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TIN2 Functions with TPP1/POT1 To Stimulate Telomerase
Processivity

Alexandra M. Pike,a,b* Margaret A. Strong,a John Paul T. Ouyang,a,c Carol W. Greidera,b,c

aDepartment of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA

bGraduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA

cGraduate Program in Biochemistry Cell and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA

ABSTRACT TIN2 is an important regulator of telomere length, and mutations in

TINF2, the gene encoding TIN2, cause short-telomere syndromes. While the genetics

underscore the importance of TIN2, the mechanism through which TIN2 regulates

telomere length remains unclear. Here, we tested the effects of human TIN2 on telo-

merase activity. We identified a new isoform in human cells, TIN2M, that is ex-

pressed at levels similar to those of previously studied TIN2 isoforms. All three TIN2

isoforms localized to and maintained telomere integrity in vivo, and localization was

not disrupted by telomere syndrome mutations. Using direct telomerase activity as-

says, we discovered that TIN2 stimulated telomerase processivity in vitro. All of the

TIN2 isoforms stimulated telomerase to similar extents. Mutations in the TPP1 TEL

patch abrogated this stimulation, suggesting that TIN2 functions with TPP1/POT1 to

stimulate telomerase processivity. We conclude from our data and previously pub-

lished work that TIN2/TPP1/POT1 is a functional shelterin subcomplex.

KEYWORDS POT1, TIN2, TPP1, alternative splicing, processivity, shelterin, telomerase,

telomere

Telomere length in human cells is maintained around a tight equilibrium that prevents

life-threatening disease. Telomere shortening leads to a characteristic set of degener-

ative diseases, including pulmonary fibrosis, bone marrow failure, and immune defi-

ciency, collectively called short-telomere syndromes (1). In contrast, 90% of human

cancers upregulate telomerase, and mutations that increase telomerase levels predis-

pose to cancer (2–4). While we understand many component pathways that regulate

telomere length, the integrated mechanism of telomere length regulation is not fully

understood.

Human telomeres consist of about 10 kb of TTAGGG repeats that are mostly double-

stranded DNA with a single-stranded 3= overhang, all bound by a protein complex

termed shelterin (5). This DNA-protein complex maintains telomere integrity, and

shelterin both positively and negatively regulates telomere repeat addition by telome-

rase. The shelterin complex consists of the following six subunits: two double-stranded

DNA binding proteins, TRF1 and TRF2 (6–9); a single-stranded telomeric binding

protein, POT1 (10, 11), and interacting proteins TPP1, TIN2, and RAP1 (12–16).

POT1 and TPP1 form a heterodimer that binds single-stranded telomeric DNA and

stimulates telomerase processivity in vivo and in vitro (17–19). This stimulation is

mediated though the TPP1 OB-fold, which contains the conserved TEL patch and NOB

regions that directly interact with the TEN domain of telomerase reverse transcriptase

(TERT) (20–23). Mutations in the TEL patch abrogate the stimulation of processivity, and

compensatory charge swap mutations in TERT restore function (24), suggesting the

direct binding of TPP1/POT1 heterodimer to TERT mediates telomerase processivity

stimulation.
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TIN2, encoded by the TINF2 gene, is essential for shelterin assembly at the telomere

and is mutated in patients with severe short-telomere syndromes (25, 26). The bio-

chemical function of or mechanism by which TIN2 regulates telomere length is not yet

clear. TIN2 localizes to telomeres through interactions with TRF1, TRF2, and TPP1 (Fig.

1A) (12–15, 27). TIN2 interaction with TPP1 is essential for TPP1/POT1 localization and

function in cells (28–31), and TIN2 stabilizes TRF1 and TRF2 binding to telomeres (27).

Because of its interactions with TRF1, TRF2, and TPP1/POT1, TIN2 has been described as

a molecular bridge between the double-stranded and single-stranded DNA-binding

shelterin components. However, it is likely that TIN2 performs additional telomeric

functions, since single missense mutations significantly disrupt telomere length equi-

librium.

While mouse cells express a single TIN2 isoform, human cells express short and long

alternatively spliced isoforms, TIN2S and TIN2L (Fig. 1A). Both isoforms contain the

shelterin interacting domains that bind TRF1, TRF2, and TPP1, as well as the small

domain of unknown function that is mutated in patients with short-telomere syn-

dromes. TIN2L contains the entire TIN2S sequence (residues 1 to 354), along with a
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C-terminal extension that contains highly conserved residues (Fig. 1A). Recent evidence

suggests that the longer isoform is functionally different from TIN2S (32), but TIN2S is

the most widely studied isoform.

To elucidate the mechanism of TIN2 regulation of telomere length in human cells,

we set out to test the biochemical functions of the TIN2 isoforms in the context of the

TPP1/POT1 telomerase processivity complex. We found that TIN2 stimulates telomerase

processivity in a TPP1/POT1-dependent manner. Further, we found a third isoform,

TIN2M, expressed in human cells. Each TIN2 isoform can localize to telomeres, maintain

telomere integrity, and stimulate telomerase processivity. Together with the require-

ment of TIN2 for TPP1/POT1 function in vivo, these data implicate TIN2 as a part of the

telomerase processivity complex, forming a functional shelterin subcomplex. This is the

first evidence of TIN2 having a direct role in regulating telomerase, suggesting that it

may do more than simply bridge the shelterin components at the telomere.

RESULTS

To understand the mechanism of TIN2 in telomere length regulation, we examined

whether TIN2 might directly affect telomerase activity. TIN2 interacts directly with the

TPP1 component of the TPP1/POT1 telomerase processivity complex that binds telo-

merase through the TPP1 TEL patch domain (18, 20–22, 33). To examine whether TIN2

affects telomerase activity or processivity, we reconstituted active telomerase com-

plexes in a cell extract-based system overexpressing telomerase to measure telomerase

activity and processivity in vitro (18–20, 34). We adapted this previously published

extract-based system (20) to generate cells constitutively expressing telomerase (TERT/

TR), TPP1, and POT1 and then introduced TIN2 by transient transfection.

For reproducible overexpression of the protein components, we created a polycis-

tronic expression cassette containing FLAG-TPP1, FLAG-POT1, and FLAG-TERT sepa-

rated by 2A peptides (Fig. 1B). As a negative control, we mutated the TPP1 TEL patch

(TPP1 E169A/E171A) (20), referred to here as TPP1TEL, to test whether any effects of TIN2

are mediated through TPP1/POT1 (Fig. 1B). We constructed the assay cell lines by first

generating a clonal cell line overexpressing telomerase RNA (TR) in 293TREx FLP-in cells,

into which we integrated the expression cassettes at a unique genomic locus using the

FLP-in system. The resulting cell lines are referred to here as TPP1/POT1/TERT and

TPP1TEL/POT1/TERT (Fig. 1B to D). Exogenous TIN2 was introduced to these cell lines by

transient transfection (see Materials and Methods). We note that in this assay, relative

to the exogenous proteins, levels of endogenous shelterin proteins are too low to affect

the biochemical assays, as evidenced by the observation that endogenous TPP1 is

unable to compensate for the processivity defects of TPP1TEL in the TPP1TEL/POT1/TERT

cell line (Fig. 1D).

To examine the effects of TIN2 on telomerase activity, we initially transfected a

myc-tagged full-length TINF2 gene, inclusive of introns, to express both alternatively

spliced TIN2 isoforms. Telomerase assays showed increased processivity in TPP1/POT1/

TERT cells transfected with myc-TINF2 compared to the green fluorescent protein (GFP)

control (Fig. 2B), suggesting that TIN2 enhances telomerase processivity to a level

above that resulting from effects of TPP1/POT1 alone. Surprisingly, Western blotting

performed with these lysates showed three distinct bands, instead of the expected two

bands corresponding to TIN2S and TIN2L (Fig. 2A). We deduced that the third band may

correspond to a new isoform and, further, that any of the three isoforms could be

responsible for the increased processivity in myc-TINF2 lysates.

Identification of a new TIN2 isoform, TIN2M. To further examine the TIN2

isoforms, we engineered an N-terminal myc tag at the endogenous TINF2 locus in 293T

cells using CRISPR/Cas9 genome editing (Fig. 3A). Western blots on several edited

clones again showed the three distinct bands (Fig. 3B), suggesting that the third band

did not represent an artifact of the overexpression construct. To identify these bands,

we transfected myc-TINF2 alongside cDNA constructs expressing myc-TIN2S or myc-

TIN2L (Fig. 3C), which revealed that the unknown band fell between the known

isoforms, running at �47 kDa (Fig. 3C).
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To test whether this band corresponds to an alternatively spliced TIN2 isoform, we

used a modified 3= rapid amplification of cDNA ends (3=RACE) assay with PacBio

sequencing to identify all full-length transcripts in human and mouse cells. In 293T cells,

TIN2S and TIN2L cDNAs were identified along with a third major isoform, which

encodes a protein with the expected molecular weight for the unknown protein. We

termed this isoform “TIN2M” for “TIN2 medium.” TIN2M results from retention of the last

intron, between exons 8 and 9, which encodes 13 amino acids of unique sequence

(408VSGKEQKAGKGDG420) before reaching a stop codon (Fig. 3D and E). TIN2M was

present at similar levels in four other human cell lines (HeLa, K562, RPE-1, and a newly

derived lymphoblastoid cell line [LCL]), suggesting that it is commonly expressed.

Sequence read counts indicated that TIN2M and TIN2L mRNAs were expressed at

similar levels, while TIN2S had 2-fold-greater representation than each of the others

(Fig. 3D). These ratios are not always reflected in Western blots (Fig. 3B and C) as the

FIG 2 TINF2 expression stimulates telomerase processivity. (A) Western blot of duplicate transfections of

mycTINF2 or GFP into TPP1/POT1/TERT cell lines. “TINF2” refers to the full-length gene, inclusive of

introns. Samples were run on the same blot; the white line indicates cropping of lanes with samples not

included in this study. (B) Telomerase assays of transfections performed as described for panel A were

stopped after 5 or 10 min. LC, 18-mer loading and purification control; �1, �2, etc., repeat numbers; *,

nonspecific band.
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mRNA abundance and protein levels may be discordant due to posttranslational

regulation. Additionally, TIN2L has shown poor solubility and its detection varies

depending on the protein extraction method (35).

In addition to the three major isoforms in human cells, we identified a number of

additional recurrent exon skipping, intron retention, and alternative polyadenylation

site usage events, including exon 2 skipping, described previously (36) (Fig. 3D). We

found that two different mouse strains (C57BL/6 and CAST/EiJ) expressed just one TIN2

isoform that is most similar to TIN2L, as previously described (35, 37) (not shown).

Evidence for expression of TIN2M was also found in data publicly available from

PacBio IsoSeq from MCF-7 breast cancer cells (http://www.pacb.com/blog/data-release

-human-mcf-7-transcriptome/). Additionally, genome-wide ribosome profiling data

from GWIPS-viz showed ribosome peaks present in the unique coding region of the

TIN2M-retained intron (38). TIN2M and TIN2L contain the recently identified CK2

phosphorylation site (32), but TIN2S does not. All three of the expressed isoforms

contain the documented cluster of telomere syndrome patient mutations and the other

known interaction domains.

All three TIN2 isoforms localize to telomeres. TIN2S and TIN2L have been demon-

strated to localize to telomeres in vivo (12, 35). To determine whether TIN2M also

localizes to telomeres, we stably expressed cDNA encoding myc-tagged TIN2S, TIN2M,
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or TIN2L in HeLa Flp-in cells. Using indirect immunofluorescence, we found that all

three isoforms showed discrete foci that colocalized with TRF2, indicating that each

localizes to telomeres in vivo (Fig. 4). This demonstrates that all three TIN2 isoforms may

be found at endogenous telomeres in human cells and that the different C-terminal

domains do not appear to affect telomeric localization.

Since all of the TIN2 isoforms also contain the patient mutation cluster (Fig. 1A), we

tested whether mutant TIN2 is defective in telomeric localization. TIN2S with patient

mutations K280E, R282S, and R282H was previously shown to localize to telomeres (39,

40), but localization in TIN2M or TIN2L with mutations has not been reported. We

expressed a well-studied patient mutation, K280E, in each of the three isoforms and

observed telomeric localization of all three isoforms with this mutation (Fig. 4). The

results suggested that any of these three isoforms could mediate the dominant-

negative telomere-shortening effect of the patient mutations in vivo.

TIN2M and TIN2L rescue telomere damage foci. TIN2 is an integral part of the

shelterin complex, and disruption of shelterin results in a DNA damage response at

telomeres, termed telomere dysfunction-induced foci (TIFs). Removal of endogenous

TIN2 elicits a TIF phenotype that can be rescued by reintroducing TIN2 (28, 31). To

determine whether each isoform can rescue this phenotype, we depleted endogenous

TIN2 with short hairpin RNA (shRNA) in the HeLa myc-TIN2 cell lines described above

using HeLa GFP as a control. The TIN2 shRNA (shTIN2) resulted in �90% knockdown of

endogenous TIN2 compared to a nontargeting shRNA (shNT) in the GFP cell line (Fig.

5A) and did not target exogenous myc-TIN2 isoforms as detected by Western blotting

(Fig. 5B).

In control cell lines, TIN2 knockdown significantly increased levels of TIFs compared

to the nontargeting control results, as measured by colocalization between TRF2 and

53BP1 (Fig. 5C and D). This was reflected by a higher mean number of TIFs per nucleus
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as well as by a higher proportion of cells having a large number of TIFs. Overexpression

of TIN2S prevented this increase in TIFs, and we found that TIN2M and TIN2L also

effectively rescued TIFs when endogenous TIN2 was knocked down (Fig. 5D). This

suggests that the three isoforms are individually capable of performing the telomere

maintenance roles seen with TIN2 (Fig. 5C and D).

TIN2 cooperates with TPP1/POT1 to stimulate telomerase processivity. Prelim-

inary experiments showed that the TINF2 full-length gene stimulated telomerase

processivity, and we have demonstrated that each isoform localizes to and functions at

telomeres in vivo. We next examined whether one of the isoforms might be responsible

for the stimulation of telomerase observed with myc-TINF2. Each of the three TIN2

isoforms reproducibly coimmunoprecipitated with TPP1/POT1 and TERT in reciprocal

pulldown of either myc-TIN2 or FLAG-TPP1/POT1/TERT (Fig. 6 and data not shown). The

K280E mutation caused no major change in the coimmunoprecipitation of TPP1/POT1

and TERT in any of the three isoforms (Fig. 6) as had been shown previously for TIN2S

(39, 41). Telomerase activity was detected in these coimmunoprecipitations, suggesting

that telomerase complexed with TIN2 was active (data not shown). In our hands, TIN2

coimmunoprecipitations showed robust TERT coimmunoprecipitation even in the

TPP1TEL mutant, despite previous reports that TEL patch mutations decreased TPP1-

TERT interactions by about 40% (20). We conclude that all three isoforms of TIN2 were

interacting with TPP1/POT1 in complex with active telomerase and that this complex

was not disrupted by the TIN2-K280E patient mutation or the TPP1TEL mutation.

Using our extract-based telomerase reconstitution system, we transfected TPP1/

POT1/TERT cells with each isoform and found reproducible 10% to 20% increase in

stimulation of telomerase processivity with each of the three N-terminally tagged

isoforms (Fig. 7). TIN2 is important for TPP1/POT1 function in the cell; here, we report

evidence of a biochemical function of TIN2 in telomerase processivity stimulation. To
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determine whether the TIN2 stimulation of processivity works though the TPP1/POT1

heterodimeric telomerase processivity complex, we transfected TIN2 into the TPP1TEL/

POT1/TERT cells or separately into a TERT-only cell line overexpressing TERT/TR alone.

We found no stimulation of telomerase processivity in either of these lysates (Fig. 7C),

suggesting that the stimulation was dependent on TPP1/POT1. Our results indicate that

TIN2 cooperates with TPP1/POT1 to stimulate telomerase processivity.

Because all three TIN2 isoforms stimulated telomerase processivity in a TPP1/POT1-

dependent manner, we tested whether each of patient mutations TIN2-K280E, TIN2-

R282S, TIN2-R282H, and TIN2-K280X affects this function of TIN2. In some instances, we

found that TIN2 mutants were deficient at stimulating telomerase activity but that this

result was variable both in whole-cell lysates and in TIN2 coimmunoprecipitations.

Because the TINF2 mutations are dominant negative in vivo, we tried coexpressing

wild-type TIN2 with a mutant TIN2, but we were not able to detect a change in

processivity stimulation in this in vitro setting. Although the patient mutations did not

reproducibly affect telomerase processivity in this assay, it is possible that they have

important processivity defects in vivo.

DISCUSSION

Our data provide novel biochemical evidence that TIN2 stimulates telomerase

processivity in a TPP1/POT1-dependent manner. TIN2 may function by stabilizing the

TPP1/POT1 interaction with telomerase, as it relies on TPP1-TERT interaction. This

suggests that TIN2 is an integral part of what we refer to as the “TIN2/TPP1/POT1

processivity complex.” This previously unknown role of TIN2 isoforms in telomerase

processivity stimulation adds to our understanding of TIN2’s role in telomere length

regulation. While all three isoforms were able to stimulate telomerase activity in vitro,

further work may uncover differences in the regulation of their activities in vivo.
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TIN2 cooperates with TPP1/POT1 to stimulate telomerase processivity. All three

TIN2 isoforms formed a stable complex with TPP1/POT1 and TERT, and addition of TIN2

further stimulated telomerase processivity over the level seen with TPP1/POT1 alone.

This stimulation of processivity required TPP1 and POT1, as there was no stimulation in

cells expressing TPP1 TEL patch mutants or TERT alone (Fig. 7B and C). TIN2 could

enhance telomerase processivity by improving the TPP1/POT1 complex stability or its

interaction with telomerase, by promoting the telomeric single-stranded DNA (ssDNA)

interaction of the complex, or by some combination of the two (Fig. 8A).

Interestingly, the identification of TIN2 as an additional component to an already

known processivity complex is reminiscent of recent findings in Tetrahymena. The

Tetrahymena telomerase holoenzyme structure (42) revealed two unknown subunits,

Teb2 and Teb3, that interact with the previously defined Teb1-p50 processivity com-

plex. The addition of these proteins to in vitro reactions further stimulated telomerase

processivity, possibly by stabilizing the completly assembled processive enzyme com-

plex (43). Our results with TIN2 are analogous to this finding in Tetrahymena, suggesting

that TIN2 binding to TPP1/POT1 stabilizes the complex and thus promotes processivity.

FIG 7 TIN2 stimulates telomerase processivity beyond the TPP1/POT1 stimulation. (A) Western blots of GFP and myc-TIN2 isoform

transfections into TPP1/POT1/TERT (left) or TPP1TEL/POT1/TERT (right) cell lines. FLAG bands above POT1 are unidentified but may

represent TERT degradation products. Tubulin is shown as a loading control. (B) Telomerase assays were stopped at 10, 20, and 40

min (indicated by triangles above the gel). Quantification of the processivity is shown in panel C. LC, loading and purification control;

�1, �2, and �3, repeat numbers. (C) Mean processivity values from 3 independent telomerase assays at the 40-min time point using

the 15� processivity method (see Materials and Methods). Orange bars represent a cell line overexpressing TERT/TR but not

TPP1/POT1. Data were analyzed with a one-way analysis of variance (ANOVA) and Bonferroni’s multiple-comparison test against the

GFP control. n � 3 independent transfections per cell line indicated. Error bars represent standard deviations (SD). **, P � 0.01; ***,

P � 0.001.
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TIN2/TPP1/POT1 is a functional shelterin subcomplex. Our data, in combination

with previously published work, are consistent with TIN2/TPP1/POT1 forming a shel-

terin subcomplex. The TPP1-TIN2 interaction is necessary for telomerase recruitment to

telomeres (30, 40), even though the TPP1/POT1 heterodimer can bind telomeric ssDNA.

Further, experimental data support the idea of different outcomes of the TIN2-TPP1

binding and the TIN2-TRF1 or TIN2-TRF2 binding. First, when TRF1 is removed from

telomeres by tankyrase 1 modification, TIN2 and TPP1 remain at telomeres (13). Second,

posttranslational depletion of TIN2 by Siah2 ubiquitination removes TPP1 but not TRF1

or TRF2 from telomeres (44). Further evidence in TIN2-floxed mouse cell lines or TIN2

knockdown in HeLa cells showed reduced telomeric TPP1/POT1 localization (29, 30).

Similarly, disruption of the TIN2 TRF1-binding motif does not disrupt TRF1, TRF2, or

Rap1 localization but prevents TIN2/TPP1/POT1 accumulation at telomeres in mouse

cells (28). Deletion of the TPP1-binding region from mouse TIN2 also prevents local-

ization of TPP1/POT1 to telomeres (31). Finally, genetic evidence obtained using CRISPR

knockouts in human cells led Kim et al. to conclude that TIN2/TPP1/POT1 is a shelterin

subcomplex (45). These findings, together with our work showing a biochemical

function of TIN2/TPP1/POT1, further support the conclusion that TIN2, TPP1, and POT1

form a functional shelterin subcomplex.

The TIN2/TPP1/POT1 heterotrimer likely affects both telomerase and replication fork

progression. Considering TIN2/TPP1/POT1 to be a telomere-specific ssDNA binding

protein (SSB) complex helps explain the defects in telomere replication that have been

reported for both POT1 and TPP1 knockdowns and mutants (12, 13, 39, 46, 47). While

most diagrams draw TPP1/POT1 bound to the G-strand overhang at telomeres, this

telomere-specific SSB complex can also bind the telomeric G strand exposed during

DNA replication (Fig. 8B) (29, 48). TPP1 and POT1 have both been reported to facilitate

DNA replication through telomeric tracts (49–52). POT1 mutants that cannot bind DNA

cause telomere replication fork stalling, fragile telomeres, and ATR activation (52),

possibly due to ssDNA exposure at the telomeric replication fork. TIN2 knockdown (29)

and mouse mutants (53) also cause an ATR-mediated DNA damage response. Taken
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FIG 8 TIN2/TPP1/POT1 forms a stable shelterin subcomplex. (A) TIN2 completes the telomerase proces-

sivity complex. TIN2 enhances TPP1/POT1 stimulation of telomerase, forming a heterotrimeric proces-

sivity complex. (B) A cartoon proposing a dynamic, heterogeneous distribution of shelterin proteins

across the length of human telomeres coordinating telomere length maintenance. TRF1 and TRF2 may

direct TIN2/TPP1/POT1 to single-stranded DNA both at the telomere overhang and within the replication

fork, aiding its roles in fork progression and telomerase stimulation.
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together, the data suggest that telomeric TIN2/TPP1/POT1 may participate directly in

replication fork progression through the telomere and that perturbation of this func-

tion may lead to replication fork collapse and activation of ATR.

TINF2 mutations and the role of the TIN2 C terminus in telomere length

regulation. The mutations in TINF2 in short-telomere syndrome patients mostly cluster

in a TIN2 domain of unknown function in exon 6 near the C terminus of TIN2 (25, 26)

(Fig. 1A). Genetic evidence strongly supports the idea of a dominant-negative mech-

anism for the mutant TIN2 proteins, including their autosomal dominant inheritance,

stable expression, clustering of disease-associated alleles within the coding sequence,

and evidence of selection against the mutant proteins in the hematopoietic lineage in

vivo (54). Experimental evidence supports the existence of such a dominant-negative

mechanism (40), but the molecular nature of this effect is not well understood.

We found that all three TIN2 isoforms form a complex with TPP1/POT1, stimulate

telomerase processivity, localize to telomeres, and maintain telomere integrity. Inter-

estingly, these isoforms differ only in their C-terminal domains. TIN2 can be roughly

divided into two regions: the shelterin-interacting region in the N terminus and the

C-terminal region that includes the patient mutation cluster, the variable C-terminal

extensions of TIN2M and TIN2L, and several other interaction sites and modifications

(32, 44, 55, 56) (Fig. 1A). The structure is known for much of the shelterin-interacting

region, including the N-terminal TRF2/TPP1 binding domain (TIN21–202) (57) and the

short TRF1-interacting motif (TIN2256–276) (58). There is no structural information,

however, regarding the C-terminal region, including both the mutation hot spot and

the variable C-terminal extension. Interestingly, the C-terminal extension contains two

cell cycle-regulated RSK2 phosphorylation sites (S295 and S333) (56) and a highly

conserved region with a CK2 phosphorylation site at S396 (32), while the patient

mutation hot spot overlaps a canonical PXVXL HP1� binding site (55). Additionally,

some of the patient mutations, such as K280X, are truncations that generate a short

stable protein missing the entire C-terminal region (59). The effects of these binding

and phosphorylation events are not yet understood. The TIN2 C terminus may function

through binding a novel partner or through a conformational or structural role. Future

studies focusing on the C-terminal region of TIN2, especially the conserved region in

the C-terminal extension, may reveal novel mechanistic insights that were missed in

previous work on TIN2 mutations and telomere shortening.

MATERIALS AND METHODS

Expression constructs. TIN2S cDNA was purchased from Invitrogen (Ultimate ORF Clone IOH80607)

in pENTR221. A synthetic gBlock (IDT) containing the downstream TIN2 sequence was used in Gibson

assembly to generate TIN2L with silent mutations for shRNA resistance. TIN2M was cloned by reverse

transcription-PCR (RT-PCR) of endogenous transcripts. TIN2S, TIN2M, and TIN2L were amplified with

primers containing HindIII and NotI restriction sites and an N-terminal myc tag and were cloned into

pcDNA5/FRT. TINF2, the TIN2 full-length gene inclusive of introns, was cloned into pcDNA5/FRT as

described previously (54). Patient mutations were generated by site-directed mutagenesis. The se-

quences of all constructs and mutants were verified by Sanger sequencing at the Johns Hopkins

University (JHU) Synthesis & Sequencing Facility.

p3x-Flag-POT1-cDNA6/Myc-HisC, p3x-Flag-TPP187-544-cDNA6/Myc-HisC, and p3x-Flag-TERT-cDNA6/

Myc-HisC were kind gifts from the Cech laboratory (20). We introduced E169A/E171A mutations with

site-directed mutagenesis to create TPP1TEL. TPP1 or TPP1TEL, POT1, and TERT were assembled into a

single expression cassette connected by 2A peptides (Fig. 1B). TERT alone was also cloned into pcDNA5.

The 2A peptides leave a small tag on the downstream proteins, so TERT was cloned in the last position

because it is nonfunctional with C-terminal tags (60–62). Expression cassettes were flanked by BstBI and

NotI restriction sites.

Cell culture. Cell lines were cultured in the indicated media supplemented with 10% heat-

inactivated fetal bovine serum (FBS) (Invitrogen catalog no. 16140071) and 1% penicillin/streptomycin/

glutamine (PSG; Invitrogen catalog no. 10378016). HeLa, HeLa TREx FLP-in, 293T, and 293TREx FLP-in cells

were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Gibco); hTERT RPE-1 (ATCC CRL-4000) cells

were cultured in DMEM–F-12 (Corning); lymphoblastoid cell lines (LCLs) derived from healthy controls

(samples were obtained after written informed consent and under approval from Johns Hopkins

Medicine Institutional Review Board) were cultured in RPMI medium (Gibco); and K562 cell lines were

cultured in Iscove’s modified Dulbecco’s media (IMDM; Gibco).

For immunofluorescence experiments, the indicated pcDNA5/myc-TIN2 cDNA construct or pcDNA5/

GFP was integrated into HeLa FLP-in cells by the use of a FLP-in system (Invitrogen) and hygromycin-
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resistant clones were pooled for downstream analysis. For TIF experiments, where indicated, cells were

also transduced with pGIPZ lentiviruses containing a nontargeting shRNA (Dharmacon catalog no.

RHS4346) or shRNA targeting exon 9 of TIN2 (Dharmacon catalog no. V3LHS_401958) at a multiplicity of

infection (MOI) of 0.3 and were then selected with puromycin. Cells were analyzed within 2 weeks of

transduction to avoid silencing of the shRNA. TIN2S and TIN2M cDNAs have exogenous 3= untranslated

region (3=UTR) sequences and therefore are shRNA resistant; TIN2L was engineered with silent mutations

for shRNA resistance in exon 9.

Telomerase assays. Telomerase assay cell lines were generated in 293 TREx FLP-in cells (Invitrogen

catalog no. R78007) as described previously (63). Briefly, parental cells were transduced with a telomerase

RNA (TR) lentivirus, selected, and cloned by limiting dilution. Then, the TPP1/POT1/TERT or TPP1TEL/

POT1/TERT construct was integrated at a single site in a TR-overexpressing clone using the Flp-in system

(Invitrogen). For telomerase assays, 5 � 105 cells of the respective cell lines were plated in each well of

a 6-well dish. The next day, 2.5 �g of the indicated TIN2 or GFP construct was transfected with

Lipofectamine 2000 (Invitrogen catalog no. 11668019) following the manufacturer’s protocol. After 48 h,

cells were lysed in 100 �l 1� CHAPS {3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate}

lysis buffer and clarified by centrifugation. Telomerase assays were performed using 5 �l of clarified cell

lysate as described in reference 63. Assays were quantitated in ImageQuantTL (GE Healthcare) using the

15� method as described previously (20). Statistical analysis was performed in GraphPad Prism.

Multiple-sequence alignments. TIN2 sequences from vertebrates with known or predicted TIN2

proteins were obtained from NCBI. The longer isoform was chosen for organisms with multiple reported

isoforms. Sequences were uploaded and processed using PRALINE multiple-sequence alignment with the

default parameters (64, 65). To make the sequence conservation heat map, the PRALINE output was

imported into Microsoft Excel, and the alignment scores (0 to 10) for human TIN2 are indicated on a

color-coded scale ranging from white (score of 0 [not conserved]) to navy (score of 8, 9, or 10 [highly

conserved]). The sequences used are listed in Table S1 in the supplemental material.

CRISPR editing. Guide RNAs were selected using the Zhang Lab CRISPR design tool (http://crispr

.mit.edu/). For endogenous tagging of TIN2, the guide sequence (CGCCACCAGGGGCGTAGCCATGG) was

cloned into pX459-U6-Chimeric_BB-CBh-hSpCas9-2A-Puro. The repair template was generated by PCR

from the cloned myc-TINF2 construct. A 1-�g volume of Cas9-2A-Puro�TIN2 guide was transfected into

293T cells with 10 molar equivalents of the repair template using XtremeGENE9 (Roche catalog no.

6365787001). The cell population was enriched for edited clones with puromycin, subjected to cloning

by limiting dilution, and screened by PCR and restriction digests. Clones with positive results were

examined by Western blotting. While we found many edited clones, 293T cells are hypotriploid with an

unstable karyotype, and we observed high levels of endogenous Myc expression that interfered with

Western blotting for myc-tagged TIN2. These limiting factors make it difficult to further study TIN2 in

these knock-in cell lines.

3=RACE and PacBio. The 3=RACE and sequencing assays were performed using samples from five

human cell lines (293T, HeLa, RPE-1, K562, and LCL) and two mouse samples (CAST/EiJ mouse embryonic

fibroblasts [MEFs] and C57BL/6 liver). All mouse samples were obtained with approval by the Institutional

Animal Care and Use Committee at the Johns Hopkins University School of Medicine. We combined

3=RACE with Pacific Biosciences (PacBio) single-molecule, real-time (SMRT) sequencing to cover tran-

scripts from the 5’UTR through the poly(A) tail. First, we isolated mRNA from �106 cells using an RNeasy

kit (Qiagen) per manufacturer instructions with QIAshredder spin columns (Qiagen), on-column DNase

digestion (Qiagen) to remove any genomic DNA, and an RNA cleanup step. We then reverse transcribed

1.5 �g mRNA with an oligo(dT20) primer and an adapter sequence (GACTCGAGTCGACATCG-T20) using a

SuperScript III first-strand synthesis kit (Qiagen). A 5-�l volume of the resulting cDNA was amplified with

Hot Start Phusion polymerase (Thermo) using primers corresponding to the adapter and the 5=-UTR

(CGGCGACGTTTAAAGCTGA). A total of 3 to 5 replicate PCRs were combined, purified with a QIAquick PCR

purification kit (Qiagen), and submitted to the Johns Hopkins Deep Sequencing & Microarray Core Facility

for sequencing. Quality control was performed on a 1:200 dilution of samples using a Bioanalyzer

high-sensitivity DNA assay (Agilent). Products were size selected for the anticipated size range of 1 to 3

kb. One SMRT cell was sequenced per sample. Sequencing reads were processed using SMRT Analysis

v4.0 software, aligned to chromosome 14 with HISAT2, and assembled into potential transcripts using

StringTie (66, 67). StringTie was first run for individual samples using the default settings with the

exception that the minimum isoform fraction was set to 0.01 instead of 0.1. To build a gene model for

all human reads, StringTie-merge was run with the minimum isoform fraction set to 0.05. HISAT2 and

StringTie results were viewed in IGV (68, 69).

Immunofluorescence. For TIN2 localization, HeLa FLP-in cells were plated in chamber slides. The

following day, the cells were washed with phosphate-buffered saline (PBS) and fixed with 4% parafor-

maldehyde (PFA) for 20 min. Slides were washed with PBS, treated with 0.5% Triton–PBS for 15 min,

washed with PBS, and blocked in 10% goat serum–PBS for 30 min (Sigma). Slides were incubated with

a mixture of the two primary antibodies (mouse anti-myc clone 4A6 [Sigma catalog no. 05-724; 1:200]

and rabbit anti-TRF2 [Novus Biologicals catalog no. NB110-57130; 1:800]) for 1 h at room temperature,

washed with PBS, and incubated with a mixture of the two secondary antibodies (goat anti-mouse

IgG1–Alexa Fluor 488 [Invitrogen catalog no. A21121; 1:400] and goat anti-rabbit IgG–Alexa Fluor 555

[Invitrogen catalog no. A21429; 1:400]) for 1 h at room temperature.

For TRF2/53BP1 colocalization analysis, cells were seeded in chamber slides and, 2 days later, samples

were processed for immunofluorescence staining. Before fixation was performed, cells were subjected to

in situ fractionation as described previously (70). After several washes with cold PBS were performed, the

cells were fixed in 3% paraformaldehyde–2% sucrose–PBS for 10 min at room temperature, washed in
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PBS, and permeabilized in cold 0.3% Triton–PBS for 8 min. After three PBS washes, the slides were

blocked in 3% goat serum–1mg/ml bovine serum albumin (BSA)–PBS for 30 min at room temperature,

incubated with primary antibodies (rabbit anti-Trf2 [NB110-57130; Novus Biologicals; 1:800] and mouse

anti-53BP1 [NBP2-25028; Novus Biologicals; 1:400]) diluted in blocking solution for 1 h at room temper-

ature. After three PBS washes, the slides were incubated with secondary antibodies (goat anti-rabbit

IgG–Alexa Fluor 555 [A21429; Invitrogen; 1:400] and goat anti-mouse IgG–Alexa Fluor 647 [A21235;

Invitrogen; 1:400]) for 45 min at room temperature.

All stained slides were washed three times with PBS and coverslips were mounted with Vectashield

containing DAPI (4=,6-diamidino-2-phenylindole) after the secondary antibody incubation. Images were

acquired on a Nikon Eclipse NI-E microscope using a PlanApo 60� objective and NIS-Elements software.

TIF analysis. Colocalization analysis was performed using Nikon NIS-Elements software. Nuclei were

identified using thresholding as regions of interest and were excluded if they were not completely in the

field of view. Thresholding was performed on the Trf2 and 53BP1 images separately to identify individual

foci. Nuclei were excluded if they contained multiple foci combined into one (Trf2 and 53BP1) or if they

contained �5 foci (Trf2 only). An intersection layer was created from the Trf2 and 53BP1 layers to identify

colocalized foci, and the data for each ROI layer were exported to a data table. Descriptive statistics were

generated, and data were analyzed by Kruskal-Wallis nonparametric analysis of variance with multiple-

comparison corrections performed using GraphPad Prism 8. Data were visualized as a box plot with

whiskers covering all values for each data set. Representative nuclei were selected in Nikon NIS-Elements

software, and image contrast was enhanced for visual presentation postanalysis.

qRT-PCR. RNA was purified from �106 cells using a Qiagen RNeasy kit, and 2 �g of mRNA was

reverse transcribed using a SuperScript III first-strand synthesis kit (Invitrogen) with oligo(dT20) primers.

Reverse transcription-quantitative PCR (qRT-PCR) was performed on a Bio-Rad CFX96 thermocycler with

1� IQ SYBR green Supermix (Bio-Rad). TIN2 (primers: GTCAGAGGCTCCTGTGGATT and CAGTGCTTTCTC

CAGCTGAC) was measured against the ARF3 housekeeping gene (primers: TCACCACCATCCCTACCATT

and AGGTGGCCTGAATGTACCAG) (34). Data were analyzed using the threshold cycle (2�ΔΔCT) method of

relative quantification.

Western blotting. Cells were lysed on ice in CHAPS lysis buffer (10 mM Tris-HCl, 1 mM MgCl2, 1 mM

EGTA [pH 8.0], 0.1 mM benzamidine, 5 mM �-mercaptoethanol [BME], 0.5% CHAPS, 10% glycerol [pH 7.5])

and clarified by centrifugation. Samples were denatured with 1� NuPAGE LDS sample buffer Invitrogen

catalog no. NP0008) mixed with 50 mM dithiothreitol (DTT), heated at 65°C for 10 min, and separated on

a 4% to 12% Bis-Tris gel (NuPAGE catalog no. NP0323) in 1� MOPS (morpholinepropanesulfonic acid)

buffer (Invitrogen catalog no. NP0001) with 3 �l of SeeBlue Plus2 (Thermo catalog no. LC5925) with a

prestained ladder to estimate molecular weight. Proteins were transferred to polyvinylidene difluoride

(PVDF), blocked in 1� TBS–0.1% Tween 20 (TBST)–5% milk (Bio-Rad catalog no. 170-6404), probed with

the indicated antibodies, and developed by chemiluminescence using an ImageQuant LAS4000 imager

(GE Healthcare). Primary antibodies and concentrations were as follows: mouse anti-myc 4A6 (Millipore

catalog no. 05-24; 1:2,000), mouse anti-FLAG M2 (Sigma catalog no. F1804; 1:5,000), and rabbit antitu-

bulin (Abcam catalog no. ab6046; 1:5,000). Secondary antibodies were anti-mouse IgG or anti-rabbit IgG

conjugated to horseradish peroxidase (HRP; Cell Signaling; 1:10,000).

Coimmunoprecipitation. Immunoprecipitations were carried out using either anti-c-myc–agarose

(Pierce 20168) or anti-FLAG M2 affinity gel (Sigma A2220). A 20-�l volume of bead slurry per reaction was

washed with PBS and equilibrated in CHAPS buffer before addition of 45 �l of lysate. Samples were

incubated in an end-over-end mixer at 4°C for 2 h. Beads were pelleted, washed 4 times with 300 �l 1�

CHAPS buffer, and resuspended in 2� LDS loading dye for Western blot analysis.
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