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Abstract

The capabilities of the polarizable force fields for alchemical free energy calculations have been 

limited by the high computational cost and complexity of the underlying potential energy 

functions. In this work, we present a GPU based general alchemical free energy simulation 

platform for polarizable potential AMOEBA. Tinker-OpenMM, the OpenMM implementation of 

the AMOEBA simulation engine has been modified to enable both absolute and relative 

alchemical simulations on GPUs, which leads to a ~200-fold improvement in simulation speed 

over a single CPU core. We show that free energy values calculated using this platform agree with 

the results of Tinker simulations for the hydration of organic compounds and binding of host-guest 

systems within the statistical errors. In addition to absolute binding, we designed a relative 

alchemical approach for computing relative binding affinities of ligands to the same host, where a 

special path was applied to avoid numerical instability due to polarization between the different 

ligands that bind to the same site. This scheme is general and does not require ligands to have 

similar scaffolds. We show that relative hydration and binding free energy calculated using this 

approach match those computed from the absolute free energy approach.
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We have developed Tinker-OpenMM, a computational platform for the calculation of free energies 

on Graphics Processing Units. This allows for free energy simulations to be run 200 times faster 

than is possible on a single CPU core. In addition, we have developed a platform for the 

calculation of relative free energies.
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INTRODUCTION

Free energy is the driving force for spontaneous molecular processes and accurate 

alchemical free energy calculations can benefit a broad range of chemical and biomedical 

applications1–5. The accurate prediction of the binding affinities for ligands to their target 

proteins has been a great challenge in the computational drug development process6. Today, 

it is common to utilize empirical docking algorithms in the identification of potential lead 

compounds7–11. However, in order to screen large ligand libraries in a short amount of time, 

empirical docking typically relies on incomplete physics models12, and only account for 

limited system dynamics (such as loop flexibility) when predicting ligand affinity13. These 

limitations result in a lack of the accuracy necessary for lead optimization14,15. The 

calculation of ligand binding free energies from elaborated molecular simulations has also 

been limited by a combination of underlying force fields and sampling algorithms16,17.

One pathway for the calculation of binding free energies is the double decoupling approach. 

In this approach, one includes a parameter (lambda) that controls the interaction of a ligand 

with its environment. When transitioning from lambda=1 (full ligand intermolecular 

interaction) to lambda=0 (no ligand intermolecular interaction), a ligand’s interaction with 

its environment is evaluated. Simulations of the system are conducted with the solvated 

ligand and the protein-ligand complex, and the binding free energy is calculated as the 

complexation energy minus the solvation energy, plus standard state and other corrections18. 
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In this methodology restraints19 are often used to keep the ligand bound to the protein 

complex throughout the decoupling process. The magnitude of this restraint term is then 

analytically corrected for.

Another major class of approaches of binding free energy involve the calculation of the 

potential of mean force. In these approaches, pioneered by the Roux lab20, one calculates the 

average force needed to maintain a system in a given configuration (e.g. the distance and 

orientation between a ligand and the active site). Free energy is then calculated by 

calculating the work integral from the starting to ending distances. In order to obtain energy 

data on all relevant distances, a biasing process such as steered MD21,22 or umbrella 

sampling20,23 is often used. The advantage of this technique is that it allows for the 

collection of free energy profiles, including information about the energy barriers to binding. 

The main challenge of this approach is the difficulty in defining an appropriate reaction 

coordinate for the biasing process. Therefore, this technique has been mostly applied to 

systems such as channel proteins24,25 that have an obvious pulling dimension. However, this 

technique can also be applied to general protein-ligand binding26–28.

The free energy between the bound and unbound states in either approach can be sampled by 

using various techniques such as free energy perturbation (FEP)3, thermodynamic 

integration (TI)29, metadynamics30–32 or Orthogonal Space Random Walk (OSRW)33,34. A 

common method for calculating the free energy between neighboring states in alchemical 

perturbation is the Bennett acceptance ratio (BAR)35. The free energy of binding can then be 

calculated as the difference between the ligand-host interaction energy and the ligand-water 

interaction energy. In thermodynamic integration, one utilizes lambda much like in setting 

up a simulation for BAR and calculate the numerical integration of <∂H/∂λ)>λ from 

lambda=0 to lambda=129. Compared to BAR, it can be difficult to determine which discrete 

values of lambda should be used, as convergence can be difficult in regions of high curvature 

of <∂H/∂λ)>λ. Due to this, comparison studies36 have suggested that TI simulations may 

require more states than BAR to reach converged free energies. However, TI simulations 

require less post-simulation processing than BAR based approaches.

The second ingredient of free energy simulations is the choice of force field. Popular force 

fields include CHARMM37–40 and AMBER41–44. More recent advances have resulted in the 

development of force fields with more complex electrostatics models, particularly 

incorporation of polarization. General polarizable force fields include polarizable multipole 

based AMOEBA,45–47 polarizable OPLS48–50, fluctuating charge51,52 and Drude-

Oscillator53–55 based CHARMM force fields. The defining feature of the AMOEBA force 

field we have been developing is its electrostatic model based on permanent atomic 

multipoles, as well as many-body polarization through induced dipoles. These added terms, 

while computationally expensive, allow for a more rigorous modeling of ligand-protein 

interaction, particularly at short range, than is possible using a fixed-charge based force 

field.

Previous work using AMOEBA force field has shown an accurate recapitulation of 

experimental free energies in small molecules hydration,56,57–59 metal ion hydration60–62, as 

well as ligand binding in synthetic hosts63, and protein systems64–70. The inclusion of a 
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complex electrostatic force leads to increasing computational cost, so that potential it can 

benefit even more from parallel computing of protein-scale systems consisting of tens of 

thousands of atoms. Earlier implementations of AMOEBA in Tinker have utilized 

OpenMP71, which allows for limited parallelism on commercially available CPUs. 

Massively parallel computation using AMOEBA is possible on supercomputers using the 

Tinker-HP package72–74. In addition, AMOEBA has been previously implemented in 

OpenMM, enabling massively parallel molecular dynamics simulations on GPUs75,76. In 

order to enable alchemical free energy calculations in OpenMM, we have incorporated 

“lambda” into force and energy calculation via a soft-core approach,77 which is necessary to 

remove the singularities in van der Waals (vdW) interactions that occurs when atoms are in 

close contacts.78 In addition, we modified the tinker-OpenMM interface to allow for 

perturbation of the electrostatic force via the scaling of electrostatic parameters. Another 

feature of OpenMM that is now supported by the Tinker-OpenMM interface is the addition 

of support for the CustomCentroidBondForce. This addition enables the coupling of a two 

groups of atoms (such as a ligand and its binding site).

Compared to the state of CPU alchemical free energy calculations, GPU alchemical free 

energy calculations is still in its infancy. It is possible to perform MD simulations on GPUs 

using a few software, including AMBER79, NAMD80, and OpenMM75. However, very few 

GPU platforms have yet supported alchemical simulations. In addition to the work with 

OpenMM-AMOEBA described here, the YANK package81 for the use of OpenMM to 

simulate AMBER force fields is currently in development. Therefore, the AMOEBA on 

GPU implementation described here(Tinker-OpenMM) constitutes the first available 

platform for free energy perturbation simulations on GPUs using a polarizable force field.

It is not always necessary to compute the absolute alchemical free energy, and binding or 

solvation energies relative to a reference ligand are sufficient. In those cases, it may be 

advantageous to calculate relative energies instead of absolute energies. Many previous 

relative binding free energy calculation use a “dummy atom” single topology approach82–86 

where a pair of ligands are simulated as a common core of atoms connected to a set of atoms 

sufficient to describe both desired molecules. This dummy atom approach has been used to 

calculate a number of molecular properties, including binding free energies83–87 Previous 

work with the AMOEBA force fields on CPUs have accurately calculated the relative 

binding free energies of ligands to trypsin using a single topology approach66,67,69. The 

weakness of this scheme is that it is not general; it is more suitable for pairs of molecules 

with significant chemical similarity. A different approach is that of dual topology free energy 

calculation, where two ligands are always present in the binding pocket. Relative 

complexation free energy is calculated via a path starting in a state with fully ligand 1-

environmental interaction, and ending at a state of fully ligand 2- environmental interaction. 

Dual topology free energy calculations have been possible in CHARMM since the late 

80’s88 and have more recently been implemented in AMBER79. However, this dual topology 

scheme is more difficult to implement in a polarizable force field due to the complexity of 

the electrostatics making it difficult to selectively “scale” the polarization between two 

ligands. By utilizing a pathway where only one ligand is charged during any perturbation 

step, we were able to avoid this complication.
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Currently, the ability to perform GPU based platform alchemical simulations, particularly 

for polarizable force fields, has been limited. In this work, we created Tinker-OpenMM, an 

OpenMM implementation of AMOEBA that enables alchemical free energy calculations on 

GPUs, while also adding the capability to perform dual topology simulations to both the 

Tinker89 and OpenMM75,76 platforms. We then proceed to test the GPU based free energy 

calculations for hydration free energies of aromatic systems90, absolute and relative binding 

free energies of the sampl4 host-guest systems91.

IMPLEMENTATION DETAILS

Tinker-OpenMM interface

Tinker-OpenMM is built using an interface to pass tinker coordinates and parameters to 

OpenMM. Tinker reads in the input key and coordinate files, and passes the relevant 

variables in to a C++ script. This script then uses the OpenMM C API to create the relevant 

OpenMM parameters and forces, and initiates GPU Molecular Dynamics simulation. 

Coordinate saving is then managed by occasionally transferring atomic coordinates and 

velocities from the GPU to main system memory. Tinker then saves these outputs in Tinker 

coordinate and velocity files, enabling post-processing by Tinker commands (eg. BAR). This 

interface was originally created by Mark Friedrichs, Lee-Ping Wang, Kailong Mao, and 

Chao Lu.

Absolute binding free energy

In this work, we employ double-decoupling and alchemical perturbation to compute free 

energy of binding. First, the electrostatic interactions between the ligand and its environment 

(water or protein/water) are scaled from 0 to 100% in a series of simulations. With no 

electrostatic interaction between ligand and surroundings, a series of simulations are run 

where the (softcore) vdW interactions between ligand and environment are scaled. The path 

utilized for absolute complexation simulations is shown in Figure 1. This process is also 

repeated in an aqueous environment to account for hydration free energy.

After running these simulations, the Bennett Acceptance Ratio (BAR) method is used to 

calculate the free energy difference between each pair of neighboring states. Since energy is 

a state function, we can calculate the total complexation energy as the sum of many small 

perturbations in ligand-environmental interaction strengths. The binding energy is calculated 

as the complexation free energy, minus the hydration free energy, with the addition of 

several corrections explained below.

When conducting alchemical perturbation, it is necessary to denote which atoms belong to 

the ligand. In the simulation system, the ligand atom indices are identified by using the 

ligand keyword in the key file (e.g. “ligand −1 14” denotes that atoms 1 through 14 belong 

to a ligand).

Alteration of the electrostatic interactions between the ligand and its environment is 

accomplished via the scaling of the electrostatic parameters passed from the Tinker interface 

to OpenMM. The atomic charge, dipole, quadrupole, and polarizability of all ligand atoms 

are each multiplied by the current simulation electrostatic lambda value (between 0 and 1), 
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which is denoted by the ele-lambda keyword. This results in no electrostatic interaction 

between the ligand and its environment when ele-lambda=0, and full interaction strength 

when ele-lambda=1. This methodology also “turns off” the intra-ligand electrostatic 

interactions. When calculating hydration free energy, the intra-ligand/solute electrostatic 

contributions are added back by “growing” the electrostatic parameters for ligand alone (in 

gas phase). However, when calculating binding free energy, this contribution is exactly 

canceled by an equal omission in the ligand-solvent interaction.

When conducting alchemical perturbation simulations, the change in energy and structure 

that results from each perturbation needs to be relatively small. To avoid the numerical 

instability of the standard vdW function when the ligand-environment interaction 

approaches zero, a softcore buffered 14-7 vdW (energy equation shown below) has been 

used to calculate the forces and energies.69

(1)

Here εij is the well depth, and ρij represents the current interatomic distance divided by rmin, 

the interatomic distance that results in the lowest vdW energy. In order to use this softcore 

vdW force, we need to assign the appropriate value of the lambda parameter λij. In this 

implementation, each ligand atom is assigned a lambda value equal to the vdW-lambda 
keyword value in the simulation input key file. Each non-ligand atom is assigned a lambda 

value of 1. When calculating a pairwise vdW interaction, it is necessary to have a set of 

combining rules to convert two atomic vdW lambdas into a combined, λij. For a pair of 

atom i and j, λij is determined as the lesser of λi and λj. If the two lambda values are 

identical (as is the case in an intra-ligand or water-water interaction), λij = 1.

In order to ensure that the ligand stays in the binding pocket even when intramolecular 

interactions are weak, a distance restraint (k(r − r0)2) is applied between the centers of mass 

of the ligand and the center of the binding pocket. The bias introduced by the restraint is 

corrected for at the start and end of our thermodynamic path. The restraint correction at the 

end of simulation where no intermolecular interaction between ligand and environment is 

given by92

(2)

Here C0 represents standard state concentration (1 mol/L). In this work, we use a force 

constant (k) of 15 kcal/mol/Å2, and this correction amounts to 6.25 kcal/mol.

In order to remove the ligand restraint from the system with full ligand-protein interaction, 

we repeat the simulation but with the restraint off. The free energy difference between the 

two simulations is then calculated using BAR. Alternatively, one could also gradually turn 
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off the restraint while the interaction strength between ligand and protein increases so that 

no additional correction is needed.

Dual-topology based relative free energy

Relative binding free energy can potentially be calculated more reliably as it avoids 

simulation of the non-ligand bound form of the protein. In this implementation of the 

calculation of relative binding free energies, we take a thermodynamic path where we first 

reduce ligand 1’s electrostatic parameters to zero magnitude. We then proceed to reduce the 

vdW interactions between ligand 1 and environment, while simultaneously increasing the 

vdW interactions between ligand 2 and environment. Finally, we increase ligand 2’s 

electrostatic parameters from zero to full. The path we used to calculate relative 

complexation energy (ligand binding to receptor in water) is shown in Figure 2. Since the 

two ligands are never charged at the same perturbation step, ligand 1 and 2 never interact 

with each other (the vdW interactions are also turned off via the soft-core formula), which 

requires minimal changes to the electrostatic force in the existing OpenMM code.

In order to run the simulations in our thermodynamic path, we require independent (ligand1 
and ligand2) keywords to denote the indices of ligand 1 and ligand 2, respectively. The 

electrostatic perturbation segments of our path require that we independently control the 

electrostatic interaction of ligand 1 and ligand2. This is accomplished by having two 

electrostatic lambda keywords (ele-lambda1 and ele-lambda2, respectively). The charge, 

dipole, quadrupole and polarizability of each ligand is multiplied by the appropriate ele-
lambda variable.

When perturbing the vdW force, we need to assign each ligand atom the correct lambda 

value. The vdW-lambda of all ligand 1 atoms is equal to the value specified by the vdW-
lambda keyword, and vdW-lambda of all ligand 2 atoms is equal to 1 minus vdW-lambda. 

Therefore, changing the vdw-lambda keyword from 1.0 to 0.0 results in removing all 

ligand1-environment interactions while setting all ligand2 atoms to full vdW interaction with 

the environment.

When conducting relative binding simulations or BAR energy calculations, we need to 

ensure that the two ligands do not interact via the vdW force. Therefore, we need a way for 

our vdW force and energy calculations kernels to know which ligand each atom belongs to. 

This is accomplished by adding an internal variable to the vdW force used to designate 

which ligand (if any) an atom belongs to. This variable is equal to 0 for environmental (non-

ligand) atoms, 1 for ligand 1, and 2 for ligand 2. Each pairwise vdW interaction is checked 

to ensure that ligand1- ligand2 interactions are omitted.

The relative binding free energy is calculated as the relative complexation energy minus the 

relative hydration energy. Note that if one uses the same force constant for ligand-receptor 

restraint for all simulations, the restraint correction discussed above is identical for both 

ligands and drops out in the relative binding free energy.
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METHODS

Simulation setup

Prior to all simulation, the system energy was minimized to 1 kcal/mol/Å in order to avoid 

close atomic contacts. All simulations were run under OpenMM mixed precision mode. 

Ewald cutoff was set to 7.0 Å, with a 12 Å vdW cutoff in both simulations. All simulations 

converge the induced dipole moments between iterations to <0.00001 D. Sampl4 and 

aromatic simulations use a cubic box of 40 Å an Ewald grid of 48 × 48 × 48, while the larger 

bench7 dataset uses an Ewald grid of 64 × 64 × 64 and a cubic box of 62.23 Å. Example 

Tinker key files are included in the Supplementary Materials.

Molecular dynamics

Perturbation steps for absolute binding and solvation simulations were conducted with a 

stepwise reduction of the ele-lambda keyword, followed by a stepwise reduction of the vdw-
lambda keyword at 0 ele-lambda. MD used a RESPA integrator, and a BUSSI thermostat. 

Information on what perturbation steps were used is included in the Supplementary 

Materials.

Relative binding and solvation simulations were conducting starting with the ele-lambda1 
and vdw-lambda keywords at 1.0, and the ele-lambda2 keyword at 0.0. In a series of 

simulations, the ele-lambda1 keyword is then gradually reduced to 0.0. This is followed by 

simulations with a stepwise reduction of vdw-lambda1 to 0.0, then a stepwise increase of 

ele-lambda2 to 1.0.

All CPU simulations were conducted using Tinker dynamic.x for 1ns with a 2fs time step 

and snapshots saved every 1ps. Each GPU perturbation simulation was conducted using 

dynamic_omm for 5ns, with a 2fs time-step and snapshots saved every 2ps (except for 

relative free energy simulations, which had snapshots saved every 1ps). All simulations were 

conducted at 298K.

Bennett Acceptance Ratio

Bar was computed using Tinker’s BAR program. This program iterates between the two 

equations below until convergence:

(3)

For all CPU based trajectories, BAR used frames 400 to 1000 for calculation, with the initial 

400ps equilibration discarded. For absolute free energy trajectories generated on the GPU, 

BAR used frames 1 to 2500(0–5ns) for calculation. For the relative free energy trajectories 

generated on the GPU, BAR used frames 1 to 5000(0–5ns) due to more frequently saved 

snapshots.
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Hydration of aromatic compounds

Parameters for the aromatic molecules were previously generated.90 Structures of the 10 

compounds are shown in Figure 3. Initial simulation systems were generated by solvating 

each ligand in water boxes using the Tinker commands solvate and crystal. Initial structures 

for relative HFE simulations were generated by concatenating ligand 2’s coordinates to the 

solvated ligand 1 pose.

In order to calculate the absolute hydration free energy, it is necessary to correct for the 

contribution of intramolecular electrostatics as we scale the solute electrostatic parameters in 

“disappearing” or “growing” the solute molecule. The intra-solute electrostatic energy was 

calculated by running simulations on CPU (this same value was used for both the CPU and 

GPU simulations). Each molecule was simulated alone in a non-periodic system at ele-
lambda values of 0, 0.1, … and 1.0. Simulations were run for 1ns using a time step of 0.1 fs, 

with structures saved every 0.5 ps at constant volume of 40.0 Å with temperature at 298K. 

The intra-solute electrostatic energy was then calculated using BAR.

Sampl4 binding simulations

Parameters and starting poses for 12 molecules of the sampl4 dataset were generated as 

described previously63. Structures of the sampl4 ligands utilized in this study are shown in 

Figure 4. Relative binding poses were generated as in the relative aromatic simulations.

The final absolute binding energy was calculated as ΔG of complexation (from no 

interaction to full interaction) − ΔG of solvation (from no interaction to full interaction) + 

ΔG of going from no restraint to full restraint at 0 interaction lambda + ΔG of removing the 

restraint at full interaction energy.

The latest version of Tinker is available at https://github.com/jayponder/tinker. Tinker-

OpenMM is available at https://github.com/pren/tinker-openmm. Note that Tinker only 

works using the modified Tinker-OpenMM, not the main OpenMM release.

RESULTS

Force agreement

Correct simulation of molecular systems requires an accurate calculation of both force and 

energy. However, since energy is only utilized by Tinker in the BAR process, and isn’t used 

during OpenMM molecular dynamics, we focused our initial analysis of Tinker-OpenMM 

on agreement of OpenMM forces with those of Tinker. To ensure that lambda was working 

in the Tinker-OpenMM implementation, we tested molecule 1 of the sampl4 dataset bound 

to the host at a range of lambda values, and compared the resulting static forces to those of 

Tinker. The Tinker-OpenMM platform was able to closely match that of Tinker for all tested 

lambda values, with a root mean squared error of approximately 8.6*10−4 kcal/mol/Å, and a 

maximal atomic force deviation of approximately 4.7*10−3 kcal/mol/Å (Table 1). These 

degrees of deviation are negligible when considering that the RMS force is 31 kcal/mol/Å. 

The force deviation is partially due to the single precision used in GPU force evaluation.
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Computational efficiency

In order to test the speed and scalability of the Tinker-OpenMM platform, we ran 1000 steps 

of MD on sampl4 molecule 1 (6417 atoms), and the bench7 test case distributed with Tinker 

(a protein system of 23,558 atoms). For both test systems, the NVidia GTX1070 and GTX 

970 were approximately 66-fold and 40-fold faster than an 8 core CPU simulation, 

respectively (Table 2). A single CPU core is approximately 200-fold slower than simulation 

on a GTX1070 due to the poor core scalability of Tinker utilizing OpenMP. The GPU 

platform shows better than linear scaling with respect to system size, with a 3.7-fold increase 

in particle number resulting in a 2.4-fold or 2.5-fold decrease in speed on the GTX1070 and 

GTX970 platforms, respectively. This better then linear scaling is likely a result of the 

smaller sampl4 systems being unable to saturate GPU core utilization, as verified by 

profiling GPU core utilization during simulations. The change of the vdW force to the 

softcore 14-7 force resulted in no observable difference in speed compared to the kernel 

used in OpenMM. This was confirmed by running simulations using a version of Tinker-

OpenMM that had been modified to utilize a standard, non-softcore 14-7 vdW force without 

the presence of the lambda parameter in the codebase.

In order to test the cost of utilization of relative vdW, tests were run on bench7 with the 

relative VDW activated by using two waters (atoms 9000–9002 and 9003–9005) as 

“ligands” for the alchemical dual topology process. Both of these waters had their ele-
lambda values set at 0.0, with a utilized vdW-lambda of 1.0. This allowed for the activation 

of dual topology kernels without introducing extra costs. This system was minimized, and a 

speed test was run as above. This resulted in a speed of 4.68 ns/day on a GTX 970, an 

approximately 2.5% speed reduction when compared to the absolute simulations. This small 

cost is only present when doing relative free energy calculations; when no ligand2 parameter 

is set, the cheaper absolute vdW kernel is used for force and energy calculation.

Tinker-OpenMM defaults to a utilizing a “mixed” precision mode in all calculations. This 

mixed precision mode uses 32-bit floating point calculation for all forces, and integrates 

using 64-bit floating point precision. Due to the poor double floating point calculation of the 

consumer GeForce line of graphics cards, the use of double precision for both integration 

and force calculation results in an 18.1-fold reduction in performance on a GTX 970.

GPU/CPU absolute free energy agreement

As a test of the ability of the Tinker-OpenMM platform to reproduce the results of the 

Tinker CPU implementation, we performed hydration free energy calculation on a dataset of 

10 aromatic compounds, as well as binding free energies on 12 ligands of the sampl4 dataset 

(9). Both the solvation (Figure 5) and sampl4 datasets (Figure 6) show agreement within the 

uncertainty of BAR, with R2 values of (0.9924) and (0.9987), respectively. This, along with 

the static force calculations provides strong evidence that the GPU and CPU 

implementations of the AMOEBA force field produce comparable results. The fact that a 

high degree of agreement is possible despite the fact that the GPU simulations were run for 5 

times longer (5ns vs 1ns at each perturbation step) is an indication that the tested systems 

converge relatively rapidly.
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GPU/CPU relative free energy agreement

We then proceeded to test the capability of the dual-topology based relative free energy 

platform by computing the relative solvation values for the aromatic dataset. For all tested 

aromatic pairs, the relative hydration free energy values computed from the dual-topology 

approach and the absolute HFE showed an agreement within 0.3 kcal/mol, with an R2 value 

of 0.999 (Table 3). The observed deviation is likely a result of random, non-systematic 

statistical error.

Finally, we tested the relative binding prediction of two pairs of sampl4 compounds. The 

first set of compounds, mol05 and mol06 share similar scaffolds, and show agreement in 

both complexation and solvation to within the uncertainty of BAR(Table 4).

The relative binding between molecules 9 and 10 constitutes a more challenging case that 

cannot be handled using the dummy atom based approach due to the lack of a shared 

scaffold. In addition, this dissimilarity between the ligands may theoretically make 

convergence more difficult in the intermediate vdW transitions. Nonetheless, the relative 

binding platform was still able to agree with the absolute platform to within 0.3 kcal/mol, 

demonstrating the advantage of dual-topology platform.

DISCUSSION AND CONCLUSIONS

This work reports a GPU implementation of alchemical free energy simulation for 

polarizable force field AMOEBA. The enhanced speed of GPU over CPU will be valuable 

for applications such as lead optimization. We have shown that the Tinker-OpenMM GPU 

platform is capable of reproducing the results of Tinker CPU platform, with an 

approximately 200-fold improvement in computational performance over what is possible 

on a single CPU core. This usage of GPU computation greatly improved sampling, which 

should allow for accounting for slow dynamics such as induced fit effects and other local 

changes in protein structure. Therefore, we expect the better sampling afforded by the GPU 

based platform will potentially lead to improved accuracy in ligand binding free energy 

prediction.

In addition to raw performance, one of the biggest challenges facing the free energy 

calculation field is the application of techniques to improve sampling of flexible systems to 

enable convergence with lesser simulation times. One methodology to achieve this increase 

in sampling efficiency is the calculation of relative binding free energies. Unlike previously 

utilized dummy atom based approaches 82–86, the framework presented here is general and 

doesn’t require a shared set of atoms to be utilized effectively. A special path has been 

designed to avoid unstable ligand-ligand polarization in the dual-topology approach. We 

expect that for flexible protein systems, the dual-topology approach will be more efficient 

and reduce the time needed for convergence in comparison with absolute free energy 

approaches.
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Figure 1. 
Thermodynamic path used to calculate the absolute complexation energy of a ligand using a 

double-decoupling approach.

Harger et al. Page 17

J Comput Chem. Author manuscript; available in PMC 2018 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Path used to determine the relative complexation interaction energy of two ligands using a 

dual topological approach.
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Figure 3. 
Structures of the 12 sampl4 molecules utilized in this study.
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Figure 4. 
Structures of the 10 aromatic compounds used in this study.

Harger et al. Page 20

J Comput Chem. Author manuscript; available in PMC 2018 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Comparison between the sampl4 binding free energies of 12 sampl4 compounds computed 

by the Tinker-OpenMM GPU and Tinker CPU platforms. GPU simulations were run for 5ns 

at each perturbation step, while CPU simulations were run for 1ns.
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Figure 6. 
Comparison between the calculated solvation free energies for the 10 molecule aromatic 

compound dataset on the Tinker-OpenMM GPU and Tinker CPU platforms.
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Table 1

Force comparison between the Tinker-AMOEBA CPU and Tinker-OpenMM-AMOEBA GPU platforms for 

Sampl4 molecule 1 at a range of lambda values.

VDW lambda/ele-lambda RMSE force (10− 4 kcal/mol/Å) Max force deviation (10− 3 kcal/mol/Å)

1/1 8.58 4.69

1/0.5 8.59 4.66

1/0.0 8.58 4.71

0.5/0.0 8.58 4.72

0.0/0.0 8.58 4.72
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Table 2

Performance of Tinker-OpenMM on Nvidia GTX1070 and GTX970 GPUs without the relative binding 

calculations compared to Tinker CPU running on 8 OpenMP threads (4X of single CPU speed). Values are in 

nanoseconds/day

GTX1070 GTX970 CPU

mol01(6417 atoms) 20.0 12.2 0.3

bench7(23558 atoms) 8.3 4.8 0.16
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Table 3

Comparison between the Tinker-OpenMM absolute and relative platform calculation of the solvation energy 

between pairs of aromatic compounds. Values are in kcal/mol.

Relative from Dual-Topology Difference by Absolute

Aniline/Benzene 4.2±0.1 4.0±0.1

Adenine/Pyrrole 11.4±0.1 11.3±0.1

Aniline/Adenine −10.2±0.1 −10.2±0.1

Benzene/3-Methylimidizole −9.0±0.1 −8.7±0.1

3-Methylpytidine/pyridine −0.1±0.1 0.0±0.1
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Table 4

Comparison between the Tinker-OpenMM absolute and relative platform calculations of the relative binding 

free energy between pairs of sampl4 compounds. Values are in kcal/mol.

mol05-mol06 mol09-mol10

Relative from absolute 
GPU

Relative from dual 
topology

Relative from absolute 
GPU

Relative from dual 
topology

Complexation energy 44.3±0.1 44.3±0.1 −56.3±0.1 −56.0±0.1

solvation energy 47.3±0.1 47.3±0.1 −68.0±0.1 −68.0±0.1

total ΔΔG −2.9±0.1 −2.9±0.1 10.4±0.2 10.7±0.1
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