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Abstract:  

Atomically dispersed Pt clusters and single-site Sn are fabricated together on the core-

shell nanodiamond@graphene (ND@G) hybrid support (a-PtSn/ND@G). This unique 

atomically dispersed Pt clusters can dramatically inhibit the side reactions and present 

excellent catalytic performance in direct dehydrogenation of n-butane at 450 °C, 

with >98% selectivity toward olefin products, in comparison with that of Al2O3 

supported Pt3Sn alloy nanoparticles (Pt3Sn/Al2O3), due to the efficient utilization of Pt 

atoms and facile desorption of olefin. The combined results of density functional 

theory (DFT) calculation, HAADF-STEM and X-ray absorption fine structure (XAFS) 

results provide substantial insights that Pt clusters can be atomically dispersed and 

stabilized on the ND@G support by the assistance of single-site Sn species as a 

diluent agent and by the formation of Pt-C bond between Pt clusters and defective 

graphene nanoshell. 

Introduction  

Light olefins as one of the widely used feedstock in chemical industry are 

important building blocks for synthesis of chemical products.1-2 Direct 

dehydrogenation (DDH) of light alkane as a typically industrial production process of 

these olefins undergoes an endothermic process, which requires high temperature to 

obtain satisfactory conversion rate and olefin yields, and it generally leads to serious 

catalyst deactivation by sintering of active sites and coking at higher reaction 

temperature.1, 3 To-date, alumina-supported PtSn catalyst (PtSn/Al2O3) for 

dehydrogenation of light olefin is of wide research interest. As for PtSn/Al2O3 catalyst, 

the addition of Sn is crucial to obtain a better catalytic property in higher olefin 

selectivity and the formation of alloy Pt3Sn can deliver better catalyst activity, while 

fast deactivation is still a main problem because the sintering of Pt3Sn nanoparticles 

(NPs) cannot be effectively inhibited during dehydrogenation or reversed during 

regeneration process. Therefore, the development of highly dispersed and stabilized 

Pt-based catalyst is still urgent. 4-7 

In general, the support of catalyst plays an important role in Pt-based catalyst.6, 8-

10 Among the various supports, nanocarbons such as graphene-like materials have 

drawn much attention for their feasible fabrication of single site atom catalyst 11-17and 

exhibit distinct catalytic performance in various reactions.18-21 Nanodiamond is a 

unique nanocarbon material. After a facile thermal treatment, its surface can be 

reconstructed into an ultrathin, curved and defective sp2 graphene nanoshell 



 

reinforced by a sp3 diamond nanocore (ND@G), which is beneficial for stabilizing 

metal NPs, through a strong metal-support interaction (MSI) between metal NPs and 

graphene nanoshell. 22-23 

Herein, we report a new Pt-Sn catalyst that consists of single-site Sn and 

atomically dispersed Pt clusters together anchored on the ND@G hybrid support (a-

PtSn/ND@G). The as-prepared a-PtSn/ND@G catalyst provides enhanced DDH 

performance of n-butane in comparison with that of Al2O3 supported Pt3Sn alloy 

nanoparticles (Pt3Sn/Al2O3) which is normally considered responsible for higher 

activity in DDH reaction.24 Multi-technique characterizations and DFT calculations 

results show that single-site Sn species deliver a dilution effect and Pt clusters are 

atomically dispersed among them through the linkage of Pt-C bond between Pt and 

graphene nanoshell. The as-prepared a-PtSn/ND@G catalyst dramatically inhibits the 

side reaction and shows distinct catalytic performance in DDH of n-butane at low 

temperature, resulting from the efficient use of Pt atom and the lower energy barrier 

for desorption of butene over these unique Pt clusters. 

Results and discussion 

 

Figure 1. HADDF-STEM characterization of a-PtSn/ND@G. A) STEM images 

showing the homogeneous distribution of Pt clusters and B-E) the atomic dispersion 

of Pt and Sn). For clarity, some Sn and Pt atoms in image B are marked out by green 



 

 

and red circles according to the Z-contrast mechanism, respectively. (The scale bars in 

B-E are 0.5 nm). F-I) Energy-dispersive X-ray (EDX) spectroscopy showing the 

composition maps of the a-PtSn/ND@G.  

The aberration-corrected high-angle annular dark-field scanning transmission 

electron microscopy (HAADF-STEM) was employed to study the dispersion of Pt 

and Sn on ND@G (Figure 1). Notably, Pt clusters were homogeneously decorated on 

ND@G as the light dots marked in Figure 1 A without any existence of Pt particles. 

The representative atomic images (Figure 1 B-E) showed that several Pt atoms 

formed a cluster as single atomic layer (Figure S2), while the single-site Sn atoms 

surrounded the Pt cluster in a random manner. The energy-dispersive X-ray (EDX) 

spectroscopy results (Figure 1 F-I) confirmed the coexistence and distinct 

distribution forms of Pt (red, clusters) and Sn (green, homogenous dispersion at 

atomic scale) on the support carbon (blue). A further H2/O2 titration measurement was 

performed (Table S1) and the result showed that for a-PtSn/ND@G, the dispersion of 

Pt is 99.2%, which is close to 100%, suggesting that almost all the Pt atoms are 

exposed on the surface of support. This result obviously supports the conclusion that 

ND@G can afford atomically dispersed Pt clusters. By contrast, Pt3Sn alloy particles 

(d≈0.406nm, the lattice distance of Pt3Sn (100) is 4.004 (PDF#65-0958)) on Al2O3 are 

observed rather than atomically dispersed Pt clusters (Figure S3 A-E). Composition 

analysis of Pt3Sn/Al2O3 by EDX confirms the alloying of Sn and Pt (Figure S3 F-I). 

The dispersion of Pt on Pt3Sn/Al2O3 is 74.7%, which is in good agreement with the 

calculation result from a theoretical model of 4 nm Pt3Sn nanoparticle (Table S1). 



 

 

Figure 2. A) FT-EXAFS profiles for a-PtSn/ND@G, Pt3Sn/Al2O3, Pt foil and PtO2. B) 

Wavelet transform (WT) analysis of a-PtSn/ND@G and C) Pt3Sn/Al2O3. D) XANES 

data characterizing Sn foil, a-PtSn/ND@G, and SnO2. E) The optimized structure of 

Pt3 cluster embedded into graphene (Pt3-graphene) from top and side view, where the 

Pt-C bonds length is: 1.946, 1.977, 1.969, 2.046 and 2.301 . 

The structure and the average coordination environment of Pt and Sn species 

were investigated by the extended X-ray absorption fine structure (EXAFS) 

spectroscopy. The Fourier-transformed (FT) k3-weighted EXAFS at the Pt L3-edge is 

shown in Figure 2A. For a-PtSn/ND@G catalyst, the distinct peak at 1.6  and the 

shoulder peak at 2.6  can be observed, corresponding to Pt-C and Pt-Pt first 

coordination shell, respectively. As for Pt3Sn/Al2O3, the main peak at 2.6  belongs to 

Pt-Pt and Pt-Sn first coordination shell. Wavelet transformation (WT) of Pt L3-edge 

EXAFS oscillations further illustrate the dispersion of Pt. Notably, the maximum WT 

intensity near 1.6  belongs to Pt-C contribution and another maximum at 2.6  

corresponds to Pt-Pt contribution (Figure 2B), indicating the existence of Pt clusters 

anchored on the support by Pt-C in a-PtSn/ND@G catalyst. By contrast, only a 



 

 

maximum at 2.6 Å can be observed for Pt3Sn/Al2O3 (Figure 2C), revealing the 

formation of the Pt3Sn alloy NPs on Al2O3 support. The detailed parameters of these 

two samples are shown in Table S5, Figure S5 and Figure S6. The collected results 

show that for a-PtSn/ND@G catalyst, the average coordination number (CN) of Pt-C 

contribution is 2.2, while the average CN of Pt-Pt contribution is only 1.8, which is 

much lower than that in Pt foil  (CN of Pt-Pt is 12) and bulk PtO2 (CN of Pt-O is 6) 25, 

confirming the presence of ultra-small Pt clusters on the ND@G. Meanwhile, the Pt-

Sn contribution is absent, indicating that Pt species do not form Pt-Sn alloy. In 

addition, two Sn-O-Sn shell, with an average CN of 1.2 at a bond distance of 3.37 Å 

and 4.8 at a bond distance of 3.89 Å, are also presented and denoted as Sn-O-Sn1 and 

Sn-O-Sn2. The Sn-O coordination number is 5.9 at a bond distance of 2.05 Å and 

there is no Sn-Sn contribution. All these results further prove that the Sn species as 

single sites are also atomically dispersed on ND@G. Furthermore, the X-ray 

absorption near edge structure data indicates the existence of Sn as cationic species 

(Figure 2D). For Pt3Sn/Al2O3, the presence of Pt-Sn coordination, the ratio of CN of 

Pt-Pt and Pt-Sn and the similar bond length of Pt-Pt and Pt-Sn suggest the existence 

of Pt-Sn alloy.  

In order to further clarify the local coordination structure of Pt species, the 

density functional theory (DFT) calculation was used to investigate different bonding 

models of Pt-(C/O) on ND@G. As shown in Figure 2E, the optimized geometry of 

the Pt3-graphene yields average bond length (2.05 Å) that is in good agreement with 

the experimental values of the Pt-C bond length (2.02±0.03 Å) in the first 

coordination shell. In addition, we exclude the possible PtOx species embedded on the 

graphene in H2 atmosphere. As shown in Table S8-S10 and the reaction change of 

Gibbs free energies of Pt3Ox-graphene in supporting information, oxygen can be 

captured easily by H2 in the reaction condition. So, the most stable structure under 

reaction condition should be Pt3 cluster stabled by graphene, which is applied in the 

further DFT calculations. 

The electronic states of Pt species were investigated by X-ray photoelectron 

spectroscopy (XPS). As shown in Figure S7A and Table S2, Pt is completely in 

metallic state in Pt3Sn/Al2O3 sample after reduction since the peak centered around 

71.1eV (Pt 4f7/2) corresponds to Pt.26-27 For a-PtSn/ND@G, the peak of Pt shows an 

upward shift trend in the binding energy (BE) compared to that of Pt3Sn/Al2O3 



 

(71.9eV vs 71.1 eV), which illustrates that Pt clusters trend to electron-deficient state 

in a-PtSn/ND@G. The XPS spectra of Sn is also presented in Figure S7 B, revealing 

that in a-PtSn/ND@G, Sn species in oxidation state Sn (II, IV), Thus, all the results 

above demonstrate that in a-PtSn/ND@G catalyst, several Pt atoms form a cluster of 

single atomic layer with electron-deficient, which is surrounded randomly by single-

site Sn atoms as the dilute agent. And the Pt clusters are anchored on ND@G support 

through the linkage of Pt-C bond between Pt and graphene nanoshell. 

Figure 3. A) Conversion and selectivity by time-on-stream during DDH of n-butane at 

450 oC. GHSV=18000 mL/gcat·h, nC4:H2=1:1 with He as balancing gas. B) The 

turnover frequency (TOF) for a-PtSn/ND@G and Pt3Sn/Al2O3. C) Stability test on a-

PtSn/ND@G for n-butane dehydrogenation at 450 oC. GHSV=18000 mL/gcat·h, 

nC4:H2=1:1 with He as balancing gas. D) Apparent activation energy (Eapp) of a-

PtSn/ND@G and Pt3Sn/Al2O3. 

The catalytic performance of a-PtSn/ND@G and Pt3Sn/Al2O3 for DDH of n-butane 

was evaluated under atmospheric pressure at 450 oC. As shown in Figure 3A and 

Table S3, the initial conversion of the Pt3Sn/Al2O3 catalyst seriously decline from 

14.1% to 6.3%, and the selectivity of total DDH products (TDP include n-butene, 1, 



 

 

3-butadiene, ethylene and propylene) just reach 97.3% by the end of test. Deactivation 

on Pt3Sn/Al2O3 is a typical behavior according to previous reported Pt based catalysts 

in the DDH of light alkanes which may result from coke deposition and/or sintering of 

active sites.1 However, on a-PtSn/ND@G, the initial conversation of n-butane over is 

about 41% and the selectivity of TDP also reach 98.7%. In addition, the turnover 

frequency (TOF) of a-PtSn/ND@G (114h-1) is approximately 3.7 times as that of 

Pt3Sn/Al2O3 (Figure 3B). It should be noted that only a light deactivation after 18h 

test (from 41% to 35.7%) was observed. The atomic images of used a-PtSn/ND@G 

catalyst (Figure S9) show that the dispersion of Pt clustes and single-site Sn species 

on ND@G are still kept well after the long term test. The dispersion of Pt in the used 

a-PtSn/ND@G catalyst is 97.3% (Table S1), indicating that less Pt clusters are 

covered by coke and nearly all of them are still atomically exposed on ND@G. The 

long term stability of a-PtSn/ND@G (Figure 3C) shows a slight decrease in 

conversion rate (20%) after 50h test. Also, temperature programmed desorption of n-

butene (n-C4H8-TPD, Figure S10 ) profiles demonstrate that the interaction between 

n-C4H8 and Pt clusters in a-PtSn/ND@G catalyst is weaker than that in Pt3Sn/Al2O3 

catalyst. This weak interaction means that a-PtSn/ND@G catalyst remains highly 

stable under the reaction conditions since coke formation covering metal sites is 

minimized during the DDH of n-butane. The apparent activation energy (Eapp) of a-

PtSn/ND@G (Figure 3D) is also lower than that of Pt3Sn/Al2O3 (95.6±3kJ/mol Vs 

109.7±0.4kJ/mol), indicating different barriers of the reaction path which will be 

discussed in the following section. From the results above, it can be concluded that 

atomically dispersed Pt clusters on ND@G can deliver robust activity and stability in 

DDH of n-butane, which is superior to the previously reported Pt-based catalysts as 

displayed in Table S4.  

 



 

 

Figure 4. Gibbs free energy (T = 450 oC) profile of butane dehydrogenation on the 

Pt3-graphene, and the structures for intermediates and transition states from C4H10 to 

2-C4H8. 

We also built the model of Pt clusters composed by three Pt atom on defective 

graphene named as Pt3-graphene according to the deduced catalyst structures in 

EXAFS results (the average CN of Pt-Pt contribution is 1.8), and studied the reaction 

mechanism by quantum chemistry simulation at the DFT level. According to our 

experimental result, 2-butene is the main product in the DDH reaction, therefore we 

focus on the dehydrogenation barriers from n-butane to 2-butene in DFT calculation. 

In Figure 4, we consider the Gibbs free energy profiles at 723.15 K for the 

dehydrogenation of n-butane to 2-butene on Pt3-graphene. As a comparison, the 

dehydrogenation mechanism of n-butane on Pt3Sn-(111) is also considered (Figure 

S11-S12). The result of Pt3-graphene is shown in Figure 4. In this catalytic system, 

butane dehydrogenation to produce 2-butene follows two steps. Firstly, the initial 

activation of n-butane occurs at methylene groups which generate 2-butyl (2-C4H9). 

Then 2-butene (2-C4H8) is formed via further dehydrogenation at methylene groups of 

2-butyl.28 As shown in Table S6, the key energy barriers for the forming of 2-butene 

and are 0.19 on Pt3-graphene, 0.72eV on Pt3Sn-(111), respectively, indicating the Pt3-

graphene is more active for the dehydrogenation of n-butane, which provides a 

rational interpretation of the high catalytic activity on a-PtSn-ND@G. 

In addition, the deep dehydrogenation barrier of 2-butene on Pt3-graphene and 

Pt3Sn-(111) is 1.34, 0.69eV (Figure 4, Figure S11 and Table S6), and the desorption 



 

 

barrier of 2-butene is of free energies at 723.15 K. The significant difference of deep 

dehydrogenation barrier indicates that the formation of deep-dehydrogenated 

intermediates, resulting in the coke deposition on active sites,29-31 is more unfavorable 

on supported Pt3 clusters. The calculation result indicates that the selectivity and 

stability performance of Pt3-graphene will be better than Pt3Sn alloy, which is in good 

agreements with our experimental observations. On atomically dispersed Pt3 cluster 

on ND@G, the high selectivity results from the significant increasing of 2-butene 

deep dehydrogenation barriers and the high activity is guaranteed by low reaction 

barrier. The calculation is in good agreements with our experimental observations, 

where a-PtSn-ND@G shows better selectivity and stability performance than that of 

Pt3Sn-Al2O3. 

In conclusion, we demonstrated that atomically dispersed Pt clusters on ND@G 

exhibit enhanced catalytic performance for DDH of n-butane at a temperature as low 

as 450 oC. Multi-technique and DFT calculation results indicate that mono-dispersed 

Sn species work as a dilution agent and the linkage of Pt-C bond promotes the 

stabilization of Pt clusters on ND@G support. The lower energy barrier for the 

forming of 2-butene and the significant increased deep dehydrogenation barrier lead 

to the higher activity, better selectivity and stability of the a-PtSn/ND@G catalyst. 

This new catalyst design strategy offers a feasible way to prepare atomically dispersed 

Pt based catalyst and paves the way for rational design of highly active catalysts for 

direct dehydrogenation reaction. 
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