
TinyDB: An Acquisitional Query Processing

System for Sensor Networks1

SAMUEL R. MADDEN

Massachusetts Institute of Technology

and

MICHAEL J. FRANKLIN and JOSEPH M. HELLERSTEIN

UC Berkeley

and

WEI HONG

Intel Research, Berkeley

General Terms: Experimentation,Performance

Additional Key Words and Phrases: Query Processing, Sensor Networks, Data Acquisition

1. INTRODUCTION

In the past few years, smart sensor devices have matured to the point that it is now feasible

to deploy large, distributed networks of such devices [Pottie and Kaiser 2000; Hill et al.

2000; Mainwaring et al. 2002; Cerpa et al. 2001]. Sensor networks are differentiated from

other wireless, battery-powered environments in that they consist of tens or hundreds of

autonomous nodes that operate without human interaction (e.g.,configuration of network

routes, recharging of batteries, or tuning of parameters) for weeks or months at a time.

Furthermore, sensor networks are often embedded into some (possibly remote) physical

environment from which they must monitor and collect data. The long-term, low-power

nature of sensor networks, coupled with their proximity to physical phenomena, leads to

a significantly altered view of software systems compared to more traditional mobile or

distributed environments.

In this article, we are concerned with query processing in sensor networks. Researchers

have noted the benefits of a query processor-like interface to sensor networks and the need

for sensitivity to limited power and computational resources [Intanagonwiwat et al. 2000;

Madden and Franklin 2002; P.Bonnet et al. 2001; Yao and Gehrke 2002; Madden et al.

2002]. Prior systems, however, tend to view query processing in sensor networks simply

as a power-constrained version of traditional query processing: given some set of data, they

1This is a preliminary release of an article accepted by ACM Transactions on Database Systems. The definitive

version is currently in production at ACM and, when released, will supersede this version.

Copyright 2004 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of

part or all of this work for personal or classroom use is granted without fee provided that copies are not made

or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first

page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, to republish, to Post on servers, or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481,

or permissions@acm.org.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 · Samuel Madden et al.

strive to process that data as energy-efficiently as possible. Typical strategies include min-

imizing expensive communication by applying aggregation and filtering operations inside

the sensor network – strategies that are similar to push-down techniques from distributed

query processing that emphasize moving queries to data.

In contrast, we advocate acquisitional query processing (ACQP), where we focus not

only on traditional techniques but also on the significant new query processing opportunity

that arises in sensor networks: the fact that smart sensors have control over where, when,

and how often data is physically acquired (i.e.,sampled) and delivered to query processing

operators. By focusing on the locations and costs of acquiring data, we are able to signifi-

cantly reduce power consumption compared to traditional passive systems that assume the

a priori existence of data. Acquisitional issues arise at all levels of query processing: in

query optimization, due to the significant costs of sampling sensors; in query dissemina-

tion, due to the physical co-location of sampling and processing; and, most importantly, in

query execution, where choices of when to sample and which samples to process are made.

We will see how techniques proposed in other research on sensor and power-constrained

query processing, such as pushing down predicates and minimizing communication are

also important alongside ACQP and fit comfortably within its model.

We have designed and implemented a query processor for sensor networks that incor-

porates acquisitional techniques called TinyDB (for more information on TinyDB, see the

TinyDB Home Page [Madden et al. 2003]). TinyDB is a distributed query processor that

runs on each of the nodes in a sensor network. TinyDB runs on the Berkeley mote plat-

form, on top of the TinyOS [Hill et al. 2000] operating system. We chose this platform

because the hardware is readily available from commercial sources [Crossbow, Inc.] and

the operating system is relatively mature. TinyDB has many of the features of a traditional

query processor (e.g.,the ability to select, join, project, and aggregate data), but, as we will

discuss in this paper, also incorporates a number of other features designed to minimize

power consumption via acquisitional techniques. These techniques, taken in aggregate,

can lead to orders of magnitude improvements in power consumption and increased accu-

racy of query results over non-acquisitional systems that do not actively control when and

where data is collected.

We address a number of questions related to query processing on sensor networks, fo-

cusing in particular on ACQP issues such as:

(1) When should samples for a particular query be taken?

(2) What sensor nodes have data relevant to a particular query?

(3) In what order should samples for this query be taken, and how should sampling be

interleaved with other operations?

(4) Is it worth expending computational power or bandwidth to process and relay a par-

ticular sample?

Of these issues, question (1) is uniquely acquisitional. We show how the remaining

questions can be answered by adapting techniques that are similar to those found in tradi-

tional query processing. Notions of indexing and optimization, in particular, can be applied

to answer questions (2) and (3), and question (4) bears some similarity to issues that arise

in stream processing and approximate query answering. We will address each of these

questions, noting the unusual kinds of indices, optimizations, and approximations that are

required under the specific constraints posed by sensor networks.

Figure 1 illustrates the basic architecture that we follow throughout this paper – queries

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Acquisitional Query Processing In Sensor Networks · 3

are submitted at a powered PC (the basestation), parsed, optimized and sent into the sensor

network, where they are disseminated and processed, with results flowing back up the

routing tree that was formed as the queries propagated. After a brief introduction to sensor

networks in Section 2, the remainder of the paper discusses each of these phases of ACQP:

Section 3 covers our query language, Section 4 highlights optimization issues in power-

sensitive environments, Section 5 discusses query dissemination, and finally, Section 6

discusses our adaptive, power-sensitive model for query execution and result collection.

SELECT nodeid, light

FROM SENSORS

OPS

NULL

FIELDS

nodeid

light

Query PC

Mote

Result

1 28

2 55

3 48

Result

3 48

Result

2 55

Result

1 28

2 55

3 48

Fig. 1. A query and results propagating through the network.

2. SENSOR NETWORK OVERVIEW

We begin with an overview of some recent sensor network deployments, and then discuss

properties of sensor nodes and sensor networks in general, providing specific numbers

from our experience with TinyOS motes when possible.

A number of recent deployments of sensors have been undertaken by the sensor network

research community for environmental monitoring purposes: on Great Duck Island [Main-

waring et al. 2002], off the coast of Maine, at James Reserve [Cerpa et al. 2001], in South-

ern California, at a vineyard in British Columbia [Brooke and Burrell 2003], and in the

Coastal Redwood Forests of California [Madden 2003]. In these scenarios, motes collect

light, temperature, humidity, and other environmental properties. On Great Duck Island,

during the Summer of 2003, about 200 motes were placed in and around the burrows of

Storm Petrels, a kind of endangered sea bird. Scientists used them to monitor burrow oc-

cupancy and the conditions surrounding burrows that are correlated with birds coming or

going. Other notable deployments that are underway include a network for earthquake

monitoring [UC Berkeley 2001] and a network for building infrastructure monitoring and

control [Lin et al. 2002]2.

2Even in indoor infrastructure monitoring settings, there is great interest in battery powered devices, as running

power wire can cost many dollars per device.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

4 · Samuel Madden et al.

Each of these scenarios involves a large number of devices that need to last as long

as possible with little or no human intervention. Placing new devices, or replacing or

recharging batteries of devices in bird nests, earthquake test sites, and heating and cooling

ducts is time consuming and expensive. Aside from the obvious advantages that a simple,

declarative language provides over hand-coded, embedded C, researchers are particularly

interested in TinyDB’s ability to acquire and deliver desired data while conserving as much

power as possible and satisfying desired lifetime goals.

We have deployed TinyDB in the redwood monitoring project [Madden 2003] described

above, and are in the process of deploying it in Intel fabrication plants to collect vibration

signals that can be used for early detection of equipment failures. Early deployments have

been quite successful, producing months of lifetime from tiny batteries with about 1/2 the

capacity of a single AA cell.

2.1 Properties of Sensor Devices

A sensor node is a battery-powered, wireless computer. Typically, these nodes are phys-

ically small (a few cubic centimeters) and extremely low power (a few tens of milliwatts

versus tens of watts for a typical laptop computer)3. Power is of utmost importance. If used

naively, individual nodes will deplete their energy supplies in only a few days4. In contrast,

if sensor nodes are very spartan about power consumption, months or years of lifetime are

possible. Mica motes, for example, when operating at 2% duty cycle (between active and

sleep modes) can achieve lifetimes in the 6 month range on a pair of AA batteries. This

duty cycle limits the active time to 1.2 seconds per minute.

There have been several generations of motes produced. Older, Mica motes have a 4

Mhz, 8 bit Atmel microprocessor. Their RFM TR1000 [RFM Corporation] radios run at

40 Kbits/second over a single shared CSMA/CA (carrier-sense multiple-access, collision

avoidance) channel. Newer Mica2 nodes use a 7 Mhz processor and a radio from Chip-

Con [ChipCon Corporation] which runs at 38.4 Kbits/sec. Radio messages are variable

size. Typically about 20 50-byte messages (the default size in TinyDB) can be delivered

per second. Like all wireless radios (but unlike a shared EtherNet, which uses the colli-

sion detection (CD) variant of CSMA), both the RFM and ChipCon radios are half-duplex,

which means that they cannot detect collisions because they cannot listen to their own traf-

fic. Instead, they try to avoid collisions by listening to the channel before transmitting and

backing off for a random time period when it is in use. A third mote, called the Mica2Dot,

has similar hardware as the Mica2 mote, but uses a slower, 4 Mhz, processor. A picture of

a Mica and Mica2Dot mote are shown in Figure 2. Mica motes are visually very similar to

Mica2 motes and are exactly the same form factor.

Motes have an external 32kHz clock that the TinyOS operating system can synchronize

with neighboring motes to approximately +/- 1 ms. Time synchronization is important in

a variety of contexts; for example: to ensure that readings can be correlated, to schedule

communication, or to coordinate the waking and sleeping of devices.

3Recall that 1 Watt (a unit of power) corresponds to power consumption of 1 Joule (a unit of energy) per second.

We sometimes refer to the current load of a device, because current is easy to measure directly; note that power

(in Watts) = current (in Amps) * voltage (in Volts), and that motes run at 3V.
4At full power, a Berkeley Mica mote (see Figure 2) draws about 15 mA of current. A pair of AA batter-

ies provides approximately 2200 mAh of energy. Thus, the lifetime of a Mica2 mote will be approximately

2200/15 = 146 hours, or 6 days.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Acquisitional Query Processing In Sensor Networks · 5

MICA MOTE

SENSOR BOARD

51 Pin Connector

Processor

Antenna

MICA2DOT MOTE

Processor and Radio

Sensor Board

Battery and Power Board

Fig. 2. Annotated Motes

2.1.1 Power Consumption in Sensor Networks. Power consumption in sensor nodes

can be roughly decomposed into phases, which we illustrate in Figure 3 via an annotated

capture of an oscilloscope display showing current draw (which is proportional to power

consumption) on a Mica mote running TinyDB. In “Snoozing” mode, where the node

spends most of its time, the processor and radio are idle, waiting for a timer to expire or

external event to wake the device. When the device wakes it enters the “Processing” mode,

which consumes an order of magnitude more power than snooze mode, and where query

results are generated locally. The mote then switches to a “Processing and Receiving”

mode, where results are collected from neighbors over the radio. Finally, in the “Transmit-

ting” mode, results for the query are delivered by the local mote – the noisy signal during

this period reflects switching as the receiver goes off and the transmitter comes on and then

cycles back to a receiver-on, transmitter-off state.

Theses oscilloscope measurements do not distinguish how power is used during the

active phase of processing. To explore this breakdown, we conducted an analytical study

of the power utilization of major elements of sensor network query processing; the results

of this study are given in Appendix A. In short, we found that in a typical data collection

scenario, with relatively power-hungry sensing hardware, about 41% of energy goes to

communicating or running the CPU while communicating, with another 58% going to

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 0.5 1 1.5 2 2.5 3

C
u

rr
e

n
t

(m
A

)

Time (seconds)

Time v. Current Draw In Different Phases of Query Processing

Transmitting

Processing
 and

 Listening

Processing

Snoozing

Fig. 3. Phases of Power Consumption In TinyDB

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

6 · Samuel Madden et al.

the sensors or to the CPU while sensing. The remaining 1% goes to idle-time energy

consumption.

2.2 TinyOS

TinyOS consists of a set of components for managing and accessing the mote hardware,

and a “C-like” programming language called nesC. TinyOS has been ported to a variety

of hardware platforms, including UC Berkeley’s Rene, Dot, Mica, Mica2, and Mica2Dot

motes, the Blue Mote from Dust Inc. [Dust Inc.], the MIT Cricket [Priyantha et al. 2000].

The major features of TinyOS are:

(1) A suite of software designed to simplify access to the lowest levels of hardware in an

energy-efficient and contention-free way, and

(2) A programming model and the nesC language designed to promote extensibility and

composition of software while maintaining a high degree of concurrency and energy

efficiency. Interested readers should refer to [Gay et al. 2003].

It is interesting to note that TinyOS does not provide the traditional operating system fea-

tures of process isolation or scheduling (there is only one application running at time), and

does not have a kernel, protection domains, memory manager, or multi-threading. Indeed,

in many ways, TinyOS is simply a library that provides a number of convenient software

abstractions, including components to modulate packets over the radio, read sensor values

for different sensor hardware, synchronize clocks between a sender and receiver, and put

the hardware into a low-power state.

Thus, TinyOS and nesC provide a useful set of abstractions on top of the bare hardware.

Unfortunately, they do not make it particularly easy to author software for the kinds of data

collection applications considered in the beginning of Section 2. For example, the initial

deployment of the Great Duck Island software, where the only behavior was to periodically

broadcast readings from the same set of sensors over a single radio hop, consisted of more

than 1,000 lines of embedded C code, excluding any of the custom software components

written to integrate the new kinds of sensing hardware used in the deployment. Features

such as reconfigurability, in-network processing, and multihop routing, which are needed

for long-term, energy-efficient deployments, would require thousands of lines of additional

code.

Sensor networks will never be widely adopted if every application requires this level of

engineering effort. The declarative model we advocate reduces these applications to a few

short statements in a simple language; the acquisitional techniques discussed allow these

queries to be executed efficiently. 5

2.3 Communication in Sensor Networks

Typical communication distances for low power wireless radios such as those used in motes

and Bluetooth devices range from a few feet to around 100 feet, depending on transmis-

sion power and environmental conditions. Such short ranges mean that almost all real

deployments must make use of multi-hop communication, where intermediate nodes relay

information for their peers. On Mica motes, all communication is broadcast. The oper-

5The implementation of TinyDB consists of about 20,000 lines of C code, approximately 10,000 of which are for

the low-level drivers to acquire and condition readings from sensors – none of which is the end-user is expected

to have to modify or even look at. Compiled, this uses 58K of the 128K of available code space on current

generations Motes.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Acquisitional Query Processing In Sensor Networks · 7

ating system provides a software filter so that messages can be addressed to a particular

node, though if neighbors are awake, they can still snoop on such messages (at no addi-

tional energy cost since they have already transferred the decoded message from the air.)

Nodes receive per-message, link-level acknowledgments indicating whether a message was

received by the intended neighbor node. No end-to-end acknowledgments are provided.

The requirement that sensor networks be low maintenance and easy to deploy means that

communication topologies must be automatically discovered (i.e.,ad-hoc) by the devices

rather than fixed at the time of network deployment. Typically, devices keep a short list

of neighbors who they have heard transmit recently, as well as some routing information

about the connectivity of those neighbors to the rest of the network. To assist in making

intelligent routing decisions, nodes associate a link quality with each of their neighbors.

We describe the process of disseminating queries and collecting results in Section 5 be-

low. As a basic primitive in these protocols, we use a routing tree that allows a basestation

at the root of the network to disseminate a query and collect query results. This routing

tree is formed by forwarding a routing request (a query in TinyDB) from every node in

the network: the root sends a request, all child nodes that hear this request process it and

forward it on to their children, and so on, until the entire network has heard the request.

Each request contains a hop-count, or level indicating the distance from the broadcaster

to the root. To determine their own level, nodes pick a parent node that is (by definition)

one level closer to the root than they are. This parent will be responsible for forwarding

the node’s (and its children’s) query results to the basestation. We note that it is possible

to have several routing trees if nodes keep track of multiple parents. This can be used

to support several simultaneous queries with different roots. This type of communication

topology is common within the sensor network community [Woo and Culler 2001].

3. ACQUISITIONAL QUERY LANGUAGE

In this section, we introduce our query language for ACQP focusing on issues related

to when and how often samples are acquired. Appendix B gives a complete syntactic

specification of the language; here, we rely primarily on example queries to illustrate the

different language features.

3.1 Data Model

In TinyDB, sensor tuples belong to a table sensors which, logically, has one row per

node per instant in time, with one column per attribute (e.g.,, light, temperature, etc.) that

the device can produce. In the spirit of acquisitional processing, records in this table are

materialized (i.e., acquired) only as needed to satisfy the query, and are usually stored

only for a short period of time or delivered directly out of the network. Projections and/or

transformations of tuples form the sensors table may be stored in materialization points

(discussed below).

Although we impose the same schema on the data produced by every device in the

network, we allow for the possibility of certain devices lacking certain physical sensors

by allowing nodes to insert NULLs for attributes corresponding to missing sensors. Thus,

devices missing sensors requested in a query will produce data for that query anyway,

unless NULLs are explicitly filtered out in the WHERE clause.

Physically, the sensors table is partitioned across all of the devices in the network,

with each device producing and storing its own readings. Thus, in TinyDB, to compare

readings from different sensors, those readings must be collected at some common node,

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

8 · Samuel Madden et al.

e.g.,the root of the network.

3.2 Basic Language Features

Queries in TinyDB, as in SQL, consist of a SELECT-FROM-WHERE-GROUPBY clause

supporting selection, join, projection, and aggregation.

The semantics of SELECT, FROM, WHERE, and GROUP BY clauses are as in

SQL. The FROM clause may refer to both the sensors table as well as stored tables, which

we call materialization points. Materialization points are created through special logging

queries, which we describe below. They provide basic support for sub-queries and win-

dowed stream operations.

Tuples are produced at well-defined sample intervals that are a parameter of the query.

The period of time between the start of each sample period is known as an epoch. Epochs

provide a convenient mechanism for structuring computation to minimize power consump-

tion. Consider the query:

SELECT nodeid, light, temp
FROM sensors
SAMPLE PERIOD 1s FOR 10s

This query specifies that each device should report its own id, light, and temperature

readings (contained in the virtual table sensors) once per second for 10 seconds. Results

of this query stream to the root of the network in an online fashion, via the multi-hop

topology, where they may be logged or output to the user. The output consists of a stream

of tuples, clustered into 1s time intervals. Each tuple includes a time stamp corresponding

to the time it was produced.

Nodes initiate data collection at the beginning of each epoch, as specified in the SAMPLE
PERIOD clause. Nodes in TinyDB run a simple time synchronization protocol to agree on

a global time base that allows them to start and end each epoch at the same time6.

When a query is issued in TinyDB, it is assigned an identifier (id) that is returned to the

issuer. This identifier can be used to explicitly stop a query via a “STOP QUERY id”

command. Alternatively, queries can be limited to run for a specific time period via a FOR
clause (shown above,) or can include a stopping condition as an event (see below.)

Note that because the sensors table is an unbounded, continuous data stream of val-

ues, certain blocking operations (such as sort and symmetric join) are not allowed over

such streams unless a bounded subset of the stream, or window, is specified. Windows in

TinyDB are defined via materialization points over the sensor streams. Such materializa-

tion points accumulate a small buffer of data that may be used in other queries. Consider,

as an example:

CREATE
STORAGE POINT recentlight SIZE 8
AS (SELECT nodeid, light FROM sensors
SAMPLE PERIOD 10s)

This statement provides a local (i.e.,single-node) location to store a streaming view of

recent data similar to materialization points in other streaming systems like Aurora, Tele-

graphCQ, or STREAM [Carney et al. 2002; Chandrasekaran et al. 2003; Motwani et al.

2003], or materialized views in conventional databases. Multiple queries may read a ma-

6We use a time-synchronization protocol that is quite similar to the one described in work by [Ganeriwal et al.

2003]; typical time synchronization error in TinyDB is about 10ms.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Acquisitional Query Processing In Sensor Networks · 9

terialization point.

Joins are allowed between two storage points on the same node, or between a storage

point and the sensors relation, in which case sensors is used as the outer relation in

a nested-loops join. That is, when a sensors tuple arrives, it is joined with tuples in the

storage point at its time of arrival. This is effectively a landmark query [Gehrke et al. 2001]

common in streaming systems. Consider, as an example:

SELECT COUNT(*)
FROM sensors AS s, recentLight AS rl
WHERE rl.nodeid = s.nodeid
AND s.light < rl.light
SAMPLE PERIOD 10s

This query outputs a stream of counts indicating the number of recent light readings

(from 0 to 8 samples in the past) that were brighter than the current reading. In the event

that a storage point and an outer query deliver data at different rates, a simple rate match-

ing construct is provided that allows interpolation between successive samples (if the outer

query is faster), via the LINEAR INTERPOLATE clause shown in Appendix B. Alterna-

tively, if the inner query is faster, the user may specify an aggregation function to combine

multiple rows via the COMBINE clause shown in Appendix B.

3.3 Aggregation Queries

TinyDB also includes support for grouped aggregation queries. Aggregation has the at-

tractive property that it reduces the quantity of data that must be transmitted through the

network; other sensor network research has noted that aggregation is perhaps the most

common operation in the domain ([Intanagonwiwat et al. 2000; Yao and Gehrke 2002]).

TinyDB includes a mechanism for user-defined aggregates and a metadata management

system that supports optimizations over them, which we discuss in Section 4.1.

The basic approach of aggregate query processing in TinyDB is as follows: as data

from an aggregation query flows up the tree, it is aggregated in-network according to the

aggregation function and value-based partitioning specified in the query.

3.3.1 Aggregate Query Syntax and Semantics. Consider a user who wishes to monitor

the occupancy of the conference rooms on a particular floor of a building. She chooses to

do this by using microphone sensors attached to motes, and looking for rooms where the

average volume is over some threshold (assuming that rooms can have multiple sensors).

Her query could be expressed as:

SELECT AVG(volume),room FROM sensors
WHERE floor = 6
GROUP BY room
HAVING AVG(volume) > threshold
SAMPLE PERIOD 30s

This query partitions motes on the 6th floor according to the room where they are located

(which may be a hard-coded constant in each device, or may be determined via some

localization component available to the devices.) The query then reports all rooms where

the average volume is over a specified threshold. Updates are delivered every 30 seconds.

The query runs until the user deregisters it from the system. As in our earlier discussion of

TinyDB’s query language, except for the SAMPLE PERIOD clause, the semantics of this

statement are similar to SQL aggregate queries.

Recall that the primary semantic difference between TinyDB queries and SQL queries

is that the output of a TinyDB query is a stream of values, rather than a single aggregate

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

10 · Samuel Madden et al.

value (or batched result). For these streaming queries, each aggregate record consists of

one <group id,aggregate value> pair per group. Each group is time-stamped with an

epoch number and the readings used to compute an aggregate record all belong to the same

the same epoch.

3.3.2 Structure of Aggregates. TinyDB structures aggregates similarly to shared-

nothing parallel database engines (e.g.,, [Bancilhon et al. 1987; Dewitt et al. 1990; Shatdal

and Naughton 1995]). The approach used in such systems (and followed in TinyDB) is to

implement agg via three functions: a merging functionf , an initializer i, and an evaluator,

e. In general, f has the following structure:

< z >= f(< x >, < y >)

where < x > and < y > are multi-valued partial state records, computed over one or more

sensor values, representing the intermediate state over those values that will be required to

compute an aggregate. < z > is the partial-state record resulting from the application of

function f to < x > and < y >. For example, if f is the merging function for AVERAGE,

each partial state record will consist of a pair of values: SUM and COUNT, and f is specified

as follows, given two state records < S1, C1 > and < S2, C2 >:

f(< S1, C1 >, < S2, C2 >) =< S1 + S2, C1 + C2 >

The initializer i is needed to specify how to instantiate a state record for a single sensor

value; for an AVERAGE over a sensor value of x, the initializer i(x) returns the tuple

< x, 1 >. Finally, the evaluator e takes a partial state record and computes the actual value

of the aggregate. For AVERAGE, the evaluator e(< S,C >) simply returns S/C.

These three functions can easily be derived for the basic SQL aggregates; in general, the

only constraint is that the merging function be commutative and associative.

TinyDB includes a simple facility for allowing programmers to extend the system with

new aggregates by authoring software modules that implement these three functions.

3.4 Temporal Aggregates

In addition to aggregates over values produced during the same sample interval (for an

example, as in the COUNT query above), users want to be able to perform temporal op-

erations. For example, in a building monitoring system for conference rooms, users may

detect occupancy by measuring maximum sound volume over time and reporting that vol-

ume periodically; for example, the query:

SELECT WINAVG(volume, 30s, 5s)
FROM sensors
SAMPLE PERIOD 1s

will report the average volume over the last 30 seconds once every 5 seconds, sampling

once per second. This is an example of a sliding-window query common in many stream-

ing systems [Motwani et al. 2003; Chandrasekaran et al. 2003; Gehrke et al. 2001]. We

note that the same semantics are available by running an aggregate query with SAMPLE
PERIOD 5s over a 30s materialization point; temporal aggregates simply provide a more

concise way of expressing these common operations.

3.5 Event-Based Queries

As a variation on the continuous, polling based mechanisms for data acquisition, TinyDB

supports events as a mechanism for initiating data collection. Events in TinyDB are gen-

erated explicitly, either by another query or by a lower-level part of the operating system

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Acquisitional Query Processing In Sensor Networks · 11

(in which case the code that generates the event must have been compiled into the sensor

node7) For example, the query:

ON EVENT bird-detect(loc):
SELECT AVG(light), AVG(temp), event.loc
FROM sensors AS s
WHERE dist(s.loc, event.loc) < 10m
SAMPLE PERIOD 2 s FOR 30 s

could be used to report the average light and temperature level at sensors near a bird

nest where a bird has just been detected. Every time a bird-detect event occurs, the

query is issued from the detecting node and the average light and temperature are collected

from nearby nodes once every 2 seconds for 30 seconds. In this case, we expect that

bird-detection is done via some low-level operating system facility – e.g.,a switch that is

triggered when a bird enters its nest.

Such events are central in ACQP, as they allow the system to be dormant until some

external conditions occurs, instead of continually polling or blocking on an iterator waiting

for some data to arrive. Since most microprocessors include external interrupt lines than

can wake a sleeping device to begin processing, events can provide significant reductions

in power consumption, shown in Figure 4.

This figure shows an oscilloscope plot of current draw from a device running an event-

based query triggered by toggling a switch connected to an external interrupt line that

causes the device to wake from sleep. Compare this to plot at the bottom of Figure 4, which

shows an event-based query triggered by a second query that polls for some condition to

be true. Obviously, the situation in the top plot is vastly preferable, as much less energy

is spent polling. TinyDB supports such externally triggered queries via events, and such

support is integral to its ability to provide low power processing.

 0

 5

 10

 15

 20

 25

 30

 35

C
u

rr
e

n
t

(m
A

)

Time v. Current Draw

Event Based Trigger

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40

C
u

rr
e

n
t

(m
A

)

Time (s)

Polling Based Trigger

Fig. 4. External interrupt driven event-based query (top) vs. Polling driven event-based query (bottom).

Events can also serve as stopping conditions for queries. Appending a clause of

the form STOP ON EVENT(param) WHERE cond(param) will stop a continuous

7TinyDB provides a special API for generating events; it is described in the TinyOS/TinyDB distribution as a part

of the TinySchema package. As far as TinyDB is concerned. This API allows TinyDB to treat OS-defined events

as black-boxes that occur at any time; for example, events may periodically sample sensors using low-level OS

APIs (instead of TinyDB) to determine if some condition is true.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

12 · Samuel Madden et al.

query when the specified event arrives and the condition holds.

Besides the low-level API which can be used to allow software components to signal

events (such as the bird-detect event above), queries may also signal events. For

example, suppose we wanted to signal an event whenever the temperature went above

some threshold; we can write the following query:

SELECT nodeid,temp
WHERE temp > thresh
OUTPUT ACTION SIGNAL hot(nodeid,temp)
SAMPLE PERIOD 10s

Clearly, we lose the power-saving advantages of having an event fired directly in re-

sponse to a low-level interrupt, but we still retain the programmatic advantages of linking

queries to the signaling of events. We describe the OUTPUT ACTION clause in more

detail in Section 3.7 below.

In the current implementation of TinyDB, events are only signaled on the local node –

we do not currently provide a fully distributed event propagation system. Note, however,

that queries started in response to a local event may be disseminated to other nodes (as in

the example above).

3.6 Lifetime-Based Queries

In lieu of an explicit SAMPLE PERIOD clause, users may request a specific query life-

time via a QUERY LIFETIME <x> clause, where <x> is a duration in days, weeks, or

months. Specifying lifetime is a much more intuitive way for users to reason about power

consumption. Especially in environmental monitoring scenarios, scientific users are not

particularly concerned with small adjustments to the sample rate, nor do they understand

how such adjustments influence power consumption. Such users, however, are very con-

cerned with the lifetime of the network executing the queries. Consider the query:

SELECT nodeid, accel
FROM sensors
LIFETIME 30 days

This query specifies that the network should run for at least 30 days, sampling light and

acceleration sensors at a rate that is as quick as possible and still satisfies this goal.

To satisfy a lifetime clause, TinyDB performs lifetime estimation. The goal of lifetime

estimation is to compute a sampling and transmission rate given a number of Joules of

energy remaining. We begin by considering how a single node at the root of the sensor

network can compute these rates, and then discuss how other nodes coordinate with the

root to compute their delivery rates. For now, we also assume that sampling and delivery

rates are the same. On a single node, these rates can be computed via a simple cost-

based formula, taking into account the costs of accessing sensors, selectivities of operators,

expected communication rates and current battery voltage8. We show below a lifetime

computation for simple queries of the form:

SELECT a1, ... , anumSensors

FROM sensors
WHERE p
LIFETIME l hours

To simplify the equations in this example, we present a query with a single selection

predicate that is applied after attributes have been acquired. The ordering of multiple

8Throughout this section, we will use battery voltage as a proxy for remaining battery capacity, as voltage is an

easy quantity to measure.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Acquisitional Query Processing In Sensor Networks · 13

Table I. Parameters used in lifetime estimation

Parameter Description Units

l Query lifetime goal hours

crem Remaining Battery Capacity Joules

En Energy to sample sensor n Joules

Etrans Energy to transmit a single sample Joules

Ercv Energy to receive a message Joules

σ Selectivity of selection predicate

C # of children routing through node

predicates and interleaving of sampling and selection are discussed in detail in Section 4.

Table I shows the parameters we use in this computation (we do not show processor costs

since they will be negligible for the simple selection predicates we support, and have been

subsumed into costs of sampling and delivering results.)

The first step is to determine the available power ph per hour,ph = crem / l.
We then need to compute the energy to collect and transmit one sample, es, including

the costs to forward data for its children:

es = (
∑numSensors

s=0
Es) + (Ercv + Etrans) × C + Etrans × σ

The energy for a sample is the cost to read all of the sensors at the node, plus the cost

to receive results from children, plus the cost to transmit satisfying local and child results.

Finally, we can compute the maximum transmission rate, T (in samples per hour), as :

T = ph/es

To illustrate the effectiveness of this simple estimation, we inserted a lifetime-based

query (SELECT voltage, light FROM sensors LIFETIME x) into a sensor

(with a fresh pair of AA batteries) and asked it to run for 24 weeks, which resulted in a

sample rate of 15.2 seconds per sample. We measured the voltage on the device 9 times

over 12 days. The first two readings were outside the range of the voltage detector on the

mote (e.g.,they read “1024” – the maximum value) so are not shown. Based on experiments

with our test mote connected to a power supply, we expect it to stop functioning when its

voltage reaches 350. Figure 5 shows the measured lifetime at each point in time, with a

linear fit of the data, versus the “expected voltage” which was computed using the cost

model above. The resulting linear fit of voltage is quite close to the expected voltage. The

linear fit reaches V=350 about 5 days after the expected voltage line.

Given that it is possible to estimate lifetime on a single node, we now discuss coordinat-

ing the transmission rate across all nodes in the routing tree. Since sensors need to sleep

between relaying of samples, it is important that senders and receivers synchronize their

wake cycles. To do this, we allow nodes to transmit only when their parents in the routing

tree are awake and listening (which is usually the same time they are transmitting.) By

transitivity, this limits the maximum rate of the entire network to the transmission rate of

the root of the routing tree. If a node must transmit slower than the root to meet the life-

time clause, it may transmit at an integral divisor of the root’s rate.9 To propagate this rate

through the network, each parent node (including the root) includes its transmission rate in

queries that it forwards to its children.

The previous analysis left the user with no control over the sample rate, which could be

a problem because some applications require the ability to monitor physical phenomena

9One possible optimization, which we do not explore, would involve selecting or reassigning the root to maximize

transmission rate.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

14 · Samuel Madden et al.

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 500 1000 1500 2000 2500 3000 3500 4000

B
a

tt
e

ry
 V

o
lt
a

g
e

 (
A

D
C

 U
n

it
s
)

Time (in Hours)

Predicted Voltage vs. Actual Voltage (Lifetime Goal = 24 Wks)

Insufficient
Voltage
to Operate
(V=350)

Linear Fit (r = -0.92)
Actual Data

Predicted Lifetime

 950
 960
 970
 980
 990

 1000
 1010
 1020
 1030

 0 50 100 150 200 250 300

Fig. 5. Predicted versus actual lifetime for a requested lifetime of 24 weeks (168 days)

at a particular granularity. To remedy this, we allow an optional MIN SAMPLE RATE r
clause to be supplied. If the computed sample rate for the specified lifetime is greater than

this rate, sampling proceeds at the computed rate (since the alternative is expressible by

replacing the LIFETIME clause with a SAMPLE PERIOD clause.) Otherwise, sampling

is fixed at a rate of r and the prior computation for transmission rate is done assuming a

different rate for sampling and transmission. To provide the requested lifetime and sam-

pling rate, the system may not be able to actually transmit all of the readings – it may be

forced to combine (aggregate) or discard some samples; we discuss this situation (as well

as other contexts where it may arise) in Section 6.3.

Finally, we note that since estimation of power consumption was done using simple se-

lectivity estimation as well as cost-constants that can vary from node-to-node (see Section

4.1) and parameters that vary over time (such as number of children, C), we need to period-

ically re-estimate power consumption. Section 6.4.1 discusses this runtime re-estimation

in more detail.

3.7 Types of Queries in Sensor Networks

We conclude this section with a brief overview of some of the other types of queries sup-

ported by TinyDB.

• Monitoring Queries: Queries that request the value of one or more attributes continu-

ously and periodically – for example, reporting the temperature in bird nests every thirty

seconds; these are similar to the queries shown above.

• Network Health Queries: Meta-queries over the network itself. Examples include se-

lecting parents and neighbors in the network topology or nodes with battery life less than

some threshold. These queries are particularly important in sensor networks due to their

dynamic and volatile nature. For example, the following query reports all sensors whose

current battery voltage is less than k:

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Acquisitional Query Processing In Sensor Networks · 15

SELECT nodeid,voltage
WHERE voltage < k
FROM sensors
SAMPLE PERIOD 10 minutes

• Exploratory Queries: One-shot queries examining the status of a particular node or set

of nodes at a point in time. In lieu of the SAMPLE PERIOD clause, users may specify

the keyword ONCE. For example:

SELECT light,temp,volume
WHERE nodeid = 5
FROM sensors
ONCE

• Nested Queries: Both events and materialization points provide a form of nested

queries. The TinyDB language does not currently support SQL-style nested queries,

because the semantics of such queries are somewhat ill-defined in a streaming environ-

ment: it is not clear when should the outer query be evaluated given that the inner query

may be a streaming query that continuously accumulates results. Queries over material-

ization points allow users to choose when the query is evaluated. Using the FOR clause,

users can build a materialization point that contains a single buffer’s worth of data, and

can then run a query over that buffer, emulating the same effect as a nested query over a

static inner relation. Of course, this approach eliminates the possibility of query rewrite

based optimizations for nested queries [Pirahesh et al. 1992], potentially limiting query

performance.

• Actuation Queries: Users want to able to take some physical action in response to a

query. We include a special OUTPUT ACTION clause for this purpose. For example,

users in building monitoring scenarios might want to turn on a fan in response to temper-

ature rising above some level:

SELECT nodeid,temp
FROM sensors
WHERE temp > threshold
OUTPUT ACTION power-on(nodeid)
SAMPLE PERIOD 10s

The OUTPUT ACTION clause specifies an external command that should be invoked

in response to a tuple satisfying the query. In this case, the power-on command is

a low-level piece of code that pulls an output pin on the microprocessor high, closing

a relay circuit and giving power to some externally connected device. Note that a sep-

arate query could be issued to power-off the fan when the temperature fell below

some other threshold. The OUTPUT ACTION suppresses the delivery of messages to

the basestation.

• Offline Delivery: There are times when users want to log some phenomenon that hap-

pens faster than the data can be transmitted over the radio. TinyDB supports the logging

of results to EEPROM for offline, non-real time delivery. This is implemented through

the materialization point mechanism described above.

Together, the these query types provide users of TinyDB with the mechanisms they need

to build data collection applications on top of sensor networks.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

16 · Samuel Madden et al.

4. POWER-BASED QUERY OPTIMIZATION

Given our query language for ACQP environments, with special features for event-based

processing and lifetime queries, we now turn to query processing issues. We begin with

a discussion of optimization, and then cover query dissemination and execution. We note

that, based on the applications deployed so far, single table queries with aggregations seem

to be the most pressing workload for sensor networks, and hence we focus primarily in this

section on optimizations for acquisition, selection, and aggregation.

Queries in TinyDB are parsed at the basestation and disseminated in a simple binary

format into the sensor network, where they are instantiated and executed. Before queries

are disseminated, the basestation performs a simple query optimization phase to choose

the correct ordering of sampling, selections, and joins.

We use a simple cost-based optimizer to choose a query plan that will yield the lowest

overall power consumption. Optimizing for power allows us to subsume issues of process-

ing cost and radio communication, which both contribute to power consumption and so

will be taken into account. One of the most interesting aspects of power-based optimiza-

tion, and a key theme of acquisitional query processing, is that the cost of a particular plan

is often dominated by the cost of sampling the physical sensors and transmitting query

results, rather than the cost of applying individual operators. For this reason, we focus in

this section on optimizations that reduce the number and costs of data acquisition.

We begin by looking at the types of metadata stored by the optimizer. Our optimizer

focuses on ordering joins, selections, and sampling operations that run on individual nodes.

4.1 Metadata Management

Each node in TinyDB maintains a catalog of metadata that describes its local attributes,

events, and user-defined functions. This metadata is periodically copied to the root of

the network for use by the optimizer. Metadata is registered with the system via static

linking done at compile time using the TinyOS C-like programming language. Events

and attributes pertaining to various operating system and TinyDB components are made

available to queries by declaring them in an interface file and providing a small handler

function. For example, in order to expose network topology to the query processor, the

TinyOS Network component defines the attribute parent of type integer and registers

a handler that returns the id of the node’s parent in the current routing tree.

Event metadata consists of a name, a signature, and a frequency estimate that is used

in query optimization (see Section 4.3 below.) User-defined predicates also have a name

and a signature, along with a selectivity estimate which is provided by the author of the

function.

Table II summarizes the metadata associated with each attribute, along with a brief de-

scription. Attribute metadata is used primarily in two contexts: information about the cost,

time to fetch, and range of an attribute is used in query optimization, while information

about the semantic properties of attributes is used in query dissemination and result pro-

cessing. Table III gives examples of power and sample time values for some actual sensors

– notice that the power consumption and time to sample can differ across sensors by several

orders of magnitude.

The catalog also contains metadata about TinyDB’s extensible aggregate system. As

with other extensible database systems [Stonebraker and Kemnitz 1991] the catalog in-

cludes names of aggregates and pointers to their code. Each aggregate consists of a triplet

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Acquisitional Query Processing In Sensor Networks · 17

of functions, that initialize, merge, and update the final value of partial aggregate records

as they flow through the system. As in the TAG[Madden et al. 2002] paper, aggregate

authors must provide information about functional properties. In TinyDB, we currently

require two: whether the aggregate is monotonic and whether it is exemplary or summary.

COUNT is a monotonic aggregate as its value can only get larger as more values are aggre-

gated. MIN is an exemplary aggregate, as it returns a single value from the set of aggregate

values, while AVERAGE is a summary aggregate because it computes some property over

the entire set of values.

TinyDB also stores metadata information about the costs of processing and delivering

data, which is used in query-lifetime estimation. The costs of these phases in TinyDB

were shown in Figure 3 – they range from 2 mA while sleeping, to over 20 mA while

transmitting and processing. Note that actual costs vary from mote to mote – for example,

with a small sample of 5 motes (using the same batteries), we found that the average current

with processor active varied from 13.9 to 17.6 mA (with the average being 15.66 mA).

4.2 Technique 1: Ordering of Sampling And Predicates

Having described the metadata maintained by TinyDB, we now describe how it is used in

query optimization.

As shown in Section 2, sampling is often an expensive operation in terms of power.

However, a sample from a sensor s must be taken to evaluate any predicate over the at-

tribute sensors.s. If a predicate discards a tuple of the sensors table, then subse-

quent predicates need not examine the tuple – and hence the expense of sampling any

attributes referenced in those subsequent predicates can be avoided. Thus these predicates

are “expensive”, and need to be ordered carefully. The predicate ordering problem here

is somewhat different than than in the earlier literature (e.g.,[Hellerstein 1998]) because

(a) an attribute may be referenced in multiple predicates, and (b) expensive predicates are

only on a single table, sensors. The first point introduces some subtlety, as it is not clear

which predicate should be “charged” the cost of the sample.

To model this issue, we treat the sampling of a sensor t as a separate “job” τ to be sched-

uled along with the predicates. Hence a set of predicates P = {p1, . . . , pm} is rewritten

as a set of operations S = {s1, . . . , sn}, where P ⊂ S, and S − P = {τ1, . . . , τn−m}
contains one sampling operator for each distinct attribute referenced in P . The selectivity

of sampling operators is always 1. The selectivity of selection operators is derived by as-

suming that attributes have a uniform distribution over their range (which is available in the

catalog.) Relaxing this assumption by, for example, storing histograms or time-dependent

functions per-attribute remains an area of future work. The cost of an operator (predicate

8Scientists are particularly interested in monitoring the micro-climates created by plants and their biological

processes. See [Delin and Jackson 2000; Cerpa et al. 2001]. An example of such a sensor is Figaro Inc’s H2S
sensor [Figaro, Inc.].

Table II. Metadata fields kept with each attribute

Metadata Description

Power Cost to sample this attribute (in J)

Sample Time Time to sample this attribute (in s)

Constant? Is this attribute constant-valued (e.g.,id)?

Rate of Change How fast the attribute changes (units/s)

Range Dynamic range of attribute values (pair of units)

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

18 · Samuel Madden et al.

Table III. Summary of Power Requirements of Various Sensors Available for Motes

Sensor Time per Startup Current Energy Per

Sample (ms) Time (ms) (mA) Sample, mJ

Weather Board Sensors

Solar Radiation [TAOS, Inc. 2002] 500 800 0.350 .525

Barometric Pressure [Intersema 2002] 35 35 0.025 0.003

Humidity [Sensirion 2002] 333 11 .500 0.5

Surface Temp [Melexis, Inc. 2002] 0.333 2 5.6 0.0056

Ambient Temp [Melexis, Inc. 2002] 0.333 2 5.6 0.0056

Standard Mica Mote Sensors

Accelerometer [Analog Devices, Inc.] 0.9 17 0.6 0.0048

(Passive) Thermistor [Atmel Corporation] 0.9 0 0.033 0.00009

Magnetometer [Honeywell, Inc.] .9 17 5 .2595

Other Sensors

Organic Byproducts10 .9 > 1000 5 > 15

or sample) can be determined by consulting the metadata, as described in the previous sec-

tion. In the cases we discuss here, selections and joins are essentially “free” compared to

sampling, but this is not a requirement of our technique.

We also introduce a partial order on S, where τi must precede pj if pj references the

attribute sampled by τi. The combination of sampling operators and the dependency of

predicates on samples captures the costs of sampling operators and the sharing of operators

across predicates.

The partial order induced on S forms a graph with edges from sampling operators to

predicates. This is a simple series-parallel graph. An optimal ordering of jobs with

series-parallel constraints is a topic treated in the Operations Research literature that in-

spired earlier optimization work [Ibaraki and Kameda 1984; Krishnamurthy et al. 1986;

Hellerstein 1998]; Monma and Sidney present the Series-Parallel Algorithm Using Par-

allel Chains [Monma and Sidney 1979], which gives an optimal ordering of the jobs in

O(|S| log |S|) time.

Besides predicates in the WHERE clause, expensive sampling operators must also be

ordered appropriately with respect to the SELECT, GROUP BY, and HAVING clauses.

As with selection predicates, we enhance the partial order such that τi must precede any

aggregation, GROUP BY, or HAVING operator that uses i. Note that projections do not

require access to the value of i, and thus do not need to be included in the partial order.

Thus, the complete partial order is:

(1) acquisition of attribute a ≺ any operator that references a
(2) selection ≺ aggregation, GROUP BY, and HAVING
(3) GROUP BY ≺ aggregation and HAVING
(4) aggregation ≺ HAVING
Of course, the last three rules are also present in standard SQL. We also need to add the

operators representing these clauses to S with the appropriate costs and selectivities; the

process of estimating these values been well-studied in the database query optimization

and cost estimation literature.

As an example of this process, consider the query:

SELECT accel,mag
FROM sensors
WHERE accel > c1

AND mag > c2

SAMPLE PERIOD .1s

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Acquisitional Query Processing In Sensor Networks · 19

The order of magnitude difference in per-sample costs shown in Table III for the ac-

celerometer and magnetometer suggests that the power costs of plans for this query having

different sampling and selection orders will vary substantially. We consider three possible

plans: in the first, the magnetometer and accelerometer are sampled before either selection

is applied. In the second, the magnetometer is sampled and the selection over its reading

(which we call Smag) is applied before the accelerometer is sampled or filtered. In the

third plan, the accelerometer is sampled first and its selection (Saccel) is applied before the

magnetometer is sampled.

This interleaving of sampling and processing introduces an additional issue with tem-

poral semantics: in this case, for example, the magnetometer and accelerometer samples

are not acquired at the same time. This may be problematic for some queries, for ex-

ample, if one is trying to temporally correlate high-frequency portions of signals from

these two sensors. To address this concern, we include in our language specification a NO
INTERLEAVE clause, which forces all sensors to be turned on and sampled simultane-

ously at the beginning of each epoch (obviating the benefit of the acquisitional techniques

discussed in this section.) We note that this clause may not lead to perfect synchronization

of sampling, as different sensors take different amounts of time to power up and acquire

readings, but will substantially improve temporal synchronization.

Figure 6 shows the relative power costs of the latter two approaches, in terms of power

costs to sample the sensors (we assume the CPU cost is the same for the two plans, so

do not include it in our cost ratios) for different selectivity factors of the two selection

predicates Saccel and Smag . The selectivities of these two predicates are shown on the

X and Y axis, respectively. Regions of the graph are shaded corresponding to the ratio

of costs between the plan where the magnetometer is sampled first (mag-first) versus the

plan where the accelerometer is sampled first (accel-first). As expected, these results show

that the mag-first plan is almost always more expensive than accel-first. In fact, it can be

an order of magnitude more expensive, when Saccel is much more selective than Smag .

When Smag is highly selective, however, it can be cheaper to sample the magnetometer

first, although only by a small factor.

The maximum difference in relative costs represents an absolute difference of 255 uJ

per sample, or 2.5 mW at a sample rate of ten samples per second – putting the additional

power consumption from sampling in the incorrect order on par with the power costs of

running the radio or CPU for an entire second.

4.2.1 Exemplary Aggregate Pushdown. There are certain kinds of aggregate functions

where the same kind of interleaving of sampling and processing can also lead to a perfor-

mance savings. Consider the query:

SELECT WINMAX(light,8s,8s)
FROM sensors
WHERE mag > x
SAMPLE PERIOD 1s

In this query, the maximum of eight seconds worth of light readings will be computed,

but only light readings from sensors whose magnetometers read greater than x will be

considered. Interestingly, it turns out that, unless the mag > x predicate is very selective,

it will be cheaper to evaluate this query by checking to see if each new light reading

is greater than the previous reading and then applying the selection predicate over mag,

rather than first sampling mag. This sort of reordering, which we call exemplary aggregate

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

20 · Samuel Madden et al.

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1- Selectivity(Saccel)

1
- S

e
le

c
tiv

ity
(S

m
a
g)

Cost Mag-First / Cost of Accel-First

Plan 1: Sample(mag) -> Smag -> Sample(accel) -> Saccel

Plan 2: Sample(accel) -> Saccel -> Sample(mag) -> Smag

Mag-First
less
expensive

Accel-First 1-2
times less
expensive

Accel-First 2-5
times less
expensive

Accel-First 5-10
times less
expensive

Fig. 6. Ratio of costs of two acquisitional plans over differing-cost sensors.

pushdown can be applied to any exemplary aggregate (e.g.,MIN, MAX). Similar ideas have

been explored in the deductive database community by Sudarshan et al. [Sudarshan and

Ramakrishnan 1991].

The same technique can be used with non-windowed aggregates when performing in-

network aggregation. Suppose we are applying an exemplary aggregate at an intermediate

node in the routing tree; if there is an expensive acquisition required to evaluate a predicate

(as in the query above), then it may make sense to see if the local value affects the value of

the aggregate before acquiring the attribute used in the predicate.

To add support for exemplary aggregate pushdown, we need a way to evaluate the se-

lectivity of exemplary aggregates. In the absence of statistics that reflect how a predicate

changes over time, we simply assume that the attributes involved in an exemplary aggre-

gate (such as light in the query above) are sampled from the same distribution. Thus,

for MIN and MAX aggregates, the likelihood that the second of two samples is less than (or

greater than) the first is 0.5. For n samples, the likelihood that the nth is the value reported

by the aggregate is thus 1/.5n−1. By the same reasoning, for bottom (or top)-k aggregates,

assuming k < n, the nth sample will be reported with probability 1/.5n−k−1.

Given this selectivity estimate for an exemplary aggregate, S(a), over attribute a with

acquisition cost C(a), we can compute the benefit of exemplary aggregate pushdown. We

assume the query contains some set of conjunctive predicates with aggregate selectivity

P over several expensive acquisitional attributes with aggregate acquisition cost K. We

assume the values of S(a), C(a), and K, and P are available in the catalog. Then, the cost

of evaluating the query without exemplary aggregate pushdown is:

(1)K + P ∗ C(a)
and with pushdown it becomes:

(2)C(a) + S(a) ∗ K
When (2) is less than (1), there will be an expected benefit to exemplary aggregate push-

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Acquisitional Query Processing In Sensor Networks · 21

down, and it should be applied.

4.3 Technique 2: Event Query Batching to Conserve Power

As a second example of the benefit of power-aware optimization, we consider the opti-

mization of the query:

ON EVENT e(nodeid)
SELECT a1

FROM sensors AS s
WHERE s.nodeid = e.nodeid
SAMPLE PERIOD d FOR k

This query will cause an instance of the internal query (SELECT ...) to be started

every time the event e occurs. The internal query samples results every d seconds for a

duration of k seconds, at which point it stops running.

Note that, according to this specification of how an ON EVENT query is processed, it

is possible for multiple instances of the internal query to be running at the same time.

If enough such queries are running simultaneously, the benefit of event-based queries

(e.g.,not having to poll for results) will be outweighed by the fact that each instance of

the query consumes significant energy sampling and delivering (independent) results. To

alleviate the burden of running multiple copies of the same identical query, we employ a

multi-query optimization technique based on rewriting. To do this, we convert external

events (of type e) into a stream of events, and rewrite the entire set of independent internal

queries as a sliding window join between events and sensors, with a window size of

k seconds on the event stream, and no window on the sensor stream. For example:

SELECT s.a1

FROM sensors AS s, events AS e
WHERE s.nodeid = e.nodeid
AND e.type = e
AND s.time - e.time <= k AND s.time > e.time
SAMPLE PERIOD d

We execute this query by treating it as a join between a materialization point of size k
on events and the sensors stream. When an event tuple arrives, it is added to the

buffer of events. When a sensor tuple s arrives, events older than k seconds are dropped

from the buffer and s is joined with the remaining events.

The advantage of this approach is that only one query runs at a time no matter how fre-

quently the events of type e are triggered. This offers a large potential savings in sampling

and transmission cost. At first it might seem as though requiring the sensors to be sampled

every d seconds irrespective of the contents of the event buffer would be prohibitively ex-

pensive. However, the check to see if the the event buffer is empty can be pushed before

the sampling of the sensors, and can be done relatively quickly.

Figure 7 shows the power tradeoff for event-based queries that have and have not been

rewritten. Rewritten queries are labeled as stream join and non-rewritten queries as async

events. We measure the cost in mW of the two approaches using a numerical model of

power costs for idling, sampling and processing (including the cost to check if the event

queue is non-empty in the event-join case), but excluding transmission costs to avoid com-

plications of modeling differences in cardinalities between the two approaches. The expec-

tation was that the asynchronous approach would generally transmit many more results.

We varied the sample rate and duration of the inner query, and the frequency of events. We

chose the specific parameters in this plot to demonstrate query optimization tradeoffs; for

much faster or slower event rates, one approach tends to always be preferable. In this case,

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

22 · Samuel Madden et al.

the stream-join rewrite is beneficial as when events occur frequently; this might be the case

if, for example, an event is triggered whenever a signal goes above or below a threshold

with a signal that is sampled tens or hundreds of times per second; vibration monitoring

applications tend to have this kind of behavior. Table IV summarizes the parameters used

in this experiment; “derived” values are computed by the model below. Power consump-

tion numbers and sensor timings are drawn from Table III and the Atmel 128 data sheet

[Atmel Corporation].

The cost in milliwatts of the asynchronous events approach, mWevents, is modeled via

the following equations:

tidle = tsample − nevents × durevent × mssample/1000

mJidle = mWidle × tidle

mJsample = mWsample × mssample/1000

mWevents = (nevents × durevent × mJsample + mJidle)/tsample

The cost in milliwatts of the Stream Join approach, mWstreamJoin, is then:

tidle = tsample − (mscheck + mssample)/1000

mJidle = mWidle × tidle

mJcheck = mWproc × mscheck/1000

mJsample = mWsample × mssamples/1000

mWstreamJoin = (mJcheck + mJsample + mJidle)/tsample

For very low event rates (fewer than 1 per second), the asynchronous events approach

is sometimes preferable due to the extra overhead of empty-checks on the event queue

in the stream-join case. However, for faster event rates, the power cost of this approach

increases rapidly as independent samples are acquired for each event every few seconds.

Increasing the duration of the inner query increases the cost of the asynchronous approach

as more queries will be running simultaneously. The maximum absolute difference (of

about .8mW) is roughly comparable to 1/4 the power cost of the CPU or radio.

Table IV. Parameters used in Async. Events vs. Stream Join Study

Parameter Description Value

tsample Length of sample period 1/8 s

nevents Number of events per second 0 - 5 (x axis)

durevent Time for which events are active (FOR clause) 1, 3, or 5 s

mWproc Processor power consumption 12 mW

mssample Time to acquire a sample, including processing and ADC time .35 ms

mWsample Power used while sampling, including processor 13 mW

mJsample Energy per sample Derived

mWidle Milliwatts used while idling Derived

tidle Time spent idling per sample period (in seconds) Derived

mJidle Energy spent idling Derived

mscheck Time to check for enqueued event .02 ms (80 instrs)

mJcheck Energy to check if an event has been enqueued Derived

mWevents Total power used in Async Events mode Derived

mWstreamJoin Total power used in Stream Join mode Derived

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Acquisitional Query Processing In Sensor Networks · 23

Finally, we note that there is a subtle semantic change introduced by this rewriting.

The initial formulation of the query caused samples in each of the internal queries to be

produced relative to the time that the event fired: for example, if event e1 fired at time t,
samples would appear at time t + d, t + 2d, If a later event e2 fired at time t + i, it

would produce a different set of samples at time t + i + d, t + i + 2d, Thus, unless i
were equal to d (i.e.,the events were in phase), samples for the two queries would be offset

from each other by up to d seconds. In the rewritten version of the query, there is only one

stream of sensor tuples which is shared by all events.

In many cases, users may not care that tuples are out of phase with events. In some

situations, however, phase may be very important. In such situations, one way the system

could improve the phase accuracy of samples while still rewriting multiple event queries

into a single join is via oversampling, or acquiring some number of (additional) samples

every d seconds. The increased phase accuracy of oversampling comes at an increased

cost of acquiring additional samples (which may still be less than running multiple queries

simultaneously.) For now, we simply allow the user to specify that a query must be phase-

aligned by specifying ON ALIGNED EVENT in the event clause.

Thus, we have shown that there are several interesting optimization issues in ACQP

systems; first, the system must properly order sampling, selection, and aggregation to be

truly low power. Second, for frequent event-based queries, rewriting them as a join between

an event stream and the sensors stream can significantly reduce the rate at which a

sensor must acquire samples.

5. POWER SENSITIVE DISSEMINATION AND ROUTING

After the query has been optimized, it is disseminated into the network; dissemination be-

gins with a broadcast of the query from the root of the network. As each node hears the

query, it must decide if the query applies locally and/or needs to be broadcast to its children

in the routing tree. We say a query q applies to a node n if there is a non-zero probability

that n will produce results for q. Deciding where a particular query should run is an im-

portant ACQP-related decision. Although such decisions occur in other distributed query

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
(m

W
)

Events Per Second

Event Rate v. Power Consumption
(8 Samples/S)

 Stream Join
 Async Events, Event Dur = 1s
 Async Events, Event Dur = 3s
 Async Events, Event Dur = 5s

Fig. 7. The cost of processing event-based queries as asynchronous events versus joins.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

24 · Samuel Madden et al.

processing environments, the costs of incorrectly initiating queries in ACQP environments

like TinyDB can be unusually high, as we will show.

If a query does not apply at a particular node, and the node does not have any children

for which the query applies, then the entire subtree rooted at that node can be excluded

from the query, saving the costs of disseminating, executing, and forwarding results for the

query across several nodes, significantly extending the node’s lifetime.

Given the potential benefits of limiting the scope of queries, the challenge is to determine

when a node or its children need not participate in a particular query. One situation arises

with constant-valued attributes (e.g.,nodeid or location in a fixed-location network)

with a selection predicate that indicates the node need not participate. We expect that

such queries will be very common, especially in interactive workloads where users are

exploring different parts of the network to see how it is behaving. Similarly, if a node

knows that none of its children currently satisfy the value of some selection predicate,

perhaps, because they have constant (and known) attribute values outside the predicate’s

range, it need not forward the query down the routing tree. To maintain information about

child attribute values (both constant and changing), we propose a data structure called a

semantic routing tree (SRT). We describe the properties of SRTs in the next section, and

briefly outline how they are created and maintained.

5.1 Semantic Routing Trees

An SRT is a routing tree (similar to the tree discussed in Section 2.3 above) designed to

allow each node to efficiently determine if any of the nodes below it will need to participate

in a given query over some constant attribute A. Traditionally, in sensor networks, routing

tree construction is done by having nodes pick a parent with the most reliable connection

to the root (highest link quality.) With SRTs, we argue that the choice of parent should

include some consideration of semantic properties as well. In general, SRTs are most

applicable when there are several parents of comparable link quality. A link-quality-based

parent selection algorithm, such as the one described in [Woo and Culler 2001], should be

used in conjunction with the SRT to prefilter parents made available to the SRT.

Conceptually, an SRT is an index over A that can be used to locate nodes that have data

relevant to the query. Unlike traditional indices, however, the SRT is an overlay on the

network. Each node stores a single unidimensional interval representing the range of A
values beneath each of its children. When a query q with a predicate over A arrives at a

node n, n checks to see if any child’s value of A overlaps the query range of A in q. If

so, it prepares to receive results and forwards the query. If no child overlaps, the query is

not forwarded. Also, if the query also applies locally (whether or not it also applies to any

children) n begins executing the query itself. If the query does not apply at n or at any of

its children, it is simply forgotten.

Building an SRT is a two phase process: first the SRT build request is flooded (re-

transmitted by every mote until all motes have heard the request) down the network. This

request includes the name of the attribute A over which the tree should be built. As a

request floods down the network, a node n may have several possible choices of parent,

since, in general, many nodes in radio range may be closer to the root. If n has children, it

forwards the request on to them and waits until they reply. If n has no children, it chooses

a node p from available parents to be its parent, and then reports the value of A to p in a

parent selection message. If n does have children, it records the child’s value of A along

with its id. When it has heard from all of its children, it chooses a parent and sends a

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Acquisitional Query Processing In Sensor Networks · 25

selection message indicating the range of values of A which it and its descendents cover.

The parent records this interval with the id of the child node and proceeds to choose its

own parent in the same manner, until the root has heard from all of its children. Because

children can fail or move away, nodes also have a timeout which is the maximum time they

will wait to hear from a child; after this period is elapsed, the child is removed from the

child list. If the child reports after this timeout, it is incorporated into the SRT as if it were

a new node (see Section 5.2 below).

Figure 8 shows an SRT over the X coordinate of each node on an Cartesian grid. The

query arrives at the root, is forwarded down the tree, and then only the gray nodes are

required to participate in the query (note that node 3 must forward results for node 4,

despite the fact that its own location precludes it from participation.)

X

Y
0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

12

QUERY

SELECT light

WHERE x > 3

AND x < 7

1

2 3

4 5

SRT(x)

Location : (1,7)

Location : (4,12)

SRT(x)

1: [1,1]

3: [5,10]

Location : (8,7)

SRT(x)

4: [5,5]

5: [10,10]

Location : (5,3)

SRT(x)

Location : (10,3)

SRT(x)

Fig. 8. A semantic routing tree in use for a query. Gray arrows indicate flow of the query down the tree, gray

nodes must produce or forward results in the query.

SRTs are analogous to indices in traditional database systems; to create one in TinyDB,

the CREATE SRT command can be used – its syntax is essentially similar to the CREATE
INDEX command in SQL:

CREATE SRT loc ON sensors (xloc,yloc) ROOT 0

Where the ROOT annotation indicates the nodeid where the SRT should be rooted from

– by default, the value will be 0, but users may wish to create SRTs rooted at other nodes

to facilitate event-based queries that frequently radiate from a particular node.

5.2 Maintaining SRTs

Even though SRTs are limited to constant attributes, some SRT maintenance must occur.

In particular, new nodes can appear, link qualities can change, and existing nodes can fail.

Both node appearances and changes in link quality can require a node to switch parents.

To do this, the node sends a parent selection message to its new parent, n. If this message

changes the range of n’s interval, it notifies its parent; in this way, updates can propagate

to the root of the tree.

To handle the disappearance of a child node, parents associate an active query id and

last epoch with every child in the SRT (recall that an epoch is the period of time between

successive samples.) When a parent p forwards a query q to a child c, it sets c’s active query

id to the id of q and sets its last epoch entry to 0. Every time p forwards or aggregates a

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

26 · Samuel Madden et al.

result for q from c, it updates c’s last epoch with the epoch on which the result was received.

If p does not hear c for some number of epochs t, it assumes c has moved away, and

removes its SRT entry. Then, p sends a request asking its remaining children to retransmit

their ranges. It uses this information to construct a new interval. If this new interval differs

in size from the previous interval, p sends a parent selection message up the routing tree to

reflect this change. We study the costs of SRT maintenance in Section 5.4 below.

Finally, we note that, by using these maintenance rules, it is possible to support SRTs

over non-constant attributes, although if those attributes change quickly, the cost of propa-

gating interval-range changes could be prohibitive.

5.3 Evaluation of Benefit of SRTs

The benefit that an SRT provides is dependent on the quality of the clustering of children

beneath parents. If the descendents of some node n are clustered around the value of the

index attribute at n, then a query that applies to n will likely also apply to its descen-

dents. This can be expected for location attributes, for example, since network topology is

correlated with geography.

We simulate the benefits of an SRT because large networks of the type where we expect

these data structures to be useful are just beginning to come online, so only a small-number

of fixed real-world topologies are available. We include in our simulation experiments

using a connectivity data file collected from one such real-world deployment. We evaluate

the benefit of SRTs in terms of number of active nodes; inactive nodes incur no cost for a

given query, expending energy only to keep their processors in an idle state and to listen to

their radios for the arrival of new queries.

We study three policies for SRT parent selection. In the first, random approach, each

node picks a random parent from the nodes with which it can communicate reliably. In the

second, closest-parent approach, each parent reports the value of its index attribute with the

SRT-build request, and children pick the parent whose attribute value is closest to their own.

In the clustered approach, nodes select a parent as in the closest-parent approach, except,

if a node hears a sibling node send a parent selection message, it snoops on the message

to determine its siblings parent and value. It then picks its own parent (which could be the

same as one of its siblings) to minimize the spread of attribute values underneath all of its

available parents.

We studied these policies in a simple simulation environment – nodes were arranged on

an nxn grid and were asked to choose a constant attribute value from some distribution

(which we varied between experiments.) We used a perfect (lossless) connectivity model

where each node could talk to its immediate neighbors in the grid (so routing trees were

n nodes deep), and each node had 8 neighbors (with 3 choices of parent, on average.) We

compared the total number of nodes involved in range queries of different sizes for the

three SRT parent selection policies to the best-case approach and the no SRT approach.

The best-case approach would only result if exactly those nodes that overlapped the range

predicate were activated, which is not possible in our topologies but provides a convenient

lower bound. In the no SRT approach, all nodes participate in each query.

We experimented with several of sensor value distributions. In the random distribu-

tion, each constant attribute value was randomly and uniformly selected from the interval

[0,1000]. In the geographic distribution, (one-dimensional) sensor values were computed

based on a function of a node’s x and y position in the grid, such that a node’s value tended

to be highly correlated to the values of its neighbors.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Acquisitional Query Processing In Sensor Networks · 27

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ra

c
ti
o
n
 o

f
N

o
d
e
s
 I
n
v
o
lv

e
d
 i
n
 Q

u
e
ry

Query Size as Percent of Value Range

Query Range v. Nodes in Query (Random)

No SRT
Random Parent
Closest Parent

Clustered
Best Case

(a)Random

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Query Size as Percent of Value Range

Query Range v. Nodes in Query (Geographic)

No SRT
Random Parent
Closest Parent

Clustered
Best Case

(b)Geographic

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Query Size as Percent of Value Range

Query Range v. Percentage in Query (Real)

No SRT
Random Parent
Closest Parent

Clustered
Best Case

(c)Real

Fig. 9. Number of nodes participating in range queries of different sizes for different parent selection policies in

a semantic routing tree (20x20 grid, 400 nodes, each point average of 500 queries of the appropriate size.) The

three graphs represent three different sensor-value distributions; see the text for a description of each of these

distribution types.

Finally, for the real distribution, we used a network topology based on data collected

from a network of 54 motes deployed throughout the Intel-Research, Berkeley lab. The

SRT was built over the node’s location in the lab, and the network connectivity was de-

rived by identifying pairs of motes with a high probability of being able to successfully

communicate with each other11.

Figure 9 shows the number of nodes that participate in queries over variably-sized query

intervals (where the interval size is shown on the X axis) of the attribute space in a 20x20

grid. The interval for queries was randomly selected from the uniform distribution. Each

point in the graph was obtained by averaging over five trials for each of the three parent se-

lection policies in each of the sensor value distributions (for a total of 30 experiments).For

each interval size s, 100 queries were randomly constructed, and the average number of

nodes involved in each query was measured.

For all three distributions, the clustered approach was superior to other SRT algorithms,

beating the random approach by about 25% and the closest parent approach by about 10%

on average. With the geographic and real distributions, the performance of the clustered

approach is close to optimal: for most ranges, all of the nodes in the range tend to be co-

located, so few intermediate nodes are required to relay information for queries in which

they themselves are not participating. The fact that the results from real topology closely

matches the geographic distribution, where sensors’ values and topology are perfectly cor-

related, is encouraging and suggests that SRTs will work well in practice.

Figure 10 shows several visualizations of the topologies which are generated by the

clustered (Figure 10(a)) and random (Figure 10(b)) SRT generation approaches for an 8x8

network. Each node represents a sensor, labeled with its ID and the distribution of the SRT

subtree rooted underneath it. Edges represent the routing tree. The gray nodes represent the

nodes that would participate in the query 400 < A < 500. On this small grid, the two

approaches perform similarly, but the variation in structure which results is quite evident –

the random approach tends to be of more uniform depth, whereas the clustered approach

11The probability threshold in this case was 25%, which is the same as the probability the TinyOS/TinyDB

routing layer use to determine if a neighboring node is of sufficiently high quality to be considered as a candidate

parent.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

28 · Samuel Madden et al.

0
(26 − 977)

28
(26 − 948)

20
(32 − 811)

11
(43 − 811)

2
(140 − 811)

3
(579 − 619)

27
(88 − 948)

26
(142 − 948)

18
(142 − 948)

34
(478 − 582)

30
(38 − 946)

31
(38 − 930)

23
(95 − 946)

39
(367 − 597)

44
(117 − 977)

52
(117 − 977)

59
(117 − 977)

50
(173 − 977)

49
(173 − 977)

60
(612 − 921)

51
(166 − 972)

53
(513 − 798)

62
(513 − 798)

29
(178 − 893)

22
(178 − 893)

13
(178 − 893)

14
(316 − 853)

7
(360 − 853)

46
(243 − 890)

55
(322 − 890)

64
(387 − 736)

21
(26 − 26)

19
(33 − 33)

10
(43 − 43)

1
(140 − 140)

4
(619 − 619)

12
(285 − 285)

17
(142 − 142)

9
(948 − 948)

25
(714 − 714)

33
(582 − 582)

35
(784 − 784)

40
(38 − 38)

24
(95 − 95)

32
(946 − 946)

48
(597 − 597)

57
(173 − 173)

41
(713 − 713)

61
(921 − 921)

43
(951 − 951)

58
(166 − 166)

42
(813 − 813)

63
(798 − 798)

54
(529 − 529)

6
(178 − 178)

5
(893 − 893)

16
(360 − 360)

8
(853 − 853)

15
(491 − 491)

36
(214 − 214)

56
(736 − 736)

47
(890 − 890)

45
(274 − 274)

38
(412 − 412)

37
(858 − 858)

0
(26 − 977)

28
(26 − 977)

29
(315 − 853)

36
(173 − 951)

35
(784 − 977)

22
(315 − 853)

27
(88 − 713)

19
(33 − 948)

45
(274 − 798)

46
(243 − 387)

43
(173 − 951)

44
(117 − 972)

38
(412 − 890)

20
(32 − 668)

30
(38 − 946)

21
(26 − 538)

34
(478 − 713)

14
(316 − 538)

13
(178 − 668)

10
(43 − 948)

11
(52 − 619)

26
(262 − 582)

12
(285 − 893)

18
(714 − 779)

42
(813 − 977)

31
(38 − 930)

23
(95 − 946)

39
(367 − 597)

51
(117 − 972)

52
(282 − 921)

53
(513 − 594)

50
(173 − 519)

55
(322 − 387)

54
(529 − 798)

15
(491 − 853)

47
(736 − 890)

7
(538 − 538)

6
(178 − 178)

1
(140 − 140)

17
(142 − 142)

3
(579 − 579)

2
(811 − 811)

9
(948 − 948)

4
(619 − 619)

33
(582 − 582)

5
(893 − 893)

25
(714 − 714)

41
(713 − 713)

49
(977 − 977)

40
(38 − 38)

24
(95 − 95)

16
(360 − 360)

32
(946 − 946)

48
(597 − 597)

59
(117 − 117)

58
(166 − 166)

60
(612 − 612)

61
(921 − 921)

62
(513 − 513)

57
(173 − 173)

64
(387 − 387)

63
(798 − 798)

8
(853 − 853)

56
(736 − 736)

37
(858 − 858)

Query: 400 < A < 500

(a)

(b)

Fig. 10. Visualizations of the (a) clustered and (b) random topologies, with a query region overlaid on top of

them. Node 0, the root in Figures (a) and (b), is at the center of the graph.

leads to longer sequences of nodes with nearby values. Note that the labels in this figure

are not intended to be readable – the important point is the overall pattern of nodes that are

explored by the two approaches.

5.4 Maintenance Costs of SRTs

As the previous results show, the benefit of using an SRT can be substantial. There are,

however, maintenance and construction costs associated with SRTs, as discussed above.

Construction costs are comparable to those in conventional sensor networks (which also

have a routing tree), but slightly higher due to the fact that parent selection messages are

explicitly sent, whereas parents do not always require confirmation from their children in

other sensor network environments.

We conducted an experiment to measure the cost of selecting a new parent, which re-

quires a node to notify its old parent of its decision to move and send its attribute value

to its new parent. Both the new and old parent must then update their attribute interval

information and propagate any changes up the tree to the root of the network. In this ex-

periment, we varied the probability with which any node switches parents on any given

epoch from .001 to .2. We did not constrain the extent of the query in this case – all nodes

were assumed to participate. Nodes were allowed to move from their current parent to an

arbitrary new parent, and multiple nodes could move on a given epoch. The experimental

parameters were the same as above. We measured the average number of maintenance

messages generated by movement across the whole network. The results are shown in Fig-

ure 11. Each point represents the average of 5 trials, and each trial consists of 100 epochs.

The three lines represent the three policies; the amount of movement varies along the X

axis, and the number of maintenance messages per epoch is shown on the Y axis.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Acquisitional Query Processing In Sensor Networks · 29

Without maintenance, each active node (within the query range) sends one message

per epoch, instead of every node being required to transmit. Figure 11 suggests that for

low movement rates, the maintenance costs of the SRT approach are small enough that

it remains attractive – if 1% of the nodes move on a given epoch, the cost is about 30

messages, which is substantially less than the number of messages saved by using an SRT

for most query ranges. If 10% of the nodes move, the maintenance cost grows to about

300, making the benefit of SRTs less clear.

To measure the amount of movement expected in practice, we measured movement rates

in traces collected from two real-world monitoring deployments; in both cases, the nodes

were stationary but employed a routing algorithm that attempted to select the best parent

over time. In the 3 month, 200 node Great Duck Island Deployment nodes switched parents

between successive result reports with a .9% (σ = .9%) chance, on average. In the 54 node

Intel-Berkeley lab dataset, nodes switched with a 4.3% (σ = 3.0%) chance. Thus, the

amount of parent switching varies markedly from deployment to deployment. One reason

for the variation is that the two deployments use different routing algorithms. In the case

of the Intel-Berkeley deployment, the algorithm was apparently not optimized to minimize

the likelihood of switching.

Figure 11 also shows that the different schemes for building SRTs result in different

maintenance costs. This is because the average depth of nodes in the topologies varies

from one approach to the other (7.67 in Random, 10.47 in Closest, and 9.2 in Clustered)

and because the spread of values underneath a particular subtree varies depending on the

approach used to build the tree. A deeper tree generally results in more messages being

sent up the tree as path lengths increase. The closest parent scheme results in deep topolo-

gies because no preference is given towards parents with a wide spread of values, unlike

the clustered approach which tends to favor selecting a parent that is a member of a pre-

existing, wide interval. The random approach is shallower still because nodes simply select

the first parent that broadcasts, resulting in minimally deep trees.

Finally, we note that the cost of joining the network is strictly dominated by the cost

of moving parents, as there is no old parent to notify. Similarly, a node disappearing is

dominated by this movement cost, as there is no new parent to notify.

5.5 SRT Observations

SRTs provide an efficient mechanism for disseminating queries and collecting query re-

sults for queries over constant attributes. For attributes that are highly correlated amongst

neighbors in the routing tree (e.g.,location), SRTs can reduce the number of nodes that

must disseminate queries and forward the continuous stream of results from children by

nearly an order of magnitude. SRTs have the substantial advantage over a centralized in-

dex structure in that they do not require complete topology and sensor value information

to be collected at the root of the network, which will be quite expensive to collect and will

be difficult to keep consistent as connectivity and sensor values change.

SRT maintenance costs appear to be reasonable for at least some real-world deploy-

ments. Interestingly, unlike traditional routing trees in sensor networks, there is a substan-

tial cost (in terms of network messages) for switching parents in an SRT. This suggests that

one metric by which routing layer designers might evaluate their implementations is rate

of parent-switching.

For real world deployments, we expect that SRTs will offer substantial benefits. Al-

though there are no benchmarks or definitive workloads for sensor network databases, we

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

30 · Samuel Madden et al.

 0

 100

 200

 300

 400

 500

 600

 700

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

M
a

in
te

n
a

n
c
e

 M
e

s
s
a

g
e

s
,

P
e

r
E

p
o

c
h

P(Changing Parent), Per Epoch

Maintenance Messages vs. P(Changing Parent)

Random Parent
Closest Parent

Clustered

Fig. 11. Maintenance costs (in measured network messages) for different SRT parent selection policies with

varying probabilities of node movement. Probabilities and costs are per epoch. Each point is the average of 5

runs, and where each run is 100 epochs long.

anticipate that many queries will be over narrow geographic areas – looking, for example,

at single rooms or floors in a building, or nests, trees, or regions, in outdoor environ-

ments as on Great Duck Island; other researchers have noted the same need for constrained

querying [Yao and Gehrke 2002; Mainwaring et al. 2002]. In a deployment like the Intel-

Berkeley lab, if queries are over individual rooms or regions of the lab, Figure 9 shows that

substantial performance gains can be had. For example, the 2 of the 54 motes are in the

main conference room; 7 of the 54 are in the seminar area; both of these queries can be

evaluated using less that 30% of the network.

We note two promising future extensions to SRTs. First, rather than storing just a single

interval at every subtree, a variable number of intervals could be kept. This would allow

nodes to more accurately summarize the range of values beneath them, and increase the

benefit of the approach. Second, when selecting a parent, even in the clustered approach,

nodes do not currently have access to complete information about the subtree underneath

a potential parent, particularly as nodes move in the network or come and go. It would be

interesting to explore a continuous SRT construction process, where parents periodically

broadcast out updated intervals, giving current and potential children an option to move to

a better subtree and improve the quality of the SRT.

6. PROCESSING QUERIES

Once queries have been disseminated and optimized, the query processor begins executing

them. Query execution is straightforward, so we describe it only briefly. The remainder

of the section is devoted to the ACQP-related issues of prioritizing results and adapting

sampling and delivery rates. We present simple schemes for prioritizing data in selection

queries, briefly discuss prioritizing data in aggregation queries, and then turn to adapta-

tion. We discuss two situations in which adaptation is necessary: when the radio is highly

contened and when power consumption is more rapid than expected.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Acquisitional Query Processing In Sensor Networks · 31

6.1 Query Execution

Query execution consists of a simple sequence of operations at each node during every

epoch: first, nodes sleep for most of an epoch; then they wake, sample sensors and apply

operators to data generated locally and received from neighbors, and then deliver results to

their parent. We (briefly) describe ACQP-relevant issues in each of these phases.

Nodes sleep for as much of each epoch as possible to minimize power consumption.

They wake up only to sample sensors and relay and deliver results. Because nodes are

time synchronized, parents can ensure that they awake to receive results when a child

tries to propagate a message12. The amount of time, tawake that a sensor node must be

awake to successfully accomplish the latter three steps above is largely dependent on the

number of other nodes transmitting in the same radio cell, since only a small number of

messages per second can be transmitted over the single shared radio channel. We discuss

the communication scheduling approach in more detail in the next section.

TinyDB uses a simple algorithm to scale tawake based on the neighborhood size, which

is measures by snooping on traffic from neighboring nodes. Note, however, that there are

situations in which a node will be forced to drop or combine results as a result of the

either tawake or the sample interval being too short to perform all needed computation and

communication. We discuss policies for choosing how to aggregate data and which results

to drop in Section 6.3.

Once a node is awake, it begins sampling and filtering results according to the plan

provided by the optimizer. Samples are taken at the appropriate (current) sample rate

for the query, based on lifetime computations and information about radio contention and

power consumption (see Section 6.4 for more information on how TinyDB adapts sampling

in response to variations during execution.) Filters are applied and results are routed to join

and aggregation operators further up the query plan.

Finally, we note that in event-based queries, the ON EVENT clause must be handled

specially. When an event fires on a node, that node disseminates the query, specifying itself

as the query root. This node collects query results, and delivers them to the basestation or

a local materialization point.

6.1.1 Communication Scheduling and Aggregate Queries. When processing aggregate

queries, some care must be taken to coordinate the times when parents and children are

awake, so that parent nodes have access to their children’s readings before aggregating.

The basic idea is to subdivide the epoch into a number of intervals, and assign nodes to

intervals based on their position in the routing tree. Because this mechanism makes rela-

tively efficient use of the radio channel and has good power consumption characteristics,

TinyDB uses this scheduling approach for all queries (not just aggregates).

In this slotted approach, each epoch is divided into a number of fixed-length time inter-

vals. These intervals are numbered in reverse order such that interval 1 is the last interval

in the epoch. Then, each node is assigned to the interval equal to its level, or number of

hops from the root, in the routing tree. In the interval preceding their own, nodes listen to

their radios, collecting results from any child nodes (which are one level below them in the

tree, and thus communicating in this interval.) During a node’s interval, if it is aggregat-

12Of course, there is some imprecision in time synchronization between devices. In general, we can tolerate a

fair amount of imprecision by introducing a buffer period, such that parent s wake up several milliseconds before

and stay awake several milliseconds longer than their children.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

32 · Samuel Madden et al.

ing, it computes the partial state record consisting of the combination of any child values

it heard with its own local readings. After this computation, it transmits either its partial

state record or raw sensor readings up the network. In this way, information travels up the

tree in a staggered fashion, eventually reaching the root of the network during interval 1.

Figure 12 illustrates this in-network aggregation scheme for a simple COUNT query that

reports the number of nodes in the network. In the figure, time advances from left to right,

and different nodes in the communication topology are shown along the Y axis. Nodes

transmit during the interval corresponding to their depth in the tree, so H, I, and J
transmit first, during interval 4, because they are at level 4. Transmissions are indicated by

arrows from sender to receiver, and the numbers in circles on the arrows represent COUNTs

contained within each partial state record. Readings from these three nodes are combined,

via the COUNTmerging function, at nodes G and F, both of which transmit new partial state

records during interval 3. Readings flow up the tree in this manner until they reach node

A, which then computes the final count of 10. Notice that motes are idle for a significant

portion of each epoch so they can enter a low power sleeping state. A detailed analysis of

the accuracy and benefit of this approach in TinyDB can be found in [Madden 2003].

A

B

C

E

I

D

G

J

F

H

Level = 1

Level = 2

Level = 3

Level = 4

Level = 0

Communication Topology

SELECT count(*) FROM sensors ...

Interval 5 Interval 4 Interval 3 Interval 2 Interval 1
Count = 10

A

B

C

D

E

F

G

H

I

J

Nodes Sleeping

Nodes Sleeping

Time

Slotted Approach

Epoch

1

1
1

3

2

6
1

7

2

Key Partial Aggregate
Message, with Count

Radio in Transmit
Mode

Radio in Listen-Only
Mode

1

Fig. 12. Partial state records flowing up the tree during an epoch using interval-based communication.

6.2 Multiple Queries

We note that, although TinyDB supports multiple queries running simultaneously, we have

not focused on multi-query optimization. This means that, for example, SRTs are shared

between queries, but sample acquisition is not: if two queries need a reading within a few

milliseconds of each other, this will cause both to acquire that reading. Similarly, there

is no effort to optimize communication scheduling between queries: transmissions of one

query are scheduled independently from any other query. We hope to explore these issues

as a part of our long-term sensor network research agenda.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Acquisitional Query Processing In Sensor Networks · 33

6.3 Prioritizing Data Delivery

Once results have been sampled and all local operators have been applied, they are en-

queued onto a radio queue for delivery to the node’s parent. This queue contains both

tuples from the local node as well as tuples that are being forwarded on behalf of other

nodes in the network. When network contention and data rates are low, this queue can

be drained faster than results arrive. However, because the number of messages produced

during a single epoch can vary dramatically, depending on the number of queries running,

the cardinality of joins, and the number of groups and aggregates, there are situations when

the queue will overflow. In these situations, the system must decide if it should discard the

overflow tuple, discard some other tuple already in the queue, or combine two tuples via

some aggregation policy.

The ability to make runtime decisions about the value of an individual data item is central

to ACQP systems, because the cost of acquiring and delivering data is high, and because

of these situations where the rate of data items arriving at a node will exceed the maxi-

mum delivery rate. A simple conceptual approach for making such runtime decisions is

as follows: whenever the system is ready to deliver a tuple, send the result that will most

improve the “quality” of the answer that the user sees. Clearly, the proper metric for qual-

ity will depend on the application: for a raw signal, root-mean-square (RMS) error is a

typical metric. For aggregation queries, minimizing the confidence intervals of the values

of group records could be the goal [Raman et al. 2002]. In other applications, users may be

concerned with preserving frequencies, receiving statistical summaries (average, variance,

or histograms), or maintaining more tenuous qualities such as signal “shape”.

Our goal is not to fully explore the spectrum of techniques available in this space. In-

stead, we have implemented several policies in TinyDB to illustrate that substantial quality

improvements are possible given a particular workload and quality metric. Generaliz-

ing concepts of quality and implementing and exploring more sophisticated prioritization

schemes remains an area of future work.

There is a large body of related work on approximation and compression schemes for

streams in the database literature (e.g.,[Garofalakis and Gibbons 2001; Chakrabarti et al.

2001]), although these approaches typically focus on the problem of building histograms or

summary structures over the streams rather than trying to preserve the (in order) signal as

best as possible, which is the goal we tackle first. Algorithms from signal processing, such

as Fourier analysis and wavelets are likely applicable, although the extreme memory and

processor limitations of our devices and the online nature of our problem (e.g.,choosing

which tuple in an overflowing queue to evict) make them tricky to apply. We have be-

gun to explore the use of wavelets in this context; see [Hellerstein et al. 2003] for more

information on our initial efforts.

6.3.1 Policies for Selection Queries. We begin with a comparison of three simple pri-

oritization schemes, naive, winavg, and delta for simple selection queries, turning our

attention to aggregate queries in the next section. In the naive scheme no tuple is consid-

ered more valuable than any other, so the queue is drained in a FIFO manner and tuples are

dropped if they do not fit in the queue.

The winavg scheme works similarly, except that instead of dropping results when the

queue fills, the two results at the head of the queue are averaged to make room for new

results. Since the head of the queue is now an average of multiple records, we associate a

count with it.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

34 · Samuel Madden et al.

In the delta scheme, a tuple is assigned an initial score relative to its difference from the

most recent (in time) value successfully transmitted from this node, and at each point in

time, the tuple with the highest score is delivered. The tuple with the lowest score is evicted

when the queue overflows. Out of order delivery (in time) is allowed. This scheme relies

on the intuition that the largest changes are probably interesting. It works as follows: when

a tuple t with timestamp T is initially enqueued and scored, we mark it with the timestamp

R of this most recently delivered tuple r. Since tuples can be delivered out of order, it is

possible that a tuple with a timestamp between R and T could be delivered next (indicating

that r was delivered out of order), in which case the score we computed for t as well as

its R timestamp are now incorrect. Thus, in general, we must rescore some enqueued

tuples after every delivery. The delta scheme is similar to the value-deviation metric used

in [Garofalakis and Gibbons 2001] for minimizing deviation between a source and a cache

although value-deviation does not include the possibility of out of order delivery.

We compared these three approaches on a single mote running TinyDB. To measure

their effect in a controlled setting, we set the sample rate to be a fixed number K faster

than the maximum delivery rate (such that 1 of every K tuples was delivered, on average)

and compared their performance against several predefined sets of sensor readings (stored

in the EEPROM of the device.) In this case, delta had a buffer of 5 tuples; we performed

reordering of out of order tuples at the basestation. To illustrate the effect of winavg and

delta, Figure 13 shows how delta and winavg approximate a high-periodicity trace of sensor

readings generated by a shaking accelerometer. Notice that delta is considerably closer in

shape to the original signal in this case, as it is tends to emphasize extremes, whereas

average tends to dampen them.

 400

 500

 600

 700

 800

S
a
m

p
le

 V
a
lu

e

Approximations of Acceleration Signal

Acceleration Signal

 400

 500

 600

 700

 800

S
a
m

p
le

 V
a
lu

e

Delta

 400

 500

 600

 700

 800

 400 450 500 550 600 650

S
a
m

p
le

 V
a
lu

e

of Samples

Avg

Fig. 13. An acceleration signal (top) approximated by a delta (middle) and an average (bottom), K=4.

We also measured RMS error for this signal as well as two others: a square wave-

like signal from a light sensor being covered and uncovered, and a slow sinusoidal signal

generated by moving a magnet around a magnetometer. The error for each of these signals

and techniques is shown in Table V. Although delta appears to match the shape of the

acceleration signal better, its RMS value is about the same as average’s (due to the few

peaks that delta incorrectly merges together.) Delta outperforms either other approach for

the fast changing step-functions in the light signal because it does not smooth edges as

much as average.

We now turn our attention to result prioritization for aggregate queries.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Acquisitional Query Processing In Sensor Networks · 35

Table V. RMS Error for Different Prioritization Schemes and Sig-

nals (1000 Samples, Sample Interval = 64ms)

Accel Light (Step) Magnetometer (Sinusoid)

Winavg 64 129 54

Delta 63 81 48

Naive 77 143 63

6.3.2 Policies for Aggregate Queries. The previous section focused on prioritizing re-

sult collection in simple selection queries. In this section, we look instead at aggregate

queries, illustrating a class of snooping based techniques first described in the TAG sys-

tem [Madden et al. 2002] that we have implemented for TinyDB. We consider aggregate

queries of the form:

SELECT fagg(a1)
FROM sensors
GROUP BY a2

SAMPLE PERIOD x

Recall that this query computes the value of fagg applied to the value of a1 produced by

each device every x seconds.

Interestingly, for queries with few or no groups, there is a simple technique that can be

used to prioritize results for several types of aggregates. This technique, called snooping,

allows nodes to locally suppress local aggregate values by listening to the answers that

neighboring nodes report and exploiting the semantics of aggregate functions, and is also

used in [Madden et al. 2002]. Note that this snooping can be done for free due to the

broadcast nature of the radio channel. Consider, for example, a MAX query over some

attribute a – if a node n hears a value of a greater than its own locally computed partial

MAX, it knows that its local record is low priority, and assigns it a low score or suppresses

it altogether. Conversely, if n hears many neighboring partial MAXs over a that are less

than its own partial aggregate value, it knows that its local record is more likely to be a

maximum, and assigns it a higher score.

Figure 14 shows a simple example of snooping for a MAX query – node 2 is can score its

own MAX value very low when it hears a MAX from node 3 that is larger than its own.

This basic technique applies to all monotonic, exemplary aggregates: MIN, MAX,

TOP-N, etc., since it is possible to deterministically decide whether a particular local re-

sult could appear in the final answer output at the top of the network. For dense network

topologies where there is ample opportunity for snooping, this technique produces a dra-

1

2

3

4
5

SELECT MAX(light)
FROM sensors

{4}
{5}

MAX{3,4,5}

2 > MAX{3,4,5}?

{2} or { }

Snooping

Fig. 14. Snooping reduces the data nodes must send in aggregate queries. Here node 2’s value can be suppressed

if it is less than the maximum value snooped from nodes 3,4, and 5.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

36 · Samuel Madden et al.

matic reduction in communication, since at every intermediate point in the routing tree,

only a small number of node’s values will actually need to be transmitted.

It is also possible to glean some information from snooping in other aggregates as well

– for example, in an AVERAGE query, nodes may rank their own results lower if they hear

many siblings with similar sensor readings. For this approach to work, parents must cache

a count of recently heard children and assume children who do not send a value for an av-

erage have the same value as the average of their siblings’ values, since otherwise outliers

will be weighted disproportionately. This technique of assuming that missing values are

the same as the average of other reported values can be used for many summary statis-

tics: variance, sum, and so on. Exploring more sophisticated prioritization schemes for

aggregate queries is an important area of future work.

In the previous sections, we demonstrated how prioritization of results can be used im-

prove the overall quality of that data that are transmitted to the root when some results

must be dropped or aggregated. Choosing the proper policies to apply in general, and

understanding how various existing approximation and prioritization schemes map into

ACQP is an important future direction.

6.4 Adapting Rates and Power Consumption

We saw in the previous sections how TinyDB can exploit query semantics to transmit the

most relevant results when limited bandwidth or power is available. In this section, we

discuss selecting and adjusting sampling and transmission rates to limit the frequency of

network-related losses and fill rates of queues. This adaptation is the other half of the

runtime techniques in ACQP: because the system can adjust rates, significant reductions

can be made in the frequency with which data prioritization decisions must be made. These

techniques are simply not available in non-acquisitional query processing systems.

When initially optimizing a query, TinyDB’s optimizer chooses a transmission and sam-

ple rate based on current network load conditions, and requested sample rates and life-

times. However, static decisions made at the start of query processing may not be valid

after many days running the same continuous query. Just as adaptive query processing

techniques like eddies [Avnur and Hellerstein 2000], Tukwila [Ives et al. 1999], and Query

Scrambling [Urhan et al. 1998] dynamically reorder operators as the execution environ-

ment changes, TinyDB must react to changing conditions – however, unlike in previous

adaptive query processing systems, failure to adapt in TinyDB can cripple the system, re-

ducing data flow to a trickle or causing the system to severely miss power budget goals.

We study the need for adaptivity in two contexts: network contention and power con-

sumption. We first examine network contention. Rather than simply assuming that a spe-

cific transmission rate will result in a relatively uncontested network channel, TinyDB

monitors channel contention and adaptively reduces the number of packets transmitted as

contention rises. This backoff is very important: as the 4 motes line of Figure 15 shows, if

several nodes try to transmit at high rates, the total number of packets delivered is substan-

tially less than if each of those nodes tries to transmit at a lower rate. Compare this line

with the performance of a single node (where there is no contention) – a single node does

not exhibit the same falling off because there is no contention (although the percentage of

successfully delivered packets does fall off.) Finally, the 4 motes adaptive line does not

have the same precipitous performance because it is able to monitor the network channel

and adapt to contention.

Note that the performance of the adaptive approach is slightly less than the non-adaptive

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Acquisitional Query Processing In Sensor Networks · 37

approach at 4 and 8 samples per second as backoff begins to throttle communication in

this regime. However, when we compared the percentage of successful transmission at-

tempts at 8 packets per second, the adaptive scheme achieves twice the success rate of

the non-adaptive scheme, suggesting the adaptation is still effective in reducing wasted

communication effort, despite the lower utilization.

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10 12 14 16

D
e

liv
e

ry
 R

a
te

,
A

g
g

re
g

a
te

 o
v
e

r
A

ll
M

o
te

s
 (

p
a

c
k
e

ts
 p

e
r

s
e

c
o

n
d

)

Samples Per Second (per mote)

Sample Rate vs. Delivery Rate

4 motes

1 mote

4 motes, adaptive

Fig. 15. Per-mote sample rate versus aggregate delivery rate.

The problem with reducing the transmission rate is that it will rapidly cause the network

queue to fill, forcing TinyDB to discard tuples using the semantic techniques for victim

selection presented in Section 6.3 above. We note, however, that had TinyDB not chosen

to slow its transmission rate, fewer total packets would have been delivered. Furthermore,

by choosing which packets to drop using semantic information derived from the queries

(rather than losing some random sample of them), TinyDB is able to substantially improve

the quality of results delivered to the end user. To illustrate this in practice, we ran a

selection query over four motes running TinyDB, asking them each to sample data at 16

samples per second, and compared the quality of the delivered results using an adaptive-

backoff version of our delta approach to results over the same dataset without adaptation

or result prioritization. We show here traces from two of the nodes on the left and right

of Figure 16. The top plots show the performance of the adaptive delta, the middle plots

show the non-adaptive case, and the bottom plots show the the original signals (which

were stored in EEPROM to allow repeatable trials.) Notice that the delta scheme does

substantially better in both cases.

6.4.1 Measuring Power Consumption. We now turn to the problem of adapting tuple

delivery rates to meet specific lifetime requirements in response to incorrect sample rates

computed at query optimization time (see Section 3.6). We first note that, using the com-

putations shown in Section 3.6, it is possible to compute a predicted battery voltage for a

time t seconds into processing a query.

The system can then compare its current voltage to this predicted voltage. By assuming

that voltage decays linearly we can re-estimate the power consumption characteristics of

the device (e.g.,the costs of sampling, transmitting, and receiving) and then re-run our

lifetime calculation. By re-estimating these parameters, the system can ensure that this

new lifetime calculation tracks the actual lifetime more closely.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

38 · Samuel Madden et al.

 500

 600

 700

 800

S
a

m
p

le
 V

a
lu

e

Adaptive vs. Non-Adaptive (Accel)

ERMS=81

Adaptive Delta

 500

 600

 700

 800

S
a

m
p

le
 V

a
lu

e

ERMS=112

No Adaptation

 500

 600

 700

 800

 500 520 540 560 580 600

S
a

m
p

le
 V

a
lu

e

Sample #

Accelerometer Signal

 150

 300

 450

 600

 750

Adaptive vs. Non-Adaptive (Mag.)

ERMS=87

Adaptive Delta

 150

 300

 450

 600

 750

ERMS=109

No Adaptation

 150

 300

 450

 600

 750

 350 400 450 500 550

Sample #

Magnetometer Signal

Fig. 16. Comparison of delivered values (bottom) versus actual readings for from two motes (left and right)

sampling at 16 packets per second and sending simultaneously. Four motes were communicating simultaneously

when this data was collected.

Although this calculation and re-optimization are straightforward, they serve an impor-

tant role by allowing TinyDB motes to satisfy occasional ad-hoc queries and relay results

for other nodes without compromising lifetime goals of long-running monitoring queries.

Finally, we note that incorrect measurements of power consumption may also be due

to incorrect estimates of the cost of various phases of query processing, or may be as a

result of incorrect selectivity estimation. We cover both by tuning sample rate. As future

work, we intend to explore adaptation of optimizer estimates and ordering decisions (in

the spirit of other adaptive work [Hellerstein et al. 2000]) and the effect of frequency of

re-estimation on lifetime.

7. SUMMARY OF ACQP TECHNIQUES

This completes our discussion of the novel issues and techniques that arise when taking an

acquisitional perspective on query processing. In summary, we first discussed important

Table VI. Summary of acquisitional query processing techniques in TinyDB.

Technique (Section) Summary

Event-based Queries (3.5) Avoid polling overhead

Lifetime Queries (3.6) Satisfy user-specified longevity constraints

Interleaving Acquisition/Predicates (4.2) Avoid unnecessary sampling costs in selection queries

Exemplary Aggregate Pushdown (4.2.1) Avoid unnecessary sampling costs in aggregate queries

Event Batching (4.3) Avoid execution costs when a number of event queries fire

SRT (5.1) Avoid query dissemination costs or the inclusion of unneeded

nodes in queries with predicates over constant attributes

Communication Scheduling (6.1.1) Disable node’s processors and radios during times of inactivity

Data Prioritization (6.3) Choose most important samples to deliver according to a user-

specified prioritization function

Snooping (6.3.2) Avoid unnecessary transmissions during aggregate queries

Rate Adaptation (6.4) Intentionally drop tuples to avoid saturating the radio channel,

allowing most important tuples to be delivered

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Acquisitional Query Processing In Sensor Networks · 39

aspects of an acquisitional query language, introducing event and lifetime clauses for con-

trolling when and how often sampling occurs. We then discussed query optimization with

the associated issues of modeling sampling costs and ordering of sampling operators. We

showed how event-based queries can be rewritten as joins between streams of events and

sensor samples. Once queries have been optimized, we demonstrated the use of semantic

routing trees as a mechanism for efficiently disseminating queries and collecting results.

Finally, we showed the importance of prioritizing data according to quality and discussed

the need for techniques to adapt the transmission and sampling rates of an ACQP system.

Table VI lists the key new techniques we introduced, summarizing what queries they apply

to and when they are most useful.

8. RELATED WORK

There has been some recent publication in the database and systems communities on query

processing in sensor networks [Intanagonwiwat et al. 2000; Madden et al. 2002; P.Bonnet

et al. 2001; Madden and Franklin 2002; Yao and Gehrke 2002]. These papers noted the

importance of power sensitivity. Their predominant focus to date has been on in-network

processing – that is, the pushing of operations, particularly selections and aggregations,

into the network to reduce communication. We too endorse in-network processing, but

believe that, for a sensor network system to be truly power sensitive, acquisitional issues

of when, where, and in what order to sample and which samples to process must be con-

sidered. To our knowledge, no prior work addresses these issues.

There is a small body of work related to query processing in mobile environments

[Imielinski and Badrinath 1992; Alonso and Korth 1993]. This work is concerned with

laptop-like devices that are carried with the user, can be readily recharged every few hours,

and, with the exception of a wireless network interface basically have the capabilities of a

wired, powered PC. Lifetime-based queries, notions of sampling the associated costs, and

runtime issues regarding rates and contention are not considered. Many of the proposed

techniques, as well as more recent work on moving object databases (such as [Wolfson

et al. 1999]) focus on the highly mobile nature of devices, a situation we are not (yet)

dealing with, but which could certainly arise in sensor networks.

Power sensitive query optimization was proposed in [Alonso and Ganguly 1993], al-

though, as with the previous work, the focus is on optimizing costs in traditional mobile

devices (e.g.,laptops and palmtops), so concerns about the cost and ordering of sampling

do not appear. Furthermore, laptop-style devices typically do not offer the same degree of

rapid power-cycling that is available on embedded platforms like motes. Even if they did,

their interactive, user oriented nature makes it undesirable to turn off displays, network

interfaces, etc. because they are doing more than simply collecting and processing data, so

there are many fewer power optimizations that can be applied.

Building an SRT is analogous to building an index in a conventional database system.

Due to the resource limitations of sensor networks, the actual indexing implementations

are quite different. See [Kossman 2000] for a survey of relevant research on distributed

indexing in conventional database systems. There is also some similarity to indexing in

peer-to-peer systems [Crespo and Garcia-Molina 2002]. However, peer-to-peer systems

differ in that they are inexact and not subject to the same paucity of communications or

storage infrastructure as sensor networks, so algorithms tend to be storage and commu-

nication heavy. Similar indexing issues also appear in highly mobile environments (like

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

40 · Samuel Madden et al.

[Wolfson et al. 1999; Imielinski and Badrinath 1992]), but this work relies on a centralized

location servers for tracking recent positions of objects.

The observation that interleaving the fetching of attributes and application of operators

also arises in the context of compressed databases [Chen et al. 2001], as decompression

effectively imposes a penalty for fetching an individual attribute, so it is beneficial to apply

selections and joins on already decompressed or easy to decompress attributes.

The ON EVENT and OUTPUT ACTION clauses in our query language are similar to

constructs present in ECA/active databases [Chakravarthy et al. 1994]. There is a long

tradition of such work in the database community, and our techniques are much simpler in

comparison, as we we have not focused on any of the difficult issues associated with the

semantics of event composition or with building a complete language for expressing and

efficiently evaluating the triggering of composite events. Work on systems for efficiently

determining when an event has fired, such as [Hanson 1996] could be useful in TinyDB.

More recent work on continuous query systems [Liu et al. 1999; Chen et al. 2000] describes

languages that provide for query processing in response to events or at regular intervals

over time. This earlier work, as well as our own work on continuous query processing

[Madden et al. 2002], inspired the periodic and event-driven features of TinyDB.

Approximate and best effort caches [Olston and J.Widom 2002], as well as systems

for online-aggregation [Raman et al. 2002] and stream query processing [Motwani et al.

2003; Carney et al. 2002] include some notion of data quality. Most of this other work

is focused on quality with respect to summaries, aggregates, or staleness of individual

objects, whereas we focus on quality as a measure of fidelity to the underlying continuous

signal. Aurora [Carney et al. 2002] mentions a need for this kind of metric, but proposes

no specific approaches. Work on approximate query processing [Garofalakis and Gibbons

2001] includes a scheme similar to our delta approach, as well as a substantially more

thorough evaluation of its merits, but does not consider out of order delivery.

9. CONCLUSIONS AND FUTURE WORK

Acquisitional query processing provides a framework for addressing issues of when,

where, and how often data is sampled and which data is delivered in distributed, embedded

sensing environments. Although other research has identified the opportunities for query

processing in sensor networks, this work is the first to discuss these fundamental issues in

an acquisitional framework.

We identified several opportunities for future research. We are currently actively pursu-

ing two of these: first, we are exploring how query optimizer statistics change in acqui-

sitional environments and studying the role of online re-optimization in sample rate and

operator orderings in response to bursts of data or unexpected power consumption. Sec-

ond, we are pursuing more sophisticated prioritization schemes, like wavelet analysis, that

can capture salient properties of signals other than large changes (as our delta mechanism

does) as well as mechanisms to allow users to express their prioritization preferences.

We believe that ACQP notions are of critical importance for preserving the longevity and

usefulness of any deployment of battery powered sensing devices, such as those that are

now appearing in biological preserves, roads, businesses, and homes. Without appropriate

query languages, optimization models, and query dissemination and data delivery schemes

that are cognizant of semantics and the costs and capabilities of the underlying hardware

the success of such deployments will be limited.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Acquisitional Query Processing In Sensor Networks · 41

APPENDIX

A. POWER CONSUMPTION STUDY

This appendix details an analytical study of power consumption on a mote running a typical

data collection query.

In this study, we assume that each mote runs a very simple query that transmits one

sample of (light, humidity) readings every minute. We assume each mote also listens to

its radio for two seconds per one-minute period to receive results from from neighboring

devices and obtain access to the radio channel. We assume the following hardware charac-

teristics: a supply voltage of 3V, an Atmega128 processor [Atmel Corporation] that can be

set into Power Down Mode and runs off the internal oscillator at 4Mhz, the use of the Taos

Photosynthetically Active Light Sensor [TAOS, Inc. 2002] and Sensirion Humidity Sen-

sor [Sensirion 2002], and a ChipCon CC1000 Radio [ChipCon Corporation] transmitting

at 433Mhz with 0 dBm output power and -110 dBm receive sensitivity. We further assume

the radio can make use of its low-power sampling 13 mode to reduce reception power when

no other radios are communicating, and that, on average, each node has ten neighbors, or

other motes within radio range, period, with one of those neighbors being a child in the

routing tree. Radio packets are 50 bytes each, with a 20 byte preamble for synchronization.

This hardware configuration represents real-world settings of motes similar to values used

in deployments of TinyDB in various environmental monitoring applications.

The percentage of total energy used by various components is shown in Table VII. These

results show that the processor and radio together consume the majority of energy for

this particular data collection task. Obviously, these numbers change as the number of

messages transmitted per period increases; doubling the number of messages sent increases

the total power utilization by about 19 percent as a result of the radio spending less time

sampling the channel and more time actively receiving. Similarly, if a node must send 5

packets per sample period instead of 1, its total power utilization rises by about 10 percent.

This table does not tell the entire story, however, because the processor must be active

during sensing and communication, even though it has very little computation to perform14.

13This mode works by sampling the radio at a low-frequency – say, once every k bit-times, where k is on the

order of 100 – and extending the synchronization header, or preamble, on radio packets to be at least k + ǫ bits,

such that a radio using this low-power listening approach will still detect every packet. Once a packet is detected,

the receiver begins packet reception at the normal rate. The cost of this technique is that it increases transmission

costs significantly.
14The requirement that the processor be active during these times is an artifact of the mote hardware. Blue-

Table VII. Expected Power Consumption for Major Hardware Components, a query reporting light and ac-

celerometer readings once every minute.

Hardware Current (mA) Active Time (s) % Total Energy

Sensing, Humidity 0.50 0.34 1.43

Sensing, Light 0.35 1.30 3.67

Communication, Sending 10.40 0.03 2.43

(70 bytes @ 38.4bps x 2 packets)

Communication, Receive Packets 9.30 0.15 11.00

(70 bytes @ 38.4bps x 10 packets)

Communication, Sampling Channel 0.07 0.86 0.31

Processor, Active 5.00 2.00 80.68

Processor, Idle 0.001 58.00 0.47

Average current draw per second: .21 mA

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

42 · Samuel Madden et al.

For example, in the above table, 1.3 seconds are spent waiting for the light sensor to start

and produce a sample15, and another .029 seconds are spent transmitting. Furthermore, the

MAC layer on the radio introduces a delay proportional to the number of devices transmit-

ting. To measure this delay, we examined the average delay between 1700 packet arrivals

on a network of ten time-synchronized motes attempting to send at the same time. The

minimum inter-packet arrival time was about 0.06 seconds; subtracting the expected trans-

mit time of a packet (.007s) suggests that, with 10 nodes, the average MAC delay will be

at least (.06 − .007) × 5) = 0.265s. Thus, of the 2 seconds each mote is awake, about 1.6

seconds of that time is spent waiting for the sensors or radio. The total 2 second waking

period is selected to allow for variation in MAC delays on individual sensors.

Application computation is almost negligible for basic data collection scenarios: we

measured application processing time by running a simple TinyDB query that collects

three data fields from the RAM of the processor (incurring no sensing delay) and transmits

them over an uncontested radio channel (incurring little MAC delay). We inserted into the

query result a measure of the elapsed time from the start of processing until the moment

the result begins to be transmitted. The average delay was less than 1/32 (.03125) seconds,

which is the minimum resolution we could measure.

Thus, of the 81% of energy spent on the processor, no more than 1% of its cycles are

spent in application processing. For the example given here at least 65% of this 81% is

spent waiting for sensors, and another 8% waiting for the radio to send or receive. The

remaining 26% of processing time is time to allow for multihop forwarding of messages

and as slop in the event that MAC delays exceed the measured minimums given above.

Summing the processor time spent waiting to send or sending with the percent energy used

by the radio itself, we get:

(0.26 + 0.08) × 0.80 + 0.02 + 0.11 + .003 = .41
This indicates that about 41% of power consumption in this simple data collection task

is due to communication. Similarly, in this example, the percentage of energy devoted to

sensing can be computed by summing the energy spent waiting for samples with the energy

costs of sampling.

.65 ∗ .81 + .01 + .04 = .58
Thus, about 58% of the energy in this case is spent sensing. Obviously, the total percentage

of time spent in sensing could be less if sensors that powered up more rapidly were used.

When we discuss query optimization in TinyDB in Section 4 we will see a range of sensors

with varying costs that would alter the percentages in this section.

B. QUERY LANGUAGE

This appendix provides a complete specification of the syntax of the TinyDB query lan-

guage as well as pointers to the parts of the text where these constructs are defined. We will

use {} to denote a set, [] to denote optional clauses, and <> to denote an expression, and

italicized text to denote user-specified tokens such as aggregate names, commands, and

arithmetic operators. The separator “|” indicates that one or the other of the surrounding

tooth radios, for example, can negotiate channel access independently of the processor. These radios, however,

have significantly higher power consumption than the mote radio; see [Leopold et al. 2003] for a discussion of

Bluetooth as a radio for sensor networks
15On motes, it is possible to start and sample several sensors simultaneously, so the delay for the light and

humidity sensors are not additive.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Acquisitional Query Processing In Sensor Networks · 43

tokens may appear, but not both. Ellipses (“...”) indicate a repeating set of tokens, such as

fields in the SELECT clause or tables in the FROM clause.

B.1 Query Syntax

The syntax of queries in the TinyDB query language is as follows:

[ON [ALIGNED] EVENT event-type[{paramlist}]
[boolop event-type{paramlist} ...]]

SELECT [NO INTERLEAVE] <expr>| agg(<expr>) |
temporal agg(<expr>), ...

FROM [sensors | storage-point], ...
[WHERE {<pred>}]
[GROUP BY {<expr>}]
[HAVING {<pred>}]

[OUTPUT ACTION [command |
SIGNAL event({paramlist}) |
(SELECT ...)] |

[INTO STORAGE POINT bufname]]
[SAMPLE PERIOD seconds

[[FOR nrounds] |
[STOP ON event-type [WHERE <pred>]]]

[COMBINE { agg(<expr>)}]
[INTERPOLATE LINEAR]] |

[ONCE] |
[LIFETIME seconds [MIN SAMPLE RATE seconds]]

Each of these constructs are described in more detail in the sections shown in the table

VIII.

B.2 Storage Point Creation and Deletion Syntax

The syntax for storage point creation is:

CREATE [CIRCULAR] STORAGE POINT name

SIZE [ntuples | nseconds]

Table VIII. References to sections in the main text where query

language constructs are introduced.

Language Construct Section

ON EVENT Section 3.5

SELECT-FROM-WHERE Section 3

GROUP BY, HAVING Section 3.3.1

OUTPUT ACTION Section 3.7

SIGNAL <event> Section 3.5

INTO STORAGE POINT Section 3.2

SAMPLE PERIOD Section 3

FOR Section 3.2

STOP ON Section 3.5

COMBINE Section 3.2

ONCE Section 3.7

LIFETIME Section 3.6

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

44 · Samuel Madden et al.

[(fieldname type [, ... , fieldname type])] |
[AS SELECT ...]
[SAMPLE PERIOD nseconds]

and for deletion:

DROP STORAGE POINT name

Both of these constructs are described in Section 3.2.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Acquisitional Query Processing In Sensor Networks · 45

REFERENCES

ALONSO, R. AND GANGULY, S. 1993. Query optimization in mobile environments. In Workshop on Founda-

tions of Models and Languages for Data and Objects. 1–17.

ALONSO, R. AND KORTH, H. F. 1993. Database system issues in nomadic computing. In ACM SIGMOD.

Washington DC.

ANALOG DEVICES, INC. Adxl202e: Low-cost 2 g dual-axis accelerometer. Tech. rep. http://products.
analog.com/products/info.asp?product=ADXL202.

ATMEL CORPORATION. Atmel ATMega 128 Microcontroller Datasheet. http://www.atmel.com/
atmel/acrobat/doc2467.pdf.

AVNUR, R. AND HELLERSTEIN, J. M. 2000. Eddies: Continuously adaptive query processing. In Proceedings

of the ACM SIGMOD. Dallas, TX, 261–272.

BANCILHON, F., BRIGGS, T., KHOSHAFIAN, S., AND VALDURIEZ, P. 1987. FAD, a powerful and simple

database language. In VLDB.

BROOKE, T. AND BURRELL, J. 2003. From ethnography to design in a vineyard. In Proceeedings of the Design

User Experiences (DUX) Conference. Case Study.

CARNEY, D., CENTIEMEL, U., CHERNIAK, M., CONVEY, C., LEE, S., SEIDMAN, G., STONEBRAKER, M.,

TATBUL, N., AND ZDONIK, S. 2002. Monitoring streams - a new class of data management applications. In

VLDB.

CERPA, A., ELSON, J., D.ESTRIN, GIROD, L., HAMILTON, M., AND ZHAO, J. 2001. Habitat monitoring:

Application driver for wireless communications technology. In ACM SIGCOMM Workshop on Data Commu-

nications in Latin America and the Caribbean.

CHAKRABARTI, K., GAROFALAKIS, M., RASTOGI, R., AND SHIM, K. 2001. Approximate query processing

using wavelets. VLDB Journal 10.

CHAKRAVARTHY, S., KRISHNAPRASAD, V., ANWAR, E., AND KIM, S. K. 1994. Composite events for active

databases: Semantics, contexts and detection. In VLDB.

CHANDRASEKARAN, S., COOPER, O., DESHPANDE, A., FRANKLIN, M. J., HELLERSTEIN, J. M., HONG, W.,

KRISHNAMURTHY, S., MADDEN, S. R., RAMAN, V., REISS, F., AND SHAH, M. A. 2003. TelegraphCQ:

Continuous dataflow processing for an uncertain world. In First Annual Conference on Innovative Database

Research (CIDR).

CHEN, J., DEWITT, D., TIAN, F., AND WANG, Y. 2000. NiagaraCQ: A scalable continuous query system for

internet databases. In Proceedings of the ACM SIGMOD.

CHEN, Z., GEHRKE, J., AND KORN, F. 2001. Query optimization in compressed database systems. In ACM

SIGMOD.

CHIPCON CORPORATION. CC1000 Single Chip Very Low Power RF Transceiver Datasheet. http://www.
chipcon.com.

CRESPO, A. AND GARCIA-MOLINA, H. 2002. Routing indices for peer-to-peer systems. In ICDCS.

CROSSBOW, INC. Wireless Sensor Networks (Mica Motes). http://www.xbow.com/Products/
Wireless_Sensor_Networks.htm.

DELIN, K. A. AND JACKSON, S. P. 2000. Sensor web for in situ exploration of gaseous biosignatures. In IEEE

Aerospace Conference.

DEWITT, D. J., GHANDEHARIZADEH, S., SCHNEIDER, D. A., BRICKER, A., HSIAO, H. I., AND RAS-

MUSSEN, R. 1990. The gamma database machine project. IEEE TKDE 2, 1, 44–62.

DUST INC. Company Web Site. http://www.dust-inc.com.

FIGARO, INC. Tgs-825 - special sensor for hydrogen sulfide. Tech. rep. http://www.figarosensor.
com.

GANERIWAL, S., KUMAR, R., ADLAKHA, S., AND SRIVASTAVA, M. 2003. Timing-sync protocol for sensor

networks. In Proceedings of ACM SenSys.

GAROFALAKIS, M. AND GIBBONS, P. 2001. Approximate query processing: Taming the terabytes! (tutorial).

In VLDB.

GAY, D., LEVIS, P., VON BEHREN, R., WELSH, M., BREWER, E., AND CULLER, D. 2003. The nesC Lan-

guage: A Holistic Approach to Network Embedded Systems. In ACM SIGPLAN 2003 Conference on Pro-

gramming Language Design and Implementation (PLDI).

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

46 · Samuel Madden et al.

GEHRKE, J., KORN, F., AND SRIVASTAVA, D. 2001. On computing correlated aggregates over continual data

streams. In Proceedings of the ACM SIGMOD Conference on Management of Data. Santa Barbara, CA.

HANSON, E. N. 1996. The design and implementation of the ariel active database rule system. IEEE Transac-

tions on Knowledge and Data Engineering 8, 1 (February), 157–172.

HELLERSTEIN, J., HONG, W., MADDEN, S., AND STANEK, K. 2003. Beyond average: Towards sophisticated

sensing with queries. In Proceedings of the First Workshop on Information Processing in Sensor Networks

(IPSN).

HELLERSTEIN, J. M. 1998. Optimization techniques for queries with expensive methods. TODS 23, 2, 113–157.

HELLERSTEIN, J. M., FRANKLIN, M. J., CHANDRASEKARAN, S., DESHPANDE, A., HILDRUM, K., MAD-

DEN, S., RAMAN, V., AND SHAH, M. 2000. Adaptive query processing: Technology in evolution. IEEE Data

Engineering Bulletin 23, 2, 7–18.

HILL, J., SZEWCZYK, R., WOO, A., HOLLAR, S., AND PISTER, D. C. K. 2000. System architecture directions

for networked sensors. In ASPLOS.

HONEYWELL, INC. Magnetic Sensor Specs HMC1002. Tech. rep. http://www.ssec.honeywell.com/
magnetic/spec_sheets/specs_1002.html.

IBARAKI, T. AND KAMEDA, T. 1984. On the optimal nesting order for computing n-relational joins. TODS 9, 3,

482–502.

IMIELINSKI, T. AND BADRINATH, B. 1992. Querying in highly mobile distributed environments. In VLDB.

Vancouver, Canada.

INTANAGONWIWAT, C., GOVINDAN, R., AND ESTRIN, D. 2000. Directed diffusion: A scalable and robust

communication paradigm for sensor networks. In MobiCOM. Boston, MA.

INTERSEMA. 2002. MS5534A barometer module. Tech. rep. October. http://www.intersema.com/
pro/module/file/da5534.pdf.

IVES, Z. G., FLORESCU, D., FRIEDMAN, M., LEVY, A., AND WELD, D. S. 1999. An adaptive query execution

system for data integration. In Proceedings of the ACM SIGMOD.

KOSSMAN, D. 2000. The state of the art in distributed query processing. ACM Computing Surveys.

KRISHNAMURTHY, R., BORAL, H., AND ZANIOLO, C. 1986. Optimization of nonrecursive queries. In VLDB.

128–137.

LEOPOLD, M., DYDENSBORG, M., AND BONNET, P. 2003. Bluetooth and sensor networks: A reality check. In

ACM Conference on Sensor Networks (SenSys).

LIN, C., FEDERSPIEL, C., AND AUSLANDER, D. 2002. Multi-Sensor Single Actuator Control of HVAC Sys-

tems.

LIU, L., PU, C., AND TANG, W. 1999. Continual queries for internet-scale event-driven information delivery.

IEEE Knowledge and Data Engineering. Special Issue on Web Technology.

MADDEN, S. 2003. The design and evaluation of a query processing architecture for sensor networks. Ph.D.

thesis, UC Berkeley.

MADDEN, S. AND FRANKLIN, M. J. 2002. Fjording the stream: An architechture for queries over streaming

sensor data. In ICDE.

MADDEN, S., FRANKLIN, M. J., HELLERSTEIN, J. M., AND HONG, W. 2002. TAG: A Tiny AGgregation

Service for Ad-Hoc Sensor Networks. In OSDI.

MADDEN, S., HONG, W., FRANKLIN, M., AND HELLERSTEIN, J. M. 2003. TinyDB web page. http:
//telegraph.cs.berkeley.edu/tinydb.

MADDEN, S., SHAH, M. A., HELLERSTEIN, J. M., AND RAMAN, V. 2002. Continously adaptive continuous

queries over data streams. In ACM SIGMOD. Madison, WI.

MAINWARING, A., POLASTRE, J., SZEWCZYK, R., AND CULLER, D. 2002. Wireless sensor networks for

habitat monitoring. In ACM Workshop on Sensor Networks and Applications.

MELEXIS, INC. 2002. MLX90601 infrared thermopile module. Tech. rep. August. http://www.melexis.
com/prodfiles/mlx90601.pdf.

MONMA, C. L. AND SIDNEY, J. 1979. Sequencing with seriesparallel precedence constraints. Mathematics of

Operations Research.

MOTWANI, R., WIDOM, J., ARASU, A., BABCOCK, B., S.BABU, DATA, M., OLSTON, C., ROSENSTEIN,

J., AND VARMA, R. 2003. Query processing, approximation and resource management in a data stream

management system. In First Annual Conference on Innovative Database Research (CIDR).

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Acquisitional Query Processing In Sensor Networks · 47

OLSTON, C. AND J.WIDOM. 2002. In Best Effort Cache Sychronization with Source Cooperation. SIGMOD.

P.BONNET, J.GEHRKE, AND P.SESHADRI. 2001. Towards sensor database systems. In Conference on Mobile

Data Management.

PIRAHESH, H., HELLERSTEIN, J. M., AND HASAN, W. 1992. Extensible/rule based query rewrite optimization

in starburst. In Proceedings of ACM SIGMOD. 39–48.

POTTIE, G. AND KAISER, W. 2000. Wireless integrated network sensors. Communications of the ACM 43, 5

(May), 51 – 58.

PRIYANTHA, N. B., CHAKRABORTY, A., AND BALAKRISHNAN, H. 2000. The cricket location-support system.

In MOBICOM.

RAMAN, V., RAMAN, B., AND HELLERSTEIN, J. M. 2002. Online dynamic reordering. The VLDB Journal 9, 3.

RFM CORPORATION. RFM TR1000 Datasheet. http://www.rfm.com/products/data/tr1000.
pdf.

SENSIRION. 2002. SHT11/15 relative humidity sensor. Tech. rep. June. http://www.sensirion.com/
en/pdf/Datasheet_SHT1x_SHT7x_0206.pdf.

SHATDAL, A. AND NAUGHTON, J. 1995. Adaptive parallel aggregation algorithms. In ACM SIGMOD.

STONEBRAKER, M. AND KEMNITZ, G. 1991. The POSTGRES Next-Generation Database Management Sys-

tem. Communications of the ACM 34, 10, 78–92.

SUDARSHAN, S. AND RAMAKRISHNAN, R. 1991. Aggregation and relevance in deductive databases. In Pro-

ceedings of VLDB. 501–511.

TAOS, INC. 2002. TSL2550 ambient light sensor. Tech. rep. September. http://www.taosinc.com/
images/product/document/tsl2550.pdf.

UC BERKELEY. 2001. Smart buildings admit their faults. Web Page. Lab Notes: Research from the College

of Engineering, UC Berkeley. http://coe.berkeley.edu/labnotes/1101.smartbuildings.
html.

URHAN, T., FRANKLIN, M. J., AND AMSALEG, L. 1998. Cost-based query scrambling for initial delays. In

Proceedings of the ACM SIGMOD.

WOLFSON, O., SISTLA, A. P., XU, B., ZHOU, J., AND CHAMBERLAIN, S. 1999. DOMINO: Databases fOr

MovINg Objects tracking. In ACM SIGMOD. Philadelphia, PA.

WOO, A. AND CULLER, D. 2001. A transmission control scheme for media access in sensor networks. In ACM

Mobicom.

YAO, Y. AND GEHRKE, J. 2002. The cougar approach to in-network query processing in sensor networks. In

SIGMOD Record.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

