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Tinnitus is highly complex, diverse, and difficult to treat, in part due to the fact that the
underlying causes and mechanisms remain elusive. Tinnitus is generated within the audi-
tory brain; however, consolidating our understanding of tinnitus pathophysiology is difficult
due to the diversity of reported effects and the variety of implicated brain nuclei. Here, we
focus on the inferior colliculus (IC), a midbrain structure that integrates the vast majority
of ascending auditory information and projects via the thalamus to the auditory cortex.
The IC is also a point of convergence for corticofugal input and input originating outside
the auditory pathway. We review the evidence, from both studies with human subjects
and from animal models, for the contribution the IC makes to tinnitus. Changes in the
IC, caused by either noise exposure or drug administration, involve fundamental, het-
erogeneous alterations in the balance of excitation and inhibition. However, differences
between hearing loss-induced pathology and tinnitus-related pathology are not well under-
stood. Moreover, variability in tinnitus induction methodology has a significant impact on
subsequent neural and behavioral changes, which could explain some of the seemingly
contradictory data. Nonetheless, the IC is likely involved in the generation and persistence
of tinnitus perception.

Keywords: acoustic over-exposure, salicylate, auditory, inferior colliculus, tinnitus, midbrain

INTRODUCTION
The most common etiology of chronic tinnitus in the human
population arises from exposure to excessive levels of noise (1).
Tinnitus is suggested to affect between 8 and 15% of the popula-
tion and is extremely debilitating in ~1% (2). It is often perceived
as a ringing sound (the word tinnitus originates from the Latin tin-
nire, which translates as “to ring”), but characteristics vary across
individuals (3). While the cause of chronic tinnitus was believed
to reside within the inner ear (4), it is now widely accepted that
changes in the central auditory system are pivotal in generating the
phantom percept, as symptoms persist following cochlea ablation
(5) or severance of the auditory nerve (AN) (6). However, in the
early stages of tinnitus development, central changes still appear
to be dependent upon peripheral activity (7, 8).

The inferior colliculus (IC) is a near-obligatory relay in the
ascending auditory pathway, a point at which virtually all lemniscal
and extra-lemniscal ascending inputs converge (9). As such, patho-
physiological changes in the IC can alter all aspects of auditory per-
ception. Thus, the IC has been putatively proposed as an important
structure in central mechanisms that underlie subjective tinnitus,
and has been widely studied in this context (10).

In this review, we concentrate on research focused on the role
of the IC in tinnitus. This translates – in the main – to animal
models of tinnitus, which have been extensively used to iden-
tify putative neural correlates of tinnitus in the midbrain, such
as changes in patterns of neural activity and alterations in neu-
rotransmission. While acoustic over-exposure (AOE), or damage
caused by intense sound, is the most prevalent cause of tinni-
tus in humans, here we also consider animal studies examining
the effects of pharmacologically induced tinnitus in an attempt
to consolidate the nuanced similarities and differences between

models. In addition, we consider data derived from imaging stud-
ies with tinnitus patients. Finally, we discuss IC pathophysiology
as a contributing factor in the context of different tinnitus mod-
els, and the likelihood of tinnitus generation occurring through
interactions with other neural circuitries, such as limbic and
somatosensory systems.

CHANGES IN THE IC FOLLOWING AOE
Short-term changes following noise exposure are summarized in
Table 1. In the immediate aftermath of intense noise exposure, a
number of studies have demonstrated altered patterns of neural
activity in the IC. In mouse brain slice recordings spontaneous
firing rates (SFRs) of IC neurons decreased (11). Furthermore,
auditory-evoked responses in the IC of awake guinea pigs were
reduced immediately after noise exposure (12, 13). In contrast,
other groups have found no immediate change in IC firing rates
recorded in vitro (14), or increased neuronal firing in vivo 12 h
post-AOE (15). Increased neural activity in the IC was implied by
elevated c-Fos (a gene associated with neuronal depolarization)
in rats (16). The most likely explanation for immediate decreases
in neural activity in the IC is the well-documented decrease in
cochlear and AN output (17–20). On the other hand, elevated
activity in the IC might reflect rapid plastic changes to compen-
sate for diminished input to the IC, such as a suppression of lateral
inhibition (21). The spectrum of changes caused by AOE probably
arises from variations in exposure duration/sound level, differ-
ences in measurement time-points following AOE, or possibly
species differences.

Subsequently, within 2 weeks post-AOE, there is general and
widespread agreement that SFRs in the IC increase (14, 22, 23, 29,
30). This hyperactivity is often restricted to regions that respond
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Table 1 | Pathophysiology in the IC associated with the short-term

effects of acoustic over-exposure.

+ −

NEURAL ACTIVITY

Spontaneous

activity

Mulders and Robertson

(15) and Wang et al. (22)

Basta and Ernst (11)

Auditory-evoked

activity

Wang et al. (22) Popelar et al. (12) and Sun

et al. (13)

NEUROTRANSMISSION

Excitation

NMDA Dong et al. (23)

Inhibition

GABA Tan et al. (24) Dong et al. (23) and

Szczepaniak and Moller (25)

GAD65 Milbrandt et al. (26)

GAD67 Abbott et al. (27) Dong et al. (23)

GlyR Dong et al. (23)

GENE EXPRESSION

c-FOS Saint Marie et al. (16)

BDNF Meltser and Canlon (28)

and Tan et al. (24)

MAPK Meltser and Canlon (28)

Elevations or enhancements in signaling are indicated by “+” and reductions

by “−.”

preferentially either to the exposure frequency or frequencies
above, but recent evidence suggests that this is not always the
case (31, 32). Long-term changes following noise exposure are
summarized in Table 2.

CHANGES IN NEUROTRANSMISSION FOLLOWING ACOUSTIC TRAUMA
Early work examining γ-aminobutyric acid (GABA)-mediated
neural signaling indicated decreased GABAergic inhibition in
the central nucleus of the inferior colliculus (CNIC) following
tonal noise exposure (25). Thus, a potential mechanism by which
chronic, AOE-induced hyper-excitability could be mediated in
the midbrain was identified. GABAergic inhibition in the IC is
widespread, shapes acoustically evoked non-monotonicity, offset
inhibition and binaural inhibition [for a review, see Ref. (40)], and
synaptic responses in rat brain slices (41).

There is a reasonable body of evidence suggesting that inhi-
bition in the IC is altered rapidly following AOE, although the
time scales vary considerably between studies. Furthermore, in
the longer term, inhibition is altered permanently, affecting the
balance of inhibition and excitation.

Levels of glutamic acid decarboxylase (GAD), the main enzyme
responsible for GABA production, are altered following AOE.
Immediately after noise exposure, the GAD67 isoform, which
is widespread within neurons and produces GABA for wide-
ranging functions (42, 43), was elevated in terms of protein lev-
els and the density of stained cells (27). After 30 days, GAD67

protein levels were reduced relative to unexposed controls, but
with no significant changes in stained cell densities. At the
same time point, protein levels of GAD65 (localized to synaptic
terminals and responsible for transiently synthesizing GABA

for fast neurotransmission) were also reduced, but to a lesser
extent.

Suneja et al. (44) found that GABA release in CNIC was imme-
diately augmented by both ossicle removal and cochlear ablation,
although in their study GABA release remained elevated. Mean-
while GABA uptake was depressed, providing further evidence for
pathologically altered inhibition in the IC, in this case caused by
invasive peripheral trauma.

In contrast, Milbrandt et al. (26) observed a significant decrease
in GAD65 in rats in the short-term when using a noise exposure
paradigm specifically designed to target high frequencies, but this
recovered to near-normal levels when examined 30 days after AOE.
Furthermore, GAD65 recovery at 30 days coincided with a signif-
icant increase in [3H]muscimol binding, indicative of increased
GABAA receptor binding sites. Dong et al. (23) also found imme-
diate reductions in gene expression related to inhibition after noise
exposure, but this was also the case for genes related to excitation,
despite the absence of a change in spontaneous firing. In both
cases, expression generally returned to near-normal levels over
time. Moreover, GABAAα1 expression, a receptor subunit involved
in fast inhibitory neurotransmission, decreased in tonotopically
organized regions of the IC that responded to frequencies close to
the exposure frequency (39).

Table 2 | Pathophysiology in the IC associated with the long-term

effects of acoustic over-exposure.

+ −

NEURAL ACTIVITY

Spontaneous activity

Electrophysiology Coomber et al. (31), Dong

et al. (23), Groschel et al. (14),

Manzoor et al. (29, 33),

Mulders and Robertson (7, 8),

Ropp et al.(32), Vogler et al.

(30), and Wang et al. (22)

Metabolic markers Holt et al. (34)

Burst firing and

synchrony

Bauer et al. (35) and Coomber

et al. (31)

Auditory-evoked

activity

Berger et al. (36) (altered

response profiles), Izquierdo

et al. (37) (tonotopic

reorganization), and Wang

et al. (20, 21)

NEUROTRANSMISSION

Excitation

Glutamate Godfrey et al. (38)

Inhibition

GABA Godfrey et al. (38)

GABAA Milbrandt et al. (26) Dong et al. (23, 39)

GAD65 Abbott et al. (27)

GAD67 Abbott et al. (27)

Elevations or enhancements in signaling are indicated by “+” and reductions

by “−.”
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Rats subjected to a cochleotomy, on the other hand, displayed
more consistent reductions in GAD67 expression over time (45).
In the same study, decreased expression of the α1 subunit of
glycine receptors was also observed under certain conditions, yet
there were no changes in other glycine receptor subunits, or in
a variety of components that make up GABAA or N -methyl-d-
aspartate (NMDA) receptors. Interestingly,Argence et al. (46) were
subsequently able to reverse the down-regulation of GAD67 and
GlyRα1 by electrically stimulating the deafferented AN. This effect
proved to be temporary, disappearing within 5 days after stimu-
lation ceased. However, it should be noted that the breadth of
changes induced by a complete cochleotomy are likely to differ
significantly from a more selective approach, such as AOE.

In hamsters, moderate yet significant elevations of both glu-
tamate and GABA were observed in the IC after bilateral AOE,
yet no change was seen in glycinergic signaling, or in levels of
neurotransmitters in other parts of the auditory system, including
the cochlear nucleus, medial geniculate body (MGB), and audi-
tory cortex (38). These changes were concurrent with elevations
in aspartate (relating to glutamate synthesis) and decreased levels
of taurine (which can be linked with GABA or glycine function).
Of particular interest was the time-span over which a presumed
shift in the balance of inhibition and excitation occurred; in this
study, hamsters were examined 5 months after AOE and com-
pared with unexposed controls. In an earlier paper, Tan et al. (24)
also demonstrated an increase in GABA-positive neurons, com-
bined with elevated brain-derived neurotrophic factor (or BDNF)
6 days following AOE. Contrastingly, using an imaging technique
to quantify GABA and glutamate, Brozoski et al. (47) demon-
strated no excitatory or inhibitory changes in the IC,but significant
changes in the dorsal cochlear nucleus (DCN), MGB, and primary
auditory cortex (AI) of normal-hearing rats with tinnitus (induced
by unilateral AOE and confirmed behaviorally).

CHRONIC HYPERACTIVITY IN THE IC
Changes in inhibitory neurotransmission, such as those described
above, could result in the unmasking of previously dormant inputs
within these regions. Such a mechanism might feasibly contribute
to maintaining hyperactivity induced by AOE, as well as contribut-
ing to tonotopic reorganization in the IC, which in some instances
has been found to occur (22, 37). However, the origin of increased
spontaneous activity in the IC, in terms of generation and persis-
tence, and whether it depends upon intrinsic processes or external
input, has only been explored more recently.

Manzoor et al. (33) demonstrated that IC hyperactivity was
significantly reduced by ablation of the DCN 2–3 weeks follow-
ing AOE, suggesting that an increase in SFRs at the level of the
midbrain occurred as a result of increased activity extrinsic to this
structure. This suggests that IC hyperactivity, at least in the early
stages following AOE, is not a result of intrinsic plasticity. In sup-
port of this, Brozoski et al. (48) demonstrated that bilateral DCN
lesions prior to AOE prevented the development of behavioral
evidence of tinnitus, although this was not the case for unilateral
lesions.

However, these results do not rule out the possibility that
IC hyperactivity becomes an intrinsic process over a period of
time, independent of ascending input. Bilateral DCN ablation

3–5 months after AOE did not abolish behavioral evidence of
tinnitus (49), while cochlear ablation only modulated IC hyperac-
tivity within 6 weeks of AOE (7, 8). In light of the current evidence,
IC hyperactivity likely depends on ascending input in the early
stages post-AOE, but subsequently becomes self-sustaining.

Interestingly, recent findings by Ropp et al. (32) suggest that the
ventral cochlear nucleus (VCN) may play a substantial role in IC
hyperactivity; recording 1–4 months after AOE, IC neurons receiv-
ing input from VCN (identified by electrophysiological response
profiles) were hyperactive, while IC neurons receiving input from
DCN were not. Thus, at a later stage, IC hyperactivity appears
to be independent of input from DCN, but the VCN may be
implicated in the persistence of increased SFRs. However, more
research examining how VCN modulates IC firing following AOE
is necessary to draw definite conclusions.

LINKING NEURAL PATHOPHYSIOLOGY TO TINNITUS
PERCEPTION
Some of the studies outlined above highlight a series of conse-
quences of hearing loss that could underlie tinnitus generation.
However, the implementation of a complementary behavioral
test in animals is an essential step in correlating neural changes
with evidence of tinnitus perception. This enables delineation of
changes that might relate to tinnitus from those that occur as a
by-product of hearing loss. This is a pertinent point, as hearing
loss does not invariably lead to the generation of tinnitus (50).
Early behavioral tests relied on extensive training to produce a
conditioned response (51–53), although more recent studies have
exploited unconscious reflexes to determine tinnitus-like behav-
ior, often known as the gap prepulse inhibition of acoustic startle
(GPIAS) test (54–58). While the efficacy of these behavioral tests
for detecting tinnitus per se has recently been questioned (59,
60), an effective, objective test is vital if we are to be confident in
attributing neural changes to tinnitus rather than to hearing loss.

Behavioral evidence of chronic tinnitus emerges at a period
beginning five weeks after AOE (61). Around the same time, hyper-
activity is evident in the IC (7, 8). However, two recent studies have
suggested that this hyperactivity may not be sufficient as a sole gen-
erator of tinnitus. In AOE-treated guinea pigs and rats, increased
spontaneous neural activity was present even in the absence of
behavioral evidence of tinnitus (31, 32), although these findings
may be influenced by interpretation of behavioral data. Given that
the majority of studies demonstrate that IC hyperactivity is evi-
dent following noise trauma, but can also be present in the absence
of tinnitus, this suggests that increased SFRs, at least at the level
of the IC, may be necessary but not sufficient to explain tinnitus
generation.

OTHER CHANGES OCCURRING WITHIN THE IC
In addition to elevated spontaneous activity, a number of other
changes in neuronal firing properties induced by noise exposure
have been linked to tinnitus, such as increased burst firing in
chinchillas (35) and guinea pigs (31). Burst firing patterns have
previously been associated with neural synchrony (62); that is,
correlated firing across a population of neurons. Increased neural
synchrony has also been directly measured by correlating firing
patterns across different IC neurons (35). It has been suggested
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that neural synchrony underlies auditory perception [for a review,
see Ref. (63)] so it is entirely plausible that synchronous activity
in the absence of auditory input could manifest as a tinnitus per-
cept. Indeed, some treatment options focus solely on disrupting
neural synchrony [see Ref. (64)]. However, the importance of syn-
chrony in the IC to tinnitus generation and maintenance is yet to
be elucidated.

The uncertainty surrounding the role of the IC in tinnitus gen-
eration can in part be attributed to differences between the three
major divisions: the CNIC, the external nucleus of the inferior col-
liculus (ICx), and the dorsal cortex (ICd). The responses of these
divisions are relatively distinct, with different proposed functional
roles (65). It is therefore reasonable to assume that responses to
reduced input following AOE might also differ. Although IC sub-
divisions can be identified physiologically or histologically (66,67),
the delineations and borders are often not clear and thus many
studies do not explicitly state which area was examined. Inter-
estingly, using manganese-enhanced magnetic resonance imaging
(MRI) in rats to examine a variety of auditory and non-auditory
nuclei, 2 days post-AOE, Holt et al. (34) found that the ICd was
the only area that exhibited consistent increases in activity follow-
ing two different tinnitus inducers. ICd is the predominant site
of corticocollicular descending input (68–72), although there is
some overlap near the border with CNIC where ascending connec-
tions are also present (68, 73). Furthermore, there are well-defined
intrinsic connections between ICd and CNIC [for a review, see
Ref. (74)]. Nonetheless, these data could implicate the descending
forebrain in altering spontaneous activity in the IC (75). Indeed,
when focal electrical stimulation was applied to the auditory cor-
tex, thus activating corticofugal pathways, this caused temporary
shifts in IC frequency representation (76). Thus, tonotopic restruc-
turing in the IC following acoustic trauma (22, 37) could feasibly
be mediated, at least in part, by descending input.

Within the CNIC, AOE-induced changes were not restricted to
particular response profiles (30). We recently demonstrated that
the proportional balance of response profiles can be altered by
AOE; the proportion of onset-type responses increased signifi-
cantly, while the proportion of single-units with sustained firing
patterns decreased (36). However, the presence or absence of
behavioral tinnitus had no bearing on the balance of onset and sus-
tained profiles; in other words, this effect likely reflected long-term
changes induced by AOE.

A potential confound to any study examining changes following
AOE pertains to the exposure paradigm itself; that is, differ-
ent sound levels, durations, and frequencies of noise exposure
could result in diverse neural changes. Suggestive of this, ham-
sters were more likely to develop behavioral evidence of tinnitus
when subjected to an increased duration of an otherwise identical
noise exposure (52). Moreover, Meltser and Canlon (28) found
that an AOE paradigm designed to cause “permanent” damage
resulted in transient activation of BDNF and a variety of mitogen-
activated protein kinases, whereas temporary damage was only
associated with activation of selected p38 kinases. They reasoned
that these effects were indicative of plastic changes resulting from
reduced sensory input, dependent on the magnitude of insult.
AOE paradigms vary substantially between studies, while species
differences in susceptibility to AOE-induced damage (77) prevent

implementation of a standardized protocol. Accordingly, disparity
in AOE protocols provides a possible explanation for seemingly
conflicting results.

The short-term and long-term effects of AOE, specifically, are
summarized in Tables 1 and 2. To conclude, the short-term effects
could be described as: (1) immediate changes in spontaneous and
auditory-evoked neural activity, which are variable perhaps due to
experimental protocol, (2) predominantly, reductions in media-
tors of both excitation and inhibition, with a couple of exceptions,
and (3) elevated immediate-early gene expression, indicative of
altered patterns of neuronal activity. In terms of long-term changes
after AOE, studies indicate, overwhelmingly, that (1) spontaneous,
synchronous, and auditory-evoked activity are elevated, and (2)
changes in components of inhibition in particular are complex,
but probably underlie an overall change in the balance of excitation
and inhibition.

IC PATHOLOGY IN MODELS OF PHARMACOLOGICALLY
INDUCED TINNITUS
Sodium salicylate, an analog of acetylsalicylic acid (the active
ingredient in aspirin), is ototoxic at high doses and induces tran-
sient tinnitus in humans (78). Salicylate is used experimentally
to induce tinnitus in animal models (53, 54, 79–81). A signif-
icant benefit in using salicylate as a tinnitus-inducing agent, is
that – compared with AOE – the behavioral effects are largely
homogeneous. Thus, one can reliably predict that nearly all of the
animals will exhibit behavioral evidence of tinnitus.

The definitive mechanisms by which salicylate causes tinnitus
are unknown, although neural activity is affected at multiple levels
of the auditory pathway. This includes peripheral effects, such as
altered outer hair cell electromotility (82), as well as central effects,
from AN fibers through to auditory cortex (83–85). Early work
indicated that – in cats at least – secondary auditory cortex (AII)
exhibited increased firing rates, while neuronal firing in AI and
anterior auditory field (AAF) decreased (86). Moreover, elevated
firing was detected in neurons tuned to higher frequencies, while at
low frequency sites the opposite was true. These data implied that
salicylate may exert effects via extra-lemniscal pathways, which
provide an input for AII.

In the IC, the earliest evidence for salicylate-induced neural
hyper-excitability came from Jastreboff and Sasaki (87), who mea-
sured spontaneous neuronal firing in the ICx of guinea pigs.
Subsequently, bursting patterns of activity were discovered in
the ICx in salicylate-administered rats (88), an effect most pro-
nounced in neurons tuned to high frequencies. This is consis-
tent with the finding that salicylate treatment often results in
behavioral evidence of a high-frequency tinnitus percept (89).
Changes in the IC following salicylate treatment are summarized
in Table 3.

Increased excitability or enhanced metabolic activity in the IC
were also demonstrated by others in vivo in guinea pigs (91), and
in rats (93), as well as hyper-excitability in mouse brain slices (90).
The latter study confirmed that salicylate acts at central targets,
i.e., hyper-excitability does not occur simply as a result of periph-
eral effects. Indeed, in a later study, Basta et al. (107) showed that
deafferented CN, MGB, and auditory cortex preparations were all
susceptible to modulation of firing rates by salicylate, albeit with
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Table 3 | Pathophysiology in the IC associated with salicylate

treatment.

+ −

NEURAL ACTIVITY

Spontaneous

activity

Electro-

physiology

Basta and Ernst (90),

Jastreboff and Sasaki (87),

and Manabe et al. (91)

Ma et al. (92)

Metabolic

markers

Paul et al. (93) Wallhausser-Franke

et al. (94)

Burst firing Chen and Jastreboff (88)

Auditory-evoked

activity

Ma et al. (92) and Sun

et al. (95)

NEUROTRANSMISSION

Excitation

NMDA Hu et al. (96) and Hwang

et al. (97, 98)

Inhibition

GABAA Bauer et al. (99) (GABAA

affinity)

Bauer et al. (99) (GABAA

binding sites) and Zou

and Shang (100)

GAD65 Bauer et al. (99)

GAD67 Zou and Shang (100)

GlyR Lu et al. (102)

Serotonin Liu et al. (101) Wang et al. (103)

GENE EXPRESSION

Arg3.1/arc Hu et al. (96)

Egr-1 Hu et al. (96)

c-FOS Wu et al. (104) Mahlke and

Wallhausser-Franke (105)

INFLAMMATORY MARKERS

COX-2 Hwang et al. (97)

IL1β Hwang et al. (98, 106)

TNFα Hwang et al. (98, 106)

Elevations or enhancements in signaling are indicated by “+” and reductions

by “−.”

a lower sensitivity than the IC. The propensity for salicylate to
directly alter central activity was further shown in vivo by Sun et al.
(95). In their study, systemically administered salicylate increased
the amplitude of sound-evoked field potentials in auditory cortex
in awake rats, while reduced IC and cortical potentials were seen
after direct administration of salicylate to the cochlea. Moreover,
systemic administration also reduced the sound-evoked output of
the cochlea, which – when considered alongside elevated cortical
responses – suggests a change in central gain.

Contrastingly, Ma et al. (92) found a decrease in SFRs in the
CNIC in mice following acute salicylate treatment. Moreover, this
effect was strongest in neurons preferentially tuned to low fre-
quencies. It should be noted that the salicylate dose administered
by Ma et al. was somewhat lower than that used previously by oth-
ers, although this was still sufficient to induce behavioral evidence
of tinnitus in other rodents (108). Further evidence of decreased
neural activity in the IC comes from a study in which salicylate

treatment resulted in a reduction of 2-deoxyglucose activity in the
IC, particularly in high-frequency regions (94).

Interestingly, Kumagai (109) demonstrated that salicylate-
induced SFRs in AN fibers were only significantly elevated follow-
ing administration of a high dose of salicylate, but not a lower dose.
This provides a possible explanation for the disparity and het-
erogeneity between studies, with respect to IC hyper-excitability.
However, given that relatively low doses result in behavioral evi-
dence of tinnitus, it seems that increased excitation may be overly
simplistic as a mechanism for salicylate-induced tinnitus.

A number of studies have examined the effects of salicylate on
the balance of excitation and inhibition in the IC, in an attempt to
understand the mechanisms underlying direct salicylate-induced
hyper-excitability. Using the GPIAS approach to confirm tinni-
tus, Hu et al. (96) found that salicylate-induced reversible plastic
changes in the IC. Specifically, they demonstrated an increase in the
NR2B subunit of NMDA receptors, yet decreased expression of the
immediate-early genes for Arc (activity-regulated cytoskeleton-
associated protein) and Egr-1 (early growth response protein 1)
in both the IC and auditory cortex of rats. The latter effect was
somewhat surprising, given that both are normally associated with
sensory-evoked neuronal activity. Salicylate-mediated changes in
NR2B expression, as well as inflammatory mediators including
tumor necrosis factor α (TNFα), cyclooxygenase-2 (COX-2), and
interleukin-1β (IL1β), were also found in mice with behaviorally
confirmed tinnitus (97, 98, 106).

Immediate-early gene expression was previously also examined
in structures of the auditory and limbic systems of salicylate-
treated gerbils (105). Although frequency-specific patterns of the
arg3.1 gene (which translates to Arc) and c-Fos were apparent
in auditory cortex, expression of these genes was limited in sub-
cortical auditory structures, suggesting a lack of neuronal hyperac-
tivity in the IC. Intriguingly, however, in the central nucleus of the
amygdala both c-Fos and Arg3.1 were elevated following salicy-
late treatment, compared with saline-treated controls. Brainstem
measurements of c-Fos from another study indicated an increase
in the CNIC, while expression was negligible in the CN, in rats
chronically dosed with salicylate (104), data which correlate with
previous reports of salicylate-mediated increases in spontaneous
activity in the IC.

With respect to components of inhibitory neurotransmission,
early work involving chronic dosing of rats with salicylate demon-
strated a number of changes to GABA signaling in the IC (99).
Levels of GAD65 were elevated, while binding studies indicated
increased GABAA receptor affinity in CNIC, as well as in combined
samples of ICx and ICd, which was coincident with a reduction in
the number of GABAA binding sites in CNIC. These effects cor-
related with behavioral evidence of salicylate-induced tinnitus in
the same animals. This relationship between tinnitus behavior and
changes in GABAergic signaling suggested that salicylate affected
the balance of excitation and inhibition in the central auditory
system, manifesting as a perceived tinnitus.

Contrastingly, Zou and Shang (100) found decreases in
GABAAα1 and GAD67 expression in large GABAergic neurons
in the IC 1 day after 5 days of chronic salicylate treatment, yet no
change in levels of GAD65. This coincided with unchanged levels
of the vesicular glutamate transporter VGLUT2, suggesting that
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glutamatergic input remained constant. It is worth highlighting
that this study used a lower dose of salicylate than Bauer et al. (99)
and measured levels of both GAD isoforms. Furthermore, Zou and
Shang (100) concentrated on large GABAergic neurons in CNIC,
thought to be the primary source of GABAergic input to the MGB
from the IC. These factors do not necessarily explain the incon-
sistent results in GAD expression, but variability in methodology
could underlie these differences.

Memantine, an NMDA receptor antagonist, did not abolish
behavioral or neural evidence of tinnitus (108), which also suggests
altered inhibitory drive in the midbrain is a contributing factor
to tinnitus generation. In physiological terms, altered inhibitory
neurotransmission may underlie enhancement of sound-evoked
local field potentials (95) and broadening of excitatory recep-
tive fields (92) in the IC. Others have shown the capacity for
salicylate to interact with a number of neurotransmitter and
neuromodulation systems. In vitro recordings from cultured rat
IC neurons indicated non-competitive antagonism of α1 glycine
receptor subunits (102). Furthermore, both in vivo and in vitro
studies in rats point toward salicylate modulating serotonergic
input (101, 103).

Salicylate-induced tinnitus is transient and hence studies that
use salicylate are limited in translational value, in terms of pro-
viding signposts to understanding the chronic human condition,
which is most often caused by noise exposure. However, salicylate
remains a useful tool for making comparisons between a behav-
ioral effect likened to tinnitus perception in humans, and potential
underlying neural mechanisms. At this point in time – as dis-
cussed – the literature contains a variety of possible theories for
salicylate-induced tinnitus, not least the effects this drug has in the
IC. What seems clear, however, is that salicylate does induce cen-
tral effects, and can directly affect both excitatory and inhibitory
neurotransmission and plasticity in the IC. The effects of salicy-
late on the IC are summarized in Table 3. To generalize, studies
suggest that salicylate (1) probably increases neural activity in the
IC, (2) enhances excitation, (3) causes complex changes in inhibi-
tion, (4) reduces expression of immediate-early genes associated
with neuronal activity (with one exception), and (5) initiates the
production of some inflammatory mediators.

EVIDENCE FROM TINNITUS PATIENTS THAT IMPLICATES
THE IC
Collectively, data acquired using animal models of tinnitus impli-
cate the IC in generating or maintaining the tinnitus percept. A
degree of support for this idea is evident from work conducted with
human subjects. Differences in the patterns of sound-evoked brain
activation in the IC have been demonstrated in tinnitus patients
with near-normal hearing (110), and in some instances, this was
asymmetrical in patients with lateralized tinnitus,whereas bilateral
tinnitus subjects exhibited symmetrical sound-evoked activation
(111, 112). In a later study, Melcher et al. (113) suggest that asym-
metrical activation coinciding with lateralized tinnitus actually
constitutes a sub-group in terms of tinnitus classification. How-
ever, no discernible differences were apparent between controls
and tinnitus patients when PET imaging was used to investi-
gate previously reported hemispheric metabolic asymmetries in
auditory cortex and the IC (114).

A reduction in functional connectivity between the IC and
auditory cortices was also demonstrated in subjects with tinni-
tus, and interpreted as evidence to support failed thalamic gating
in tinnitus patients (115), while no differences in either the mag-
nitude or lateralization of functional MRI (fMRI) responses to
auditory stimuli were seen in the IC. The idea of dysfunctional
thalamic gating can be tentatively linked to the thalamocortical
dysrhythmia model of tinnitus, proposed by Llinas et al. (116),
which argues that disinhibition of auditory cortex as a conse-
quence of abnormal thalamic input represents a putative mecha-
nism for tinnitus. Indeed, using fMRI, patients with gaze-evoked
tinnitus were found to exhibit less gaze-evoked inhibition of the
auditory cortex, compared with controls (117). This was coupled
with abnormal patterns of activation in the IC and inhibition in
the MGB, and correlated with a perceived increase in tinnitus loud-
ness. Elevations in IC neural activity measured directly in animals,
and by more indirect means in humans, may be a prerequisite
or a contributing component of the thalamocortical dysrhythmia
model.

In addition to studies examining metabolic changes – sugges-
tive of neural activity – a number of studies examining structural
changes in the brain in tinnitus patients have identified altered
morphology in the IC. Landgrebe et al. (118) identified a sig-
nificant increase in gray matter in both the right IC and left
hippocampus of their tinnitus group using structural MRI, com-
pared with controls. This study originally aimed to replicate the
findings of an earlier study (119), which showed subcallosal and
thalamic volume changes; although regions of interest differed
between studies, data from both suggest morphological volume
changes in auditory and limbic brain areas relating to tinnitus
pathophysiology, although others have failed to demonstrate vol-
ume changes in tinnitus patients [e.g., Ref. (120)]. White matter
differences in the IC have also been examined in tinnitus patients,
specifically comparing fiber tracts between IC and auditory cor-
tex, IC and amygdala, and also between auditory cortex and the
amygdala (121). Significant differences in this study were evident
between the left IC and amygdala, right auditory cortex and IC, as
well as bilateral auditory cortex and amygdala.

Several case reports also support a role for IC pathology in
tinnitus. For example, Stimmer et al. (122) reported the sudden
onset of a unilateral, right-sided tinnitus in a patient who exhibited
prolonged auditory brainstem response (ABR) inter-peak laten-
cies – which suggests the presence of pathology in the auditory
pathway – and a small lesion in the left IC, presumed to have
resulted from a transient, acute hemorrhage. Moreover, infarction
in an area located near to the IC also coincided with a sudden
worsening of reported tinnitus (123).

Changes in ABRs have been extensively studied and further
implicate the IC and other brainstem structures in tinnitus pathol-
ogy. Schaette and McAlpine (124) reported a significant reduction
in wave I ABR amplitudes (generated by the auditory periphery),
relative to the centrally generated wave V, thought to represent
activity in the lateral lemniscus and IC. The authors proposed that
this provided evidence for elevated central gain in the presence
of reduced peripheral input. Subsequently, Gu et al. (125) also
reported reduced wave I and augmented wave V amplitudes in
tinnitus patients when compared with controls matched in age,
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sex, and hearing thresholds, and that ratio differences were most
pronounced when comparing V:I and V:III (thought to represent
activity in outputs from spherical bushy cells of the VCN). Inter-
estingly, when these two groups were compared with a third cohort
of younger, non-tinnitus subjects, elevated thresholds at mid-to-
high frequencies were apparent in both groups, as was a reduction
in wave I amplitudes, such that the observed peripheral dysfunc-
tion was not a unique indicator of tinnitus. Despite this, however,
brainstem recordings performed in humans support a role for the
IC and other brainstem structures in tinnitus pathology.

Somatosensory modulation of tinnitus is a well-established
phenomenon (126). In animals, data suggest that the DCN is a
key brainstem structure for the integration of somatosensory and
auditory neural information that represents a neural correlate for
such tinnitus modulation (127). Lanting et al. (128) examined
neural correlates for somatosensory modulation of tinnitus by
conducting fMRI experiments in patients capable of modulat-
ing tinnitus with jaw movements. Interestingly, this study found
that jaw movements increased metabolic activity in both the CN
and IC of tinnitus patients. Brain regions responsible for integrat-
ing somatosensory and auditory information, which includes the
DCN and to a lesser extent the IC (129), were further implicated in
tinnitus pathophysiology by a report from Gritsenko et al. (130),
whereby lateralized tinnitus in an individual also exhibiting medial
branch nerve degeneration was abolished by temporarily blocking
C2–C3 nociceptive input.

To summarize, the majority of studies in humans have used
either fMRI or structural MRI to examine the IC and have demon-
strated the following: (1) changes in evoked activity in IC, (2)
reductions in functional connectivity between IC and auditory
cortex, (3) disparate morphological changes in the IC and other
brain regions, and (4) altered brainstem responses implicating the
IC. However, drawing firm conclusions regarding the role of the IC
in the human condition is not feasible with the evidence available
currently.

TARGETING IC PATHOPHYSIOLOGY TO ELIMINATE TINNITUS
There is currently no universally effective treatment for tinni-
tus. Consequently, a number of studies have addressed whether
a range of interventions affect pathophysiological changes in
the IC, caused by AOE. One approach has been to focus on
GABA-enhancing drugs, aimed at restoring inhibition to suppress
hyperactivity. Szczepaniak and Moller (131) demonstrated that
l-baclofen, an antispasmodic GABAB agonist, successfully attenu-
ated hyper-excitability in the IC of AOE-treated rats. No behavioral
testing was performed in this study to determine effectiveness on
tinnitus. However, Zheng et al. (132) later demonstrated that a
high dose of l-baclofen diminished tinnitus-like behavior in rats.
While these animal data appear promising, the efficacy of this drug
in eliminating tinnitus in humans is highly variable [for a review,
see Ref. (133)].

Previous studies have demonstrated that tinnitus can persist
following AN sectioning (6), which may even induce tinnitus in
subjects that previously did not experience it (134, 135). In guinea
pigs, Mulders and Robertson (7) demonstrated that, although IC
hyperactivity could be reduced by cochlear ablation up to 6 weeks
following AOE, there was no effect from 8 weeks onward (8). This

suggests that central activity is dependent on peripheral drive in
the early stages following AOE and later becomes centralized.

Recently, the loop diuretic furosemide was shown to reduce
AOE-induced IC hyperactivity and behavioral evidence of tinni-
tus in guinea pigs within 6 weeks of acoustic trauma (136, 137).
Putatively, this has been suggested to work via a reduction in the
endolymphatic potential (138). Thus, it is likely to be most effective
during the early stages of tinnitus development, when IC hyperac-
tivity is dependent on cochlear input (7). Indeed, ~50% of patients
experienced a reduction in tinnitus symptoms following intra-
venous administration of furosemide (139), an effect attributed
to tinnitus being of cochlear origin. Paradoxically, however, high
doses of furosemide actually appear to cause tinnitus in humans
[see Ref. (140), for a review], so the efficacy for reducing tinnitus
is as yet unclear.

An alternative and intriguing approach for modulating
tinnitus-related pathology in the IC has recently been proposed as
a result of work by Offutt et al. (141). These authors demonstrated,
in guinea pigs, that electrical stimulation of the ICd resulted in
either suppression or facilitation of firing rates in the CNIC, and
postulated that a midbrain implant could be used to reduce or
even eliminate tinnitus. As yet, these effects have not been demon-
strated in AOE-treated animals, or indeed in animals displaying
evidence of tinnitus, so the viability of this intervention remains
to be determined.

Tinnitus can briefly be reduced or eliminated following the pre-
sentation of a masking sound stimulus, a phenomenon referred to
as residual inhibition (142). Voytenko and Galazyuk (143) sug-
gested that suppression of activity in awake mouse IC neurons
by a preceding sound stimulus represents a possible underlying
mechanism for residual inhibition. While this intervention only
produces a temporary cessation of tinnitus, it nonetheless pro-
vides a useful tool for comparing neural pathology underlying
tinnitus to a brain state wherein tinnitus is absent.

To date, intervention-centered research has been hampered by
a lack of differentiation between underlying tinnitus pathology
and effects that simply relate to AOE. Without this, the efficacy of
treatment approaches is difficult to appraise.

THE IC AS A COMPONENT IN PUTATIVE MODELS OF
TINNITUS
The central gain hypothesis proposes a reduction in cochlear
output concurrent with a paradoxical sustained enhancement of
central activity [for a recent review, see Ref. (144)]. This likely
reflects homeostatic mechanisms initiated to sustain the mean
level of firing within the auditory brain (145, 146). Increases in the
steepness of local field potential amplitude-sound level functions,
despite a loss of peripheral sensitivity, implied that this central
enhancement was evident at the level of the IC (21, 147).

While the central gain hypothesis is persuasive, and is perhaps
most pertinent when considering IC involvement, it is highly likely
that tinnitus perception involves complex interactions with other
brain areas (148). Given the strong emotional aspects of tinni-
tus, it has previously been suggested that input from limbic areas
(149), specifically to the MGB (150), likely underlie the awareness
of tinnitus. Connections between the MGB and limbic areas are
prevalent, and presumably are involved in modulating responses
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to auditory stimuli (150). Moreover, there are also direct connec-
tions between the CNIC and the amygdala (151). However, it is
as yet unclear whether limbic-auditory interactions at the level of
the IC are altered in a way that correlates with tinnitus. Examin-
ing limbic-auditory interactions is currently en vogue in tinnitus
research, although clearly this is a challenging question to pose in
animal models. Nevertheless, limbic-auditory interactions remain
an intriguing avenue for inquiry. In particular, pathological inter-
actions could underlie differences in tinnitus susceptibility, since
some people with peripheral damage do not develop tinnitus,
while others do (152).

A large proportion of patients demonstrate tinnitus modula-
tion by jaw movements or neck muscle contractions (153, 154).
This phenomenon is likely the result of interactions between
auditory and somatosensory neural circuitry [for a review, see
Ref. (155)]. It has previously been shown that stimulation of
somatosensory areas modulated firing in cochlear nucleus neurons
(156–158), and that this modulation was altered in the presence
of behavioral evidence of tinnitus (127). There are also direct and
prominent connections to the ICx from somatosensory areas (159,
160), and IC activity was modulated by somatosensory stimula-
tion (161). Thus, it would be of considerable interest to determine
whether changes in IC-somatosensory system interactions corre-
late with behavioral evidence of tinnitus; this may also further
elucidate the mechanisms underlying somatosensory modulation
of tinnitus.

CONCLUSION
Studies using animal models imply that the IC plays an important
role in tinnitus pathology. This is the case regardless of whether
tinnitus is induced by AOE or salicylate. Animal models allow for
invasive studies, but carry with them the fundamental difficulty
of establishing whether animals actually perceive tinnitus. The
introduction of behavioral tests attempting to identify tinnitus
allows researchers to correlate neural changes with the presence
of a tinnitus percept, although existing tests have their caveats.
Human studies are important for directly relating changes in the
brain to the human condition, although generally do not allow for
invasive recording techniques and current measures are limited in
their spatial resolution (e.g., EEG) or temporal resolution (e.g.,
fMRI or PET). Currently, there are clear disparities in the litera-
ture that need to be resolved, namely, clarifying the time-course
of changes post-AOE, and separating tinnitus-related effects from
those attributable simply to noise exposure. There is also a lack
of clarity in the contributions of different IC sub-divisions to
tinnitus pathophysiology. Elucidating these characteristics of tin-
nitus pathology will be undeniably difficult, but will likely prove
essential to facilitate development of a treatment to eliminate the
tinnitus percept.
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