
Tiny Neural Networks for Environmental

Predictions: an integrated approach with Miosix

Francesco Alongi, Nicolò Ghielmetti

DEIB, Dipartimento di Elettronica,

Informazione e Bioingegneria

Politecnico di Milano

Milan, Italy

alongi.francesco96@gmail.com

nicolo.ghielmetti@gmail.com

Danilo Pau, FIEEE

System Research and Applications

STMicroelectronics, Italy

danilo.pau@st.com

Federico Terraneo, William Fornaciari

DEIB, Dipartimento di Elettronica,

Informazione e Bioingegneria

Politecnico di Milano

Milan, Italy

federico.terraneo@polimi.it

william.fornaciari@polimi.it

Abstract—Collecting vast amount of data and performing com-
plex calculations to feed modern Numerical Weather Prediction
(NWP) algorithms require to centralize intelligence into some of
the most powerful energy and resource hungry supercomputers
in the world. This is due to the chaotic complex nature of
the atmosphere which interpretation require virtually unlim-
ited computing and storage resources. With Machine Learning
(ML) techniques, a statistical approach can be designed in
order to perform weather forecasting activity. Moreover, the
recently growing interest in Edge Computing Tiny Intelligent
architectures is proposing a shift towards the deployment of
ML algorithms on Tiny Embedded Systems (ES). This paper
describes how Deep but Tiny Neural Networks (DTNN) can be
designed to be parsimonious and can be automatically converted
into a STM32 microcontroller-optimized C-library through X-
CUBE-AI toolchain; we propose the integration of the obtained
library with Miosix, a Real Time Operating System (RTOS)
tailored for resource constrained and tiny processors, which is
an enabling factor for system scalability and multi tasking. With
our experiments we demonstrate that it is possible to deploy a
DTNN, with a FLASH and RAM occupation of 45,5 KByte and
480 Byte respectively, for atmospheric pressure forecasting in an
affordable cost effective system. We deployed the system in a
real context, obtaining the same prediction quality as the same
DNN model deployed on the cloud but with the advantage of
processing all the necessary data to perform the prediction close
to environmental sensors, avoiding raw data traffic to the cloud.

Index Terms—Tiny Machine Learning, Neural Networks, Em-
bedded Systems, Real Time Operating Systems, Edge Computing

I. INTRODUCTION

Although predicting weather is an activity with a long

history and the methods used have improved over time, it still

remains a challenge for meteorologists to finely perform local

predictions based on NWP, which predicts weather conditions

using mathematical models of the atmosphere and the oceans.

Indeed, these models need a very high computational effort,

since they are composed by the complex partial differen-

tial equations which capture how the phenomena affects the

atmosphere. Moreover, in order to increase the prediction

resolution, both in space and time, NWP centers need an even

greater computational effort, that leads to a rapid increase in

power consumption and in the number of computing resources

needed to run such calculations. For this reason, vertically cen-

tralized high-performance computing technologies will likely

reach a bottleneck to scale computational tasks (such as NWP),

thus mandating decentralized approaches in which scalability

will be achieved by distributing the computational load across

multiple distributed heterogeneous computer architectures [1]

running different families of methods, such as ML algorithms.

Since ML does not necessarily require a complete under-

standing of the underlying physical processes [2], it enables

alternative solutions to an analytical approach or physical

modelling which are too time consuming, costly or sometimes

impossible to develop [3]. With our experiment we adopted

a distributed architecture (e.g., Edge Computing) embedding

Tiny ML, trying to take advantages from both of them. In

order to ease and better integrate the Tiny ML algorithm at

the edge of the system we selected Miosix, a configurable,

tiny, open and real time operating system described in [4]:

this choice enabled the design of a solution that exploits multi-

threading and process multi-sensors data patterns. The result of

this implementation is a scalable and power-efficient system.

Our project aims to illustrate the architectural solution just

introduced by means of a proof-of-concept demonstrator: in

particular, in order to provide a coarse-grain estimation of the

weather, we considered atmospheric pressure as a parameter

on which to elaborate predictions. The fields of application

and the target markets of this work, with a sufficient resolution

granularity and the appropriate extensions, could be: renewable

energy, smart agriculture, insurance and aviation. For instance,

a useful application of this project could be the prevention of

hydro-geological instability in risk areas by deploying a swarm

of DTNN sensing units on the field.

This paper describes the design and the implementation of

a DTNN, intended for predicting the atmospheric pressure.

It describes how to build the DTNN using a popular deep

learning framework, then automatically convert these networks

into an efficient C library with X-CUBE-AI software-tool

and integrating the library with Miosix running on a tiny

STM32 microcontroller. This work also demonstrates that the

performances estimated during the design and training phases

of the DTNN are coherent with respect to the ones measured

during the deployment in a real context. The paper is structured

as follows: in Section II it reviews some existing approaches.

In Section III it discusses the system architecture of the

experimental setup. In Section IV it describes the process

which lead to the final topology of the DTNN. In Section V are

described all the activities required to generate the C library

for the STM32 microcontroller. In Section VI it presents

the experimental results and close with the conclusions in

Section VII.

II. RELATED WORKS

Weather prediction and forecasting is an activity with a

long history, predating that of computers [5]. However, the

availability of computers made for the first time feasible to

perform on-line simulations based on atmospheric models [6].

Among the approaches to weather prediction, the numerical

approach models the atmospheric dynamics. Due to the large

amount of input data and the even greater computational com-

plexity, high-performance computer architectures and super-

computers are often employed [7], with increasing processing

capability used to improve resolution. Other approaches to

weather prediction include the integration with big data [8],

fuzzy logic [9] as well as machine learning [10]. Weather

prediction has also been implemented in embedded systems,

such as [11], but the work is focused on weather monitoring

purposes and not on weather forecasting. An existing work

that implements in an ES a weather forecasting system is

[12], which adopts ML techniques such as Decision Trees

and ARIMA models for computing the prediction, whilst the

experimentation shown in [13] demonstrates the possibility to

perform weather forecasting using a LSTM, unfortunately it

does not deploy the ML model into a MCU (MicroController

Unit).

III. SYSTEM ARCHITECTURE

The system architecture we have designed is sketched in

Figure 1.

MCU

DTNN SENSOR(S)

RTOS
DATABASE

DATA
VISUALIZER

MCU-EMBEDDED
SCREEN

WI-FI,
I2C,
USB,
BT,
...

HTTP,
TCP,
UDP,
...

BRIDGE	COMPONENT

Fig. 1. System architecture diagram.

The system consists of 3 main components: a STM32 MCU,

a data visualizer and a bridge component used to forward data

from the MCU to the data visualizer (Figure 1). The MCU

is the component that acquires the measurements of interest

so that a prediction can be computed. We selected the MCU

family produced by STMicroelectronics, widely used by the

mass market community. Moreover, this family is supported

by a tool that automatically translates the pre-trained DNN

model into an STM32 microcontroller-optimized C-library that

also exploits at best the available FLASH, RAM and clock

cycles. In general, it is required the availability of a peripheral

to export the computed outputs, to connect the sensors and,

optionally, the easy compatibility with a RTOS so that the

scalability of the system can be achieved.

In order to get data, the MCU uses one or more sensors capable

of transducing a physical dimension into an electronic one that

will be subsequently processed and fed to a DTNN.

The bridge component is an interface with the aim of making

possible the communication between the MCU and the data

visualizer. While the latter is intended to display the data

sent by the MCU in a human readable format, the bridge

component can be stand-alone or it can be embedded inside

the MCU itself; if the MCU has any integrated mean to display

the data, the interface in this case is identified by the protocol

that is needed to enable the communication between the MCU

with the data visualizer (e.g., LCD screen). Otherwise the

bridge component is identified as the interface for remote

communication (e.g., WiFi, Ethernet, Bluetooth).

A. Experimental setup

The objective of this project is to provide atmospheric

pressure forecasting in a short-range setting with an affordable

low cost system. The predictions are performed over the

following convenient time divisions of the day:

• Time band 1 (pressure measurements acquired from 00:00

to 07:59);

• Time band 2 (pressure measurements acquired from 08:00

to 15:59);

• Time band 3 (pressure measurements acquired from 16:00

to 23:59).

The system acquires pressure measurements and aggregate

them in order to have only one mean value for each time band.

Moreover, the system forecasts the average pressure value of a

time band given the average values of the previous three time

bands.

Considering our use-case, the components mapped with re-

spect to the Figure 1 are as follows:

• Sensor(s): since our project aims to perform weather fore-

casts based on atmospheric pressure, the sensor used is

the LPS22HB, which is an absolute pressure sensor. This

sensor samples at a given frequency both the atmospheric

pressure and the environment temperature at the same

time, providing a single 40-bit output: the first 24 bit are

reserved to the pressure, while the other 16 bit are for the

temperature. These 40-bit outputs are pushed back into

a FIFO with 32 slots embedded in the sensor as soon

as they are sampled. In our project, both of these values

are useful: the pressure measurements are used to per-

form predictions and the temperature values are used to

compute the sea-level atmospheric pressure starting from

the absolute one. Both the pressure and the temperature

are casted to 32 bit floating point (FP32). The sampling

frequency of the sensor has been set to 1Hz, which is the

lowest one available. Being the sensor mounted on an

expansion board containing multiple sensors driven by

an I2C module, we developed an I2C driver to retrieve

data from the considered sensor using C++ and STL data

structures;

• DTNN: atmospheric pressure variations are basically

univariate time series. For this reason, we decided to

implement a Tiny Deep Neural Network using LSTM

cells, which are commonly used for time series data

processing. We used a single neural network with 3 FP32

inputs, one for each average pressure value associated

with a timeband;

• MCU: for our project we chose a NUCLEO-F401RE

based on the MCU STM32F401RET6, which is an ARM

cortex M4 with 512 KB of FLASH memory and 96KB of

SRAM. Through a multi threading mechanism, enabled

by Miosix [14], and the use of interrupts, we have

ensured that the DTNN and the sensor data acquisition are

synchronized and power-efficient during the execution;

• Bridge component: since the MCU chosen for our project

does not have natively any integrated data display device,

we sent the measured data and predictions made by the

DTNN to a Rapsberry Pi via USB, which in turn, using

a Python script, forwards them to the data visualizer.

This approach was used in order to log the gathered data

and validate the performance of the prototype; in a real

deployment the data could be consumed locally in the

microcontroller;

• Data visualizer: in order to graphically display and per-

form some analysis on the performance of our system we

used an open source time series database: InfluxDB 2.0

Cloud. In this way it has been possible to create intuitive

dashboards through Grafana and run queries to get the

stored data.

The diagram in Figure 2 summarizes how the threads

interact in the program that was installed in the NUCLEO-

F401RE FLASH memory for demonstrator development.

 among threadsinteraction

NeuralNetwork (thread0)Main (main thread) SyncQueue (shared between threads)

program

(stack = 24B, ex. time = 30970ms)

(stack = 128B, ex. time = 19ms)

 (stack = 64B,
ex. time = 12ms)

(stack = 32B, heap = -16B,
 ex. time = 31010ms)

(stack = 24B, ex. time = 8ms)

(stack: 304B, used by Miosix)

(stack = 32B)

(stack = 24B, heap = 16B)

1 : start
2 : Lps22hb<...> ps(...) (.bss = 16B, stack = 16B)

3 : SyncQueue<...> in_queue (.bss = 40B, stack = 16B)

4 : Constructor return

5 : ps.init() (stack = 24B, ex. time: 5ms)

6 : NeuralNetwork nn(in_queue, ...) (.bss + .data = 1640B, ex. time = 12ms)
7 : initNN()

8 : Constructor return

9 : run()

10 : ps.waitForFullFIFO()

11 : in_queue.get()

12 : val = ps.getLast32AvgPressure()

13 : in_queue.put(val)

14 : in_queue.get() return

15 : runNN()

looploop

if 8h have been passedalt

Fig. 2. Sequence diagram of the principal OS actors

In the sequence diagram shown in Figure 2 are reported the

memory usage and the execution time of each major function.

Cases where metrics are not specified have to be considered

less than 1Byte and 1ms respectively.

In our implementation, two threads were used: one with the

role of “producer”, i.e. the one dedicated to the querying of

the I2C module to read atmospheric pressure data from the

sensor, and the other with the role of “consumer”, i.e. the

one dedicated to the processing of “produced” data, then used

to make the prediction through the DTNN. The implemented

threads communicate in a synchronized way thanks to the

SyncQueue object, that is a shared queue implemented using

mutexes and condition variables from the Miosix API. In

a first step, the main thread instantiates and initializes the

objects associated with the atmospheric pressure sensor (i.e.

LPS22HB), the synchronized queue and the neural network.

As shown in Figure 2, since they are all global, they produce

an increment over the .bss or .data sections or both (so

they affect the object file produced by the compiler) but

they do not impact over the heap or stack. After this phase,

the program proceeds through two parallel and independent

loops: the one inside the main thread exploits the LPS22HB

hardware interrupts mechanism which “awakens” the main

thread notifying it of the data availability. This condition

occurs when the FIFO embedded in the sensor contains 32

values (i.e. the FIFO is full).

As specified before, the sampling rate of the sensor is set to

1Hz, so the main thread has to wait for approximately 32s

until the FIFO full condition is satisfied. As shown in timing

profile information, which can be found in Figure 2, the actual

sampling frequency is faster than the one expected: in fact

the FIFO fills up completely in 30,97s. Once the FIFO full

condition is satisfied, the main thread empties the FIFO by

reading the contained data and makes the arithmetic mean

over the 32 values with a FP32 precision. At this point, the

main thread compute the sea-level pressure starting from the

arithmetic mean of the absolute one (i.e. the one acquired by

the LPS22HB sensor and therefore contained in the FIFO).

The Equation 1 shows how to find the sea-level pressure Psl

from the absolute pressure Pa (both in hPa), where h is the

sensor altitude in meters and T is the measured temperature

in °C.

Psl = Pa

(

1−
0.0065 ∗ h

T + 0.0065 ∗ h+ 273.15

)

−5.257

(1)

The derivation of the Equation 1 can be found in [15].

Once the sea-level pressure has been computed, it is inserted

by the main thread into the syncronized queue. The loop within

the neural network thread waits for data to be inserted into the

synchronized queue using the get() blocking function (i.e. if

there is no data inside the queue, the thread which invoked the

function, in this case the neural network one, is put on hold).

Also for this function we can see a high value for the execution

time; this is because the neural network thread has to wait for

the sea-level pressure to be inserted in the synchronized queue.

Once the main thread inserted data into it, the thread synchro-

nization mechanism implemented within the queue “awakens”

the neural network thread that was waiting for them.

When the necessary data are obtained, the pressure incremental

mean is updated and if 8 hours have been passed since the

last prediction, it runs the runNN() function to produce a new

prediction.

The Figure 3 summarizes the flow of the data.

FIFO

Environment
data

FIFO	full
interrupt

Mean	temperature
value	and	mean

sea-level
pressure

computation

32	40-bit
values

FP32	
sea-level
pressure
value

Push	back	the
sea-level

pressure	value
into	the
SyncQueue

Managed	by	the	main	thread

Get	the
pushed	value
from	the
SyncQueue

FP32	
sea-level
pressure
value

Managed	by	the	neural	network	thread

Sampled
at	1Hz

0
1
2
3
4

31

40-bit

If	8h
have

passed

Enqueue	the
updated

incremental	mean
in	a	queue	of	3

elements

Update
pressure

incremental
mean

Perform	a
prediction
through	the

DTNN

Prediction

Extract
values	from

FIFO

Fig. 3. Pipeline of the data: from the environment to the DTNN

IV. DEEP TINY NEURAL NETWORK DESIGN

In the context of Tiny ML, models are intended to be

deployed on systems with limited hardware resources (e.g.,

STM32). The workflow related to the design of such models

follows a different path from the usual one for unconstrained

neural networks. Indeed, in addition to the typical Data

preparation - Training - Validation - Test - Deploy workflow,

that assumes unconstrained computing resource availability,

in this case it is useful to integrate a productive tool (e.g.,

X-CUBE-AI) that, starting from the pre-trained neural net-

work model, creates a resource parsimonious version of the

neural network. This result is achieved by considering MACC

(Multiply-and-accumulate complexity i.e. a unity that indicates

the complexity of a Deep Learning model from a processing

standpoint), RAM and FLASH dimensions, which define the

overall complexity of the model analyzed by X-CUBE-AI,

both considering the chosen microcontroller target and the

type of input network. In this way, the resulting workflow

considers also the complexity as a variable upon which decide

the model that best fit for the considered use-case. There are

several open-source deep learning frameworks that can be used

to design and implement neural network models. For instance,

Keras [16] and TensorFlow [17] are widely used by the ML

community, therefore we decided to adopt these frameworks

to implement our DTNNs. Moreover, to optimize and fit it into

STM32, X-CUBE-AI latest version 5.0.0 was used.

The flow above mentioned is depicted in Figure 4.

Starting from the top-left of the proposed workflow, we will

describe in the next subsections all the stages of the pipeline,

RNN,
CNN,
CRNN

Train Test

Training
Set

Test
Set

Dataset

RMSE
accuracy
report

RNN,
CNN,
CRNN

RMSE		OK!

Keras

Analyze
Quantize
8-bits

OR
Compress

FP32

Test

RNN,
CNN,
CRNN RMSE

accuracy
report

Generate
code

Deploy
on	STM32

Deploy
trials

MACC
RAM

FLASH
report

X-CUBE-AI

Review

Fig. 4. Project flow

considering the particular case of our proof-of-concept system.

A. Data preparation

The dataset has been obtained from a certified weather

station in a comma-separated values file. Since the original

format of the dataset included more features than the ones used

for this work, we had to go through a data preparation phase.

Initially, the dataset contained most of the data needed for a

professional weather forecasting service, including humidity,

dew point, temperature, wind speed and direction other than

timestamp and atmospheric pressure, which are the ones we

kept for demonstration development. Once the features to

use had been chosen, we aggregated the resulting dataset in

timebands (as defined in Section III-A) using an arithmetic

mean. Then, the aggregated dataset, containing 19939 samples,

has been split into train, validation and test set with the ratios

shown in Figure 5. However, since the chosen dataset is a

time series, it is impossible to randomly pick samples from

the starting one in order to create the validation and test set

because, for time series, the temporal order of the data must be

preserved. For this reason we decided to arrange the splitting

in such a way to have the test set posterior to the validation

set, and the latter posterior to the training set. Having defined

the order of the three partitions and the splitting ratios, there is

only one possible combination of the train/validation/test split.

Finally, the three datasets have been normalized with a feature

range of [0, 1] via a min-max normalization, using for all the

datasets the normalization parameters obtained from the train

set.

Initial
dataset

Temporary
train	set

Test	set

80%

20%

80%

20%

Train	set

Validation
set

Fig. 5. Dataset split ratios

The three datasets have been fed to the neural network using

a sliding window of size 3 for the input and of size 1 for the

target. For instance, in order to test the performance of the

model, we predict the value at time t+1 feeding to our model

the values at time t−2, t−1 and t, and the obtained prediction

is evaluated with the truth value at time t+1. It shall be noted

that +1 represents a prediction of 8 hours timeframe.

B. Tiny Deep Neural Network development

In the loop which involves the train and test stages,

different neural network models have been explored, with the

aim of finding the best performing model. The baseline from

where we started the process was guided by the common

knowledge of time series forecasting through neural networks.

Indeed, we decided to start from a Recurrent Neural Networks

(RNN) such as LSTM and GRU, which are often used for

time series processing [18]. Moreover, we considered a

mixed architecture involving both CNNs and recurrent neural

networks, which have been successfully applied in several

applications concerning time series analysis [19]. In this

first loop we trained and evaluated four different families

of model (i.e. LSTM, GRU, CNN-LSTM and CNN-GRU),

considering the best performing model for each family. We

performed the design space exploration on the 4 families of

models chosen by varying the number of layers/filters and

units, considering a total of 22 different models. The details

of the chosen DTNN models per each family are shown

in the Table I. The performances of the models have been

evaluated in terms of Normalized Root Mean Square Error

(NRMSE) and Normalized Mean Absolute Error (NMAE),

which have been computed using Keras. The NRMSE and

NMAE are defined as follows:

NRMSE = RMSE

Xmax−Xmin

, NMAE = MAE

Xmax−Xmin

Where Xmax and Xmin are the normalization parameters

obtained at training time.

In particular, the most performing model topology per each

family, shown in Table I, has proved to be the following ones:

• LSTM family: 2 LSTM cells with 70 units per cell,

interleaved by Dropout layers of 20% drop rate;

• GRU family: 2 GRU cells with 50 units per cell, inter-

leaved by Dropout layers of 20% drop rate;

• CNN-LSTM family: 1 Conv1D layer with 32 filters

followed by 2 LSTM cells with 30 units;

• CNN-GRU family: 1 Conv1D layer with 8 filters followed

by 2 GRU cells with 30 units;

TABLE I
PERFORMANCE OF THE CHOSEN MODELS PER EACH FAMILY

NRMSE NMAE

LSTM 0.0255 0.0193

GRU 0.0253 0.0193

CNN-LSTM 0.0324 0.0255

CNN-GRU 0.0321 0.0240

V. IMPLEMENTATION ON STM32 MICROCONTROLLER

Once the performance of the models has been evaluated, we

decided to proceed our study with the most performing fami-

lies, which performances are highlighted in bold in the Table I:

LSTM and GRU. Since the goal of this work was to create

a DTNN that could achieve satisfying performance while

keeping the complexity low, we tried to find a hyperparameter

setting that could represent an even more convincing trade-

off between performance and complexity to explore more

opportunities for even tinier networks. The complexity of the

models in terms of MACC, FLASH and RAM metrics have

been computed using the “Analyze” functionality of X-CUBE-

AI. In addition this tool enables other optimization that can be

performed over the pre-trained model: Quantize to 8-bits and

Compress FP32 (only applicable to CNN part of the topology).

We scaled the LSTM and GRU families down starting from the

hyperparameter setting considered in Table I, validating perfor-

mance and complexity of all the configurations of the models

taken into account. Our process of complexity reduction took

place by equally decreasing the number of units in both cells,

both for the LSTM and GRU family. The number of units

decreased at each complexity reduction step has been set to 10.

The Table II shows the metrics computed in the validated mod-

els of the LSTM family while the Table III shows the metrics

of the GRU models taken into account. For readability reasons,

in both tables are reported the models with a decreasing units

step equal to 20. Given the metrics computation results shown

TABLE II
DETAILS OF THE LSTM MODEL COMPLEXITY REDUCTION

MACC FLASH(KB) RAM(B) NRMSE NMAE

70 Units 179410 234.89 1116 0.0255 0.0193

50 Units 92150 120.90 800 0.0257 0.0197

30 Units 33690 44.42 480 0.0255 0.0194

10 Units 4030 5.43 160 0.0262 0.0198

TABLE III
DETAILS OF THE GRU MODEL COMPLEXITY REDUCTION

MACC FLASH(KB) RAM(B) NRMSE NMAE

50 Units 68600 91.02 800 0.0253 0.0193

30 Units 24960 33.52 480 0.0256 0.0196

10 Units 2920 4.14 160 0.0264 0.0200

in Table II and in Table III, we decided to integrate into

our project the LSTM family with 2 cells and 30 units per

cell. This decision was driven by the fact that we had prior

knowledge of this architecture and additionally because this

configuration was tested more than the others, so we felt more

confident in deploying this architecture. Moreover, the size of

this network, considered in terms of FLASH & RAM leaves

plenty of available storage to Miosix and other application

specific needs. In addition, on the deployed model, another

representative measure of the network performance from a

computational standpoint was computed: the cycles/MACC,

resulting, in average for all layers of the DTNN, in 14.67.

Once the model has been chosen, the STM32 microcontroller-

optimized C-library has been generated using the “Generate

code” functionality of X-CUBE-AI. In order to actually deploy

our final Embedded System in the environment, we needed

to integrate the code provided by X-CUBE-AI with Miosix

so that we could implement the scalable and multi-threaded

solution described in Section III.

VI. EXPERIMENTAL RESULTS

In order to evaluate the performance and the mid-long term

operability of the Embedded System in its integrity, it has

been deployed in a real context for 30 days, from the 1st

of March 2020 to the 31st of March 2020. The predictions

performed by our system are shown together with the real

atmospheric pressure values in Figure 6. In order to have also

a numerical measurement of the performance of our system,

the NRMSE and the NMAE have been computed from the

data obtained during this live-testing session, resulting equal to

0.0328 and 0.0251 respectively. This errors are slightly greater

from the one obtained during the validation phase (i.e., 0.0255

and 0.0194, Table II 30 Units) but still comparable. This is due

to the fact that the atmospheric pressure variations are a local

phenomenon and the system has been deployed in a location

which is approximately 50 km from where the data used to

train the DTNN have been acquired. The deployed system is

shown in Figure 7.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Days of observation

990

1000

1010

1020

1030

At
m

os
ph

er
ic

pr
es

su
re

 (h
Pa

)

Ground truth
Predictions

Fig. 6. Performance of the deployed system

Raspberry
Pi

Fig. 7. Experimental setup

VII. CONCLUSION AND FUTURE WORKS

In the paper we introduced an embedded weather prediction

system using a DTNN. The system achieved an adequate

accuracy (RMSE = 2.10 hPa) considering the project’s fields

of application. In addition to presenting the solution, we also

abstracted from our specific use-case, formalizing a general

methodology based on X-CUBE-AI for projects aimed to

develop DTNNs. The present research has highlighted some

limitations that will be addressed as future works. Among

these, the automatic identification problem of the model’s

hyperparameters remains an open problem. Other future de-

velopments include increasing the performance of the chosen

model through the integration of other sensors. A further

ambitious extension of this project could be to coordinate

different units such as the one presented in this paper in order

to produce a further analysis and/or prediction based on all

the predictions made by the individual units.

REFERENCES

[1] Bauer, Peter & Thorpe, Alan & Brunet, Gilbert. (2015). ”The quiet revo-
lution of numerical weather prediction.” Nature. 525. 47-55. 10.1038/na-
ture14956.

[2] Holmstrom, Mark, Dylan Liu, and Christopher Vo. ”Machine Learning
Applied to Weather Forecasting.” Stanford University. 2016

[3] S. Akhtari, F. Pickhardt, D. Pau, A. D. Pietro and G. Tomarchio, ”Intelli-
gent Embedded Load Detection at the Edge on Industry 4.0 Powertrains
Applications,” 2019 IEEE 5th International forum on Research and
Technology for Society and Industry (RTSI), Florence, Italy, 2019, pp.
427-430.

[4] Brandolese,C., Fornaciari,W. Rucco,L. and Terraneo, F. ”Enabling ul-
tralow power operation in high-end wireless sensor networks nodes.” In
Proc. of CODES+ISSS ’12. ACM, New York, NY, USA, 433-442.2012.

[5] Wiston, M., and Mphale, K. M., Weather forecasting: From the early
weather wizards to modern-day weather predictions. Journal of Clima-
tology & Weather Forecasting 6(2):1–9, 2018.

[6] P. Lynch, ”The origins of computer weather prediction and climate
modeling”, 2008 Journal of Computational Physics, pp. 3431 - 3444.

[7] U. Gartel, W. Joppich and A. Schuller, ”Medium-range weather forecast
on parallel systems,” Proceedings of IEEE Scalable High Performance
Computing Conference, Knoxville, TN, USA, 1994, pp. 388-391.

[8] P. C. Reddy and A. S. Babu, ”Survey on weather prediction using big
data analystics,” 2017 Second International Conference on Electrical,
Computer and Communication Technologies (ICECCT), Coimbatore,
2017, pp. 1-6.

[9] A. S. Aisjah and S. Arifin, ”Maritime weather prediction using fuzzy
logic in java sea,” 2011 2nd International Conference on Instrumentation
Control and Automation, Bandung, 2011, pp. 205-208.

[10] N. L. and M. H.S., ”Atmospheric Weather Prediction Using various
machine learning Techniques: A Survey,” 2019 3rd International Con-
ference on Computing Methodologies and Communication (ICCMC),
Erode, India, 2019, pp. 422-428.

[11] Lajara, Rafa & Alberola, Jorge & Pelegri-Sebastia, Jose & Sogorb, T. &
Llario, J. Vicente. (2007). Ultra Low Power Wireless Weather Station.
469 - 474. 10.1109/SENSORCOMM.2007.4394965.

[12] Kailasanathan, Nallakaruppan & Kumaran, Senthil. (2019). IoT based
machine learning techniques for climate predictive analysis. International
Journal of Recent Technology and Engineering. 7. 171-175.

[13] D. N. Fente and D. Kumar Singh, ”Weather Forecasting Using Artificial
Neural Network,” 2018 Second International Conference on Inventive
Communication and Computational Technologies (ICICCT), Coimbat-
ore, 2018, pp. 1757-1761, doi: 10.1109/ICICCT.2018.8473167.

[14] Martina Maggio, Federico Terraneo, Alberto Leva. (2014). Task
Scheduling: A Control-Theoretical Viewpoint for a General and Flexible
Solution. ACM Transactions on Embedded Computing Systems (TECS).
10.1145/2560015.

[15] World Meteorological Organization (2012), Other business: pressure
reduction formula. CIMO/ET-Stand-1/Doc. 10 (20.XI.2012)

[16] F. Chollet and others, Keras io, 2015
[17] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale
machine learning on heterogeneous systems, 2015.

[18] Petneházi, Gábor. (2018). Recurrent Neural Networks for Time Series
Forecasting.

[19] N. Xue, I. Triguero, G. P. Figueredo and D. Landa-Silva, ”Evolv-
ing Deep CNN-LSTMs for Inventory Time Series Prediction,” 2019
IEEE Congress on Evolutionary Computation (CEC), Wellington, New
Zealand, 2019, pp. 1517-1524.

