string ‘Intervalnr’ and a scalar n
indicates the number of distinct wavelengths n at which measurements were taken, (note
that the number of time points m need not be specified). The following line contains the
real-valued wavelengths λ1, . . . , λn at which measurements were taken. The first value of each
of the remaining lines represent the independent variable value (such as a time) at which
the spectrum contained on that row was taken. The rest of each remaining row represents a
(space-delimited) spectrumΨ(t, λ1),Ψ(t, λ2), . . . ,Ψ(t, λn).

C.3. FLIM format

Fluorescence Lifetime Imaging Microscopy (FLIM) data is read into TIMP in the format
described in Laptenok et al. (2007).

Affiliation:

Katharine M. Mullen
Department of Physics and Astronomy
Faculty of Sciences
Vrije Universiteit Amsterdam
De Boelelaan 1081

46 TIMP: Modeling Multi-way Spectroscopic Measurements in R

1081 HV Amsterdam, The Netherlands
E-mail: kate@nat.vu.nl
URL: http://www.nat.vu.nl/~kate/

Ivo H. M. van Stokkum
Department of Physics and Astronomy
Faculty of Sciences
Vrije Universiteit Amsterdam
De Boelelaan 1081
1081 HV Amsterdam, The Netherlands
E-mail: ivo@nat.vu.nl
URL: http://www.nat.vu.nl/~ivo/

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 18, Issue 3 Submitted: 2006-10-01
January 2007 Accepted: 2007-01-10

mailto:kate@nat.vu.nl
http://www.nat.vu.nl/~kate/
mailto:ivo@nat.vu.nl
http://www.nat.vu.nl/~ivo/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Interactive scientific model-discovery
	Multiway spectroscopy data and models
	An introduction to modeling with TIMP
	Hierarchical models for possibly many datasets

	The implementation of TIMP
	The role of S4 classes and methods in TIMP
	Model specification
	Parameter estimation
	Partitioned variable projection
	Validation

	User-accessible functions
	readData
	preProcess
	initModel
	fitModel
	examineFit

	General model options
	Data weighting
	Specification in TIMP: Weighting

	Fixed parameters
	Specification in TIMP: Fixed parameters

	Constraint of clp
	Specification in TIMP: Constraint of clp to zero
	Specification in TIMP: Constraint of clp to a linear relationship

	Relations between nonlinear parameters
	Specification in TIMP: Nonlinear parameter relations

	Constraint of nonlinear parameters to positivity
	Specification in TIMP: Constraint of parameters to positivity

	Kinetic models
	Model for the decay of components
	Specification in TIMP: Kinetic decay rates

	Instrument response models
	Specification in TIMP: Gaussian IRF
	Specification in TIMP: Measured IRF

	Models for dependence of IRF parameters on spectral variable
	Specification in TIMP: Dispersion models

	Coherent artifact/scatter models
	An aside on the implementation of ultra-fast coherent artifact lifetimes
	Specification in TIMP: Coherent artifact/scatter models

	Compartmental models
	Specification in TIMP: Parallel/sequential compartmental model
	Specification in TIMP: Full compartmental model

	Case study: Multiexperiment analysis
	Data input
	Data preprocessing
	An initial model
	Fitting and validating the initial model
	Model refinement and re-validation
	A satisfactory model

	Spectral models
	Bandshape models
	Specification in TIMP: Bandshape model

	Dependence of bandshape parameters on independent variable
	Specification in TIMP: Dependence of bandshape parameters on independent variable

	Case study: Time-dependence of spectral parameters
	Data input
	Data preprocessing
	Initial model: Polynomial dependence of spectral variables on time
	Refined model: Exponential dependence of spectral variable on time

	Extension of supported model types
	Conclusions
	Partitioned vs. unpartitioned variable projection algorithms
	Empirical comparison of partitioned and unpartitioned variable projection algorithms

	New nls options
	Data formats for input into TIMP
	Time explicit format
	Wavelength explicit format
	FLIM format

