
IJCST Vol. 6, ISSue 1, Jan - MarCh 2015

w w w . i j c s t . c o m InternatIonal Journal of Computer SCIenCe and teChnology 141

 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

TinyOS: An Operating System for Wireless Sensor Networks
Praveen Budhwar

Dept. of Computer Science and Engineering, BPSMV, Khanpur Sonepat, India

Abstract

TinyOS is an open-source, flexible and application-specific
operating system for wireless sensor networks. Wireless sensor
network consists of a large number of tiny and low-power nodes,
each of which executes simultaneous and reactive programs
that must work with strict memory and power constraints. The
wireless sensor network’s challenges of event-centric concurrent
applications, limited resources and low-power operation impel
the design of TinyOS. TinyOS meets these challenges and has
become the platform of choice for sensor network research. It is
very prevalent in sensor networks these days and supports a broad
range of applications and research topics.

Keywords

NesC, TinyOS, TinyViz, TOSSIM, Wireless Sensor Networks

I. Introduction

TinyOS [1] an open-source embedded operating system designed
directly for wireless embedded sensor networks [2]. Salient
features of TinyOS are component-based architecture, a simple
event-based concurrency model and split-phase operations that
influence the development phases and techniques when writing
application code. It has a component-based architecture which
provides rapid innovation and implementation while reducing
code size as required by the rigorous memory constraints inherent
in wireless sensor networks. TinyOS’s component library includes
network protocols, distributed services, sensor drivers, and data
acquisition tools – all of which can be used as it is or be further
refined for a custom application. TinyOS’s event-driven execution
model enables fine grained power management, yet allows the
scheduling flexibility made necessary by the unpredictable nature
of wireless communication and physical world interfaces.
TinyOS is not an OS in the conventional sense instead it is a
programming framework for embedded systems and set of
components that enable building an application-specific OS into
each application. A typical application is about 15K in size, of which
the base OS is about 400 bytes; the largest application, a database-
like query system, is about 64K bytes. TinyOS is strictly tied to
the NesC [3]— Network embedded system C — programming
language having native support for TinyOS’s features (Gay et. al,
2003). NesC is a dialect of the C programming language optimized
for the memory limitations of sensor networks. Its supplementary
tools are mainly in the form of Java and shell script front-ends.
Associated libraries and tools, such as the NesC compiler and
Atmel AVR binutils toolchains are mostly written in C.
Section II presents the aspects of TinyOS, section III describes
TOSSIM- TinyOS simulator, section IV explains TinyViz and
finally section V concludes the paper.

II. TinyOS

TinyOS [4] provides a set of reusable system components. An
application connects components using a wiring specification that
is independent of component implementations; each application
customizes the set of components it uses. All system processes
are placed into separate components so that all of the data and
functions inside each component are semantically related. Because
of this principle, it is often said that components are modular and

cohesive. With regard to system-wide co-ordination, components
communicate with each other via interfaces. When a component
offers services to the rest of the system, it adopts a provided
interface which specifies the services that can be utilized by other
components and how. This interface can be seen as a signature
of the component - the client does not need to know about the
inner workings of the component (implementation) in order to
make use of it. This principle results in components referred to
as encapsulated.
Unlike traditional computers, the motes’ behavior with the
environment is interactive: they are collecting sensor information
and controlling the local environment rather than executing
deterministic batch computations. As a consequence, motes
need to react to changes in the environment. Since TinyOS is
designed to be run on motes, it should provide support for various
embedded events such as the microcontroller’s internal timer is
fired (the timer’s current value is at zero), the ADC is about to
provide a digitalized value measured by a sensor on the connected
sensorboard, the radiochip raises an interrupt on the microcontroller
to signal that a message reception has occurred, and so on and
so forth. TinyOS [5] is completely non-blocking: it has a single
stack. Therefore, all I/O operations that last longer than a few
hundred microseconds are asynchronous and have a callback as
known as Deferred Procedure Calls. To enable the native compiler
to better optimize across call boundaries, TinyOS uses NesC’s
features to link these callbacks, called events, statically. Being
non-blocking, TinyOS is enabled to maintain high concurrency
with a single stack, it forces programmers to write complex logic
by stitching together many small event handlers. To support larger
computations, TinyOS [6] provides tasks, which are similar to a
Deferred Procedure Call and interrupt handler bottom halves. A
TinyOS component can post a task, which the OS will schedule
to run later. Tasks are non-preemptive and run in FIFO order. This
simple concurrency model is typically sufficient for I/O centric
applications, but its difficulty with CPU-heavy applications has
led to several proposals for incorporating threads into the OS. The
following fig. 1 shows TinyOS architecture.

Fig. 1: TinyOS Architecture

Building applications and systems around an event-driven
architecture allows these applications and systems to be constructed

IJCST Vol. 6, ISSue 1, Jan - MarCh 2015 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

w w w . i j c s t . c o m 142 InternatIonal Journal of Computer SCIenCe and teChnology

in a manner that facilitates more responsiveness, because event-
driven systems are, by design, more normalized to unpredictable
and asynchronous environments. An event driven architecture is
extremely loose coupled and well distributed. The great distribution
of this architecture exists because an event can be almost anything
and exist almost anywhere.
Event-drivenness means heavy concurrency. The previously
mentioned tasks are synchronous while events and commands
(interface member functions) with an async property are
asynchronous. So in TinyOS, code runs either asynchronously
in response to an interrupt (event), or in a synchronously scheduled
task. Since dynamic memory allocation is not available, it is
likely to have shared variables and states. Combining these two
together, data races could occur due to concurrent updates to
shared state.
Tasks are deferred computation mechanisms. Tasks do not
preempt each other and can be posted by program components.
The post operation does one thing: registers the task to be run in
the scheduler, and immediately returns, deferring the computation
until the scheduler executes the task later. Components can use
tasks when timing requirements are not strict; this includes nearly
all operations except low level communication. Events also run to
completion, and may preempt the execution of a task or another
event. Events are signaled by the environment (e.g. message
reception or sensor reading), or by indicating completion of a split-
phase operation. Furthermore, events can be sync and async.
The simple concurrency model of TinyOS [7] allows for high
concurrency with low overhead, in contrast to a thread-based
concurrency model in which thread stacks consume precious
memory while blocking on a contended service. However, as in
any concurrent system, concurrency and non-determinism can
be the source of complex bugs, including deadlock, resource
starvation and data race conditions. On the other hand, the presence
of synchronous and asynchronous contexts makes the execution
model complex, since various transitions can occur from one to
other.

III. Introduction to TOSSIM

TOSSIM [8] captures the behavior and interactions of networks
of thousands of TinyOS motes at network bit granularity (Levis
et. al, 2003). Fig. 2 shows a graphical overview of TOSSIM. The
TOSSIM architecture is made up of five parts: method to compile
TinyOS component graphs into the simulation infrastructure, a
discrete event queue, a small number of re-implemented TinyOS
hardware abstraction components, mechanisms for extensible
radio and ADC models, and communication services for exterior
programs to interact with a simulation.
TOSSIM takes benefit of TinyOS’s structure and whole system
compilation to produce discrete-event simulations directly from
TinyOS component graphs. It runs the identical code that runs on
wireless sensor network hardware. Fig. 2 shows that by replacing a
few low-level components, TOSSIM translates hardware interrupt
into discrete simulator events; the simulator event queue delivers
the interrupts that drive the execution of a TinyOS application.
The remainder of TinyOS code runs unchanged. TOSSIM uses a
very simple but astoundingly powerful abstraction for its wireless
network. The simulator engine provides a set of communication
services for interacting with external applications. These services
allow programs to connect to TOSSIM over a TCP socket to
monitor or actuate a running simulation.

Fig. 2: TOSSIM Architecture

TOSSIM is a discrete event simulator for TinyOS wireless sensor
networks. Instead of compiling a TinyOS application for a mote,
users can compile it for the TOSSIM framework, which runs on
a PC. This permits users to debug, test, and analyze algorithms
in a restricted and repeatable environment. As TOSSIM runs on
a PC, users can examine their TinyOS code using debuggers and
other development tools. TOSSIM’s primary goal is to provide
a high fidelity simulation of TinyOS applications. Due to this,
it focuses on simulating TinyOS and its execution, rather than
simulating the real world.
While TOSSIM can be used to understand the causes of behavior
observed in the real world, it does not capture all of them e.g.
TOSSIM itself does not model the real world. Instead, it provides
abstractions of certain real world phenomena. With tools outside
the simulation itself, users can change these abstractions to
implement whatever models they want to use. By making complex
models outside the simulation, TOSSIM remains flexible to the
needs of many users without trying to ascertain what is “accurate.”
TOSSIM does not model radio propagation; instead, it provides a
radio abstraction of directed independent bit errors between two
nodes. An external program can provide a desired radio model and
map it to these bit errors. Having directed bit error rates means that
asymmetric links can be easily modeled. Independent bit errors
mean longer packets have a higher probability of corruption, and
each packet’s loss probability is independent. TOSSIM does not
model power draw or energy consumption. However, it is very
simple to add annotations to components that consume power to
provide information on when their power states change.
TOSSIM [9] is automatically built when we compile an
application. Applications are compiled by entering an application
directory (e.g. /apps/Blink) and typing make. Alternatively, when
in an application directory, we can type make pc, which will
only compile a simulation of the application. There are several
compilation options to ncc when compiling for TOSSIM, including
the maximum number of motes that can be simulated. The default
options in the TinyOS 1.1 makefile should fit almost any need.
The TOSSIM executable is named main.exe, and resides in build/
pc. It has the following usage:
Usage: ./build/pc/main.exe [options] num_nodes
[Options] are shown in Table 1.

IJCST Vol. 6, ISSue 1, Jan - MarCh 2015

w w w . i j c s t . c o m InternatIonal Journal of Computer SCIenCe and teChnology 143

 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

Table 1 Options for running simulation on TOSSIM
Options Usage
-h, --help Display this message
-gui Pauses simulation waiting for GUI to connect

-a=<model> Specifies ADC model (<model>: generic,
random) (generic is default)

-b=<sec> All motes boot over first <sec> seconds
(default: 10)

-ef=<file> Use <file> for EEPROM; otherwise
anonymous file is used

-l=<scale> Run simulation at <scale> times real time (fp
constant)

-r=<model> Specifies a radio model (options: simple,
lossy) (simple is default)

-rf=<file> Specifies file input for lossy model (lossy.nss
is default)

-s=<num> Only boot <num> of nodes
-t=<sec> Run simulation for <sec> virtual seconds
num_nodes Number of nodes to simulate

The -h or --help options prints out the above usage message, and
some additional information. The -a option specifies the ADC
model to use. TOSSIM currently supports two models: generic
and random. The -b option specifies the interval over which motes
boot. Their boot times are uniformly distributed over this interval.
The default value is ten seconds.
The -e option is for named EEPROM files. If -e isn’t specified,
the logger component stores and reads data, but this data is not
persistent across simulator invocations: it uses an anonymous file.
The -l option is for making TOSSIM run at a rate representative of
real time. The scale argument specifies what relative rate should
be used. For example, -l=2.0 means twice as fast as real time (two
virtual seconds run in one real second), while -l=0.1 means one
tenth of real time (one virtual seconds runs in ten real seconds.).
Using this option imposes a significant performance overhead; it
shouldn’t be used when trying to run simulations quickly. The -r
option specifies the radio model to use. TOSSIM currently supports
two models: simple and lossy. Earlier versions also supported a
“static” model, but this has been subsumed by the lossy model.
The -s option tells TOSSIM to only boot a subset of the number
of nodes specified. This is useful if we want some to boot later,
in response to user input. If the -s option is specified, TOSSIM
boots mote IDs 0-(num - 1). The -t option tells TOSSIM to run
for a specified number of virtual seconds. After sec seconds have
passed, TOSSIM exits cleanly. The num nodes option specifies
how many nodes should be simulated. A compile-time upper
bound is specified in /apps/Makerules. The standard TinyOS
distribution sets this value to be 1000. By default, all num nodes
boot in the first ten seconds of simulation, with bootup times
uniformly distributed. TOSSIM catches SIGINT (control-C) to
exit cleanly. This is useful when profiling code.
TOSSIM provides configuration of debugging output at run-
time. Much of the TinyOS source contains debugging statements.
Each debugging statement is accompanied by one or more modal
flags. When the simulator starts, it reads in the DBG environment
variable to determine which modes should be enabled.
~$ export DBG= usr2, am

Modes are stored and processed as entries in a bit-mask, so a single
output can be enabled for multiple modes, and a user can specify
multiple modes to be displayed. The set of DBG modes recognized

by TOSSIM can be identified by using -h option; all available
modes are printed. The current modes are shown in Table 2.

Table 2: Modes Available for DBG Statement
Modes Usage
all Enable all available messages
boot Simulation boot and StdControl
clock The hardware clock
task Task enqueueing/dequeueing/running
sched The TinyOS scheduler
sensor Sensor readings
led Mote leds
crypto Cryptographic operations (e.g., TinySec)
route Routing systems
am Active messages transmission/reception
crc CRC checks on active messages
packet Packet-level transmission/reception
encode Packet encoding/decoding
radio Low-level radio operations bits and bytes
logger Non-volatile storage
adc The ADC
i2c The I2C bus
uart The UART (serial port)
prog Network reprogramming
sounder The sounder on the mica sensor board
time Timers
sim TOSSIM internals
queue TOSSIM event queue
simradio TOSSIM radio models
hardware TOSSIM hardware abstractions

simmem TOSSIM memory allocation/deallocation
(for finding leaks)

usrx User output mode x (x=1,2,3) (e.g. usr1)
temp For temporary use

IV. Introduction to TinyViz

TinyViz is a Java visualization and actuation environment for
TOSSIM. The main TinyViz class is a jar file, tools/java/net/tinyos/
sim/tinyviz.jar. TinyViz can be attached to a running simulation.
Also, TOSSIM can be made to wait for TinyViz to connect before
it starts up, with the -gui flag. This allows users to be sure that
TinyViz captures all of the events in a given simulation. TinyViz
is not actually a visualizer; instead, it is a framework in which
plugins can provide desired functionality. By itself, TinyViz does
little besides draw motes and their LEDs. However, it comes with
a few example plugins, such as one that visualizes network traffic.
Fig. 3 shows a screenshot of the TinyViz tool. The left window
contains the simulation visualization. The right window is the
plugin window; each plugin is a tab pane, with configuration
controls and data. The second element on the top bar is the Plugin
menu, for activating or de-activating individual plugins. Inactive
plugins have their tab panes greyed out.
The third element is the layout menu, which allows us to arrange
motes in specific topologies, as well as save or restore topologies.
TinyViz can use physical topologies to generate network topologies
by sending messages to TOSSIM that configure network
connectivity and the loss rate of individual links. The right side

IJCST Vol. 6, ISSue 1, Jan - MarCh 2015 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

w w w . i j c s t . c o m 144 InternatIonal Journal of Computer SCIenCe and teChnology

of the top bar has three buttons and a slider. TinyViz can slow
a simulation by introducing delays when it handles events from
TOSSIM. The slider configures how long delays are. The On/Off
button turns selected motes on and off; this can be used to reboot
a network, or dynamically change its members. The button to the
right of the slider starts and stops a simulation; unlike the delays,
which are for short, fixed periods, this button can be used to pause
a simulation for arbitrary periods. The final button, on the far right,
enables and disables a grid in the visualization area. The small text
bar on the bottom of the right panel displays whether the simulation
is running or paused. The TinyViz engine uses an event-driven
model, which allows easy mapping between TinyOS’ event based
execution and event-driven GUIs. By itself, the application does
very little; drop-in plugins provide user functionality. TinyViz has
an event bus, which reads events from a simulation and publishes
them to all active plugins.
Users can write new plugins, which TinyViz can dynamically load.
A simple event bus sits in the center of TinyViz; simulator messages
sent to TinyViz appear as events, which any plugin can respond
to. For example, when a mote transmits a packet in TOSSIM,
the simulator sends a packet send message to TinyViz, which
generates a packet send event and broadcasts it on the event bus.
A networking plugin can listen for packet send events and update

TinyViz node state and draw an animation of the communication.
Plugins can be dynamically registered and deregistered, which
correspondingly connect and disconnect the plugin from the event
bus. A plugin hears all events sent to the event bus, but individually
decides whether to do anything in response to a specific event; this
keeps the event bus simple, instead of having a content-specific
subscription mechanism.
A plugin must be a subclass of net.tinyos.sim.Plugin. Plugin has
the following signature:
public abstract class Plugin {
public Plugin() {}
public void initialize(TinyViz viz, JPanel pluginPanel) {...}
public void register() {...}
public void reset() { /* do nothing */}
public abstract void deregister();
public abstract void draw(Graphics graphics);
public abstract void handleEvent(SimEvent event);}
Plugins register themselves with the TinyViz event bus, which
then notifies them of all events coming in from TOSSIM; it is up
to an individual plugin whether to do something. The draw method
is used to draw visualizations in the left pane of the TinyViz
window.

Fig. 3: TinyViz

V. Conclusion

In this article, we have studied TinyOS, an operating sytem
for wireless sensor networks. It is an open source development
environment with component based model. In this paper, we have
studied NesC; TOSSIM, TinyOS simulator and TinyViz, TinyOS
visualization tool. This paper explains all the important aspects
related to TinyOS. In future, we can extend our study to include
other operating systems for wireless sensor networks and can also
present a comparison of various operating systems for wireless
sensor networks.

References

[1] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K.
Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer,
D. Culler,“TinyOS: An operating system for wireless sensor
networks”, in Ambient Intelligence. New York, NY: Springer-
Verlag, New York, 2004.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci,
“Wireless Sensor Networks: A survey”, Computer
Networks 38(4), pp. 393–422, 2002.

[3] D. Gay, P. Levis, R. Behren, M. Welsh, E. Brewer, D.
Culler,“The NesC Language: A Holistic Approach to
Networked Embedded Systems”, In Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language

IJCST Vol. 6, ISSue 1, Jan - MarCh 2015

w w w . i j c s t . c o m InternatIonal Journal of Computer SCIenCe and teChnology 145

 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

Design and Implementation (PLDI).
[4] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A.

Woo, E. Brewer, D. Culler,“The emergence of networking
abstractions and techniques in TinyOS”, Proceedings of
the 1st conference on Symposium on Networked Systems
Design and Implementation, pp. 1-1, March 29-31, 2004,
San Francisco, California.

[5] P. Levis,“TOSSIM System Description”, [Online] Available:
http://www.tinyos.net/nest/doc/tossim.pdf, 2002.

[6] P. Levis, D. Gay,“Tinyos design patterns”, [Online] Available:
http://www.cs.berkeley.edu/pal/ tinyos- patterns, 2004.

[7] C.L. Fok,“TinyOs tutorial”, CS521, [Online] Available:
www.princeton.edu/~wolf/EECS579/tutorial.pdf.

[8] P. Levis, N. Lee, M. Welsh, D. Culler,“TOSSIM: accurate
and scalable simulation of entire TinyOS applications”,
Proceedings of the 1st international conference on Embedded
networked sensor systems, November 05-07, Los Angeles,
California, USA, 2003.

[9] P. Levis,“TinyOS Programming", 2006.

Praveen Budhwar received her M.E.
degree in Computer Science &
Engineering from PEC University
of Technology, Chandigarh, India in
2014. She received her B. Tech. degree
in Computer Science & Engineering
from Vaish College of Engineering,
Rohtak, Haryana, India in 2012. Her
area of specialization is wireless
sensor networks. She has published
research papers in various international

journals. Currently, she is working as an assistant professor in
BPSMV, Khanpur, Sonepat, Haryana, India.

