
Received November 30, 2019, accepted December 16, 2019, date of publication December 24, 2019,
date of current version January 6, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2961959

Tinier-YOLO: A Real-Time Object Detection
Method for Constrained Environments

WEI FANG 1,2, (Member, IEEE), LIN WANG 1, AND PEIMING REN 1
1School of IoT Engineering, Jiangnan University, Wuxi 214122, China
2Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence, Wuxi 214122, China

Corresponding author: Wei Fang (fangwei@jiangnan.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFC1601000 and

Grant 2017YFC1601800, in part by the National Natural Science Foundation of China, under Grant 61673194 and Grant 61672263, in part

by the Key Research and Development Program of Jiangsu Province, China, under Grant BE2017630, in part by the Blue Project in

Jiangsu Universities, and in part by the Postdoctoral Science Foundation of China under Grant 2014M560390.

ABSTRACT Deep neural networks (DNNs) have shown prominent performance in the field of object

detection. However, DNNs usually run on powerful devices with high computational ability and sufficient

memory, which have greatly limited their deployment for constrained environments such as embedded

devices. YOLO is one of the state-of-the-art DNN-based object detection approaches with good performance

both on speed and accuracy and Tiny-YOLO-V3 is its latest variant with a small model that can run on

embedded devices. In this paper, Tinier-YOLO, which is originated from Tiny-YOLO-V3, is proposed

to further shrink the model size while achieving improved detection accuracy and real-time performance.

In Tinier-YOLO, the fire module in SqueezeNet is appointed by investigating the number of fire modules as

well as their positions in the model in order to reduce the number of model parameters and then reduce the

model size. For further improving the proposed Tinier-YOLO in terms of detection accuracy and real-time

performance, the connectivity style between fire modules in Tinier-YOLO differs from SqueezeNet in that

dense connection is introduced and fine designed to strengthen the feature propagation and ensure the

maximum information flow in the network. The object detection performance is enhanced in Tinier-YOLO

by using the passthrough layer that merges feature maps from the front layers to get fine-grained features,

which can counter the negative effect of reducing the model size. The resulting Tinier-YOLO yields a model

size of 8.9MB (almost 4× smaller than Tiny-YOLO-V3) while achieving 25 FPS real-time performance

on Jetson TX1 and an mAP of 65.7% on PASCAL VOC and 34.0% on COCO. Tinier-YOLO alse posses

comparable results in mAP and faster runtime speed with smaller model size and BFLOP/s value compared

with other lightweight models like SqueezeNet SSD and MobileNet SSD.

INDEX TERMS Constrained environments, dense connection, fire modules, passthrough layer, YOLO.

I. INTRODUCTION

Object detection is an important task in many popular

fields such as medical diagnosis, robot navigation, auto-

matic driving, augmented reality and so on. In these

complex scenarios, object detection methods based on

deep learning approach, such as Region-based Convo-

lutional Neural Networks (R-CNN) [1], Spatial Pyramid

Pooling Networks (SPPNet) [2], fast R-CNN [3], faster

R-CNN [4], Region-based Fully Convolutional Networks

(R-FCN) [5], Feature Pyramid Networks (FPN) [6], and

You Only Look Once (YOLO) [7] show greater advantages

The associate editor coordinating the review of this manuscript and

approving it for publication was Joewono Widjaja .

than traditional methods. YOLO is one of the fastest object

detection methods with good real-time performance and high

accuracy, and it has been improved since it was proposed,

including YOLO-V1, YOLO-V2, YOLO-V3. YOLO-V1 has

two full-connected layers and twenty-four convolutional

layers. Themodel size of YOLO-V1 has reached 1GB, which

occupies very large storage space and requires the running

platform with high performance. YOLO-V2 [8] removes the

fully-connected layers and introduces anchor boxes to predict

bounding boxes, making the YOLO detector faster and more

robust than YOLO-V1. YOLO-V3 [9] uses the residual struc-

ture to further deepen the network layer and achieves a

breakthrough in accuracy. By running on the powerful GPU

platform, YOLO and its improvements have reached high

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 1935

https://orcid.org/0000-0001-8052-0994
https://orcid.org/0000-0002-7779-5177
https://orcid.org/0000-0002-1186-2170
https://orcid.org/0000-0002-1135-5160


W. Fang et al.: Tinier-YOLO: A Real-Time Object Detection Method for Constrained Environments

accuracy and fast speed. However, the model sizes of these

object detection algorithms are too large for constrained

environments with limited storage memory devices and they

cannot work in constrained environments with real-time

performance. Tiny-YOLO-V3 [9] is the latest improvement

of YOLO with a relatively small model size for constrained

environments. However, its detection accuracy is not high

and the real-time performance is still not satisfactory on low

computing power devices.

In order to get a more efficient object detection

model for constrained environments, originated from Tiny-

YOLO-V3, Tinier-YOLO is proposed in this paper to reduce

the model size while achieving improved detection accuracy

and real-time performance. Tinier-YOLO draws inspiration

from the fire module in SqueezeNet to reduce the number

of model parameters that helps to shrink the model size.

One of the key challenges to introduce fire module in Tiny-

YOLO-V3 is to investigate the number of fire modules as

well as their positions in the model. Another key challenge

is to determine the connectivity style between fire modules

in order to further get the improved detection accuracy

and real-time performance. Motivated by the fine charac-

teristic of dense connection in DenseNet [10], we adopt the

dense connections between fire modules in Tinier-YOLO to

strengthen the feature propagation and ensure the maximum

information flow in the network. Since the reduction in

model size, it will inevitably affect the detection accuracy.

Therefore the passthrough layer is utilized in Tinier-YOLO

to address this issue that can merge feature maps from the

front layers to get fine-grained features. At last, in order to

reduce the computational cost, we propose to remove batch

normalization from the fire modules of Tinier-YOLO while

trying to keep the overall performance.

The paper is organized as follows. Related work about

object detection based on deep learning and network

compression are introduced in Section 2. In Section 3,

Tinier-YOLO is proposed including the motivation and the

structure of Tinier-YOLO, where the front convolutional

layers, fire modules, the dense connection between the fire

modules, fine-grained features, and the batch normalization

of Tinier-YOLO are introduced. In Section 4, experimental

results and discussions are given, where the billion floating

point operations per second (BFLOP/s), the model size, mean

average precision (mAP), and the real-time performance

of frames per second (FPS) are compared. Furthermore,

the comparison results between Tinier-YOLO with other

state-of-the-art lightweight models are given in Section 4.

Finally, the conclusion is drawn in Section 5.

II. RELATED WORK

A. OBJECT DETECTION ALGORITHMS BASED

ON DEEP CNN

Early object detection methods such as Deformable Parts

Models (DPM) [11] utilized handcrafted features of objects

for detection. However, these features cannot represent object

features in most complex scenes. AlexNet [12] based on

CNN proposed by Krizhevsk in 2012 made a great break-

through in the field of image classification. Alexnet provided

a new idea for object detection which was considered as the

extension work of image classification. Subsequently, CNN

is widely used the field of object detection with its powerful

ability to extract features automatically. Object detection

algorithms based on deep CNN are generally classified into

two categories, which are two-stage detectors and one-stage

detectors.

Two-stage detectors divide the detection progress into

generating candidate boxes andmaking predictions according

to candidate boxes. R-CNN [1] is one of the leading two-stage

object detectors. R-CNN applied high-capacity CNN to

bottom-up region proposals in order to localize and segment

objects. The features from candidate windows were extracted

via deep convolutional networks. SPPNet [2] also showed

great strength in object detection by generating a fixed-length

representation regardless of image size/scale. Fast R-CNN [3]

and Faster R-CNN [4] did not opted to use featurized image

pyramids under default settings. Image pyramids were not

the only way to compute a multi-scale feature represen-

tation. FPN [6] exploited the inherent multi-scale, pyra-

midal hierarchy of deep convolutional networks to construct

feature pyramids with marginal extra cost. R-FCN [5]

proposed position-sensitive score maps to address a dilemma

between translation-invariance in image classification and

translation-variance in object detection and it reduced the

computational redundancy of Faster R-CNN. The detection

speed and accuracy of two-stage detectors are getting better

and better, but it still cannot meet the real-time requirement

of many actual scenes. The development of two-stage detec-

tors gradually integrates the independent modules such as

generating candidate boxes, feature extraction and bounding

boxes regression in the object detection system into a unified

end-to-end learning framework.

Without generating candidate boxes in the first stage,

one-stage detectors regard location information as a potential

object, and then try to classify each area as the background

or target object. YOLO [7] was proposed in 2016, which

formulates object detection problem as a regression problem,

making it a milestone of one-stage detectors. Compared with

two-stage detectors, YOLO was extremely fast. However,

it performed worse in location and detecting objects of small

size. YOLO-V2 [8], YOLO-V3 [9] and the series of Single

Shot Multi-box Detector (SSD) [13]–[16] have tried to solve

the problem. SSD discretized the output space of bounding

boxes into a set of default boxes over different aspect ratios

and scales per feature map location. RetinaNet [17] intro-

duced the focal loss function to deal with the problem of

class imbalance and the accuracy is more higher. Recent

work of anchor-free one-stage detectors like FSAF [18] and

CenterNet [19] achieved a better trade-off between speed

and accuracy. One-stage detectors have become more and

more popular and been widely applied in the engineering

field.

1936 VOLUME 8, 2020



W. Fang et al.: Tinier-YOLO: A Real-Time Object Detection Method for Constrained Environments

FIGURE 1. The network structure of Tiny-YOLO-V3.

B. NETWORK COMPRESSION

Building small and efficient network models for constraint

environments has become a research hotspot in recent

years. Related work on model compression and acceleration

mainly includes network pruning and sparsity [20], network

quantization [21]–[23] knowledge distillation [24], compact

network architecture design and so on.

Network pruning and sparsity is to prune unimportant

neuron connection. Quantization converts floating point

calculation into bit calculation. Knowledge distillation tech-

nology utilizes the teacher model to help the student model

to learn and improve the accuracy of the small model. The

methods above mainly make modifications on the trained

model. A better approach is to choose compact network

architecture at the initial stage of model construction. Google

Inception V1 [25] won the first place in ILSVRC 2014 games

with a great advantage. The network structure of Google

Inception V1 is largely based on Network in Network

(NIN) [26]. The consolidation process of NIN cascading

across features makes the network learn more complex and

useful features. The 1 × 1 convolutional layer can not only

organize information across channels but also improve the

network expression ability and change the dimension of

output channels. Inception V2 [27], Inception V3 [28], and

Inception V4 [29] are the improvements of Inception V1,

which make the model with less parameters, less compu-

tation, deeper network structure, and better performance.

Xception [30] combined depth-wise convolution with Incep-

tion v3, which achieved higher performance with the same

number of parameters, providing another way for designing

lightweight network.

The SqueezeNet [31] proposed by UC Berkeley and Stan-

ford researchers introduced fire module. The idea of fire

module was similar to the series of Inception. It utilized

1*1 convolutional layer to compress the dimension of feature

maps with the purposed to reduce parameters. The clas-

sification accuracy of SqueezeNet on ImageNet was close

to AlexNet, but the model size was reduced by nearly

500 times.

ShuffleNet v1 [32] was proposed by Face++ for mobile

devices. The main idea of ShuffleNet was to introduce point-

wise group convolution and bottleneck-like module to evenly

mix the feature maps after convolution according to channels.

Then the number of channels for each convolution kernel

and the computation complexity can be decreased. ShuffleNet

v2 [33] utilized operations like channel split to improve infor-

mation exchange between channels.

MobileNet v1 [34] divided traditional convolution into

depthwise separable convolution and pointwise convolution.

Computational time and the number of model parameters

were greatly reduced while keeping high accuracy. The main

contribution of MoblileNet v2 [35] was to add linear bottle-

necks and inverted residuals on the basis of MobileNet v1.

MobileNet v3 [36] was built by combining Network Archi-

tecture Search (NAS) technology and NetAdapt algorithm.

Before MobileNet v3 was proposed, Google Brain team

proposed MnasNet [37] for mobile platforms. MnasNet

incorporated speed information into the main reward function

so that searches could identify a good trade-off between accu-

racy and speed. MobileNet v3 utilized the same search space

based on RNN controller and decomposition as MnasNet,

minimizing model latency while maintaining precision.

III. THE PROPOSED Tinier-YOLO FOR

CONSTRAINED ENVIRONMENTS

A. MOTIVATION

Fig. 1 shows the network structure of Tiny-YOLO-V3, which

is composed of seven convolutional layers and six maxpool

layers for extracting image features and two scales of detec-

tion layers. Tiny-YOLO-V3 uses many convolutional layers

with 512 and 1024 convolution filters, which results in a large

number of parameters, large storage usage and slow detec-

tion speed on constrained environments. Another problem of

Tiny-YOLO-V3 is that the detection accuracy is not high and

the unreasonable compression methods in the network may

further reduce the detection accuracy.

To address the problems in Tiny-YOLO-V3, Tinier-YOLO

is proposed in this paper and focuses on the network

VOLUME 8, 2020 1937



W. Fang et al.: Tinier-YOLO: A Real-Time Object Detection Method for Constrained Environments

FIGURE 2. The network structure of Tinier-YOLO. Tinier-YOLO retains the front five convolutional layers and detection layer of two
different scales. The fire modules, the dense connections between the fire modules, and the passthrough layer are employed in
Tinier-YOLO.

performance of the model size, the detection speed and the

accuracy. The purpose of Tinier-YOLO is to get a smaller,

faster and better model that can run on constrained envi-

ronments. First of all, the network structure is optimized by

reducing the number of parameters reasonably instead of just

deleting the convolutional layers blindly. The fire module of

SqueezeNet uses the bottleneck layer network to compress

the model and the network module is widen without losing

detection accuracy heavily. Therefore, the fire module is

introduced in Tinier-YOLO in order to get a smaller and faster

network structure. And then, Tinier-YOLO seeks the way to

get higher detection accuracy while reducing the number of

parameters. Reference [10] indicates that the neural network

is not necessarily progressive, which means a layer in the

network not only relies on features from the adjacent layer

but also depends on the features of the previous layers. For

example, in a network with random depth, when the lth layer

is removed, the l + 1th layer is connected directly to the

l − 1th layer. When the second layer to the lth layer are

removed, the l + 1th layer directly uses the features from the

first layer, which is very similar to the dense connection in

DenseNet and the passthrough layer in YOLO-V2. The dense

connection between fire modules and the passthrough layer

are then properly used in Tinier-YOLO with the purpose to

get higher detection accuracy.

B. STRUCTURE OF Tinier-YOLO

Fig. 2 illustrates the structure of Tinier-YOLO. The front part

of Tinier-YOLO retains the front five convolutional layers of

Tiny-YOLO-V3. In the middle part of Tinier-YOLO, the five

fire modules are introduced to implement network parame-

ters compression and the dense connection between the fire

modules is employed. It also merges previous feature maps

with the passthrough layer before the first detection layer

and predicts bounding boxes with the first scale. In the latter

part of Tinier-YOLO, it adds two fire modules to process

the combined feature maps and predicts bounding boxes with

the second scale to get the fine-grained features. The archi-

tecture of Tinier-YOLO is darknet and the implementation

details are as the following.

1) FIRE MODULE OF Tinier-YOLO

The fire module is introduced to reduce the number of

model parameters and increase the depth and width of the

whole network to ensure the detection accuracy. Fire module

is comprised of the squeeze part and the expand part to

compress and expand the data respectively. The squeeze

part uses the 1 × 1 convolutional layer to replace the usual

3 × 3 convolutional layer. The 1 × 1 convolutional layer

proposed by NIN is a very effective method to reduce the

number of parameters. Since the 1 × 1 convolutional layer

only has one parameter to be trained and learned, the detec-

tion accuracy does not decrease too much. In the expand part,

both a convolutional layer with 1 × 1 filters and a layer with

3 × 3 filters are used. Then the outputs of these layers are

mixed by the concatenation layer.

For a convolutional layer, the number of the input chan-

nels is ci, the kernel size is k , and the number of the

output channels is co. Then, the number of parameters of the

convolutional layer is calculated in (1). For the fire module,

the overall number of input channels is ci. In the squeeze part,

the kernel size of the squeeze part is ks1 , and the number of the

output channels is s1. When ks1 is set to 1, a large number of

parameters of the squeeze part can be reduced. For the expand

part, the number of input channels is s1, the kernel sizes are

ke1 and ke3 , respectively. The numbers of output channels

1938 VOLUME 8, 2020



W. Fang et al.: Tinier-YOLO: A Real-Time Object Detection Method for Constrained Environments

FIGURE 3. The structure and specific parameters of the fire module.

are e1 and e3, respectively. The number of output channel

is e1 + e3. The number of parameters of the fire module is

calculated in (2). The structure and specific parameters of the

fire module in Tinier-YOLO are shown in Fig. 3.

Pconv = (ci × k2 + 1) × co (1)

Pfire = (ci × k2s1 + 1) × s1 + (s1 × k2e1 + 1)

× e1 + (s1 × k2e3 + 1) × e3 (2)

In order to use the firemodulemore efficiently, the position

of fire module is embedded in the network appropriately.

There are eight fire modules in Tinier-YOLO. The 6th and

7th convolutional layers with 512 and 1024 filters in Tiny-

YOLO-V3 are replaced with the first five fire modules. The

convolutional layer with 512 filters before the first detection

layer is replaced with a fire module. The convolutional layer

with 256 filters before the second detection layer is replaced

with the 7th and 8th fire modules. The number of input

channels ci is not limited, but more input channels bring

more parameter reduction. As shown in Table 1, the reduced

parameters of input channels of 512 are less than the convo-

lutional layer with the input channels of 1024. To further

reduce the number of parameters, it is appropriate to replace

the convolutional layer with more input channels with fire

module and these layers are distributed in the middle and

latter parts of Tiny-YOLO-V3.

We also found that if all the convolutional layers are

replaced by the firemodules, the detection accuracy is too low

since some convolutional layers with a small number of filters

are replaced by the fire modules. If the first five convolutional

layers with a small number of convolution filters less than

256 are retained rather than be replaced by the fire modules,

the accuracy rate is increased by 6.2% and the model size is

only increased by 1.6MB. Therefore, Tinier-YOLO keeps the

front convolutional layers and only replaces the five convo-

lutional layers in the middle part and the latter part of Tiny-

YOLO-V3 with eight fire modules.

TABLE 1. Comparison of the number of parameters of convolutional
layers and fire modules.

In general, a simple idea to compress the network is

to reduce the number of network layers and the scale of

the network and to use the shallow networks. However,

the expressiveness capability of shallow netowork is far away

from the DNN models [38]. Ba et. al. proposed to train

shallow neural nets to mimic deeper models and got the

similar performance with deep models, but the number of

parameters has been increased [39]. In [40], Poole et. al.

proved that the expressiveness capability can be grown

exponentially with the depth increasing of network, but

too shallow networks cannot replace deep networks effec-

tively. As shown in Fig.2, after the five convolutional layers

and five pooling layers, there are eight fire modules with

the depth of two and several convolutional layers with

1*1 kernel in Tinier-YOLO. The last five convolutional layers

in Tiny-YOLO-V3 have been removed and replaced by eight

fire modules in Tinier-YOLO. The total network depth of

Tinier-YOLO reaches 30, which is eleven layers deeper than

that of Tiny-YOLO-V3. The accuracy of the network has

therefore been increased. At the same time, BFLOP/s of these

layers is decreased significantly from 6.93 to 0.65, where

BFLOP/s is usually used to measure the time complexity by

evaluating the number of model operations.

2) DENSE CONNECTION BETWEEN THE FIRE MODULES

Dense connection is deployed between the fire modules to

improve the accuracy by strengthening feature extraction

ability and ensuring the maximum information flow in the

network.

In SqueezeNet, fire modules feed-forward networks

connect the output of the lth layer as input to the l + 1th layer,

as in (3). The input of the lth module is represented as x lfm,

the weight of the convolution kernel is denoted wlfm, b
l
fm is

the bias parameter, * is the convolution operation, and H l
fm(.)

is the activation function of the lth module. In Tinier-YOLO,

H l
fm(.) is the common leaky ReLU activation. By introducing

the idea of DenseNet [10], the lth fire module of Tiner-YOLO

receives the feature maps of all preceding fire modules as

in (4), [x0fm, x
1
fm, . . . , x l−1

fm ] refers to the concatenation of the

feature maps produced in the fire modules.

x lfm = H
(

x l−1
fm ∗ wlfm + blfm

)

(3)

x lfm = H
([

x0fm, x1fm . . . x l−1
fm

]

∗ wlfm + blfm

)

(4)

VOLUME 8, 2020 1939



W. Fang et al.: Tinier-YOLO: A Real-Time Object Detection Method for Constrained Environments

Comparing (3) and (4), the lth fire module with dense

connection always contains feature maps from the previous

l−1 fire modules, which can strengthen the feature propaga-

tion in the network and is expected to improve accuracy.

FIGURE 4. Dense connection between the fire modules.

Fig. 4 shows the dense connection between five fire

modules in Tinier-YOLO. The feature maps of the first l − 1

fire modules are concatenated and utilized as the input of

the lth fire module. m0 is the feature map of the previous

convolutional layer and m is the feature map of the fire

modules. Therefore the lth fire module outputsm0+m(l−1)

feature maps. The feature maps are relatively smaller that

with fewer parameters and calculations.

If the dense connection is deployed in larger feature maps

or connects the feature maps with different size, it will result

in a huge amount of calculation, which greatly affects the

real-time performance. We have tested the real-time perfor-

mance of four networks with different dense connections.

As shown in Table 2, the proposed dense connection in this

paper has the best real-time performance with 25.1 FPS.

TABLE 2. Comparison of the real-time performance.

3) RETAINING FINE-GRAINED FEATURES

In Tinier-YOLO, the passthrough layer is utilized to achieve

the combination of multi-scale features. Passthrough layer

is added in Tinier-YOLO to acquire the upper level features

of 26 × 26 and combine this feature with the final 13 × 13

output features. Tinier-YOLO combines the passthrough

layer with the output of the 5th fire module and the 5th convo-

lutional layer, which does not bring too many parameters

and computations and improves the detection accuracy. The

passthrough layer can fuse the underlying features of the

network and also improve the ability of the model to detect

small targets. At the same time, the boxes are predicted at

two different scales which are 13 × 13 and 26 × 26 and the

passthrough layer is utilized to take the feature maps from the

previous fire module and upsample it by 2× just like that in

Tiny-YOLO-V3. Then two fire modules are added to process

this combined feature maps and eventually a similar tensor is

predicted.

4) BATCH NORMALIZATION IN Tinier-YOLO

Since the distribution of each layer’s inputs in DNNs changes

during training, batch normalization is proposed to address

this problem and has been widely used in training DNNs that

helps to use much higher learning rates [27]. Before inputting

to the next layer, batch normalization takes the output of

one layer and transforms its mean variance and standard

deviation.

Batch normalization was introduced in YOLO series since

the version of YOLO-V2. However, the computational cost

has been increased 30% if batch normalization is used in

every layers since means and variances of batch normal-

ization are adjusted constantly during training [27]. The

same problem also arises in Tiny-YOLO-V3. In the proposed

Tinier-YOLO, fire modules have been involved with batch

normalization being operated in each convolutional layer.

In order to reduce the computational cost, we tried to

remove batch normalization from the fire modules of Tinier-

YOLO. We found that the training time for the model

has been decreased after removing batch normalization in

fire modules. And we also carried out the test on a total

of 4952 images to evaluate the performance of Tinier-YOLO

with batch normalization in every layers (Tinier-YOLO-BN)

and with batch normalization in every layers except that in

the fire modules (Tinier-YOLO). Table 3 gives the results of

average test time, mAP, and model size. The results show

that the detection accuracy has not been changed while the

real-time performance and model size have slight improve-

ment after the batch normalization is removed from the layers

in the fire modules of Tinier-YOLO.

TABLE 3. Comparison between Tinier-YOLO with and without batch
normalization.

IV. EXPERIMENTAL RESULTS

In this section, the experimental settings and experimental

datasets are introduced firstly. Then the performance compar-

ison under the metrics of mAP, BFLOP/s, model size,

and FPS are carried out. Furthermore, in order to verify

the improvement of Tiner-YOLO compared with the other

lightweight architectures, we conduct extensive experiments

to illustrate the performance comparison results.

A. EXPERIMENTAL SETTINGS

Tinier-YOLO is trained on NVIDIA Titan X in order to save

the training time. The detection speed is tested on Jetson

TX1, which is an embedded AI device built around the revo-

lutionary NVIDIA Maxwell architecture with 256 CUDA

1940 VOLUME 8, 2020



W. Fang et al.: Tinier-YOLO: A Real-Time Object Detection Method for Constrained Environments

TABLE 4. Comparison of configuration between Titan X and Jetson TX1.

cores delivering over 1 TeraFLOPs of performance. Jetson

TX1 is suitable for embedded deep learning, computer vision,

graphics, and GPU computing. Table 4 gives the configura-

tion comparison between Jetson TX1 and TITAN X. There

is only 16GB data storage of Jetson TX1, which is even

smaller than normal mobile phones. The default power mode

of Jetson TX1 is used for testing the detection speed.

The source codes and architecture of Tinier-YOLO is

available for download here: https://github.com/jnfrancis/

Tinier-YOLO.

B. EXPERIMENTAL DATASETS

The datasets of PASCAL VOC [41] and COCO [42]are used

in this paper. These two datasets are usually used for image

classification, object detection, and image segmentation. The

dataset of PASCAL VOC includes PASCAL VOC 2007 and

PASCAL VOC 2012. There are 20 kinds of objects with

29503 images. When calculating the AP values and mAP,

the default value of 0.5 is used for the intersection over union

(IOU). The dataset of COCO is more difficult to train than

PASCAL VOC. For object detection algorithms, the perfor-

mance of a model is usually more inclined on COCO. There

are 80 categories of objects in COCO and the number of

targets contained in each image is three times more than

PASCAL VOC. The mAP value of each kind of object is

the average by 10 values of IOU from 0.5 to 0.95 and mAP

value is also compared on small, medium, and large size of

object. The performance evaluation by multiple IOU values

on COCO can better reflect the comprehensive performance

of the algorithm. Table 5 shows the comparison between

PASCAL VOC and COCO in detail.

TABLE 5. Detailed comparison between PASCAL VOC and COCO.

C. MODEL TRAINING

The darknet53.conv.74 is loaded in Tinier-YOLO before

training on both datasets which is the same as that in

Tiny-YOLO-V3. The darknet53.conv.74 is the pre-trained

weight model based on the darknet53 [9]. The input size of

Tinier-YOLO is 416*416.

The number of maximum training batches of Pascal VOC

is 500K and that of COCO is 2000K, which are set according

to the number of classes of each dataset. The batch size

of Tinier-YOLO is 64, the subdivision is 8, the momentum

is 0.9 and the decay is 0.005. In order to make the model

converge much faster in the early training period, the learning

rate is 0.001 and then decreased to 0.1 times of the original

as the number of iteration batch reaches 400K and 450K.

D. ABLATION EXPERIMENTS FOR Tinier-YOLO

In order to show the effects of the proposed techniques on

the performance of Tinier-YOLO, we carried out the abla-

tion experiments by adding fire module, dense connection,

and passthrough layer successively in the network of Tinier-

YOLO. Table 6 gives the results of mAP, BFLOP/s, FPS, and

model size by the ablation experiments.

As shown in Table 6, compared with Tiny-YOLO-V3,

the introducing of fire module reduces the model size and

BFLOP/s greatly without decreasing the detection accuracy

significantly. The model size is decreased from 34.9 MB

of Tiny-YOLO-V3 to 6.9 MB while keeping high detection

accuracy. The employment of dense connection between the

fire modules and passthrough layer makes a great contri-

bution to the improvement in mAP without increasing too

many parameters. Employing dense connection increases the

mAP by 3.5% on the basis of introducing fire modules.

Utilizing the passthrough layer increases mAP by about 1%

on the basis of introducing dense connection between the fire

modules.

TABLE 6. Ablation experiments from Tiny-YOLO-V3 to Tinier-YOLO on
PASCAL VOC.

1) PERFORMANCE COMPARISON ON BFLOP/s

AND THE MODEL SIZE

BFLOP/s is often used as a measure of the computa-

tional power required by a model. The larger the BFLOP/s,

the higher the requirements for the device. As shown

in Table 7, BFLOP/s of Tinier-YOLO is only 2.563, which

is less than the half of Tiny-YOLO-V3 and is suitable for

constrained environment. The model size of Tinier-YOLO

is almost 4× smaller than Tiny-YOLO-V3, 7× smaller than

Tiny-YOLO-V2.

2) COMPARISON ON REAL-TIME PERFORMANCE

The reference point of measuring real-time performance is

FPS and depends on the resolution of the test video or

VOLUME 8, 2020 1941



W. Fang et al.: Tinier-YOLO: A Real-Time Object Detection Method for Constrained Environments

TABLE 7. Performance of BFLOP/s and model size.

TABLE 8. Comparison of the real-time performance.

the image. With the support of Jetson TX1, we measured the

total time for testing 4952 images in the VOC 2007 dataset.

The average value of testing time by 30 times is shown

in Table 8. It can be seen that the total time required

for the Tinier-YOLO to detect about 5,000 pictures is less

than 200 seconds. Tinier-YOLO performs faster than Tiny-

YOLO-V3. Tiny-YOLO-V2 takes more than 320 seconds to

complete the detection. Tinier-YOLO can detect objects with

25.1 FPS. The real-time performance is increased by 16.2%

compared with Tiny-YOLO-V3 and increased by 39.4%

compared with Tiny-YOLO-V2.

3) PERFORMANCE COMPARISON ON mAP

mAP is usually used to measure the detection accuracy.

On the VOC 2007 dataset, the AP values of the three

compared methods are shown in Table 9. From the average

AP values, it can be seen that Tinier-YOLO improved the

detection accuracy by 4.5% compared with Tiny-YOLO-V3,

and nearly 8.6% compared with Tiny-YOLO-V2. The

AP values of all the 20 classes are better than Tiny-

YOLO-V2. Compared with Tiny-YOLO-V3, except for the

class of aeroplane, the AP values of the other 19 classes

are all better than Tiny-YOLO-V3, which demonstrates the

effectiveness of Tiner-YOLO.

TABLE 9. The AP values of three methods on PASCAL VOC dataset.

On the COCO dataset, the mAP results of Tiny-YOLO-V2,

Tiny-YOLO-V3, and Tinier-YOLO are shown in Table 10.

TABLE 10. Performance of mAP on the COCO dataset.

The mAP value under IOU = 0.5 of Tinier-YOLO is almost

1% higher than that of Tiny-YOLO-V3. In case of more strict

tests under IOU = 0.75 and IOU from 0.50 to 0.95, the mAP

values of Tinier-YOLO are 1.7% and 3.3% higher than Tiny-

YOLO-V3. The Average Recall (AR) of Tinier-YOLO is

also better than Tiny-YOLO-V3. Table 10 also indicates

that Tinier-YOLO makes more improvements in detecting

medium and large objects than detecting small objects.

4) PERFORMANCE COMPARISON BETWEEN Tinier-YOLO

AND OTHER LIGHTWEIGHT MODELS

In order to further evaluate the improvement of Tiner-YOLO

comparing to the other state-of-the-art lightweight architec-

tures, we take SqueezeNet SSD andMobileNet SSD [43] into

comparison. The models of SqueezeNet SSD and MobileNet

SSD are trained on PASCAL VOC 2007 + 2012 training

dataset and tested on PASCAL VOC 2007 test dataset. The

training process is completed on NVIDIA Titan X and the

test is completed on Jetson TX1, which uses the same experi-

mental environment as Tinier-YOLO. The maximum number

of iterations of SqueezeNet SSD is set as 200K and that of

MobileNet SSD is set as 120K.

TABLE 11. Comparison between Tiner-YOLO and other lightweight
models.

Table 11 summarizes the comparison results of the three

models. As can be seen fromTable 11, Tinier-YOLO achieves

much better results in model size, BFLOP/s, and average

test time than MobileNet SSD and SqueezeNet SSD. The

model size of Tinier-YOLO is more than 2× smaller than

SqueezeNet SSD and MobileNet SSD. The BFLOP/s value

of Tinier-YOLO is about 2× smaller than the other two

models. For the average test time, it is calculated by the

average time of 30 images processed by the three models.

From Table 11, Tiner-YOLO takes 135.2ms to detect an

image, while MobileNet SSD uses 483.7ms and SqueezeNet

SSD uses 595.7ms, which are more time-consuming than

1942 VOLUME 8, 2020



W. Fang et al.: Tinier-YOLO: A Real-Time Object Detection Method for Constrained Environments

Tinier-YOLO. As mAP is concerned, Tiner-YOLO achieves

the result of 65.7% mAP, which is better than SqueezeNet

SSD and worse thanMobileNet SSD. Considering the overall

performance, Tiner-YOLO reduces more than 50% of the

model size and 40% of the BFLOP/s of computing with

a faster runtime speed, which indicates that the proposed

Tiner-YOLO is a competitive model for the constrained

scenario.

V. CONCLUSION

In this paper, we have proposed Tinier-YOLO which is a

real-time object detection method for constrained environ-

ments. Tinier-YOLO is designed by introducing the fire

module of SqueezeNet into Tiny-YOLO-V3 at first in order

to reduce the model size. And then the number of fire

models and their positions in the network architecture have

been studied. The connectivity method between fire modules

in Tinier-YOLO is realized by using dense connections of

DenseNet. The dense connections in Tinier-YOLO helped

to improve the detection accuracy and real-time perfor-

mance since the feature propagation is strengthened and

the maximum information flow in the network is ensured.

By incorporating the passthrough layer in Tinier-YOLO,

the detection accuracy has been further improved by merging

featuremaps from the front layers to get fine-grained features.

The computational cost of the network has been reduced

by removing the batch normalization from the fire modules

of Tinier-YOLO. The experiments on PASCAL VOC and

COCO demonstrate Tinier-YOLO is more efficient compared

with Tiny-YOLO-V3. Comparing with lightweight models

like SqueezeNet SSD andMobileNet SSD, Tinier-YOLOalso

shows its competitive performance in terms of model size,

BFLOP/s, and average test time. The results demonstrate

the efficacy of Tinier-YOLO for constrained environments.

In future, we look forward to further optimizing the perfor-

mance of Tinier-YOLO, especially for the COCO dataset.

REFERENCES

[1] R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature

hierarchies for accurate object detection and semantic segmentation,’’

in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014,

pp. 580–587.

[2] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Spatial pyramid pooling in

deep convolutional networks for visual recognition,’’ in Proc. Eur. Conf.

Comput. Vis., Springer, 2014, pp. 346–361.

[3] R. Girshick, ‘‘Fast R-CNN,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),

Dec. 2015, pp. 1440–1448.

[4] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-time

object detection with region proposal networks,’’ in Proc. Adv. Neural Inf.

Process. Syst., 2015, pp. 91–99.

[5] J. Dai, Y. Li, K. He, and J. Sun, ‘‘R-FCN: Object detection via region-based

fully convolutional networks,’’ in Proc. Adv. Neural Inf. Process. Syst.,

2016, pp. 379–387.

[6] T.-Y. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie,

‘‘Feature pyramid networks for object detection,’’ in Proc. CVPR, 2017,

vol. 1, no. 2, pp. 2117–2125.

[7] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You

only look once: Unified, real-time object detection,’’ in Proc.

IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,

pp. 779–788.

[8] J. Redmon and A. Farhadi, ‘‘YOLO9000: Better, faster, stronger,’’ 2017,

arXiv:1612.08242. [Online]. Available: https://arxiv.org/abs/1612.08242

[9] J. Redmon and A. Farhadi, ‘‘YOLOV3: An incremental improve-

ment,’’ 2018, arXiv:1804.02767. [Online]. Available: https://arxiv.org/

abs/1804.02767

[10] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ‘‘Densely

connected convolutional networks,’’ in Proc. CVPR, 2017, vol. 1, no. 2,

pp. 4700–4708.

[11] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,

‘‘Object detection with discriminatively trained part-based models,’’ IEEE

Trans. Pattern Anal.Mach. Intell., vol. 32, no. 9, pp. 1627–1645, Sep. 2009.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classifica-

tion with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf.

Process. Syst., 2012, pp. 1097–1105.

[13] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and

A. C. Berg, ‘‘SSD: Single shot multibox detector,’’ in Proc. Eur. Conf.

Comput. Vis. Cham, Switzerland: Springer, 2016, pp. 21–37.

[14] J. Jeong, H. Park, and N. Kwak, ‘‘Enhancement of SSD by concatenating

feature maps for object detection,’’ 2017, arXiv:1705.09587. [Online].

Available: https://arxiv.org/abs/1705.09587

[15] C. Fu, W. Liu, A. Ranga, A. Tyagi, and A. Berg, ‘‘DSSD: Deconvolu-

tional single shot detector,’’ 2018, arXiv:1701.06659. [Online]. Available:

https://arxiv.org/abs/1701.06659

[16] Z. Li and F. Zhou, ‘‘FSSD: Feature fusion single shot multibox

detector,’’ 2017, arXiv:1712.00960. [Online]. Available: https://arxiv.

org/abs/1712.00960

[17] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, ‘‘Focal loss for dense

object detection,’’ IEEE Trans. Pattern Anal. Mach. Intell., to be published.

[18] C. Zhu, Y. He, andM. Savvides, ‘‘Feature selective anchor-free module for

single-shot object detection,’’ 2019, arXiv:1903.00621. [Online]. Avail-

able: https://arxiv.org/abs/1903.00621

[19] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, ‘‘CenterNet:

Keypoint triplets for object detection,’’ 2019, arXiv:1904.08189. [Online].

Available: https://arxiv.org/abs/1904.08189

[20] S. Han, H. Mao, and W. J. Dally, ‘‘Deep compression: Compressing

deep neural networks with pruning, trained quantization and Huffman

coding,’’ 2015, arXiv:1510.00149. [Online]. Available: https://arxiv.

org/abs/1510.00149

[21] M. Courbariaux, Y. Bengio, and J.-P. David, ‘‘BinaryConnect: Training

deep neural networks with binary weights during propagations,’’ in Proc.

Adv. Neural Inf. Process. Syst., 2015, pp. 3123–3131.

[22] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, ‘‘Bina-

rized neural networks: Training deep neural networks with weights and

activations constrained to +1 or −1,’’ 2016, arXiv:1602.02830. [Online].

Available: https://arxiv.org/abs/1602.02830

[23] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, ‘‘Quan-

tized neural networks: Training neural networkswith low precisionweights

and activations,’’ J. Mach. Learn. Res., vol. 18, no. 1, pp. 6869–6898,

2017.

[24] J. Yim, D. Joo, J. Bae, and J. Kim, ‘‘A gift from knowledge distilla-

tion: Fast optimization, network minimization and transfer learning,’’ in

Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,

pp. 4133–4141.

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’

in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,

pp. 1–9.

[26] M. Lin, Q. Chen, and S. Yan, ‘‘Network in network,’’ 2013,

arXiv:1312.4400. [Online]. Available: https://arxiv.org/abs/1312.4400

[27] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network

training by reducing internal covariate shift,’’ 2015, arXiv:1502.03167.

[Online]. Available: https://arxiv.org/abs/1502.03167

[28] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ‘‘Rethinking

the inception architecture for computer vision,’’ in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2818–2826.

[29] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, ‘‘Inception-V4,

inception-resnet and the impact of residual connections on learning,’’ in

Proc. AAAI, vol. 4, 2017, p. 12.

[30] F. Chollet, ‘‘Xception: Deep learning with depthwise separable convo-

lutions,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),

Jul. 2017, pp. 1251–1258.

[31] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and

K. Keutzer, ‘‘SqueezeNet: AlexNet-level accuracy with 50x fewer param-

eters and<0.5 MBmodel size,’’ 2016, arXiv:1602.07360. [Online]. Avail-

able: https://arxiv.org/abs/1602.07360

VOLUME 8, 2020 1943



W. Fang et al.: Tinier-YOLO: A Real-Time Object Detection Method for Constrained Environments

[32] X. Zhang, X. Zhou, M. Lin, and J. Sun, ‘‘ShuffleNet: An extremely

efficient convolutional neural network for mobile devices,’’ in

Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,

pp. 6848–6856.

[33] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, ‘‘ShuffleNet V2: Practical

guidelines for efficient CNN architecture design,’’ in Proc. Eur. Conf.

Comput. Vis. (ECCV), 2018, pp. 116–131.

[34] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,

M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional

neural networks for mobile vision applications,’’ 2017, arXiv:1704.04861.

[Online]. Available: https://arxiv.org/abs/1704.04861

[35] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,

‘‘MobileNetV2: Inverted residuals and linear bottlenecks,’’ 2018,

arXiv:1801.04381. [Online]. Available: https://arxiv.org/abs/1801.04381

[36] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,

Y. Zhu, R. Pang, and V. Vasudevan, ‘‘Searching for mobilenetv3,’’ arXiv

preprint arXiv:1905.02244, 2019.

[37] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,

and Q. V. Le, ‘‘MnasNet: Platform-aware neural architecture search for

mobile,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2019,

pp. 2820–2828.

[38] Y. N. Dauphin and Y. Bengio, ‘‘Big neural networks waste capacity,’’

Jan. 2013, arXiv:1301.3583. [Online]. Available: https://arxiv.

org/abs/1301.3583

[39] L. J. Ba and R. Caruana, ‘‘Do deep nets really need to be deep?’’ in Proc.

Adv. Neural Inf. Process. Syst. (NIPS), 2013.

[40] B. Poole, S. Lahiri, M. Raghu, J. Sohl-Dickstein, and S. Ganguli,

‘‘Exponential expressivity in deep neural networks through

transient chaos,’’ in Proc. Adv. Neural Inf. Process. Syst. (NIPS),

Dec. 2016.

[41] M. Everingham, L. VanGool, C. K. I.Williams, J.Winn, andA. Zisserman,

‘‘The PASCAL visual object classes (VOC) challenge,’’ Int. J. Comput.

Vis., vol. 88, no. 2, pp. 303–338, Jun. 2010.

[42] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,

P. Dollár, and C. L. Zitnick, ‘‘Microsoft COCO: Common objects

in context,’’ in Proc. Eur. Conf. Comput. Vis., Springer, 2014,

pp. 740–755.

[43] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi,

I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy,

‘‘Speed/accuracy trade–offs for modern convolutional object detec-

tors,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jul. 2017,

pp. 7310–7311.

WEI FANG (M’15) received the Ph.D. degree

in information technology and engineering of

light industry from Jiangnan University, Wuxi,

China, in 2008. He was a Visiting Scholar

with the CEACIA, University of Birmingham,

Birmingham, U.K., fromApril 2013 to April 2014.

He is currently a Professor with the Department

of Computer Science, School of IoT Engineering

with Jiangnan University. He has published more

than 50 scientific articles in journals and inter-

national conferences. His current research interests involve the evolu-

tionary computation, swarm intelligence, multiobjective optimization, and

large-scale global optimization. He serves as an Editorial Board Member of

the International Journal of Swarm Intelligence Research and the Interna-

tional Journal of Computing Science and Mathematics.

LIN WANG is currently pursuing the M.S. degree

with the School of IoT Engineering, Jiangnan

University, Wuxi, China. Her research interests

include deep learning and computer vision.

PEIMING REN received the master’s degree

in computer science and technology from the

School of IoT Engineering, Jiangnan University,

in 2019. His research interests include issues

related to artificial intelligence and pattern recog-

nition, computer vision, and machine learning.

1944 VOLUME 8, 2020


