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ABSTRACT

We present a web service based approach to enable an evolutionary
sensornet system where additional sensor nodes may be added af-
ter the initial deployment. The functionality and data provided by
the new nodes is exposed in a structured manner, so that multiple
applications may access them. The result is a highly inter-operable
system where multiple applications can share a common evolving
sensor substrate. A key challenge in using web services on resource
constrained sensor nodes is the energy and bandwidth overhead of
the structured data formats used in web services. Our work pro-
vides a detailed evaluation of the overheads and presents an imple-
mentation on a representative sensor platform with 48k of ROM,
10k of RAM and a 802.15.4 radio. We identify design choices that
optimize the web service operation on resource constrained sen-
sor nodes, including support for low latency messaging and sleep
modes, quantifying trade-offs between the design generality and re-
source efficiency. We also prototyped an example application, for
home energy management, demonstrating how evolutionary sensor
networks can be supported with our approach.

Categories and Subject Descriptors

C.2.4 [Computer Systems Organization]: Computer Communi-
cation Networks—Distributed Systems; J.7 [Computer Applica-

tions]: Computers in Other Systems

General Terms

Measurement, Performance

Keywords

web services, TCP/IP, battery life

1. INTRODUCTION
As sensornets move from labs to long-running real-world de-

ployments, a major problem we are facing is the difficulty in aug-
menting and evolving an existing sensing infrastructure over time,
with additional hardware and software capabilities. Such evolution-
ary sensornets are representative of a broad class of applications
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where heterogeneous sensors are deployed for multiple co-existing
sensing tasks within a single confined physical space such as an
office, home, or warehouse. Consider as an example a home en-
ergy usage monitoring and control system. In the US, residential
energy usage is a significant fraction of the total energy consumed.
In 2001, for instance, the 107 million US homes consumed 21.86
Quadrillion (1015) Btu of energy costing USD 157.5 billion [18].
Efforts such as energy efficient construction and energy saving ap-
pliances [12] are underway, and many believe that better visibility
into how energy is delivered and consumed in homes will be a key
towards enabling further energy savings. Sensornet can play a sig-
nificant role, for example, in optimizing home energy consumption
in response to the activity state of the occupants.

The home energy management application can be more cost-
effective when allowed to use a sensornet deployed in an evolu-
tionary manner. The home may have pre-existing wireless sensors
deployed for a security application based on intrusion sensors on
doors and windows, and motion detection sensors in indoor areas
near the perimeter. The home may also have a temperature sen-
sor used to control a cooling or heating system. At a later time,
more motion or activity sensors may be added to the home in other
indoor areas for monitoring the activity of a senior resident (such
as for detecting disruptions to normal routine). The home energy
management application can use many of these sensors to detect
home occupancy and user activity. In addition to using the existing
sensors, it may add new sensors to the deployment for measuring,
visualizing, and controlling power usage.

In many existing sensornet usage scenarios, each application de-
ploys its dedicated set of sensors. Each node is programmed with
a sensor data collection, event detection, or query processing capa-
bility and sends its data (sensor readings, events, query responses)
to its user application using custom protocols and message for-
mats [20, 27]. This mode of usage is not well suited for situa-
tions where sensor nodes with different protocols, say from differ-
ent manufacturers, may be added to a sensor deployment over time.
The custom protocols, new data types, and new functionality of the
new nodes may not be exposed by the gateway. Adding new end-
user applications to the existing deployment becomes difficult due
to lack of direct access to sensor capabilities. An alternative will
be to support the evolution of a sensing system and hardware with
a common, well-understood application-level interface, so that all
deployed sensors are available to all applications (Figure 1). As
new sensors are added for new applications, existing applications
may also benefit from the added sensors. Certain new applications
that may not be cost effective to deploy with dedicated sensors may
become feasible.
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Figure 1: An example of evolutionary sensornet with sensors

shared by multiple applications.

To support such system evolution, two fundamental features are
needed:

Structured data: The first is that the data generated by the sensor
nodes be represented in a structured format that any applica-
tion may understand. For instance, data objects represented
in XML may be read by any application while a custom bit
representation requires a detailed documentation to interpret.

Programmatic description of functionality: The second feature
is that the functionality of a sensor node be understood pro-
grammatically. While a new sensor node added may auto-
matically connect to the network using say DHCP and related
methods, an application cannot use it until the functionality
of the device is known. Programmatic access to sensor node
functionality may allow a new user application to discover
all sensors it may use or even allow existing application to
add features as new sensor nodes are deployed.

As an added advantage, this could make end-user application devel-
opment less prone to bugs since most of the message formats and
packet exchanges can be programmatically and automatically gen-
erated from the programmatic description rather than by manually
reading the documentation for required bit sequences and message
protocols for each custom gateway device format.

The above capabilities already exist for Internet connected de-
vices and are available through web services: web method calls al-
low structured data objects to be exchanged with remote resources
and the web service description enables programmatic ways to ex-
press the device functionality. The key challenge we must address
in using such an approach for sensornets is the minimization of re-
source cost for providing structured data formats and functionality
descriptions at the sensor nodes. These resource costs are negligi-
ble for wired nodes. However, for low-power wireless sensor nodes
that run for years without battery replacement, all resources includ-
ing bandwidth, processor capability, and the active duty cycle are
very limited. In this case, it is not obvious if the additional data size
and processing costs for such structured access can be supported.

The goal of this research is to quantify the resource costs of pro-
viding structured and programmatic access to sensor nodes using
web services, and to identify design options that minimize these
costs and trade-offs between interface generality and resource ef-
ficiency. We characterize the costs of using web services in sen-
sornets, and describe our design choices for making these costs
acceptable on a resource constrained wireless device. To support
ease of programming, our design choices maintain compatibility
with commonly used web service development tools.

To constrain our design exploration and implementation, we use

a prototype sensor node that we built using an MSP430 proces-
sor and an IEEE 802.15.4 radio (Figure 2). The processor runs at
6Mhz, contains 48k of ROM, and operates at power levels typical
of many low-power sensor nodes designed for multi-year lifetimes.
The radio provides a maximum raw data rate of 250kbps. We im-

Figure 2: The wireless sensor platform, with an MSP430 pro-

cessor and 802.15.4 radio, for carrying out the experiments re-

ported in the paper.

plement web services on the above low-power platform, using only
15.8kB of ROM space. The energy and latency overheads com-
pared to sending the raw data in 802.15.4 packets are very small:
the battery lifetime is reduced by less than 11% and the latency in-
crease is only 23.09ms when transmitting a 40 byte message every
10 minutes.

Our research yields several important guidelines for efficient use
of TCP/IP and web services on sensornets, including the use of
persistent TCP connections, disabling delayed acknowledgments
in TCP, and using link layer retransmissions. While traditional web
service usage assumes that the server hosting the service is always
on, we show how web services can be hosted in an energy efficient
manner on duty cycled nodes that must enter a low power discon-
nected state for long periods of time. We further discuss the proper
choice of web service bindings and XML decoding for efficient im-
plementation on sensors with very limited memory.

We use the home energy application to provide realistic require-
ments and application constraints for an evolutionary sensornet,
such as to obtain sample message types required, events generated,
sampling rates, and other system constraints. Further, to test the
application, we built prototype power sensor nodes that measure
the energy used by an appliance (for up to 2kW) plugged into our
sensor node. The sensor node doubles as an actuator and can turn
the power to the appliance on or off as well, similar to the sys-
tem in [19]. As a test case, we deployed the power sensor-actuator
nodes in a home with wireless motion sensors and perimeter intru-
sion sensors for a period of 12 days. Sample sensor traces from the
deployment are shown in Figure 13. Using the sensor data, a sim-
ple occupancy-based optimization algorithm was able to achieve a
7.2% saving in home energy usage. More details of the case study
are in Section 6.2.

The contributions of the paper are threefold:

1. Characterize the energy costs of various overheads associ-
ated with using web services,

2. Enumerate the design options available and the associated
trade-offs in implementing web services, indicating the most
suitable choices for sensor nodes, and

3. Present our implementation of the web service approach us-
ing only 15.8kB of ROM and < 1kB of RAM.



While the home energy application is used as a concrete test case
for this research, the device resource constraints for the sensor nodes
used are representative of many other wireless sensor network de-
ployments and our design is thus relevant to more general systems.

The rest of the paper is organized as follows. Section 2 discusses
related work. Section 3 discusses the relevance of web services to
sensor networks. Section 4 discusses our design space explorations
to optimize the operation of web services on resource-constrained
sensor nodes. Section 5 presents the experimentally measured en-
ergy and latency overheads of the proposed approach. Section 6
describes our prototype implementation, including our power sen-
sor node, and the test deployment of the home energy management
application. We discuss the objectives achieved by our design and
some of the key open issues in Section 7.

2. RELATED WORK
The use of XML-based structured data has previously been ex-

plored in sensor networks in IRISnet [9]. However, XML was
used to represent a logical view of the data available across mul-
tiple sensor nodes rather than to expose sensor node functionality
via web services. The implementation was focused on gateways
and non-resource constrained sensor nodes such as video cameras.
Our work focuses on the low-power sensor nodes and uses XML
to support web services, enabling a very different set of features
compared to [9]. Another effort, SensorML [29], provides descrip-
tions of sensor systems using XML, focusing on the data formats
and functions for a wide range of sensors. Our focus is on pro-
viding structured data and programmatic access to functionality on
resource-constrained nodes.

Web services have been prototyped on embedded systems [16,
17], though for devices with more resources than the low-power
sensor nodes. The code size and memory footprints achieved there
are an order of magnitude larger than the ones in our system. We
discuss the key design trade-offs in achieving a reduced overhead
implementation.

Another related web service implementation for devices is pro-
vided in SOCRADES [8], a middleware architecture for building
production processes on top of Devices Profile for Web Services
(DPWS) enabled smart objects. Due the limitations of device ca-
pability, DPWS is implemented on gateway devices. We imple-
ment web services directly on resource-constrained devices using
the Web Services Description Language (WSDL) [6] specification,
eliminating the need for application layer gateways that may get
tied to a custom format between the gateways and sensor nodes
hampering evolvability.

Another closely related work is the support for network layer in-
teroperability using TCP/IP in sensor nodes [10, 11]. Our paper
focuses on the application layer interfaces provided through web
services, and assumes that the network layer interoperability, us-
ing the TCP/IP implementation from [10], is already available. We
use IPv4 in our evaluation of network layer overheads and resource
costs for web services. A newer version, IPv6, is now widely sup-
ported and is expected to have greater overheads in terms of the
number of bytes transferred and resultant number of packets. How-
ever, efforts such as 6lowpan [21] provide methods to reduce those
overheads. An implementation of 6lowpan for low power sensor
networks is available [1].

Web services have also been built using UDP [7] instead of TCP,
using SOAP encapsulation. However, UDP does not provide end-
to-end reliability and in order to avoid re-inventing TCP like func-
tionality at the application layer, our design uses TCP.

In hosting web services on power-constrained sensor nodes, we
include support for sleep modes and duty cycled operation through

the use of event notifications. The use of events has been proposed
for web services through the WS-Eventing [28] specification. We
keep our design compatible with [28] to enable easy integration
with web service based Internet applications.

We also explore the design advantages of compressing the XML-
based structured data formats used in web services in order to re-
duce their bandwidth and energy overheads. XML compression
has been considered before [5, 2]. The compression ratios for sev-
eral XML compression schemes are compared in [2] but most of
those methods are not suitable for implementation on low-power
sensor nodes. We discuss the relevance of such XML compression
to low-power sensor nodes in Section 4.5.

Standards such as ZigBee1 [30], Zwave, X10, and Echelon may
also support interoperability of low-power devices. However, each
of these standards is tied to a single physical layer standard and,
these standards need application layer gateways to connect to the
rest of the Internet. We focus on an alternative approach that is built
on widely-used open standards such as TCP/IP and web services.
The TCP/IP layer enables any two devices with IP-compatible phys-
ical layers to communicate; while the web services layer enables an
application to access resource-constrained devices using the same
tools that are used for accessing other online services hosted on
more powerful servers, without the need for application-layer gate-
ways. We do not aim to provide an exhaustive comparison between
our approach and other standards that enable device interoperabil-
ity; rather, we provide an evaluation point that helps compare a web
services-based solution to other standards.

3. WEB SERVICES FOR SENSORNETS
To explain the relevance of web services for sensor networks, we

briefly summarize the capabilities of web services and show their
advantages for sensor networks.

3.1 Structured data and functionality
Web services provide a mechanism for distributed applications

to use resources that are on remote devices in a manner similar to
local resources. A typical usage scenario is that some functionality
available on one server is exposed as a method call for applica-
tions running on remote devices. The web service protocol stack
internally creates and exchanges the appropriate network messages
required for the call, and provides the returned data object to the
calling application. The programmer does not have to be concerned
with the network protocols, packet formats, or other low-level de-
tails of the underlying network. For example, a weather server may
provide a method to obtain temperature: Float temperature

= GetTemperature(string Location) and any applica-
tion, running on an Internet connected device, can call this method.

To realize the above functionality, web services standards spec-
ify two key components: ports and bindings. The ports represent
the application layer functionality to be provided: method calls that
the web service supports. The bindings specify which network pro-
tocols are supported. For instance, if the data and arguments for the
ports are carried in a SOAP [14] formatted packet, then the binding
is said to be SOAP.

Both the ports and bindings for a web service are specified us-
ing the web service description language (WSDL) [6]. The spec-
ification of a web services is usually referred to as its WSDL de-
scription. If the functionality of a sensor node is expressed using
a WSDL description, it can simply be accessed using the specified
method calls.

1Currently, only members of the ZigBee Alliance may implement
products based on the ZigBee specification.



3.2 Advantages
The use of web services on sensor nodes goes beyond simply

enabling a new format for packet exchanges. It has the following
significant advantages.

The first key advantage is interoperability. Our approach enables
sensor deployments to be shared across multiple applications in a
very flexible manner. Not only does it improve the performance
of existing applications due to more sensors being available, but
also enables deploying new applications that may not be cost ef-
fective to deploy if dedicated hardware is required. For instance,
in the example shown in Section 1, once the sensors required for
the security, medical monitoring, and energy management applica-
tions have been deployed, it becomes inexpensive to add a home
automation application.

Second, the use of web services improves the programmability
of the system. The WSDL description of the sensor node can be au-
tomatically parsed by high level language development tools such
as Visual Studio and NetBeans IDE. The programmer only sees a
high level language object with the appropriate methods. Using the
sensor node in the application is as easy as calling the appropriate
method calls of this object. The development tool and the protocol
stack automatically generate the messages to be transmitted over
the radio, receive the response, and simply provide the end result
to the application. The programmer is no longer required to code
multiple custom protocols.

A third advantage is the ease of integration with enterprise sys-
tems through the Internet. Many network applications are already
built using web services. If similar interfaces can be supported on
sensor nodes as well, much physically sensed data can be incorpo-
rated into the existing information technology infrastructures, en-
abling cyber-physical systems with many new capabilities.

Fourthly, the approach of running web services directly on the
device eliminates the need for providing multiple gateways con-
verting between the custom message formats of each sensor manu-
facturer and the applications.

In addition to the application layer advantages of web service
based protocols, the use of IP for the network layer also provides
many benefits, including ease of network management, use of DHCP
based address assignment, and the ability to work with many PHY
layers. The proposed 6lowpan specification reduces the IP over-
head by header compression, and it also enables the use of sensor
network-specific routing within the low power sections of a net-
work to avoid the overheads of full scale IP routing on low-power
nodes. Several routing protocols optimized for sensor networks
have been developed and can be incorporated at the 6lowpan shim
layer for routing. Several sensor network specific MAC layers have
also been proposed and these can be implemented at the lower lay-
ers without affecting the web services application layer specifica-
tion.

It may be noted that the web service approach is meant to im-
prove the interface between sensor nodes and end user applications.
The programming of the sensor nodes themselves is not signifi-
cantly affected and existing tools such as [26, 15] may be used. The
only impact is that a web service interface is provided along with
its WSDL description. Some of the methods provided may even
result in the node communicating with other nodes for in-network
processing. These messages may continue to be in custom formats
since they are not meant for client applications but are only used in-
ternally by a group of coordinating sensor nodes deployed together.
The end result of such joint processing may be offered through the
web service interface.

The many advantages of using the structured web service based
approach come with a non-negligible resource cost. Conventional

wisdom calls for designing custom protocols that optimize message
formats to the last bit for reducing communication energy over-
heads for matching the resource constraints of sensor networks.
The obvious question then is: are the resource costs of web ser-

vice based interaction is acceptable?

4. DESIGN SPACE EXPLORATION AND

IMPLICATIONS
To address the above question regarding resource costs, we ex-

plore the design space relevant to supporting web services on sen-
sor nodes. Compared to using raw data over the link layer, using
web services involves overheads at three layers: the network layer
(IP), transport layer (TCP) and the web service application layer.
We address the challenges in each of these areas by first charac-
terizing the overheads and then designing our system to minimize
these overheads.

The feasibility of implementing TCP/IP on resource-constrained
devices with limited code space has already been addressed in [10].
However, given the implementation, actually using it for hosting
web services on sensor nodes leads to further challenges, in terms
of the energy and latency costs of communication. For instance
there is a ≃ 3000% overhead in message size when using TCP/IP.
We discuss the design choices including the effective use of per-
sistent TCP, link layer retransmissions and related options to mini-
mize the TCP/IP overheads. Our optimizations achieve significant
reduction in overheads, reducing the latency to a mere 21ms for a
TCP exchange, without loosing compatibility.

The web service layer introduces significant overheads in mes-
sage size and processing complexity. Our goal is to keep the en-
ergy and latency overheads to only what is needed for evolutionary
and interoperable development. We optimize the operation of the
web service layer by enabling the web service host sensor nodes
to enter long sleep modes through the use of eventing. We also
optimize web service message size overheads through efficient en-
capsulations and reduce the processing overhead of parsing XML
messages by exploiting sensor specific information.

4.1 Network and transport layer design
We use TCP/IP at the transport and network layer as it is a widely

used protocol and will support communication with a large num-
ber of applications. It has the added advantages of ease of net-
work management using well-established tools, ease of interaction
with existing IP based networks, and the better chance of adop-
tion by a wider community. The TCP/IP standards were developed
for always-on devices while sensor nodes must be duty cycled to
achieve long battery lifetime. Any increase in the length of data
transfers due to TCP/IP headers and control messages will lead to
higher battery overheads. Effectively using these standards, even
with an available implementation, is non-trivial.

To optimize our design and minimize these overheads, we char-
acterize the latency associated with TCP/IP using the experimen-
tal setup from Section 5.1. We used uIP [10] as our TCP/IP im-
plementation on sensor nodes. We obtained various TCP/IP per-
formance measurements presented below by applying appropriate
TCP/IP options.

4.1.1 TCP/IP overheads

Consider a small amount of raw data (such as an event report
with sensor values) to be transmitted, say 10 bytes. A conventional
sensornet would transfer this data in a barebone 802.15.4 packet
to reduce overhead. With TCP/IP, the packets must also carry 40
bytes of TCP/IP header. The minimum number of bytes required



for acknowledgment is 1 for the custom protocol while the standard
TCP acknowledgment is used for TCP/IP. To examine the delay,
message, and packet overhead associated with a TCP transfer, we
capture network message timing for this communication, between
a wireless sensor node and an application running on a PC.

Figure 3 shows the TCP message exchange and the timing cap-
tured at the sensor node and at the PC. Table 1 shows the various
overheads due to TCP/IP compared to sending data directly using
802.15.4 packets. We observe that the percentage overhead due to
TCP/IP is extremely large. The number of bytes sent, the number
of packets sent, and the total latency are affected significantly.

Minimum With TCP/IP TCP/IP
required overhead

Packets 2 8 300%
Bytes 11 338 2973%

Delay (ms) 6 375 6150%

Table 1: Overhead due to TCP/IP compared to sending raw

data (assuming raw data is 10 bytes and acknowledgment in

the absence of TCP/IP is 1 byte).
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Figure 3: TCP Message exchange latencies.

4.1.2 Optimizations for sensor nodes

It is possible to optimize the operation without compromising
interoperability with standard devices. We examine some of the
techniques for reducing the above overheads below.
Persistent TCP connections. The overhead in number of packets
required for a TCP transfer can be reduced using persistent TCP.
A typical use of TCP connections is for two machines to estab-
lish a connection, transfer some data, and terminate the connection.
However, for a sensor node, all the web service-related communi-
cation would be with a small number of applications using it. Here,
it is much more efficient for the client application to maintain a per-
sistent TCP connection with the sensor node and use it to transfer
data as needed. With persistent TCP connections, from the previ-
ous example (Figure 3), only 2 message transfers (message labeled
[PSH,ACK] DATA and the corresponding [ACK] message are
needed, resulting in a latency of (231−25) = 206 ms. This reduces
the delay, number of packets, and number of bytes associated with
a TCP transfer significantly. The only overhead for persistent con-
nections is the TCP heartbeat message, which is very infrequent.
However, persistent TCP connections introduce one complication
when implementing web services. Our web service implementation

makes heavy use of the HTTP protocol. In the older HTTP specifi-
cation (version 1.0), a web server indicates the end of data transfer
by closing the TCP connection. The current HTTP 1.1 specifica-
tion [13] mandates that an HTTP 1.1 client correctly interprets the
content-length: field sent by the server to determine the end
of a HTTP transfer, and ending the TCP connection is not required
to indicate end of transfer. However, if a client application states
the older version in the HTTP request header, the sensor node will
be forced to terminate the TCP connection after the data transfer,
and the reduction in overheads possible through persistent TCP will
not be realized.
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Figure 4: TCP Message exchange latencies with delayed ac-

knowledgments disabled.

Disable delayed TCP acknowledgments. The latency overhead
after using persistent TCP can further be reduced by disabling the
delayed acknowledgment feature of TCP. TCP uses cumulative ac-
knowledgments; an acknowledgment for byte number n acknowl-
edges all the bytes up to n. Delayed acknowledgment feature uses
the cumulative acknowledgment feature to reduce the number of
messages sent over the network: after receiving a packet, the re-
ceiver waits for one other packet before sending the acknowledg-
ment. For every other packet received at a host, the TCP protocol
stack starts a 200ms timer. If another packet is received before
this timer expires, an acknowledgment is sent immediately. Other-
wise, an acknowledgment is generated when the timer expires. This
mechanism works well when a TCP connection is used to transfer a
long sequence of packets. However, when sending a single message
at a time over a persistent connection, the delayed acknowledg-
ment feature causes an extra ≃ 200ms delay (the [209ms, 24ms]
interval on the PC side in Figure 3) between sending of a message
and the receipt of the acknowledgment. To reduce this delay, the
TCP delayed acknowledgments must be disabled on both the host
PC and the sensor node. Delayed acknowledgments is a TCP op-
tion; hence, turning off delayed acknowledgments does not require
changes to the existing TCP implementations. However in current
TCP implementations, unlike most TCP options, delayed acknowl-
edgments can only be turned off at a network interface or machine
level granularity. If applying this option at such a coarse granular-
ity is a concern, a gateway device can act as a proxy and have the
delayed acknowledgment feature turned off. This can be achieved
without knowing the exact nature of new sensor nodes that may
be added after the gateway is installed. Essentially, the applica-
tion layer is not using the gateway and hence no sensor-specific
iunformation is used by the gateway; the gateway is only provid-
ing a TCP connection. Figure 4 shows the same data transfer as in
Figure 3, with delayed acknowledgments disabled on the PC side.



We observe that the combination of no delayed acknowledgments
with persistent TCP connections results in a, much smaller delay,
(46 − 25) = 21 ms, for transmitting the 10 byte payload and re-
ceiving the corresponding acknowledgment.
Link layer retransmissions. TCP uses packet retransmissions to
achieve end-to-end reliability of data. These retransmissions incur
significant delays. For example, in Figure 5, when the packet num-
ber 4 is lost due to a collision, that packet get retransmitted (packet
number 5) only after a 2965ms delay. Such end-to-end retransmis-
sion is less suitable for wireless links since packet loss probability
is higher compared to wired links. Similar to the use of link-layer
ARQs in commonly used in wireless standards such as 802.11, we
can recover almost all packet losses using much faster link layer
retransmissions without causing TCP timeouts.
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Figure 5: TCP Message exchange latencies with TCP retrans-

mission delay.

Low power mode between TCP messages. The energy overhead
for keeping the radio on can be further reduced by turning off the
radio in between TCP messages. From the timing diagrams in Fig-
ure 3 and Figure 4, we observe that there is always some delay
between a packet transmission and the corresponding reply. Al-
though part of this delay will be random due to various network
and application level randomness, there is a fixed minimum delay
defined by the link capacities, hop count, and the packet size. If
this delay is known, either through calculations or measurements,
the battery-powered sensor node can safely sleep for this minimum
period after receiving the link layer acknowledgment.
6lowpan. IPv6 is now being widely supported in many networks
and this causes the network layer header size to increase beyond the
overheads measured in our experiment above. In fact, the increased
size of the header may even make the IPv6 packet too large to fit
into a single 802.15.4 packet. The 6lowpan specification [21] pro-
vides a way for IPV6 packets to be transmitted over 802.15.4, with
mesh routing and shorter addresses. The reduced length addresses
suffice for ensuring unique node addresses within a local sensor
network in most cases. Also, 6lowpan uses a 8 byte header (includ-
ing Mesh Under header) compared to the 20 byte header used in
IPV4 enabling further savings. Thus, when IPv6 compatibility is
needed, the sensor nodes may use 6Lowpan and a standard 6low-
pan gateway for connecting them to the rest of the IPv6 network.
Link layer fragmentation. The 802.15.4 radio packet can sup-
port a maximum of 127 bytes, including TCP/IP headers. With this

limited payload size, when a large amount of data needs to be sent
over TCP, the data needs to be broken into multiple TCP segments
resulting in increased message delivery times and power consump-
tion. These overheads can be reduced using the link layer fragmen-
tation provided by 6lowpan specification. This link layer fragmen-
tation enables us to take a large TCP/IP segment and break it into
multiple 802.15.4 packets, which can be sent as a burst of packets to
limit the message delivery delays and to reduce the packet retrans-
missions by acquiring the channel for the duration of the packet
burst. The shorter delays and reduced packet retransmissions also
reduce the energy consumption.

4.2 Supporting duty cycled nodes
Traditional web service implementations assume that the server

hosting the web service is typically on and available. Battery-
powered sensor nodes however, must enter low power modes to
conserve battery and they cannot be reached when in the low power
state.

There are two main techniques for interacting with a sensor or
an actuator node – one in which the node is always ready to receive
messages (the client application connects to the node as needed)
and the other in which the node is event driven (the sensor node
sends an event when the sensor detects some interesting change).
Considering the example of the home sensor network previously
described (Section 1), one may observe that some nodes, such as
the power actuator nodes on lights or power sockets, the heating
controller, or other actuators may need to be always ready to receive
messages. Regardless of whether web services are used or not,
these nodes will need to be reachable when required.

On the other hand, sensors such as PIR-based motion sensors,
glass-brake detectors, door intrusion sensors, smoke detectors, and
several others benefit from event driven operation. If web services
are not hosted on the sensor node, it may easily turn off its radio
and enter deep sleep state, periodically polling its sensor or waking
up on an interrupt generated by the sensor, to reduce energy con-
sumption. It would turn on the entire node and radio only when
an event is detected. A large class of sensor nodes fall into this
category and if web services are to be used on such nodes with-
out causing excessive energy overheads, the ability to enter sleep
modes must be supported. One possibility is to use the duty cy-
cling at the MAC layer, similar to what is available in 802.15.4
and 802.11. However, such MAC layer solutions use short sleep
durations to preserve the responsiveness of the node, while a typi-
cal sensor that generates events has long inactive periods that can
easily extend to several hours. Hence a MAC layer-based solu-
tion with an acceptable response time can increase the node energy
consumption, compared to a solution that enables the node to sleep
between sensing events. We support duty cycled nodes through the
use of web service eventing (WS-Eventing) [28]. With eventing,
a sensor node hosting a web service can be in sleep mode for the
entire duration between sensing events.

WS-Eventing describes five functional entities (Figure 6):

1. Event sources that generate events (e.g. a smoke detector),

2. Event subscribers that are interested in a particular event,

3. A subscription manger that accepts and manages requests
from subscribers,

4. An event subscription database that stores all active sub-
scriptions, and

5. A notification manager that receives the original event and
sends it to all active subscribers found in the database.
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Figure 6: Web Services Eventing architecture.

When implementing WS-Eventing in a sensor network, the sub-
scription manager and the notification manager should be imple-
mented on a gateway device that is always on, rather than on the
sensor node itself, to reduce computational complexity and energy
consumption. A single such device can handle event subscriptions
and notifications for multiple sensors (a fail over device may be
used to eliminate the single point of failure in the system). WS-
Eventing specifies only the interface exposed by the subscription
manager and the notification manager, while the format and the
delivery mechanism of an event is left open (although an XML
message describing the event is preferred). This implies that any
sensor node that is designed with the specified event subscription
and notification interfaces can be supported by the gateway. New
devices may be added without changing the gateway. The sensor
node could define its own events and send notifications containing
data that is semantically relevant to the sensor node’s function. For
instance, a smoke detector may generate events corresponding to
smoke detection and low battery. To achieve the goal of structured
data, our implementation encodes events in XML, and describes
the events in the WSDL description of the sensor node.

4.3 Web service method encapsulation
As we described in Section 1, our web services implementation

is centered around the WSDL standard. WSDL supports several
encapsulation protocols for sending the method calls to the web
service host device. Currently supported encapsulation protocols
are SOAP, HTTP, and MIME. The binding section of the WSDL
file describes which one of these standards is used for accessing
device methods.

Currently, SOAP is considered the de-facto standard for transfer-
ring web service messages. However, a fully standards compliant
SOAP server implementation requires considerable computational
and memory resources than those provided by low-power proces-
sors such as MSP430. The SOAP envelop is very verbose and also
needs significant radio bandwidth. Referring back to the home sen-
sor network example discussed earlier, two of the method calls used
by the applications are listed in Table 2 along with the byte size for
their SOAP encapsulations (two versions of SOAP are in common
use and are listed). Both the processing complexity and the mes-
sage size make the use of SOAP incompatible with the resource
constraints of a sensor node. Most of these envelopes are too large
to fit within a single 802.15.4 packet, and fragmentation will also
worsen the communication latency.

However, SOAP provides much more functionality than what is
required for accessing devices with limited functionality. A more
lightweight approach for sending web service messages is to use
HTTP. Since a standards compliant HTTP sever can easily be im-
plemented on a resource-constrained processor such as an MSP430,

Method Name SOAP 1.1 SOAP 1.2 HTTP
GetTemperature 491 442 162

GetTemperatureResponse 479 499 258
SetTemperature(70) 528 482 202

SetTemperatureResponse 455 475 230

Table 2: Web service message sizes for different encapsulations.

HTTP binding becomes the ideal choice for sensor networks. Apart
from the reduction in the computational complexity, the HTTP bind-
ings also result in smaller messages (Table 2) due to the elimination
of the relatively large SOAP envelopes from method calls.

The WSDL standard specifies multiple techniques for encod-
ing method calls and call parameters within HTTP. The first one,
called URL Encoding, maps the method call to a particular path
within the HTTP server. For example, the SetTemperature()
method on the sensor with IP address 192.168.1.4 may map
to the http://192.168.1.4/setTemp URL. The URL en-
coding technique for sending method parameters specifies a direct
mapping between different fields (tags and parameters) in an XML
document representing a method call and the parameters encoded
in an HTTP GET request. The URL encoding method is identi-
cal to the way parameters are passed in a URL using an HTTP
query string when an HTML form is submitted with a GET request.
For example, the SetTemperature(25) method can be en-
coded as http://192.168.1.4/setTemp?temp=25. The
second option, called URL Replacement, is similar to URL encod-
ing except that instead of encoding the parameters in a HTTP query
string, the parameters are mapped to the path of the HTTP GET
URL. The SetTemperature(25) method described above can
be encoded as 192.168.1.4/setTemp/temp/25. The third
option is XML POST. In this approach, an XML formatted string
is sent containing the method name and parameters, using HTTP
POST. The sensor decodes the XML string and extracts the method
parameters.

All the above methods are supported by the standard and the
WSDL description of the sensor node’s web service can specify
which alternative is used. The web service implementation on the
host sensor node should use the URL encoding or URL replace-
ment methods whenever possible. First, these techniques results
in a smaller message size compared to sending a full XML mes-
sage; second, the decoder for the URL encoding/replacement can
be much simpler than for XML encoding. In section 5, we show
that simple method calls can easily be encoded within a single
802.15.4 packet. However, if the method parameters are speci-
fied within a complex XML message with varying number of el-
ements (e.g. a variable length array), it may not be possible to
specify a direct mapping from method parameters to a URL encod-
ing/replacement, requiring a POST-based XML solution.

4.4 XML parsing on sensor nodes
XML parsing at the sensor node is only needed when URL en-

capsulation does not suffice, such as for passing structured argu-
ments. The overheads of implementing a general purpose XML
parser are unlikely to be compatible with the resource constraints
of a low-power processor. However, a key observation is that, when
the device functionality is limited, the WSDL description only ex-
poses a small number of methods and events. All messages that
the sensor is required to respond to are created as specified in the
WSDL description provided by the sensor. Clearly, the XML parser
on the sensor can be designed to only parse the simple messages
that it expects. Thus, simple text matching to search for the method



name and argument names suffices. Typically, the sensor node
manufacturer who specifies the WSDL implements the parser. Al-
though such a parser can be auto generated from the WSDL, we
implemented a hand-coded custom XML parser on each device.
The use of a custom parser remains transparent to the client appli-
cations since they receive web service responses or events as spec-
ified in the WSDL description and the sensor node remains fully
compliant.

4.5 Compression and optimization
The XML format used for structured representation of data and

methods was not designed for constrained sensor nodes and can be
very verbose. There are several techniques that can be used to help
reduce the message size increase due to XML. A first approach is to
use compression. Either generic compression based on LZW algo-
rithms, such as zip, or XML-specific compression methods (some-
times referred to as binarization since they do away with the text
representation) such as [5, 2] may be used. This approach does
require a predetermined compression scheme be chosen and imple-
mented by sensor nodes as well as a gateway node that connects
the sensor network to rest of the network. The message size after
compression is shown in Table 3 for generic (Zip) and XML spe-
cific (XMLPPM) compression. A second approach is to optimize

Compression GetTemp. GetTemp SetTemp. SetTemp
Response Response

Original 85 181 125 153
Xmlppm 65 98 85 92

Zip 114 157 138 151
Comp1 81 101 101 107
Comp2 26 46 46 53

Table 3: Sizes of request and response message payloads (ex-

cludes encapsulation) with different compression schemes.

the XML format by replacing some the method names and argu-
ment names that are defined by the sensor node, with very compact
tags. For instance, the method name GetTemperature that is
14 bytes (112 bits) may be replaced by single byte (allowing up
to 28 tags within a single WSDL description). The XML node
and element markers are left uncompressed for automated tools to
continue working as before. For human readability, a dictionary
that lists the mapping from the compact tags to the human readable
method or parameter names may be provided. Table 3 also shows
the compression achieved using this approach, labeled Comp1. A
further variation, where in addition to the method names and pa-
rameters, the common strings such as the XML header marker
and namespace URL are also replaced with compact tags, labeled
Comp2, is also shown.

Since the XML payloads in the sensor node method calls in our
application context are relatively small, the use of Zip is not very
efficient. The second approach of using compact tags is most ef-
ficient. The tag mapping dictionary is retrieved only infrequently
from the sensor node, similar to the access frequency of the sensor
WSDL.

5. EVALUATION
We implemented web services on a resource-constrained sensor

node, using the design choices discussed in the previous section.
In this section we evaluate the performance of the web services
implementation, in terms of its communication, energy, and code-
complexity overheads.

Detailed measurements reveal that for a variety of practical sce-
narios, the overheads in energy and latency are very acceptable.
For instance, for a sensor node generating one event every 10 min-
utes, the reduction in battery lifetime is only 10.84%. The latency
increase is within a few tens of milliseconds and is typically accept-
able for most sensing applications. The measurements also reveal
scenarios where the overheads may lead to significant performance
degradation.

5.1 Experiment setup
The evaluations require detailed visibility into the latency and

energy overheads due to the increased message sizes, processing
overheads, and increased number of packets due to the web service
based approach. We use the setup shown in Figure 7 to measure
the fine-grained timing behavior of communication over 802.15.4
radio links.

IEEE 802.15.4

Interface
PPP over 

RS232

Measurement

Server

Wireless

Sensor

Timing

Node

Timing 1

Timing 2

Timing 3

Figure 7: Experimental setup for evaluating network perfor-

mance

A measurement server is set up with an IEEE 802.15.4 network
interface2. The wireless sensor used is our prototype node (Fig-
ure 2) consisting of a MSP430F1611 processor running at 6MHz
and a CC2420 radio. This node runs the uIP TCP/IP implemen-
tation [10] along with our web service implementation. To ob-
tain packet transmission and processing delays, we disabled the
random delays between the application’s send() command and
the start of CC2420 data transmission. We used a timing node
consisting of a MSP430, wired to the server over USB, to collect
timing of various events at the sensor node and the server’s wire-
less interface. To obtain timing, we connected a wire, denoted as
signal (Timing1), to the server’s wireless interface and 2 wires,
(Timing2 and Timing3), to the wireless sensor. Figure 8 shows
the timing of the three signals Timing1 . . .Timing3: the server’s
wireless interface asserts the Timing 1 signal when it starts send-
ing a radio packet, and clears it when the packet transmission is fin-
ished. The wireless sensor asserts the Timing2 signal on receiv-
ing a radio packet, and clears it after processing the packet. The
sensor asserts Timing3 when it starts sending a packet, and clears
it after the packet is sent. The difference between, Timing1 and
Timing2 represents the time taken by the sensor to decode and as-
semble the packet in the radio module. To obtain accurate timing,

2The 802.15.4 interface is a MicaZ mote connected on the serial
port at 115200 baud, using the PPP [25] protocol. A local IP sub-
net is implemented over this PPP connection, bringing the packets
received on the radio to the server’s TCP/IP stack.
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Figure 8: Communication activity timing in the experiment set

up.

the timing node used a temperature compensated clock source run-
ning at 6MHz. To capture timing at the server, the Wireshark packet
sniffer was used. A single run using this setup produces an output
of the form shown in Table 4. This sample output also shows that
the packet processing times on the sensor, that include the web ser-
vice method call parsing and the TCP/IP stack processing, are very
small: for the first packet the processing time is 10.67 − 9.68 =
0.99ms and for the second one, it is 36.35 − 35.53 = 0.82ms.

Time (ms) Event TCP Action

0.00 Server Tx start TCP data
6.19 Server Tx done (74 byte request)
9.68 Sensor Rx done

10.67 Packet processed

10.68 Sensor Tx start TCP ACK
11.71 Sensor Tx done

29.29 Server Tx start TCP data
33.35 Server Tx done (27 byte request)
35.53 Sensor Rx done
36.35 Packet processed

36.36 Sensor Tx start TCP data
37.78 Sensor Tx done (37 byte reply)

Table 4: Message communication and processing times.

5.2 Energy cost
The use of TCP/IP and structured XML data for web services

increases the message sizes and hence the energy consumption at
sensors. The increased energy consumption reduces the battery life.
In this section, we examine the impact on battery life due to web
services. Suppose the application wishes to transfer x bytes of pay-
load. A barebone protocol can send this data directly over 802.25.4
packets with no additional headers, while the web service approach
does involve the TCP/IP and encapsulation headers. For encapsula-
tion, we use HTTP 1.1 that has request and reply headers of 21 and
37 bytes respectively. We vary x from 1 to 80. Payload sizes for
example methods in our prototype (Table 3) lie in this range with
XML optimization. With web services, when x is increased beyond
53 bytes, two packets are needed to transmit the complete request
(due to TCP/IP and HTTP headers) while in the barebone case one
packet suffices. As discussed in section 4, we use persistent TCP
connections and disable TCP delayed acknowledgments.

For the energy numbers, we use a MSP430F1611 processor run-
ning at 5MHz (internal DCO) consuming ≃ 3 mA when active, and
2 µA during sleep, and a CC2420 radio that consumes 18.8 mA
in receive, 17.4 mA in transmit (0dBm output power), and 0.02

µA in sleep modes. Timing is measured using the experimental
setup from section 5.1. We use this timing to compute the power
consumption and the resultant battery lifetime assuming two AA
(2200 mAh) batteries. The battery self-discharge for typical alka-
line batteries is used: ≃ 3% loss of capacity per year due to self
discharge [3]. With time t expressed in years, this yields the capac-
ity, c(t) at time t as: ct = c0e

−t×ln(0.97) where c0 is the initial
capacity. The battery is assumed dead when the voltage falls to
1.05V (corresponding to c(tdead) = 400mAH , using the battery
discharge curve) from the initial 1.5V.

Figure 9(a) shows the battery life assuming that the radio is turned
off during the gaps between TCP message transmissions, and Fig-
ure 9(b) shows the battery life if the radio is kept powered on (re-
ceive mode) during the whole TCP transfer, for both the web ser-
vice (WS) and the barebone approaches. The three curves represent
three application scenarios requiring one message every 1 minute,
10 minutes, or 100 minutes.
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Figure 9: Battery life variation with client request size.

We observe that incremental cost due to different message sizes
is comparatively small compared to the total battery life, when the
complete message can fit inside a single packet. When a message
is sent every 10 minutes, the reduction in lifetime is 4.74% at a
request size of 40 bytes, and with the radio on for the entire TCP
transfer, the reduction is 10.85%. The reduction becomes more
significant with very frequest message exchanges, such as once ev-
ery minute are considered, but such high rates are less likely to
be needed. In our prototype deployment of the home energy man-
agement application over 12 days (Section 6.2), we observed that
sensor states for door intrusion sensors, motion sensors, and power
sensors changed only 2 to 20 times a day, keeping the event genera-
tion rate between once every 100 minutes to once every 10 minutes.
Also, while at high message rates, there is a significant impact on



lifetime when the request splits into multiple packets under the web
service approach, the impact becomes negligible at more practical
message rates.

In summary, we observe that the incremental cost of using web
services is not significantly higher than the barebone protocol. The
comparisons made above in fact give an unfair advantage to the
barebone protocol. In the above evaluation, we assumed there are
no overheads due to message retransmissions, carrier sensing de-
lays, link layer acknowledgments, or radio wake-up schemes. The
communication was assumed to be synchronized so that radios were
turned on only during active communication. In practice, such
packet losses and retransmissions will occur and even the barebone
protocol usage will involve some overheads in waking up the next-
hop nodes before transmission. When such overheads are included
in the comparison, the incremental overhead of web services would
be even smaller.

5.3 Response time
In certain time-critical sensor network applications, such as those

involving human interaction, the response time of the system be-
comes very important. Consider as an example the time to turn on
a lamp when a home automation application on the user’s cellphone
sends a turn-on request. While web service overheads are accept-
able for most of the network links, the latency increase on the last
leg involving 802.15.4 links to the sensor is a concern. Assume for
such applications that the wireless sensor/actuator is already on.
The lamp power actuator in the previous example may stay on by
using power from the wall socket. The wake-up overheads, if in-
volved, would be similar for a barebone protocol or the web service
approach.

The response time depends on the time taken to complete a web
services method call. We measured the response time for varying
web method request sizes, using the setup from Section 5.1. Fig-
ure 10 shows the results. We note that the response time is not
significantly affected by the request size as long as the request can
fit in to a single IP packet (53 bytes of request payload). For a 40
byte payload at an average message rate of once every 10 minutes,
the latency increase is only 23.09ms.

The delay is a few tens of milliseconds, even when the request
breaks up into two packets. There is a potential to reduce the de-
lay increase when the payload splits across multiple packets even
within the web service based approach. The delay increases sharply
because the TCP/IP stack from uIP used in our prototype sends
and acknowledges each packet individually. Schemes such as frag-
mentation and reassembly at the link layer (Section 4) or sending
multiple packets without having TCP wait for individual packet ac-
knowledgments can reduce this delay in case of larger web method
requests.

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

Payload (Bytes)

R
es

po
ns

e 
T

im
e 

(m
s)

 

 
Barebone
WS

Figure 10: Response time for comparison.

6. PROTOTYPE IMPLEMENTATION AND

DEPLOYMENT
In this section, we demonstrate the use of our web services solu-

tion to support an evolving sensor network deployment in the con-
text of a home energy management application. We also show that
the ROM space required by our prototype implementation for host-
ing a power sensor web service on a low power sensor is only 15.8k,
including the XML parser, HTTP server, and the TCP/IP stack. We
also present the design of our power sensing and actuating node
along with a 12 day deployment of the home energy management
application.

6.1 System description
We implemented web services on a resource-constrained plat-

form using an MSP430 processor and an 802.15.4 radio (Figure 2).
A central controller was implemented on PC with a 802.15.4 net-
work interface. Figure 11 shows the block diagram of our imple-
mentation.

The components shown in the figure are described below:
Sensors: Each sensor node contains two WSDL files that describes
the WSDL ports and binding: dev.wsdl, specifying the method
calls supported by a device, and bindings.wsdl, specifying
how the methods are encapsulated and transported. The informa-
tion in dev.wsdl completely describes the method names, pa-
rameter names, and the data types of the parameter and return val-
ues. The bindings.wsdl WSDL file imports the dev.wsdl,
making bindings.wsdl the complete WSDL description of the
sensor. For devices that generate events, bindings.wsdl in-
cludes three additional methods, and a separate Port type. Two of
these methods, void eventOn(string eventName) and
void eventOff(string eventName) are used for enabling
and disabling specific events; the other method void
setHandlerURL(string url) sets the URL to which the
events are posted. These three methods are only accessible by the
Controller while the methods defined in dev.wsdl are accessible
to applications. As described in section 4, bindings.wsdl uses
HTTP bindings with URL encodings for method calls, and XML
messages for return values. The sensor runs an HTTP server for
accessing WSDL files and for calling device methods.

Table 5 shows the RAM and ROM storage requirements for im-
plementing web services on the power sensing node, including the
storage for the WSDL files. The column labeled ‘Const’ represents
the constants stored in ROM. As the table shows, the device imple-

Module Code Data Const
(bytes) (bytes) (bytes)

Libraries 804 2 76
Hardware control 408 78 12
Radio Driver 4282 404 14
TCP/IP 2964 332 4
Web server+ XML parser 2380 54 4864

Total 10838 870 4970

Table 5: Power sensor memory usage.

mentations can easily fit inside a low-power processor such as the
MSP430. The two WSDL files dev.wsdl and bindings.wsdl
are large: 2.7kB and 1.3kB respectively. However, this is not a ma-
jor concern since they are accessed only very infrequently, for pop-
ulating the controller’s internal state as described in the following
sections.
Sensor Registrar: The registrar is responsible for registering new
devices with the controller. In our current implementation, a user
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Figure 11: Block diagram of web services implementation for sensor networks.

enters a pre-assigned device IP address and a user-friendly device
name using a GUI. Future work includes supporting DHCP-based
address assignment and exchanging a secret key for link layer se-
curity. Once a sensor is registered, the registrar accesses the device
and downloads the two WSDL files. It combines these two WSDL
files, the user-friendly name, and the device IP address into a sin-
gle XML file and uploads it to the Controller. Although currently
implemented on a PC, registrar and the controller may be imple-
mented on a device such as an 802.15.4 access point or a set-top
box.
Controller: The controller acts as the central entity that bridges
the sensor network and the client applications that wish to use the
sensors. The controller acts as an HTTP server for registering
new devices and for accessing the currently registered list of de-
vices. When a client application or a web browser, accesses the
http://Controller/index.htm, the Controller dynamically
generates an HTML page listing the currently registered sensors.
Each sensor’s listing also includes a link to a sensor WSDL descrip-
tion of the form http://Controller/wsdl/<sensorName

>.wsdl, When the sensor WSDL link is accessed, the Controller
uses the sensor’s stored WSDL files to dynamically generate a new
WSDL file with SOAP bindings, in place of the original HTTP
binding in the sensor’s bindings.wsdl.

The SOAP bindings allow additional SOAP-based functional-
ity to be supported on connections between the Controller and the
client applications. For instance, the client applications may be
running on a device connected to the home through the Internet,
and the security features of SOAP may be used for authenticating
this access. Note that the conversion of bindings does not require
sensor specific knowledge, and can be performed for old or new
sensors added to the system. This conversion also has a side effect
that some web service development tools that only support SOAP
bindings can also be used by the client application developer. When
a client application calls a sensor’s method using SOAP, the Con-
troller intercepts the SOAP message, extracts the method name and
method parameters, and sends them to the sensor using HTTP bind-
ings. If the call is successful, the controller encapsulates the XML
file returned from the sensor within a SOAP message and returns
the SOAP message to the application. If the call fails (an HTTP er-
ror message is received), the Controller returns a SOAP fault. The
Controller also implements the event subscription manager, sub-
scription database, and notification manager required for eventing
(Figure 6). When an application subscribes to a sensor event, the

Controller updates its subscription database and itself subscribes
to this event by using the sensor’s event subscription method call.
Whenever the sensor generates the event, the Controller (being also
the notification manager) distributes the event to all client applica-
tions that have subscribed to it.

The sensor may enter a low power state with its radio turned off
after receiving a threshold number of event subscription requests,
assuming some applications are using the data it generates. It will
now turn on its radio only to transmit events when generated. If
more applications wish to call any of the web service methods on
the sensor, the Controller must wait for the sensor to wake up and
then send the method call to it. Since this can have a significant
delay, client applications may benefit from using the asynchronous
mode for a sensor’s web service method calls. Our current imple-
mentation does not support this functionality yet. The Controller
can use methods such as repeated beaconing [24] to wake up sen-
sors or simply wait for the sensor to wake up at a scheduled time
for achieving this functionality.
Client Applications: The client applications are end user appli-
cations that use the sensor network through the web service in-
terfaces. They call the methods exposed by sensors using SOAP
method calls to the sensor’s web service address as provided by the
Controller-generated sensor WSDL description. Web services de-
velopment environments such as Visual Studio and NetBeans IDE
can automatically parse the WSDL description to generate a high
level language object, such as a Java object, that represents the web
service on the sensor. The application developer simply calls the
methods of this object to use the sensor. The developer only needs
to know the semantics of the sensor, such as how to use the sensor
data (for instance, temperature may be used to control the heat-
ing), but does not need to read any detailed documentation about
how the arguments required to be sent for a particular functionality
are represented in a bit sequence or what is the sequence of packet
exchanges required. The client application in our system, home
energy management, and its deployment are discussed in the next
section.

6.2 Home energy management application
As an example of an evolutionary sensor system we present a

home energy management application that uses sensors that are
typically deployed for other home sensor networking applications
such as security and medical alerts. The energy management appli-
cation adds a small number of new nodes in the existing network.



The new nodes are power sensors that provide the capability to both
measure the power drawn by the appliance plugged into it and to
power on or off that appliance. The application also includes a GUI
that lets a user manually control the power actuators or visualize the
energy usage of appliances plugged into our power sensors.
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Figure 12: The smart-socket block diagram.

The sensor platform used is our prototype shown in Figure 2.
We also built the power sensor-actuator node, denoted a “smart-
socket.” A block diagram of the smart-socket is shown in Figure 12.
The smart-socket plugs into an existing wall power socket and pro-
vides another socket to plug in the appliance. Our design supports
appliances up to 2kW which is sufficient for most typically used
lamps, home entertainment electronics, home computers and net-
work equipment, and kitchen appliances. The measurement and vi-
sualization of power consumption is known to be useful for saving
energy [23] the smart-socket may be used in an energy visualiza-
tion system to help users reduce their carbon footprint. Our home
energy management application goes one step further and uses the
smart-sockets in conjunction with other sensors in the home to au-
tomatically reduce energy usage.

We deployed the power and motion sensors in a volunteer fam-
ily’s home for a period of 12 days. Smart-sockets were deployed
on most-used entertainment electronics and lamps. To represent the
evolutionary deployment, we assumed that a medical alert applica-
tion has already deployed motion sensors in the home (we built
these by interfacing an off-the-shelf motion sensor [22] to a Te-
los mote). Motion sensors were deployed in the living area, study
room, and each bedroom. To represent the sensors deployed as part
of the security system, we obtained the data from the same home’s
security system. This system had an on-line interface exposed by
its monitoring company’s website that allows downloading secu-
rity sensor data. Sample traces from a motion sensor in the living
area, the main door security sensor, and a smart-socket connected
to a dim-able lamp are shown in Figure 13. The time axis details
are omitted to protect the volunteer family’s privacy. The home en-
ergy management application uses the data from multiple sensors
to determine whether the home is occupied, and which room is the
one occupied. This information can be used to save energy spent
on heating, home electronics, and lighting by turning off devices
when not required.

Energy Savings: To illustrate the usefulness of the evolutionary
approach, we use the motion activity to control the heating. The en-
ergy savings achieved by the evolutionary application are shown in
Figure 14. Total reduction in heating energy was 7.2%3. Energy is
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Figure 13: Test case: sample data from a deployed home energy

management system.
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Figure 14: Savings achieved by adding an energy management

application to a home sensor system.

saved by setting the desired temperature to a lower value when the
home is not occupied. The algorithm aggregates the motion output
from all motion sensors to determine home occupancy status and
sets the indoor temperature to a lower value. Since the furnace in
the deployment home was not interfaced to our sensor network we
experimentally measured the home’s heat loss model 4 and the heat-
ing furnace energy usage. The energy savings were then computed

3The monthly gas consumption was 90.8 therms and these savings
with the local energy price convert to USD 8.44 per month.
4Heat loss over time duration ∆t, denoted Qloss(∆t), is propor-



based on these models. While for illustrative purposes, we used a
simple algorithm that infers only home occupancy from sensor data
to save energy, more sophisticated energy management algorithms
may be designed that use the sensor inputs to control the heating
by individual zone within the home, and control energy usage other
than for heating. The design of the energy saving algorithm and the
details of the illustrative algorithm used are beyond the scope of
this paper.

7. DISCUSSIONS
Our design space exploration and prototype implementation dem-

onstrated how structured data and programmatic specification of
functionality can be enabled in resource-constrained sensor nodes.
For a range of usage scenarios, the battery lifetime impact is very
acceptable, and the increase in communication latency is only a
few tens of milliseconds. For instance, when transmitting a 40 byte
message every 10 minutes, the battery lifetime impact was esti-
mated as 10.84% with a 23.09ms increase in response time for mes-
sage exchanges. We also saw that many optimizations can be made
that make the implementation of web services on sensor nodes
to be very efficient in terms of processing complexity and mem-
ory sizes required. For instance, we greatly simplified the XML
parser by exploiting the fact that the sensor node is only required
to respond to messages specified in its own WSDL description, re-
ducing the entire stack containing the web service, HTTP server,
TCP/IP, 802.15.4 radio driver, and related libraries to a very com-
pact 15.8kB. While web services are traditionally used for always-
on systems, we showed how sleep modes could be used when battery-
powered sensor nodes host the web service. Thus, with appropriate
design and implementation decisions, web services become feasi-
ble on resource-constrained sensor nodes and enable the deploy-
ment of evolutionary sensor networks that can be used by multiple
applications.

The web service approach is designed for end-user applications
to access sensor nodes. It does not change the need to develop
efficient programs on the sensor nodes, and tools such as [26, 15]
are required for that purpose. Acquisition and processing of data on
the sensor node is performed as before. They key change is that the
message interface exposed to external applications uses structured
data and WSDL descriptions.

While our explorations address many of the design challenges in
realizing the benefits of web services in sensor networks, further
issues remain.

Sleep modes: A key design characteristic of battery-powered
sensor networks is that the nodes must enter disconnected sleep
modes. This affects the operation of TCP/IP and web service in-
teraction. We showed that using eventing and persistent TCP helps
support the sleep modes. However, further work is needed to ensure
that all network layer message exchanges, such as for network man-
agement, and interactive web service data transfers are designed
considering the sleep mode. For instance, the gateway connecting
the 802.15.4 network to the Internet could buffer packets destined
to sleeping nodes and have mechanisms to send wake-up messages,
possibly at the link layer. Applications may use the web method
calls in an asynchronous manner.

Mesh overheads: We presented our evaluations without consid-
ering the multi-hop networking overheads. With multi-hop connec-

tional to the difference between interior and exterior temperature:

Qloss(∆t) = α ∗ ∆t ∗ (Tin − Tout)

where α was experimentally estimated by measuring interior tem-
perature Tin and exterior temperature Tout, for multiple values of
∆t, with the furnace turned off.

tions, each hop in the communication will also have node wake-up,
route maintenance, and MAC layer congestion overheads. All these
overheads will affect both a barebone message protocol with small
message sizes as well as our structured data format. Evaluating the
exact proportion of the overhead needs further experimentation.

Security: It is also necessary to ensure that mechanisms to pro-
vide message privacy work correctly with the web service approach.
A shared-key security architecture, where each sensor shares its
unique key with the gateway can be used for message encryption.
When unique shared keys are used in a multi-hop network, one
must ensure that the intermediate nodes can read the parts of the
message that contain addressing information; similarly, the 6low-
pan header should not be encrypted so that the 6lowpan message
can be converted to an equivalent IPv6 packet without having to
decrypt the entire message. The CC2420 provides 128-bit AES en-
cryption in hardware. The portion of the 802.15.4 packet to be en-
crypted can be specified, thus enabling access to routing and 6low-
pan header information at intermediate sensors without giving ac-
cess to data. CC2420 also enables automatic nonce generation and
verification for protection against replay attacks. Shared-key en-
cryption needs a mechanism to establish the shared secret between
a sensor and the gateway. One solution is to generate the key at
the gateway, and then communicate it to the sensor using a limited-
range communication link that lasts only for a short duration. The
spatial and temporal proximity of the sensor and the gateway re-
duces the risk of an eavesdropper getting the key. Another solution
is to manually exchange a short key between the sensor and the
gateway, and use this short key to establish a stronger key [4].
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S. Karnouskos, and D. Savio. SOCRADES: A Web Service
based Shop Floor Integration Infrastructure. In IOT, volume
4952 of Lecture Notes in Computer Science. Springer, 2008.

[9] A. Deshpande, S. Nath, P. B. Gibbons, and S. Seshan.
Cache-and-query for wide area sensor databases. In
SIGMOD ’03 : Proceedings of the 2003 ACM SIGMOD

international conference on Management of data.

[10] A. Dunkels. Full TCP/IP for 8-bit architectures. In MobiSys

’03: Proceedings of the 1st international conference on



Mobile systems, applications and services, pages 85–98,
New York, NY, USA, 2003. ACM.

[11] A. Dunkels, J. Alonso, and T. Voigt. Making TCP/IP viable
for wireless sensor networks. In Work-in-Progress Session of

the first European Workshop on Wireless Sensor Networks

(EWSN), 2004.

[12] Energy Star. http://www.energystar.gov/.

[13] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext transfer protocol –
http/1.1. http://www.w3.org/Protocols/rfc2616/rfc2616.html.
IETF RFC 2616.

[14] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau,
H. Nielsen, A. Karmarkar, and Y. Lafon. SOAP Version 1.2
Part 1 : Messaging Framework (Second Edition).
http://www.w3.org/TR/soap12-part1/. W3C
Recommendation.

[15] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava.
A dynamic operating system for sensor nodes. In ACM

MobiSys, pages 163–176, 2005.

[16] J. Helander. Deeply embedded xml communication: towards
an interoperable and seamless world. In EMSOFT ’05 :

Proceedings of the 5th ACM international conference on

Embedded software, pages 62–67, 2005.

[17] J. Helander and Y. Xiong. Secure web services for low-cost
devices. In ISORC ’05 : Proceedings of the Eighth IEEE

International Symposium on Object-Oriented Real-Time

Distributed Computing.

[18] Energy information administration: Residential energy
consumption survey 2001.
http://www.eia.doe.gov/emeu/recs/recs2001/detailcetbls.html.
Official Energy Statistics from the US Government.

[19] J. Lifton, M. Feldmeier, Y. Ono, C. Lewis, and J. A.
Paradiso. A platform for ubiquitous sensor deployment in
occupational and domestic environments. In ACM/IEEE

IPSN, pages 119–127, New York, NY, USA, 2007. ACM.

[20] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and
J. Anderson. Wireless sensor networks for habitat
monitoring. In First ACM Workshop on Wireless Sensor

Networks and Applications, Atlanta, GA, USA, September
2002.

[21] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler.
Transmission of IPv6 packets over IEEE 802.15.4 networks.
http://www.ietf.org/rfc/rfc4944.txt. IETF RFC 4944.

[22] Parallax. PIR sensor 555-28027. http://www.parallax.com.

[23] J. E. Petersen, V. Shunturov, K. Janda, G. Platt, and
K. Weinberger. Dormitory residents reduce electricity
consumption when exposed to real-time visual feedback and
incentives. International Journal of Sustainability in Higher

Education, 8(1):16 – 33, 2007.

[24] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava.
Optimizing sensor networks in the energy-density-latency
design space. IEEE Transactions on Mobile Computing

(TMC), pages 70– 80, January-March 2002.

[25] W. Simpson. The point-to-point protocol (PPP).
http://tools.ietf.org/html/rfc1661. IETF RFC 1661.

[26] Tinyos: a component based os for the networked sensor
regime. http://webs.cs.berkeley.edu/tos/.

[27] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and
M. Welsh. Fidelity and yield in a volcano monitoring sensor
network. In 7th USENIX Symposium on Operating Systems

Design and Implementation (OSDI), November 2006.

[28] D. Box et al. web services eventing (ws-eventing).
http://www.w3.org/Submission/WS-Eventing/. W3C
Member Submission.

[29] SensorML parser and processing engine.
”http://vast.uah.edu/SensorML/”’.

[30] ZigBee alliance. http://www.zigbee.org/.


