Supporting Information for

Tin microparticles for a lithium ion battery anode with enhanced cycling stability and efficiency derived from Se-doping

Hoang X. Dang,^a Kyle C. Klavetter,^a Melissa L. Meyerson,^a Adam Heller,^a and C. Buddie Mullins^{ab*}

* Address correspondence to mullins@che.utexas.edu

Figure S1. EDS Analysis of an 9:2 atomic ratio Sn/Se particle: (a) SEM image; EDS line scan across the particle (b) and EDS mapping for (c) Sn and (d) Se. The scan bar in all SEM images is $3 \mu m$.

Figure S2. EDS Analysis of an 9:0/5 atomic ratio Sn/Se particle: (a) SEM image; EDS line scan across the particle (b) and EDS mapping for (c) Sn and (d) Se. The scan bar in all SEM images is 3 μ m.

Figure S3. Raw XRD pattern of the fully discharged SnSe(9/1) electrode. The patterns for Cu (from substrate), Sn (remaining tin), and Li₂Se (expected phase) are all included.

Figure S4. Voltage profiles of electrodes made with (a) Sn/Se(9/1) and (b) Sn particles at C rates from 0.1 C to 1 C.