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The structural, electronic, and optical properties of the semiconducting oxide SnO2 are investigated using

first-principles calculations. We employ the G0W0 formalism based on hybrid-functional calculations to com-

pute the quasiparticle band structure and density of states for which we find good agreement with results from

photoemission and two-photon absorption experiments. We also address open questions regarding the band

ordering and band symmetries. In a second step we use our electronic structure as a starting point to calculate

optical spectra by solving the Bethe-Salpeter equation including the electron-hole interaction. The dielectric

tensor is predicted for a wide range of photon energies. Our results resolve the long-standing discrepancy be-

tween theory and experiment on the highly anisotropic onsets of absorption. The anisotropy can be explained in

terms of dipole-allowed direct transitions in the vicinity of the valence-band maximum without having to invoke

lower lying valence bands.

PACS numbers: 61.66.Fn,71.15.Qe,71.20.Ps,71.35.Cc,78.20.Ci
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I. INTRODUCTION

The wide-band-gap semiconductor SnO2 has long been a material of interest for both applied and pure research. Tin dioxide
has most notably been employed as a transparent conductor, exploiting both the unintentional conductivity and the large degree
of transparency.1,2 While nominally n-type, recent work has suggested that SnO2 may be more easily doped p-type than several
other commonly used oxides such as ZnO, indicating that it may be a better choice for light-emitters and other optoelectronic
devices.3–6 In order to fully exploit SnO2 as a semiconductor for such novel applications, knowledge of the electronic structure is
of critical importance. Despite the vast experimental and theoretical literature on SnO2, many discrepancies and unsolved issues
remain. These include details of the valence-band (VB) ordering and band symmetries,7–10 the role of indirect transitions,9,11,12

and the exciton spectrum.10,13–15 Although SnO2 is widely used for its optical properties, its dielectric function is not available
in the literature. Experimentally the explored energy range was limited,16,17 while a theoretical study neglected the impact of
excitonic effects.18

SnO2 is known to crystallize in the rutile structure with space group P42/mnm or D14
4h (SG136) under ambient conditions.19,20

The fundamental gap is direct but the corresponding dipole transitions are symmetry-forbidden. This was originally suggested
based on group-theoretical arguments on the orbital character of the band edges.13,14,21 Accordingly, the respective onsets in
single-photon optical absorption experiments are weak.21–25 Despite the relatively small absorption coefficients, these exper-
iments have revealed the polarization dependence of the onsets. While the transitions are dipole-forbidden in single-photon
absorption, they are allowed in two-photon absorption, and the measured value of 3.6 eV10,26 is now widely accepted as the
band gap of SnO2. We note that neither optical absorption nor two-photon absorption probe the fundamental gap as given by
the difference between the ionization potential and the electron affinity. Instead, they provide the optical gap, i.e., the excitation
energy of the first accessible exciton state. If the exciton derives from the band edges, the optical and the fundamental gap differ
by the exciton binding energy, which is on the order of 30 meV in SnO2.10,21,25 A measurement of the fundamental gap by direct
and inverse photoemission spectroscopy (PES and IPES, respectively) has, to our knowledge, not been reported yet. It is also
unlikely that the combination of PES and IPES would reach the accuracy to resolve a 30 meV difference in the two band gaps.

The selection rules for dipole transitions can be derived using the symmetry of the states and group theory. Several experimen-
tal studies have converged on a symmetry assignment of the VB maximum (VBM) at Γ as Γ

+
3 (in the irreducible representation

notation of Koster et al. 27), through analysis of the quadrupole transition to the 1S exciton.26,28 The agreement of a VBM of Γ
+
3

also settled the symmetry assignment of the Sn s-derived conduction-band minimum (CBM) as Γ
+
1 , as suggested by experimental

arguments13,14,29 and calculations.9,11

The experimental results largely agree that the lowest dipole-allowed direct (direct-allowed) transition features a strong po-
larization anisotropy, but the origin of this transition is heavily debated. Experimental10 as well as theoretical7–9,11 reports are
plagued by inconsistencies in the ordering and relative energies of the lower-lying VB states. Nagasawa and Shionoya reported
an allowed transition value of 3.75 eV for light polarized perpendicular to the tetragonal c axis (E ⊥ c), which they associated
with a VB of symmetry Γ

−
5 lying 0.15 to 0.20 eV below the VBM.15 For light polarized parallel to c (E ‖ c), the absorption

spectra exhibit a diffuse edge approximately 0.4 eV above the fundamental edge,22–24 lacking the fine excitonic structure of
the absorption spectra for perpendicular light polarization.10,13,14,24 This feature was assigned to a hypothetical valence band
with Γ

−
2 symmetry23,24 lying 0.4 eV eV below the Γ

+
3 VBM, consistent with their interpretation of direct, symmetry-allowed

transitions in the same study.

Several other experiments found no distinct peaks at lower temperatures and a weak temperature-dependence in the spectra,
suggesting that the absorption onsets were not associated with phonon-assisted transitions.22–24

Up until now no theoretical band structure is capable of explaining all experimental facts for SnO2. The earliest self-consistent
calculations for SnO2, employing the augmented-plane-wave11 and linearized muffin-tin orbital9 methods, along with more
recent ones in the augmented-spherical-wave12 method, predicted an indirect gap with the VBM at the R point instead of Γ. Tight-
binding calculations by Robertson8 seemed more consistent with the experimental interpretations of a direct gap and highest-
lying VB symmetry assignments, by showing a VB of the suggested symmetry Γ

−
5 approximately 0.2 eV below the VBM.15,22–24

However, the next lower VB in Robertson’s calculations was at −0.8 eV, which cannot explain the experimentally observed
absorption onsets and interpretations. As expected, calculations within the local-density or generalized gradient approximation
(LDA, GGA, respectively) lead to a very strong underestimation of the fundamental band gap.30,31 Since the simple approach
that Thomazi et al. applied to incorporate quasiparticle (QP) effects requires knowledge of the experimental band gap it cannot
overcome this deficiency in an ab-initio manner.31 Moreover, the fact that many details of the band structure are very sensitive
to the theoretical method used, particularly the behavior at the R point of the Brillouin zone (BZ), warrants further attention.

In this article we show that our theoretical spectroscopy methods are capable of providing a unified picture of the electronic
structure and the optical properties of SnO2 which is consistent with the various experimental observations. More specifi-
cally, we present state-of-the-art many-body perturbation theory calculations of the QP band structure based on Hedin’s GW

approximation.32–34 Furthermore, we solve the Bethe-Salpeter equation (BSE) for the polarization function to calculate the
optical properties including excitonic and local-field effects (LFE).33,35,36

A description of the methodology is given in Sec. II. Following a short review of the atomic structure in Sec. III, the QP and
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optical properties of SnO2 are analyzed in detail in Secs. IV and V. Throughout, the computed results are compared with the
available experimental data. The paper concludes with a summary of our findings in Sec. VI.

II. COMPUTATIONAL METHODS

In this article we distinguish between ground- and excited-state properties. The former (e.g., structural properties) are well
described in the framework of density functional theory (DFT).37,38 All calculations have been performed with the Vienna Ab-

initio Simulation Package (VASP).39–41 We use the projector-augmented wave (PAW) method42,43 to model the electron-ion
interaction, which allows us to accurately treat even the localized O 2s- and Sn 4d-derived states at plane-wave cutoffs of 450 eV.
For exchange and correlation (XC) we use the LDA.44,45 The Brillouin zone is sampled with a 8× 8× 14 k-point Monkhorst-
Pack (MP) mesh46 which has been shifted to include the Γ point. The relaxed atomic geometries and lattice parameters are
obtained by minimizing the total energy. For the final structures the forces acting on the ions are well below 5 meV/Å.

The excited-state properties are studied by means of many-body perturbation theory (MBPT). For a comparison with pho-
toemission spectra of solids and band structures from angle-resolved photoemission spectroscopy, MBPT within Hedin’s GW

approach47 is currently the method of choice.32–34 We compute the band structure by solving the QP equation with the self-
energy Σ = ih̄GW , where W is the dynamically screened Coulomb potential and G denotes the single-particle Green’s function.
In practice, QP energies are usually calculated via the G0W0 approach, i.e., within first-order perturbation theory based on an
initial electronic structure from Kohn-Sham DFT. However, the DFT-LDA gap of 1.08 eV drastically underestimates the ex-
perimental value. DFT-LDA therefore provides a poor starting point in this case, resulting in the G0W0 band gap significantly
underestimating the experimental gap. An effective way to obtain a suitable initial electronic structure is to remove or signif-
icantly reduce the self-interaction error from the ground-state calculation.34,48–52 In the present work, we use the hybrid XC
functional HSE03,53 which contains a fraction of short-ranged Hartree-Fock exchange. This choice, denoted as HSE03+G0W0,
has recently been demonstrated to give reliable values for the fundamental gaps and d-band binding energies of typical semi-
conductors and insulators.49,51,54 Due to the much higher computational cost of this scheme compared to an ordinary LDA
calculation, we decrease the sampling of the BZ to 6×6×10 Γ-centered MP k points, which yields QP energies converged to
within 0.1 eV.

In order to compute the macroscopic dielectric function and the absorption spectrum we go beyond the GW approach in MBPT
and include the attractive screened electron-hole interaction, as well as an exchange-like term that accounts for LFE, by solving
the BSE35,36 for the polarization function. Both of these effects have shown to be essential for a successful calculation of the
macroscopic dielectric function.35,55,56 Computationally it is, however, very challenging to converge these two terms. Resolving
exciton binding energies and features near the absorption edge within the necessary accuracy of several meV requires a fine
k-point sampling of the center of the BZ.57 For the calculation of the optical absorption spectrum up to photon energies of more
than 20 eV, on the other hand, a large number of conduction bands (CBs) is needed.

To keep the calculations tractable, we sample the BZ using a hybrid k mesh with increased density in the vicinity of the
BZ center for the low-energy region of the imaginary part of the macroscopic dielectric function. The inclusion of transitions
up to photon energies of h̄ω = 20 eV is accomplished with a reduced k-point sampling and an increased number of CBs.
Details of this approach are given in Ref. 51. More precisely, we calculate the dielectric function up to 9.95 eV using a hybrid
6×6×10 : 3×3×7 : 14×14×21 k mesh. This nomenclature (cf. Ref. 57) is our short-hand notation for a BZ sampling by a
regular 6×6×10 MP mesh, whose inner 3×3×7 region is replaced by a 8×8×16 MP mesh. The density in the inner region is
then equal to that of a 14×14×21 sampling of the entire BZ. For the dielectric function above 9.95 eV we use a regular 6×6×10
MP mesh. To accelerate the convergence even more we apply a small random shift to all of these k meshes to lift potential
degeneracies at high-symmetry points and lines that are inherently present when MP meshes are being used. The screening of
the Coulomb potential in the excitonic Hamiltonian is described by a model dielectric function58 that uses the dielectric constant
of ε∞ = 3.62 that we calculated in the random-phase approximation (RPA).

A common approach to solve the BSE, which is also applied in this work, is to transform the integral equation to an eigenvalue
problem for the excitonic electron-hole pair Hamiltonian.55,59,60 The resulting matrices are large with ranks up to 80,000, despite
the adapted BZ sampling technique. Hence, it is practically impossible to diagonalize these matrices for a computation of the
dielectric function by means of the eigenstates and eigenvalues. Instead, we overcome the cubic scaling of the direct diagonal-
ization by using an efficient time-evolution scheme,61 which scales quadratically with the rank of the excitonic Hamiltonian, to
obtain the dielectric function.

A simplification of the problem is necessary with regard to the electronic structure that the optical calculations are based on.
The HSE03+G0W0 method is computationally too expensive to generate input for the large number of k points and CBs required
for converged calculations of the optical properties. For that reason we approximate the HSE03+G0W0 results by those of an
LDA+U+∆ method,51,54 i.e., by an LDA+U62 band structure whose CBs are shifted up rigidly by a scissors shift ∆. We apply
the LDA+U approach of Dudarev et al. 63 U and ∆ are obtained from a comparison to our HSE03+G0W0 band structure which
leads to a good agreement of the results from both approaches, as illustrated in Sec. IV A.
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FIG. 1. (Color online) Bonding geometry of the tetragonal unit cell of SnO2 in the rutile structure with the associated Brillouin zone. The

special points R, X , and the zone center Γ are highlighted.

TABLE I. Structural parameters, bulk modulus, and cohesive energy for rutile SnO2 as calculated within DFT-LDA. Experimental values are

listed for comparison.

a (Å) c (Å) u B (GPa) B′ Ecoh (eV/f.u.)

This work 4.737 3.200 0.306 200 3.6 −5.83

Exp. 4.737a 3.186a 0.307a 205a 7.4a −5.98b

a Ref. 19, b value cited in Ref. 66.

III. ATOMIC GEOMETRY AND ELASTIC PROPERTIES

In the rutile structure of SnO2, shown in Fig. 1, each Sn atom is octahedrally coordinated and bonded to six O atoms. The
total energy, the cell volume, and the bulk modulus as well as its pressure derivative have been computed using the Murnaghan
equation of state64 to fit the energy versus volume dependence in the vicinity of the equilibrium volume. Table I summarizes the
calculated lattice parameters, elastic constants, and the cohesive energy of rutile SnO2 in comparison to experimental results.
The computed lattice constants are in excellent agreement with the experimental values.19 Remarkable agreement is also found
between the calculated internal cell parameter u with values from neutron diffraction20 and X-ray diffraction19 experiments. Our
values for c/a and u agree well with previous hybrid functional65 and DFT-GGA18 results, while our a lattice constant turns out
to be about 2 % smaller than the DFT-GGA value.

The calculated value of the bulk modulus B, also given in Table I, is in very good agreement with the experimental result.
Its pressure derivative B′, however, differs significantly from the reported experimental value. Given the excellent agreement
between computed and measured values for all of the other structural parameters, we suggest the experimental value may be less
accurate in this case. The observed agreement for the cohesive energy is also satisfactory, demonstrating that our ground-state
calculations capture the structural properties of SnO2 with sufficient accuracy to provide a solid foundation for studying the
electronic structure.
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FIG. 2. (Color online) Quasiparticle band structure and density of states of rutile SnO2 in HSE03+G0W0 (dotted red lines) and LDA+U+∆

(solid black lines). The valence-band maximum has been chosen as the common zero of energy.

TABLE II. Quasiparticle gap (Eg), average d-band binding energy (Ed), and effective electron (m∗
c) and hole masses (m∗

v) at Γ of rutile SnO2

as computed using the HSE03+G0W0 approach, shown with the respective experimental values.

Eg (eV) Ed (eV) m∗
v (m0) m∗

c (m0)

Γ – X Γ – Z Γ – X Γ – Z

HSE03+G0W0 3.65 22.3 1.21 1.47 0.26 0.21

Exp. 3.56a 21.5b, 22.5c – – 0.299d 0.234d

a Ref. 26, b Ref. 67, c Ref. 68, d Ref. 69.

IV. ELECTRONIC STRUCTURE

A. Quasiparticle band structure

Figure 2 shows the QP band structure and density of states (DOS) of rutile SnO2 calculated using the HSE03+G0W0 and
LDA+U+∆ approaches. In addition, the fundamental gap and the d-band binding energy are given in Table II. As stated in the
introduction, the lowest exciton transition of 3.56 eV measured in the two-photon absorption experiments by Fröhlich et al. 26

is now widely accepted as the band gap of SnO2. The corresponding fundamental gap is obtained by adding the exciton binding
energy of ∼ 30 meV.10,21,25 Our calculated HSE03+G0W0 gap of 3.65 eV is in very good agreement with the resulting ∼ 3.59 eV.

As alluded to in Sec. II, the LDA+U+∆ band structure (shown as solid black lines in Fig. 2) has been calculated as a basis for
the subsequent calculations of the optical properties. The parameters U and ∆ were chosen to give the best agreement with the
HSE03+G0W0 band structure. We fix the U parameter at U = 4.6 eV which describes the position of the d-band complex (with
respect to the VBM) very well, as can be seen from a comparison to the HSE03+G0W0 QP bands. However, we want to note that
deviations remain for the O 2s-derived bands at approximately −18 eV and the upper VBs around Γ. Also the sensitivity of the
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R point in the BZ to the computational method used is made apparent by the difference in the LDA+U+∆ and the HSE03+G0W0

band structures in Fig. 2. In contrast to the HSE03+G0W0 results, the indirect gaps at the Z and X points are smaller than the one
at R in LDA+U+∆. The R point is found too low in the LDA+U description, which is interesting and confirms previous reports
on the sensitivity of this point to the chosen methodology.9,11,12 Furthermore, it potentially explains many of the discrepancies
and inconsistencies that have plagued calculations of the electronic structure of SnO2.

While LDA+U improves on the LDA for the fundamental band gap, the value of 1.19 eV still severely underestimates the
HSE03+G0W0 result. We therefore use ∆ = 2.46 eV to rigidly shift the CBs relative to the VBs which leads to an agreement
between the gap within the LDA+U+∆ method and the value obtained from HSE03+G0W0.

B. Irreducible representations and allowed transitions

In our calculations, the VBM is found at the Γ-point of the BZ and has the Γ
+
3 irreducible representation, consistent with the

interpretation of experiments in Refs. 26 and 28. The CBM derives from Sn s-states, as originally suggested,13,22 and is found
at the Γ-point with symmetry Γ

+
1 , also consistent with previous reports both in its irreducible representation and location in the

BZ.7–9,11,13,14,26,29 The relative VB ordering together with the QP energies, the allowed optical transitions, and the respective
real-space symmetry of the states at Γ are shown in Fig. 3. Our calculated band structure does not exhibit the conjectured lower-
lying VBs approximately 0.2 or 0.4 eV below the VBM.23,24 Although we observe that the next-lowest VB level is a doubly
degenerate state with the Γ

−
5 irreducible representation, which is consistent with the same set of experiments,23,24 it occurs only

at 0.71 eV below the VBM and thus cannot account for their observations.

In Fig. 3 we have also included the QP energies for the R point together with the corresponding symmetry-allowed optical
transitions. Although the 0.51 eV difference between the energy of the topmost VB at Γ and the one at the R point is smaller than
the distance of 0.71 eV between the highest two VBs at Γ, we can conclude that the R point does not play a role in the observed
absorption, as indirect transitions from the topmost VB at R to the CBM at Γ can support neither a VB at 0.2 nor at 0.4 eV below
the VBM.23,24 In addition, we find that these transitions from the R point to the CBM are also dipole-forbidden. This view is
supported by temperature-dependent measurements that suggest a minimal contribution from phonon-assisted transitions.22–24

It is important to acknowledge that the calculations which are reported here do not take the spin-orbit interaction into account.
However, as a test we performed a calculation using the HSE03 XC functional with the spin-orbit interaction included.70 This
allows us to conclude that any shifts in the band positions or splittings of twofold degenerate levels are quite small. More
specifically, we found a splitting of the Γ

−
5 (Γ+

5 ) state of only 25 meV (18 meV), which cannot explain why a band approximately
0.2 or 0.4 eV below the VBM would occur, as suggested in Refs. 23 and 24. In Sec. V we will demonstrate that all experimental
results on the absorption edge in SnO2 can be understood by computing the optical spectrum from first principles.

C. Density of states

Figure 4 shows the HSE03+G0W0 DOS plotted alongside an experimental photoemission spectrum by Nagata et al.68 To facil-
itate comparison with experiment, we introduced broadening in the calculated DOS as follows. To account for the instrumental
resolution, we first convolved the calculated DOS with a Gaussian curve of 0.8 eV full width at half maximum (FWHM). We
then convolved the resulting curve with a Lorentzian, again with a FWHM of 0.8 eV, to simulate the finite lifetime broaden-
ing that is intrinsic to photoemission experiments. The experimental spectra were then aligned with the broadened calculated
DOS based on the O 2p and other upper VB peaks, following the practice in previous alignment procedures between theory and
experiment.71–73 Inspection of the projected DOS (not shown) reveals that the group of bands between −6 and 0 eV derives
mostly from O 2p and Sn 5p / Sn 4d states, whereas the bands in the region between −8.3 to −6 eV derive from a hybridization
between O 2p and Sn 5s states. The topmost VB protrudes from the VB complex only in a small region of the BZ, as Fig. 2
illustrates. Its associated DOS is therefore small and becomes almost indistinguishable from the onset of the first broad peak at
−1 eV that derives from the VBs around −0.71 eV (at Γ) and below.

When the theoretical spectra are broadened to match experiment, the peak from the topmost VB is almost completely washed
out, which would make a precise experimental identification of the VB edge very difficult in the absence of a proper reference. In
our computed spectra, this reference is of course still provided by the VBM, which we set as our zero of energy. By aligning the
peak positions of the experimental spectrum of Nagata et al.68 to the broadened HSE03+G0W0 DOS, we were able to establish
the position of the VBM of the photoemission spectrum. As shown in Fig. 4, the linear extrapolation from the upper peak edge
of the experimental data is within 0.07 eV of the theoretical VBM.

Photoemission experiments can provide information about the fundamental gap if the position of the Fermi level (which
is used as a reference for the spectra) is known with respect to the band edges. All that is known about the Fermi level in
the experiments of Nagata et al.68 is that the SnO2 sample was n-type, and therefore the Fermi level is expected to be in the
proximity of the CBM. We found that a 3.56 eV shift is necessary to align the theoretical and experimental spectra. Assuming
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FIG. 3. (Color online) Plot of the HSE03+G0W0 quasiparticle eigenvalues together with allowed optical transitions at the Γ and the R points

of the Brillouin zone. Dashed lines indicate a twofold degeneracy of the respective level. Solid black (dotted red) arrows show dipole-allowed

optical transitions for light polarized perpendicular (parallel) to the c axis of the rutile lattice.

that the experimental Fermi level is at the CBM, the tentative estimate of the band gap in photoemission is therefore ∼ 3.6 eV. A
more accurate determination of the Fermi level in the samples would reduce the uncertainty.

Between approximately −17 eV and −23 eV we find another complex of bands predominantly of Sn 4d and O 2s character
(see inset of Fig. 4). Interestingly, our average d-band binding energy of 22.3 eV is in much better agreement with experiment
(cf. Table II) than previous reports for d bands in II-VI compounds34,48,49,74–77 and in group-III nitrides.34,48,49,75

The overall bandwidths67,68 and the relative peak positions and intensities show very good agreement between the HSE03+G0W0

results and photoemission spectra. Our value for the band width of the upper band of 8.3 eV falls in between the 9 eV from
older ultraviolet photoemission spectroscopy (UPS) results of Gobby et al. for the (001) surface78 and the 7.5 eV extrapolated
from the tails of the peaks in the more recent UPS measurements of Themlin et al. for the (110) surface.71 The same group
also performed X-ray photoemission spectroscopy (XPS) measurements on (110)-oriented SnO2, with an apparent VB width of
10.4 eV in the absence of extrapolations,67 in better agreement with the apparent width of approximately 9.0 eV from Nagata
et al. (Fig. 4). Other calculated VB widths of 6.6 eV,9 7.5 eV12 and 10 eV7,8 are even further away from the accepted value of
9 eV from Gobby and Lapeyre,78 while other hybrid functional calculations have produced similar results to ours.65

D. Effective masses

From parabolic fits to the HSE03+G0W0 band structure we derived the effective masses of the highest VB and the lowest
CB at the Γ point, along the principal directions Γ – X and Γ – Z. These values are included in Table II. The effective masses
for electrons agree reasonably well with the best experimental results as determined by submillimeter cyclotron resonance.69
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We note that the inclusion of QP effects improves the agreement with experiment in comparison to previous results from DFT-
GGA18 and hybrid functionals.65 The effective hole masses are predictions since they are yet to be measured, but are smaller
than previous calculations.65 However, the effective hole masses are consistent with previous speculations of a m∗

v > m0 based
on arguments involving the exciton structure and anisotropy parameters of SnO2 as explained in Ref. 15.

V. OPTICAL PROPERTIES

The origin of the optical spectrum at the absorption onset has been heavily debated ever since the first experiments on SnO2

were published in the 1960s. As phonon-assisted transitions were ruled out by temperature-dependent measurements,23,24 dipole-
allowed direct transitions (i) from lower-lying VBs or (ii) from the vicinity of the VBM (called “direct-forbidden” transitions
in Ref. 14) were proposed as possible explanations for the observed absorption onsets. As discussed in Secs. IV A and IV B,
our calculations conclusively show that no lower-lying VBs of the right energy are present at Γ, such that explanation (i) is not
viable. As for (ii), on the basis of calculated absorption spectra, we will provide a consistent explanation for the experimental
findings in terms of these “direct-forbidden” transitions that occur just off Γ and are highly-polarization dependent. While such
transitions were speculated to explain the peculiar absorption behavior in SnO2,14 they can be easily misidentified as originating
from lower-lying VBs of the appropriate symmetry, explaining why there has been so much confusion in the literature.
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We show the results for light polarization perpendicular (a) and parallel (b) to the c axis of the rutile crystal structure. The anisotropy in the

vicinity of the absorption edge becomes more pronounced when excitonic effects are included.

A. Dielectric function

Calculating the optical spectrum based on the full QP band structure and including the electron-hole attraction as well as
LFE by solving the BSE is currently the state-of-the-art. Due to the large computational cost of calculating QP energies using
HSE03+G0W0 the number of k points in the calculation is too small to obtain a converged optical spectrum. The LDA+U+∆

method allows us to account for QP energies at much lower computational cost and facilitates the convergence of the optical
calculations. Since we determine the parameters U and ∆ from comparison to the HSE03+G0W0 band structure no information
from the QP band structure is lost (cf. Sec. IV A).

No experimental spectrum exists for a wide photon-energy range. As a result of the tetragonal crystal structure of rutile SnO2,
only two components of the dielectric tensor are independent, i.e., ε⊥ (= εxx = εyy) and ε‖ (= εzz). They can be measured in
ordinary (ε⊥) and extraordinary (ε‖) polarization. In Fig. 5 we compare the optical spectra calculated in the independent QP
approximation (IQPA) and the result from the BSE approach. We observe a strong influence of the excitonic effects resulting
in a significant redshift of the peak positions and a redistribution of oscillator strength towards lower energies. The absorption
onset of the BSE curves occurs about 0.9 eV lower in energy compared to the absorption onset of the IQPA curves, for both
parallel and perpendicular polarizations.

There is a dramatic difference between the respective energetic positions of the absorption onsets for the two polarization
directions (cf. Fig. 5). This anisotropy has been observed experimentally, but only in a fairly narrow energy range near the
absorption edge; we will return to this issue below. In contrast, our calculations include photon energies up to 20 eV, and we
find that the anisotropy (i.e., ε⊥ being very different from ε‖) extends over this entire energy range.
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B. Exciton binding energies

All dielectric functions and the optical spectra in this article were obtained by solving the Bethe-Salpeter equation. This
approach could in principle also be applied to determine the energy of bound excitons in the QP gap. However, to converge
the exciton binding energy very high k-point densities are necessary,57 leading to extreme demands with respect to computing
power. Therefore, we calculate these binding energies using the solution of a parabolic two-band Wannier-Mott model.57,79 It
has been shown that such an approach agrees very well with BSE values reported in previous studies for similar materials.57

Moreover, this strategy is justified by the parabolic shape of the lowest CB and the uppermost VB of SnO2 (cf. band structure
in Fig. 2). Using the effective mass values reported in Table II and the RPA screening constant of ε∞ = 3.62 as calculated
in the independent-particle approximation, the two-band model gives exciton binding energies of EB = 222 meV for ordinary
(perpendicular) polarization and EB = 191 meV for extraordinary (parallel) polarization. These results substantially overestimate
the experimental values of approximately 30 meV.10,80 The reason for this large overestimation is probably the omission of ionic
screening in our first-principles calculations.57,81

For SnO2 the difference between the experimental static dielectric constants ε
⊥
0 = 14 (ε

‖
0 = 9)82 and the electronic dielectric

constants (that take only electronic excitations into account and are sometimes also called high-frequency dielectric constants)

ε
⊥
∞ = 3.785 (ε

‖
∞ = 4.175)83 is large, which indicates that the electron-lattice coupling is not negligible. The ionic screening should

in principle be taken into account in the screened Coulomb interaction in the GW and the BSE approach as well, but no successful
calculation has been reported so far and it is not entirely clear how to include the electron-lattice interaction consistently into the
parameter-free formalism. We illustrate the large impact of the ionic contribution by employing the average of the experimental

static dielectric constants,82
ε0 = (2ε

⊥
0 + ε

‖
0 )/3 = 12.3, in the formula for the binding energy of the Wannier-Mott exciton.57,79

This leads to values of EB = 19 meV (ordinary polarization) and EB = 16 meV (extraordinary polarization) which are much
closer to the experimental results,10,80 now slightly underestimating them. This indicates that the actual screening in the material
is somewhere between ε0 and ε∞.

At variance with earlier studies, Reimann et al.10 observed three separate exciton series in two-photon spectroscopy experi-
ments. The associated transition energies for the lowest exciton in each series differed by 0.05 and 0.1 eV.10 This would suggest
that SnO2 should have three states at either the VB- or the CB edge that are of nearly the same energy and effective mass, in
clear contradiction to our calculated band structure. We suggest two possible explanations for the discrepancy. First, some of
the exciton series in the Reimann experiment could be due to impurity-bound excitons. Second, since Reimann et al. reported
twinning, their SnO2 samples may have been composed of domains with different strain. Strain can shift the absolute energetic
position of the bands, and consequently also the respective exciton series.84 It is noteworthy that earlier26 as well as later80

experiments report only one exciton series.

C. Origin of “direct-forbidden” transitions

In Figs. 6 and 7 we return to the anisotropy of the absorption edge. The experimentally reported absorption coefficients24

lie in the range of 0 . . . 100 cm−1, which is several orders of magnitude lower than typical absorption coefficients for the onset
of allowed transitions in SnO2 (cf. Fig 6). We will show that this behavior at the absorption edge arises from direct-allowed

transitions with very small oscillator strengths in the vicinity of the VBM at Γ. In order to investigate this issue we employed
an even more refined 6×6×10 : 3×3×5 : 10×10×18 : 3×3×5 : 56×56×100 double-hybrid k mesh (nomenclature as before,
cf. Ref. 57) in reciprocal space. The resolution provided by such a fine mesh allows for studying the absorption in the direct
vicinity of the Γ point including the respective polarization dependence provided by the dipole-matrix elements. In contrast
to the calculation of the entire spectrum, we chose the screening constant of ε0 = 12.3 for the highly-resolved study of the
absorption edge for reasons discussed before. To account for lifetime and instrumental broadening, the absorption coefficients
in Fig. 7 have been calculated with a small Lorentzian broadening of 0.001 eV.

The agreement with the experimental curves24 is reassuring. Both the steep onset of the absorption for perpendicular polar-
ization as well as the slow increase for parallel polarization at slightly higher photon energies is reproduced. Our theoretical
curves appear to be shifted to lower energies by approximately 50 meV, which is in line with our error bar of ∼ 0.1 eV for the
underlying QP band structure and approximations we have made for the dielectric constant.

In order to understand the small absolute values of the absorption coefficient around the band edge at 3.65 eV, as well as their
polarization dependence, we investigate the optical dipole-matrix elements |p| (calculated within the longitudinal approxima-
tion85). We find that all components of p are zero for transitions between the VBM and the CBM at the zone center. This is
consistent with our assignments of the irreducible representations Γ

+
1 (CBM) and Γ

+
3 (VBM) as well as with experiment (e.g.,

Ref. 26). However, as shown in Fig. 8, the dipole-matrix elements for perpendicular polarization (|p⊥|) grow as soon as we move
off the zone center along several directions in the BZ. This rapid increase leads to the increase of the absorption coefficient for
perpendicular polarization that we observe in Fig. 7. Nevertheless, these matrix elements remain significantly smaller than those
associated with typical dipole-allowed transitions (see e.g. Ref. 86 for MgO, ZnO, and CdO), explaining the small magnitude of
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FIG. 6. (Color online) Absorption coefficient calculated from the BSE for perpendicular (a) and parallel (b) light polarization.
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FIG. 7. (Color online) Absorption coefficient calculated from the BSE for SnO2 (solid lines) plotted alongside the experimental results at T = 7

K (circles)24 for perpendicular (black curves on the left) and parallel (red curves on the right) light polarization. Lorentzian broadening of

0.001 eV has been added to the calculated results to simulate the lifetime and instrumental broadening inherent to experiment. The broadening

artifacts below the absorption edge have been subtracted.
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FIG. 8. (Color online) Absolute value of the optical transition-matrix elements (in units of h̄/aB) along two high-symmetry directions in the

Brillouin zone for light polarized perpendicular (|p⊥|, solid black) as well as parallel (|p‖|, dashed red) to the tetragonal c axis.

the absorption coefficient.

In contrast, the matrix elements for the parallel polarization
∣

∣p‖
∣

∣ tend to stay very small when moving off Γ along various

high-symmetry directions. The only direction along which we observe an increase of
∣

∣p‖
∣

∣ is Γ – R (cf. Fig. 8). This behavior
of the dipole-matrix elements explains our results for both the magnitude and the dichroism of the absorption coefficient, in
excellent agreement with experimental observations.24

We thus conclude that dipole-allowed direct transitions off Γ (called “direct-forbidden” transitions in Ref. 14) are the dominant
mechanism responsible for the anisotropic absorption onsets, rather than indirect transitions.24 The weak dependence of the
absorption coefficient on temperature further supports the conclusion that the transitions are not indirect.23 Some experimental
papers attributed the onsets of absorption for the perpendicular and parallel polarizations to direct-allowed transitions from
lower-lying VBs of symmetry Γ

−
5 and Γ

−
2 at approximately 0.2 eV15 or 0.4 eV22–24 below the VBM. Our calculations clearly

show that no such VBs are present in this energy range, and that they are not needed to explain the experimental findings.

Overall, our exhaustive study of the absorption in SnO2 explains the early temperature- and polarization-dependent experi-
ments of Nagasawa et al. 24 that highlight the weak onset. Figure 5 also shows a strong onset of the imaginary part of the dielectric
function at about 4.0 eV, consistent with the observed rise of the absorption coefficient to values of about 104 . . . 105 cm−1 (see
Fig. 6) in SnO2 films with low free-carrier concentrations.87

VI. SUMMARY AND CONCLUSIONS

We have presented a systematic ab-initio study of the band structure and optical properties of the semiconducting oxide SnO2.
For the QP band structure, our HSE03+G0W0 results give a direct, dipole-forbidden band gap of 3.65 eV, in good agreement with
experimental findings. Additional features such as the VB width, binding energy of the Sn 4d states, and anisotropic electron
effective masses are also in remarkable agreement with experimental results. For the hole effective masses, which have not yet
been experimentally determined, we provide predictions.

For the optical spectrum, we have, for the first time, been able to accurately resolve the absorption onset in the presence of
bound electron-hole pairs. This facilitates a direct comparison with experiment and reveals that the difference in the observed
gaps for E ⊥ c and E ‖ c is a result of the anisotropy in the dipole-allowed direct transitions in the vicinity of the VBM at Γ

and is not due to transitions from lower-lying VBs. Our conclusions are consistent with other available experimental results.
Furthermore, we have predicted the dielectric function for a wide frequency range.
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