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REVIEW Open Access

Tiny microbes, enormous impacts: what
matters in gut microbiome studies?
Justine Debelius1, Se Jin Song1,2, Yoshiki Vazquez-Baeza3, Zhenjiang Zech Xu1, Antonio Gonzalez1

and Rob Knight1,3*

Abstract

Many factors affect the microbiomes of humans, mice,

and other mammals, but substantial challenges remain

in determining which of these factors are of practical

importance. Considering the relative effect sizes of both

biological and technical covariates can help improve

study design and the quality of biological conclusions.

Care must be taken to avoid technical bias that can lead

to incorrect biological conclusions. The presentation of

quantitative effect sizes in addition to P values will

improve our ability to perform meta-analysis and to

evaluate potentially relevant biological effects. A better

consideration of effect size and statistical power will lead

to more robust biological conclusions in microbiome

studies.

Introduction
The human microbiome is a virtual organ that con-

tains >100 times as many genes as the human genome

[1]. In the past 10 years, our understanding of associa-

tions between the microbiome and health has expanded

greatly. Our microbial symbionts have been implicated in

a broad range of conditions including: obesity [2, 3];

asthma, allergies, and autoimmune conditions [4–10]; de-

pression (reviewed in [11, 12]) and other mental illnesses

[13, 14]; neurodegeneration [15–17]; and vascular disease

[18, 19]. Nevertheless, integrating this rapidly expanding

literature to find general patterns is challenging because of

the myriad ways in which differences are reported. For ex-

ample, the term 'dysbiosis’ may reflect differences in alpha

diversity (the biological diversity within a sample) [13], in

beta diversity (the difference in microbial community
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structure between samples) [20], in the abundances of

specific bacterial taxa [7, 14, 15], or any combination of

these three components [4, 6]. All of these differences

might reflect real kinds of dysbiosis, but studies that focus

on different features are difficult to compare. Even draw-

ing generalities from different analyses of alpha diversity

can be complicated. It is well known that errors in se-

quencing and DNA sequence alignments can lead to

substantial inflation of counts of the species apparent

in a given sample [21–25]. Moreover, different measures

of diversity focusing on richness (the number of kinds of

entities), evenness (whether all entities in the sample have

the same abundance distribution), or a combination of

these can produce entirely different results than ranking

samples by diversity.

Establishing consistent relationships between specific

taxa and disease has been especially problematic, in part

because of differences in how studies define clinical

populations, handle sample preparation and DNA-

sequencing methodology, and use bioinformatics tools

and reference databases, all of which can affect the re-

sult substantially [26–29]. A literature search may find

that the same taxon has been both positively and nega-

tively associated with a disease state in different studies.

For example, the Firmicutes to Bacteriodetes ratio was

initially thought to be associated with obesity [30] and

was considered a potential biomarker [31], but our re-

cent meta-analysis showed no clear trend for this ratio

across different human obesity studies [32]. Some of

the problems could be technical, because differences in

sample handling can change the observed ratio of these

phyla [33] (although we would expect these changes to

cause more issues when comparing samples between

studies than when comparing those within a single study).

Consequently, identifying specific microbial biomarkers

that are robust across populations for obesity (although,

interestingly, not for inflammatory bowel disease) remains

challenging. Different diseases will likely require different

approaches.
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Despite problems in generalizing some findings across

microbiome studies, we are beginning to understand how

the effect size can help to explain differences in community

profiling. In statistics, effect size is defined as a quantitative

measure of the differences between two or more groups,

such as a correlation coefficient between two variables or a

mean difference in abundance between two groups. For ex-

ample, the differences in overall microbiome composition

between infants and adults are so large that they can be

seen even across studies that use radically different

methods [34]; this is because the relative effect size of age

is larger than that of processing technique. Therefore, des-

pite problems in generalizing findings across some micro-

biome studies that result from the factors noted above, we

are beginning to understand how the effect sizes of specific

biological and technical variables in community profiling

are structured relative to others.

In this review, we argue that by explicitly considering

and quantifying effect sizes in microbiome studies, we can

better design experiments that limit confounding factors.

This principle is well established in other fields, such as

ecology [35], epidemiology (see for example [36]), and

genome-wide association studies (their relationship to

microbiome studies is reviewed in [37]). Avoiding import-

ant confounding variables that have a large effect size will

allow researchers to more accurately and consistently

draw meaningful biological conclusions from these studies

of complex systems.

Biological factors that affect the microbiome
Specific consideration of effect sizes is crucial for inter-

preting naturally occurring biological variation in the

microbiome, where the effect being investigated is fre-

quently confounded by other factors that might affect

the observed community structure. Study designs must

consider the relative scale of different biological effects

(for example, microbiome changes induced by diet, drugs,

or disease) and technical effects (for example, the effects

of PCR primers or DNA extraction methods) when select-

ing appropriate controls and an appropriate sample size.

To date, biological factors with effects on the microbiome

of varying sizes have been observed (Table 1). Consider,

for example, the effect of diet on the microbiome.

Table 1 The relative effects of biological covariates affecting the microbiome

Covariate References Findings

Large

Host species [41–44] The gut microbiome of host species separates by dietary patterns and phylogeny.
Animals that have diets that diverge from those of their ancestors have microbiomes
that are adapted to their new diets.

Age [45, 46, 52] Infants have dramatically different microbiomes to adults, and undergo a rapid period
of developmental maturation. After the introduction of solid food, the microbiomes
of older children begin to resemble those of their parents and move toward an adult
community structure.

Lifestyle [45, 54] Western adults and adults living traditional lifestyles (e.g., agriculturists, hunter-gatherers)
have large differences in their microbiomes.

Medium

Antibiotic use [55, 56, 58, 59] Antibiotics have a sustained effect on the microbiome, leading to altered community
structure and lower alpha diversity. Individualized responses to the same antibiotic vary,
and different antibiotics may have different impacts.

Medium to small; difficult to rank

Long-term dietary patterns [61, 62] A low-fiber diet leads to the loss of species, although diversity can be recovered by
returning to a high-fiber diet.

Non-antibiotic xenobiotics [69–73] Drugs including actominopin, proton pump inhibitors, and metformin alter the
microbiome. Microbial metabolism may contribute to side effects associated with drugs.

Genetics [3, 66, 67] Identical twins have microbiomes that have more similarity than those of fraternal twins.
Some clades are heritable, although the heritability varies. Microbes that coevolved with
an ancestral group may be better symbionts.

Exercise [63–65] Extreme athletes have different microbiomes than sex-, age-, and weight-matched controls.
It is, however, difficult to separate the effect of diet from the effect of exercise. Mouse
models suggest that exercise alone has an impact.

Pet ownership and cohabitation [68] Individuals living together—whether genetically related or unrelated—share more of their
microbiomes than people who do not cohabitate. Pets act as vectors, although their largest
effect is on the skin microbiome.

Small

Short-term dietary intervention [61, 74] Short-term diet may change microbial communities, but they return to the previous
configuration once the intervention has ended.
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Many comparative studies of mammals have shown

that composition of the gut microbial community varies

strongly with diet, a trait that tends to be conserved

within animal taxonomic groups [38–40]. For example, in

a landmark study of the gut microbiomes of major mam-

malian groups, Ley et al. [41] showed that diet classifica-

tion explained more variation across diverse mammalian

microbiomes than any other variable (although different

gut physiologies are generally adapted to different diets, so

separating these variables is difficult). However, a separate

study of foregut and hindgut fermenting avian and rumin-

ant species found that gut physiology explained the largest

amount of gut microbiome variation [42], suggesting that

diet may have been a confounding variable. More studies

are now beginning to tease apart the relative effects of diet

and other factors, such as taxonomy, by considering

multiple animal lineages, such as panda bears and ba-

leen whales, that have diets that diverge from those of

their ancestors [43, 44].

Even within a single species, diet has been shown to

shape the gut microbial community significantly. In humans,

for example, changes in the gut microbiome associated with

diet shifts in early development are consistent across

populations, as the microbiomes of infants and toddlers

systematically differ from those of adults [45, 46]. Al-

though the microbiome continues to change over the

course of a person’s life, the magnitudes of differences

over time are much smaller in adults than in infants.

The early differences are, in part, due to changes in

diet, although it may be hard to decouple diet-specific

changes from overall developmental changes. The micro-

biome developmental trajectory for infants may begin

even before birth: the maternal gut and vaginal micro-

biome change during pregnancy. The gut microbiome of

mothers in the third trimester, regardless of health status

and diet, enters a proinflammatory configuration [47].

The vaginal microbiome has reduced diversity and a

characteristic taxonomic composition during pregnancy

[48, 49], which may be associated with the transfer of

specific beneficial microbes to the infant. During delivery,

neonates acquire microbial communities that reflect their

delivery method. The undifferentiated microbial commu-

nities of vaginally delivered babies are rich in Lactobacil-

lus, a common vaginal microbe, whereas those of infants

born by cesarean are dominated by common skin mi-

crobes including Streptococcus [50].

Over the first few months of life, the infant micro-

biome undergoes rapid changes [46], some of which cor-

relate with changes in breast milk composition and the

breast milk microbiome [51]. Formula-fed infants also

have microbial communities that are distinct from those

of breastfed babies [52, 53]; formula was associated with

fewer probiotic bacteria and with microbial communities

closer than those of breastfed babies to the microbial

communities of adults. The introduction of solid food

has been associated with dramatic changes in the micro-

biome, during which toddlers come to more closely re-

semble their parents [45, 46, 52]. The compositional

difference between infants and adults is larger than the

differences resulting from compounded technical ef-

fects across studies [34], suggesting that this difference

between human infants and adults is one of the largest

effects on gut microbial community in humans.

Within children and adults, studies suggest that changes

in the gut microbiome could stem from dietary changes

corresponding to technological advancement, including

shifts from a hunter-gatherer to an agrarian or industri-

alized society [45, 54]. These differences may be con-

founded, however, by other non-diet-related factors that

co-vary with these shifts, such as exposure to antibiotics

[55, 56] or the movement of industrialized individuals into

confined, more sterile buildings [57]. Antibiotic-induced

changes in the microbiome can last long after the course

of treatment is completed [56, 58]. Although differences

in microbial communities resulting from antibiotic use

can be seen [56], different individuals respond differently

to a single antibiotic [59]. At this scale, some technical ef-

fects, such as those associated with differences in sequen-

cing platforms or reagent contamination, are smaller than

the biological effect and can be corrected for using

sequence data processing and statistical techniques.

Nevertheless, compounded effects may lead to differ-

ences between studies that are larger than the bio-

logical effect being examined. It is often possible to see

clear separation between communities using Principal

Coordinates Analysis (PCoA) space even with cross-

sectional data. PCoA provides a quick visualization tech-

nique for assessing which effects are large and which are

small in terms of the degree of difference in a reduced-

dimensionality space, although statistical confirmation

using techniques such as ANOSIM or PERMANOVA is

also necessary. Essentially, factors that led to groups of

samples separating more in PCoA space have larger ef-

fects. One important caveat is that the choice of distance

metric can have a large effect on this clustering [60].

On a finer scale, for example when considering only

Western human populations, the effects of individual diet

are less pronounced. Long-term dietary patterns, however,

have been shown to alter the microbiome [61]. Several

mouse models have demonstrated a mechanistic role for

diet. In one study, mice were humanized with stool from

lean or obese donors. Cohousing obese mice with lean

mice led to weight loss only if the obese mouse was fed a

high-fiber diet [2]. Another study using humanized gnoto-

biotic mice (that is, initially germ-free mice colonized with

human-derived microbes) showed that a low-fiber diet led

to a significant loss of diversity, and that the changes in

the microbiome were transmitted to pups [62]. Increasing
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the fiber in the mouse’s diet led to an increase in micro-

biome diversity [62]. Nevertheless, it can be hard to separ-

ate long-term dietary patterns from other factors that

shape individual microbial communities. For example, ex-

ercise is hypothesized to alter the microbiome [63–65].

One study found differences between extreme athletes and

age- and weight-matched controls [64]. It is unclear, how-

ever, whether these differences are due to the strenuous

training regime, the dietary requirements of the exercise

program, or a combination of these two factors [63, 64]. At

this scale, cross-sectional data may overlap in PCoA space.

Host genetics help to shape microbial communities.

Identical twins share slightly more of their overall micro-

bial communities than do fraternal twins [3, 66], al-

though some taxa are far more heritable than others.

Cross-sectional studies suggest that the coevolution of

bacteria and human ancestors can also shape disease

risk: the transfer of Helicobacter pylori strains that evolved

separately from their host may confer a higher risk of gas-

tric cancer [67]. However, separating the effect of genetics

from those of vertical transmission from mother to child

[52] or of transfer due to cohabitation with older children

can be difficult, and the relative effect sizes of these factors

is unknown [68].

Cohabitation and pet ownership modify microbial

communities, and their effects can be confounded with

those of diet (which is often shared within a household).

Spouses are sometimes used as controls, because they

are hypothesized to have similar diets. However, cohabi-

tating couples can share more of their skin microbiomes,

and to a lesser extent their gut microbiomes, than cou-

ples who do not live together [68]. Dog ownership also

influences the similarity of the skin, but not fecal, micro-

bial community [68].

Exposure to chemicals other than antibiotics also shapes

our microbiome, and microbes may in turn shape our re-

sponses to these chemicals. There is mounting evidence

that use of pharmaceuticals—both over-the-counter

[69] and prescription [70–73]—leads to changes in mi-

crobial community structures. For example, metformin

use was correlated with a change in the microbiome of

Swedish and Chinese adults with type II diabetes [72].

(Notably, in this study, the failure to reproduce taxo-

nomic biomarkers that were associated with disease in

the two populations was due to different prevalence of

metformin use, which has a large effect on the micro-

biome; the drug was used only in diabetes cases and

not in healthy controls.) Changes in the microbiome

may also be linked to specific side effects; for example,

metformin use improved not only glucose metabolism

but also pathways contributing to gas and intestinal dis-

comfort. Which of these factors contributed most to

microbiome changes is difficult to resolve with the

available data [72].

Within a single individual, short-term or long-term in-

terventions present the largest potential for remediation,

but the effects of interventions often vary and method-

ology matters. A study that looked for a consistent

change in the microbiome in response to a high- or low-

fiber diet found no differences [43]. A group focusing on

a mostly meat or mostly plant diet found a difference in

community structure only when considering relative

change in community structure, and did not find that

communities from different people converged on a com-

mon state overall [74].

Technical factors affecting the microbiome
Technical sources of variation have a large influence on

the observed structure of the microbial community, often

on scales similar to or larger than biological effects.

Considerations include sample collection and storage

techniques, DNA extraction method, selection of hyper-

variable region and PCR primers, sequencing method, and

bioinformatics analysis method (Fig. 1, Table 2).

An early consideration in microbiome studies is sam-

ple collection and storage. Stool samples can be collected

using a bulk fecal sample or a swab from used toilet paper

[75]. The gold standard for microbial storage is freezing

samples at −80 °C. Recent studies suggest that long-term

storage at room temperature can alter sample stability.

Preservation methods such as fecal occult blood test

cards, which are used in colon cancer testing [76, 77], or

storage with preservatives [76] offer better alternatives.

Freeze-thaw cycles should be avoided because they affect

reproducibility [78]. Nevertheless, some studies have

found that preservation buffers alter the observed com-

munity structure [79]. Preservation method seems to have

a larger impact on observed microbial communities than

collection method, although it is not sufficient to over-

come inter-individual variation [76].

Sample processing plays a large role in determining

the observed microbiota. DNA extraction methods vary

in their yields, biases, and reproducibility [80, 81]. For

example, the extraction protocols used in the Human

Microbiome Project (HMP) and the European MetaHIT

consortium differed in the kingdoms and phyla extracted

[81]. Similarly, the DNA target fragment and primer se-

lection can create biases. Although the V2 and V4 re-

gions of the 16S rRNA gene are better than others for

broad phylogenetic classification [82], these regions

often yield results that differ from each other, even when

combined with mapping to a common set of full-length

reference sequences. For example, all the HMP samples

were sequenced using primers targeting two different

hypervariable regions of the 16S rRNA gene [83]. The

separation of samples in PCoA space indicates that the

technical effect of different primer regions is larger than

any of the biological effects within the study (Fig. 2).
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Finally, the choice of sequencing technology also has an

effect on the observed community structure. Longer

reads can improve classification accuracy [82], but only

if the sequencing technology does not introduce add-

itional errors.

Choices in data processing also play a role in the bio-

logical conclusions reached in a study or set of combined

studies. Read trimming may be necessary to normalize

combined studies [34], but shorter reads can affect the ac-

curacy of taxonomic classifications [82]. The selection of a

method to map sequences into microbes has a large

impact on the microbial communities identified. Several

approaches exist, but clustering of sequences into

Operational Taxonomic Units (OTUs) on the basis of

some threshold is common. Sequences may be clustered

against themselves [22, 84], clustered against a reference

[84], or clustered against a combination of the two [85].

The selection of a particular OTU clustering method and

OTU clustering algorithm alters the observed microbial

community and can artificially inflate the number of

OTUs observed [22, 84]. De-noising (a technique

commonly used with 454 sequencing [22]), removal of

(a) (b)

(c) (d)

PC2 (6.5%)

PC1 (16.3%)

PC3 (5.7%)

PC2 (6.5%)

PC1 (16.3%)

PC3 (5.7%)

PC2 (10.8%)

PC1 (13.6%)

PC3 (5.3%)

PC2 (10.8%)

PC1 (13.6%)

PC3 (5.3%)

Airways

GI tract

Oral

Skin

Urogenital tract

V 1-3

V 3-5

Keratinized gingiva

Buccal muscosa

Hard palate

Palantine tonsils

Saliva

Subgingal plaque

Supergingival plaque

Throat

Tongue dorsum

V 1-3

V 3-5

Fig. 1 PCoA differences in PCR primers can outweigh differences among individuals within one body site, but not the differences between different

body sites. In the Human Microbiome Project (HMP) dataset, when V1-3 and V3-5 primers are combined across body sites, a the effect of PCR primers

is small compared to b the effect of body site. However, if we analyze individual body sites such as c the mouth or d the mouth subsites, the effect of

primer is much greater than the difference between different individuals (or even of different locations within the mouth) at that specific body site.

GI gastrointestinal

Table 2 Technical factors affecting the microbiome

Covariate References Findings

Sample storage [76–79] The gold standard for storage is −80 °C. Long-term storage at room temperature or
multiple freeze-thaw cycles alter community stability. Room temperature preservation
methods improve stability but may alter microbial community structure.

Primers and sequencing
method

[32, 34, 82, 83] Primer selection and hypervariable region influence the observed microbial community.
Resolution is better with longer reads and the V2 and V4 regions of the 16S rRNA.

Extraction kit and kit lot [80, 81, 90, 91] Extraction kit alters the observed community by increasing the probability that certain
bacteria will be observed. In low-biomass samples, reagent contamination in the extraction
kit can have a larger effect on the observed community than the biological effect of interest.

Bioinformatics [22, 61, 74, 84, 85, 88] Clustering method, choice of reference, chimera removal, or de-noising method and
quality filtering influence results and taxonomic assignments. Additionally, the choice of
statistical analysis and data visualization can lead to conflicting conclusions with similar data.
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chimeric sequences generated during PCR [86, 87], and

quality filtering of Illumina data can help to alleviate some

of these problems [24, 88]. After OTU picking, the selec-

tion of biological criteria, ecological metric, and statistical

test can lead to different biological conclusions [60, 89].

The degree to which technical variation impacts bio-

logical conclusions depends on the relative scale of the

effects and the method of comparison. For very large ef-

fects, biologically relevant patterns may be reproducible

when studies are combined even though there is technical

variability. A comparison of fecal and oral communities in

adult humans may be robust to multiple technical effects,

such as differences in extraction method, PCR primers,

and sequencing technology (Fig. 2). Conversely, subtle

biological effects can quickly become swamped. Many

biological effects of interest to current research have a

smaller effect on observed microbial communities than

the technical variations commonly observed among

studies [32, 34].

Failure to consider technical variation can also confound

biological interpretation. In low-biomass samples, tech-

nical confounders such as reagent contamination can have

larger effects than the biological signal. A longitudinal

study of nasopharyngeal samples from young children

[90] exemplified this effect. Principal Coordinates Analysis

of the data found a sharp distinction by age. It was later

determined, however, that the samples had been extracted

with reagents from two different lots—the differences in

the microbial communities were due to reagent contamin-

ation and not biological differences [91]. Higher biomass

samples are not immune to this problem. Extraction of

case and control samples using two different protocols

could potentially lead to similar erroneous conclusions.

Comparing effects: the importance of large
integrated studies
Large-scale integration provides a common framework

for comparing effects. Studies of large populations are

often successful in capturing the significance of biological

patterns such as age [45], human microbiome compos-

ition [75, 92], or specific health conditions such as Crohn’s

disease [93]. The scale of the population means that mul-

tiple effects can also be compared across the same set of

samples. For example, the HMP provided a reference map

0.4

0.2

0.0

-0.2

-0.4

(a)

0.4

0.2

P
C

2

PC1

0.0

-0.2

-0.4

-0.4 -0.2 0.04 0.2 0.4

(d)

0.4

0.2

0.0

-0.2

-0.4

-0.4 -0.2 0.04 0.2 0.4

(g)

-0.4 -0.2 0.04 0.2 0.4

(h)

(b)

(e)

(c)

(f)

Fig. 2 PCoA patterns of technical and biological variation. Two groups (black, gray) with significantly different distances (P < 0.05) and varying

effect size. a A large separation in PCoA space and large effect size. Separation in PCoA space (shown here in the first two dimensions) may be

caused by technical differences in the same sample set, such as different primer regions or sequence lengths. b Clear separation in PCoA space,

similar to patterns seen with large biological effects. In cross-sectional studies, age comparisons between young children and adults or comparisons

between Western and nonWestern adults might follow this pattern. c Moderate biological effect. d Small biological effect. Sometimes effects can be

confounded. In e the technical effect and in f the biological effect are conflated because the samples were not randomized. In g and h, there is a

technical and a biological effect, but the samples were randomized among conditions, so the relative size of these effects can be measured
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of microbial diversity found in the body of Western adults

[92]. Yatsunenko et al. [45] highlight the effect of age over

other factors including weight and country of origin, dem-

onstrating that age has a larger effect on the microbiome

than nationality, which in turn has a larger effect than

weight (Fig. 3). Two recently published studies of Belgian

and Dutch populations provide very interesting examples

of what can be achieved through larger population-based

studies, especially in terms of understanding which factors

are important in structuring the microbiome.

The LL-Deep study, which used both 16S rRNA

amplicon sequencing and shotgun metagenomic sequen-

cing on a cohort of 1135 Dutch individuals, associated

110 host factors to 125 microbial species identified by

shotgun metagenomics. In particular, this study found

that age, stool frequency, dietary variables such as total

carbohydrates, plants and fruits, and fizzy drinks (both

'diet' brands and those with sugar) had large effects, as

did drugs such as proton pump inhibitors, statins, and

antibiotics [94]. Interestingly, the authors observed 90 %

concordance in associations between the shotgun meta-

genomic and the rRNA amplicon results, suggesting that

many conclusions about important microbiome effects

may be robust to some kinds of methodological vari-

ation, even if the absolute level of specific taxa are not.

The Flemish Gut Flora Project, which used 16S rRNA

amplicon sequencing on a cohort of 1106 individuals,

identified 69 variables relating to the subjects that corre-

lated with the microbiome, including use of 13 drugs ran-

ging from antibiotics to antidepressants, and explained

7.7 % of the variation in the microbiome. The consistency

of the stool (which is a proxy for transit time), age, and

body mass index were especially influential, as was the fre-

quency of fruit in the diet; the adult subjects did not show

effects of early-life variables such as delivery mode or resi-

dence type during early childhood [95]. The American

Gut Project (www.americangut.org), now with over 10,000

samples processed, is a crowd-sourced microbiome study

that expands on the effects considered by the HMP to

evaluate microbial diversity across Western populations

with fewer restrictions on health and lifestyle. Large-scale

studies have two advantages for comparisons. They can

help to limit technical variability because samples within

the same study are collected and processed in the same

way. This reduces technical confounders, making it easier

to draw biological conclusions. Second, large population

studies increase the probability of finding subtle biological

effects which may be lost in the noise of smaller studies.

Meta-analyses that place smaller studies into the con-

text of these larger studies can also provide new insights

into the relative size of the changes seen in the smaller

studies [34]. Weingarden et al. [96] took advantage of

the HMP and contextualized the dynamics of fecal ma-

terial transplants (FMT). Their initial data set focused

on a time series from four patients who had recurrent

Clostridium difficile infection and a healthy donor. By

combining the time series results with a larger dataset,

they revealed the dramatic restoration that diseased

patients undergo after the transplant is administered,

ultimately helping the patients recover from the severe

C. difficile infection [96, 97].

When conducting a meta-analysis, however, it is im-

portant to consider whether the differences in microbial

communities in different studies are due to technical or

biological effects. Selecting studies that each include bio-

logically relevant controls can help to determine whether

the scale of the effect between the studies results from a

biological or a technical covariate. In the FMT study

[96], the donor (control) sample clustered with the HMP

fecal samples, while the pre-treatment recipients did not.

Had the donor point grouped somewhere else, perhaps

among the skin samples or in a completely separate loca-

tion, it could have indicated a large technical effect, sug-

gesting that the studies should not be combined into a

single PCoA (although trends might still be identified

within each study and compared). Similarly, a study of the

PC2 (10.9%)

PC3 (4.3%)

PC1 (15.4%)

PC2 (10.9%)

PC3 (4.3%)

PC1 (15.4%)

PC2 (10.9%)

PC3 (4.3%)

PC1 (15.4%)

(a) (b) (c)

Fig. 3 Relative effect sizes of biological covariates on the human microbiome. Principal coordinates projection of unweighted UniFrac distance,

using data from Yatsunenko et al. [45], shows a age (blue gradient; missing samples in red) separating the data along the first axis and b country

(USA, orange; Malawi, green; Venezuela, purple) separating the data along the second principal coordinates axis. c Body mass index in adults has a

much more subtle effect, and does not separate along any of the first three principal coordinate axes (normal, red; overweight, green; obese, blue;

missing samples, gray)
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progression of the microbiome of an infant during the first

2 years of life showed changes in the infant microbiome

with age [36], but it was only when this study was placed

in the context of the HMP that the scale of developmental

change within a single infant body site relative to differ-

ences in the microbiome among distinct human body sites

became clear [34].

Leveraging effect size in meta-analysis
Compared to other fields, meta-analysis among micro-

biome studies is still in its infancy. Statistical methods

can help to overcome the complication of technical ef-

fects in direct comparisons, allowing focus on the bio-

logical results. Medical drug trials [98, 99] routinely report

quantified effect sizes. This practice has several advan-

tages. First, it moves away from a common binary para-

digm of not significant or significant at P < 0.05 [35]. The

combination of significance and effect size can be import-

ant for avoiding undue alarm, as has been shown in other

fields. For instance, a recent meta-analysis found a statisti-

cally significant increase in cancer risk associated with red

meat consumption [100]. The relative risk of colon cancer

associated with meat consumption is, however, much

lower than the relative risk of colon cancer associated with

an inflammatory bowel disease (IBD) diagnosis. With a P

value alone, it might not have been possible to determine

which factor had a larger impact on cancer risk. Effect size

quantification may also help to capture the range of vari-

ation in effects across different populations: there are

probably multiple ways for a microbial community to be

'sick', rather than single set of taxa that are enriched or

depleted in perturbed populations. We see this, for ex-

ample, in the different 'obese' microbiomes that seem

to characterize different populations of obese individuals.

Finally, effect size is also closely linked to statistical power,

or the number of samples needed to reveal a statistical

difference. Quantitative power estimates could improve

experimental design and limit publication bias [35].

Unfortunately, effect size and statistical power are

challenging to calculate in microbiome data. Currently,

applied power calculations (reviewed in [35]) typically

make assumptions about the data that do not hold true

in the analysis of microbial communities (Box 1). Some

solutions to this problem have been proposed, including

the Dirichlet Multinomial method [101] and random

forest analysis [102] for OTUs, a simulation-based

method for PERMANOVA-based beta diversity compar-

isons [103], and power estimation by subsampling (Box

1). Nevertheless, power analysis remains rare in micro-

biome studies. New methods could facilitate better un-

derstanding of effect sizes. As the scope of microbiome

research continues to expand to include metabolomic,

metagenomics, and metatranscriptomic data, effect size

considerations will only become more important.

Box 1. Methods for power analysis of microbiome data

The calculation of effect size in microbiome data is challenging

for several reasons. Operational Taxonomic Unit (OTU)-based

methods are affected by the sparsity of OTUs, meaning that

many samples may not contain a given taxon. This means that

OTUs do not fit the Gaussian distribution and/or non-correlated

observation assumptions required for common statistical tests,

such as t tests. While many methods exist to evaluate differences

in OTUs (reviewed in [107]), currently only one defines power-

based calculations.

The Dirichlet Multinomial method [101] models the variability and

frequency of an OTU within a population or across populations.

The data are fitted to a modified multinomial distribution. La Rosa

et al. [101] developed power and effect size calculations for the

Dirichlet multinomial model based on Cramer’s model for the chi-

square distributions [108]. A second technique for OTU-based

comparison is the application of random forest models for

supervised regression and classification. Random forest excels at

feature selection, identifying the most relevant OTUs that are

correlated with metadata and ranking features with their contribution

to the model. Power can be estimated by a learning curve,

comparing how well these features predict the metadata category

against the number of samples used in the training set.

Effect size calculations for diversity metrics, particularly beta

diversity, are also challenging because permutative tests are

required. For common parametric tests, power is defined on the

basis of the distribution of the test statistic [109]. Nonparametric

tests, including permutative tests, do not have a defined distribution

for the test statistic, so power is difficult to calculate [110, 111].

An emerging solution to effect size estimation is the use of

simulation to estimate statistical power. Kelly et al. [103]

proposed that power could be calculated from PERMANOVA

tests by estimating an effect size on the basis of the original data,

using an ANOVA-based estimator. They then simulated distance

matrices with the same properties as the original dataset, and

estimated power by bootstrapping the simulated distance matrices.

A second solution involves subsampling the data. The Evident

software package (https://github.com/biocore/Evident) relies on

subsampling the data to estimate visual separation between

groups. Monte Carlo simulations are used to estimate the

variance in a data cloud, and provide an estimate of visual

separation. The package allows exploration of both the

sampling depth and the number of samples. An extension of

the Evident protocol is to apply the same subsampling

procedure to a statistical test as an estimate of power. This

solution has been implemented in the scikit-bio software

package (http://scikit-bio.org/).
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Considerations for study design
Large-scale studies provide insight into which variables

have broad effects on the microbiome, but they are not

always feasible. Small, well-designed studies that address

hypotheses of limited scope have a large potential to ad-

vance the field. In designing one of these studies, it is

better to define a population of interest narrowly, rather

than trying to draw general conclusions. The design and

implementation of small studies should strive for four

goals: limited focus, rich metadata collection, appropri-

ate sample size, and minimized technical variation.

Limiting the scope of the study increases the probabil-

ity that a small study will be successful because it de-

creases noise and confounding factors. For example, the

hypothesis 'milk consumption alters the microbial com-

munity structure and richness in children' might be bet-

ter phrased as 'milk consumption affects the microbial

community structure and richness in children in third

through fifth grade attending New York Public schools'.

Additionally, the study should define exclusion criteria;

for example, perhaps children who have taken antibiotics

in the past 6 months or 1 year should be excluded

[56, 58]. Broader hypotheses may be better tackled in

meta-analyses, where multiple small, well-designed studies

on a similar topic can be combined.

Information about factors that might influence the

microbiome should be included in sample collection.

For example, the study of children attending New York

City Public Schools might not have birth delivery method

as an exclusion criterion, but whether the child was born

by C-section or vaginally could influence their microbial

community, so this information should be recorded and

analyzed. Self-reported data should be obtained using a

controlled vocabulary and common units. If multiple

small studies are planned, standard metadata collection

will minimize time in meta-analysis.

A second consideration in defining scope is to identify

a target sample size. Other studies may be used as a guide,

particularly if the data can be used to quantify an effect

size. Quantitative power calculations (Box 1) can be par-

ticularly helpful in defining a sample size. Nevertheless,

this comparison should be done judiciously. Sample sizes

should be estimated by selecting a known effect that is ex-

pected to be of similar scale. It may be prudent to consider

the phenotype associated with the effect, and whether the

effect might directly target microbes. For example, one

might guess that a new drug that inhibits folate metab-

olism, which is involved in DNA repair in bacteria and

eukaryotes, might have an effect close to those of other

drugs that are genotoxic, such as specific classes of an-

tibiotics and anticancer agents.

Technical variation within a study should be minimized.

Sample collection and storage should be standardized.

Studies in which samples cannot be frozen within a day of

collection should consider a preservation method, although

even preserved samples should be frozen at −80 °C for

long-term storage [76, 77]. If possible, samples should be

processed together using the same reagents. If this is not

possible because of the size of the study, samples should be

randomized to minimize the confounding of technical and

biological variables [91]. The use of standard processing

pipelines, like those described by the Earth Microbiome

Project [104, 105], may facilitate data aggregation for

meta-analyses. Participation in standardization efforts,

such as the Microbiome Quality Control Project

(http://www.mbqc.org/) and the Unified Microbiome

Initiative [106], can help to identify sources of lab-to-

lab variation.

Conclusions
Microbiome research is rapidly advancing, although sev-

eral challenges that have been tackled in other fields, in-

cluding epidemiology, ecology, and human genetic studies

(in particular, genome-wide association studies), need to

be addressed fully. First, technical variation still makes it

difficult to compare claimed effect sizes, or claimed asso-

ciations of particular taxa with particular phenotypes.

Standardized methods, including bioinformatics protocols,

will help immensely here. This is particularly an issue for

translational studies between humans and animal models,

because it can be difficult to determine whether differ-

ences in microbial communities or host responses to these

changes are due to differences in the host physiology or

variation in the variable of interest. However, the potential

payoff for translation of microbiome results from high-

throughput animal models, such as flies or zebrafish, to

humans, is enormous.

In this review, we have focused mainly on 16S rRNA

amplicon analysis and shotgun metagenomic studies be-

cause these are most prevalent in the literature at

present. However, microbiome studies are continuing to

expand, such that a single study can include multi-omics

techniques such as metatranscriptomics, metaproteomics,

and metabolomics. Before we embark too far on the ex-

ploration of multiomics datasets, methods standardization

across multiple platforms will be necessary to facilitate ro-

bust biological conclusions, despite the considerable cost

of such standardization efforts.

Overall, the field is converging on many conclusions

about what does and does not matter in the microbiome:

improved standards and methodologies will greatly accel-

erate our ability to integrate and trust new discoveries.
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