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Abstract— Wireless Sensors Network (WSN) security is a
major concern and many new protocols are being designed.
Most of these protocols rely on cryptography, and therefore,
require a Cryptographic Pseudo-Random Number Generator
(CPRNG). However, designing an efficient and secure CPRNG
for wireless sensor networks is not trivial since most of the
common source of randomness used by standard CPRNGs are
not present on a wireless sensor node. We present TinyRNG,
a CPRNG for wireless sensor nodes. Our generator uses the
received bit errors as one of the sources of randomness. We
show that transmission bit errors on a wireless sensor network
are a very good source of randomness. We demonstrate that
these errors are randomly distributed and uncorrelated from
one sensor to another. Furthermore, we show that these errors
are difficult to observe and manipulate by an attacker.

I. T INY RNG OVERVIEW

A. Motivations

Wireless Sensors Networks (WSN) are networked con-
strained devices using radio communication and providing
sensing services such as surveillance of a restricted area or
sensing of environment. They are envisioned to be used for
critical applications and/or in hostile environments (military
applications, security control or natural risks prevention . . . )
where WSN security is a major concern. Many new security
protocols are being designed. Most of them rely on cryptogra-
phy, therefore, often require a good random number generator.
Random generators are, for example, used to generate secret
keys. Ideally, secret keys required in cryptographic algorithms
and protocols should be generated with a true random number
generator. However, the generation of random numbers is an
inefficient procedure in most practical environments. In such
situations, the problem can be ameliorated by substituting
a random number generator with a pseudorandom number
generator. A pseudorandom number generator (PRNG) is a
deterministic algorithm which, given a truly random binaryse-
quence of lengthk, outputs a binary sequence of lengthl >> k

with “appears” to be random. The input to the PRNG is called
the seed, while the output generator is called a pseudorandom
bit sequence. Additionally, for cryptographic applications, the
generator must not be subject to observation or manipulation
by an adversary. Random numbers generators based on natural
sources of randomness are subject to influence by external
factors, and also to malfunction.

There are typically two types of generators: hardware-based
and software-based. The hardware-based generators exploit
the randomness which occurs in some physical phenomena.
They usually require some additional hardware and are there-
fore, excluded in wireless sensor networks. The software-
based generators may be based on processes such as system
clock, elapsed time between keystrokes, mouse movement,
user input or operating system values such as system load
and network statistics [7]. A well-designed software random
generator should utilize as many good sources of randomness
as are available, since some of them can be easily observed
or manipulated. Each source should be sampled, and the
sampled sequences should be combined using a randomness
extractor, often a cryptographic hash function. The purpose of
the extractor is to distill the true random bits from the sampled
sequences. Unfortunately, most of the usual sources of entropy
do not exist on a sensor (a sensor does not have a mouse,
keyboard, user interface and so on). Furthermore, network
timing can easily be monitored on wireless channels and the
sensor clock being very slow, the timings are easy to predict.
Values from the sensors of the node may be used, however,
they are not always present and may provide insufficient level
of randomness or low secrecy.

B. Contribution of our work

The contributions of this paper are twofold:

1) We first show that transmission bit errors on wireless
sensor network are a very good source of randomness.
In fact, we demonstrate that these errors are randomly
distributed and uncorrelated from one sensor to another.
Furthermore, we show that these errors are difficult to
observe and manipulate by an attacker.

2) We design and implement a practical random generator,
TinyRNG, for sensor networks, that uses transmission bit
errors as one source of randomness.

C. System Overview

We designed and implemented a Cryptographic Pseudo-
Random Number Generator that uses the received bit errors as
the main source of entropy. Since bit errors are unpredictable
and difficult to manipulate, we argue that they are a good
source of randomness. The design of our generator was



inspired from the Fortuna system [10], but is tailored to the
specific characteristics of WSN nodes.

The erroneous bytes received by a node are added into a
cryptographic entropy accumulator1. This accumulator is built
from a CBC-MAC function (see Fig. 1), which are recognized
as good randomness extractors [4]. The CBC-MAC function
is implemented in order to minimize the memory requirement
of our system by using the same block cipher as the CPRNG.
When sufficient entropy is accumulated, the accumulator is
used to reseed the key of the Cryptographic Pseudo-Random
Number Generator2 (CPRNG).

The CPRNG is a block cipher (in counter mode) that
encrypts a counter using the key provided at programming
time and updated by re-seeding with the value generated by
the accumulator. The output of this CPRNG (i.e. the encrypted
counter) is then available to applications through the standard
TinyOS Random interface.

II. SECURITY ANALYSIS

A. Attacker Model

Due to the fact that, unlike traditional workstations or server
systems, WSN nodes are deeply embedded systems they do
not provide memory protection and separation of rights. An
attacker who is able to run code on a sensor node can have
access to all its memory and therefore, to the random number
generator’s internal state. Consequently, it is impossible to
protect the pseudo-random generator of a node that is currently
under full control of the attacker.

We therefore consider the following two types of attackers:

- Remote attackers: The attacker did not compromise the
node. Its goal is to predict or manipulate the random
numbers generated by the node by external means (by
observing or manipulating the communication channel
for example).

- Invasive attackers: The attacker have compromised the
node during a limited period of time, let’s say fromT1

to T2. It is able to read the memory of the compromised
node during this period but cannot alter it (by adding
new code for example). This can be enforced by using
program integrity verification techniques [12]. The goal
of the attacker is to predict the pseudo-random values
that were generated either beforeT1 (forward security),
or after T2 (backward security). If the node uses its
pseudo-random generator to generate secret keys to
encrypt its communication, the attacker should not be
able to decrypt the packets that were encrypted before
T1 or afterT2.

B. Analysis of the possible Attacks

1) Remote attackers:

1As explained later, we actually use two accumulators
2During a reseed the previous key is added to the accumulator and the

output of the accumulator is then used as the new key.

a) Radio eavesdropping: The attacker may try to pas-
sively eavesdrop the signal received by the victim. However,
a remote attacker won’t be able to gain accurate information
from a remote position. If the attacker has a directional
antenna, it may point it to the source of the signal. This could
provide him the actual shape of the signal (such as the Error
Vector Magnitude [8] of the emitted signal). However, it won’t
be able to get an accurate estimate of the received errors.
There exist models that predict the strength of the signal when
the position of the source and of the obstacles are known.
However, there is no model that can accurately predict the
errors that will be received by a receiver. Furthermore, even
if such models would exist, they wouldn’t provide accurate
results, since modeling/estimating the various noise and signal
(possibly coming from reflection, diffraction, other wireless
networks . . . ) collected by the receiver is virtually impossible.
Such analysis seem unlikely.

Furthermore, as shown in Section III-A, even if the attacker
is very close to its target, it won’t be able to observe all
errors received by its victim. In fact, some errors are actually
generated by the networking hardware and are not predictable.

b) Packet injection: Since it is difficult to observe and
predict the pseudo-random values generated by its victim,
the attacker could try to manipulate the victim’s source of
randomness by injecting packets. Its strategy would then beto
send erroneous packets (i.e. packets with a wrong checksum).
As a result, the victim would use these packets to generate
its random seed. The attacker could then control the pseudo-
random values generated by the victim, assuming he had
knowledge of the previous internal state of the generator.

However, our experiments (Section III-B) demonstrate that
if the power of reception RSSI (Received Signal Strength In-
dicator) or quality of reception Link Quality Indicator (LQI) 3

[3] are under a certain threshold, unpredictable bit errorswill
always happen. As a result, under these conditions, even if the
attacker sends fake erroneous packets, the receiver will receive
them with additional errors and the generated random values
cannot be predicted.

2) Invasive attacks: Here we assume that the attacker has
compromised the node for a limited period of time, let’s
say from T1 to T2. It was able read the memory of the
compromised node during this period, but not modify it.

Note that since, as shown in the next section, bit errors are
unpredictable and cannot be easily manipulated, the attacker
does not have any information about the bit errors that happen
before T1 and after T2. As a result, it won’t be able to
predict the pseudo-random values, and therefore, the secret
keys generated by the victim beforeT1−δ1 and afterT2 +δ2,
where δ1 and δ2 are dependent on the reseed period of the
generator.

3 RSSI is a value provided by the CC2420 [3] wireless network device
which is an indicator of signal reception level. The LQI gives an indication
of the quality of signal reception, and is computed from the average symbol
correlation of the whole packet data, excluding the preambleand start of frame
delimiter. This gives a fairly precise indication of the capability of reception
of the radio device.
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Fig. 1. TinyRNG Block diagram

III. A NALYSIS OF BIT ERRORS ON WIRELESS CHANNELS

The goal of this section is to experimentally show that the
bit errors received by a node are difficult to observe/predict
and to manipulate.

A. Errors cannot be predicted

In order to achieve this goal, we consider a very powerful
attacker. The attacker has physical access to the antenna ofthe
victim node and is trying to predict the errors that are received
by the victim.

1) Experimental setup: Our experimental setup is the fol-
lowing: We connect two motes (the victim mote and the
attacker mote) to the same antenna. This is performed using
a 2-port power divider from Pulsar [13] as illustrated by Fig.
2. The divider attenuates the received signal by 2db. A third
mote then sends106 packets at a rate of 4 packets per second.
All data received by the two motes are logged on a computer.
Note that, in this experiment, all the packets sent by the third
node are identical and known to the receivers. Erroneous bits
are detected by comparing the received data to the expected
one.

2) Data Analysis: In order to analyse the collected data,
we generated two strings of bytes. The first one,F , contains
all the bytes that were received erroneously by the victim
mote. The second string,G, contains all the bytes that were
received erroneously by the attacker. We then computed the
auto-correlation and cross-correlation of theF andG strings.
The correlation, at lagi is defined as:

RawCorrelation(f, g)i =
∑

j

fj ∗ gi+j

This value is then normalized such that the correlation of
two identical sequences atlag = 0 is equal to1. 4

Figure 3(a) displays the auto-correlation of the the errors
collected respectively by the victim and the attacker. These
results show that the errors received by each node are uncor-
related.

4To compute the correlation values we used the Matlab “xcorr” function
with option “coeff” for normalization.

Fig. 2. Experimental Setup

As a result, if the attacker has access to the received bit
errors received by the victim during a period of time, it won’t
be able to predict the bit errors that will appear next. This is
a very important result, since it shows that both forward and
backward security can be provided.

Figure 3(b) displays the cross-correlations of erroneous data
received by the victim and the attacker. It shows that the errors
received by the attacker mote are completely uncorrelated
from the errors received by the victim mote. The motes are
often getting errors in different positions. i.e. for4.4% of the
samples, the victim mote gets an erroneous packet while the
attacker received the packet correctly. Furthermore, in6.2%
of the samples, the victim received the packet correctly while
the attacker didn’t receive anything. This makes10.6% of
packet errors that are unique to the victim and that cannot
be observed by the attacker. We believe that many of these
errors are actually due to the network device. These results
give evidence that it is very difficult for an attacker to actually
predict the receiving errors of its victim. This is an important
result, since it shows that bit errors are a good source ofsecret
randomness.

B. Bit errors cannot be manipulated

The goal of this section is to give evidence that bit errors
cannot easily be manipulated. In order to demonstrate this
result, we measured and plotted the LQI of the packets that are
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Fig. 3. Analysis of Errors

received with errors and of packets that are received without
errors. The results are displayed on Fig. 3(c). They show that
packets that are received with an LQI smaller than 45 are
always erroneous. Note that our experimentations provide the
same result with RSSI: packets received with a raw RSSI
smaller than−50db are alsoalways erroneous. These results
show that an attacker cannot control all the errors that are
on the channel. If these packets’ LQI is smaller than 45, the
generated errors cannot be controlled, and therefore observed,
by the attacker. TinyRNG makes use of this property. It uses
two accumulators. The first one uses the received packets
with wrong CRC. The second one uses the received packets
with error and with a LQI smaller than 45.5 If the attacker
sends malicious packets with wrong CRC at a relatively high
signal level, they will be added to the first accumulator.
However, if the attacker tries to corrupt the second accumulator
with malicious packets, he will have to reduce the power of
emission under a level at which additional transmission errors
will occur in the packets. The first accumulator will be filled
up more quickly and will therefore be used for reseed more
frequently. The second one is slower but provides a much
better security against active attacks.

IV. I MPLEMENTATION

A. Internal state initialization

The initial state of the random number generator is given
at programming time by an initial key for the block cipher.
This key is generated on the development computer, which is
assumed to have a good random number generator. This may
lead to problems with large scale code distribution systems
such as deluge [5]: all nodes will be remotely programmed
with the same initial state. Therefore, before deployment of
such a large scale network, a seeding phase is performed with
a dedicated program image. This image contains a list of seeds
S0, S1, ..., Si for node0 to i. When the program executes on
node i the seedSi is stored in the internal EEPROM [1] of
node i. Note that if the nodes don’t share an apriori secret
with the programmer, this step has to be performed in a
trusted environment. On the other hand, if nodes are sharing
a key with the programmer, the image can include per-node
encrypted seeds. This image is eventually overwritten by the
actual program, removing all traces of the initial seeds other
than the values in the EEPROM. When a node is booting, it
uses its unique node identifier as first reseed, then it saves a
few bytes of random numbers in the EEPROM, overwriting the
previous seed. This ensures that nodes won’t be vulnerable to
reboot attacks, because the next reboot will use the new seed
value. In order to reflect the evolution of the entropy of the
internal state after a certain amount of time, a new seed should
be saved before shutdown of a node. The seed may also be
saved on a periodic basis to protect against unclean shutdown
such as watchdog timeouts or malicious reboots. Furthermore,
it is computationally impossible to retrieve the previous initial

5This value may need to be keep dynamically in order to adapt to different
radio devices. Indeed, similar devices can have different limit of reception.



Configuration ROM memory usage (Bytes) RAM memory usage (Bytes)

MICA2, RandomLFSR 7686 302
MICA2, TinyRNG 11086 471
Overhead 3400 (44%) 169 (56%)

MICA2, TinySec, RandomLFSR 16382 559
MICA2, TinySec, TinyRNG 17774 732
Overhead 1392 (8.5%) 161 (28%)

MICAz, RandomLFSR 6132 244
MICAz, TinyRNG 9832 416
Overhead 3700 (60%) 172 (70%)

Fig. 4. Main memory consumption Comparison TinyRNG vs TinySec

Component RAM memory usage (Bytes)
Accumulators States 2*32
Cipher Context (CTR mode) 20
Precomputed random numbers (minimal size) 8
Counter 8
Keys 2*10
Total 120

Fig. 5. Main memory consumption sources in TinyRNG

state of the random number generator of the nodes, as this
would be equivalent to breaking the underlying block cipher.

B. Memory usage

TinyRNG has been designed to minimize its memory usage.
In this section, we compare TinyRNG and RandomLFSR
memory footprints, i.e. the number of ROM and RAM bytes
used by each of these programs. RandomLFSR is a simple ran-
dom number generator for TinyOS. Note that RandomLFSR is
not cryptographic and does not provide secure random num-
bers, the randomness of its outputs have also been discussed.
We also compare memory usage of TinyRNG with TinySec [9]
for MICA2 motes.6.

To evaluate the memory footprint of TinyRNG we used
a program which periodically uses random numbers. Fig-
ure III-B shows the memory usages for various configurations
and outlines the overhead of TinyRNG. It shows that TinyRNG
ROM and RAM memory costs are respectively44% and
56% higher than RandomLFSR memory footprints. However,
these cost overheads reduce to8.5% and28% respectively, if
TinySec is also present in the mote, because TinyRNG reuses
many of its modules.

C. Energy consumption

Energy consumption is a major concern for WSN nodes.
Figure IV-C details the main sources of energy consumption
in TinyRNG and their timings. The major operations are
the initialization, entropy accumulation, reseed and random
numbers generation phase.

6Unfortunately TinySec is not available for MICAz motes on which we
developed the TinyRNG module, our implementation on MICA2 motesis in
an early state, however, final results should not be significantly different than
the ones presented here

1) Initialization: When the node is booting, it reads the
previously stored seed from EEPROM, performs a reseed and
generates a new seed from the random number generator.
This new seed is then written back to the internal EEP-
ROM memory. This operation performs write access to the
Atmega128 internal EEPROM [1], which comes at a higher
energy consumption cost than any other operation in TinyRNG
by two orders of magnitude (4.85mJ). However, this is an
infrequent operation as its performed only at boot time. This
step may also be performed by a timer at a very low frequency
in order to update the saved seed, such that further reboots
are taking into account the evolution of the internal state.The
energy cost of this operation should be taken into account
when selecting the timer period. The energy consumption of
the accumulators and PRNG initialization is negligible with
respect to that of seed write. Another fact is that EEPROM
write may be impossible if battery power is too low, which
may lead to successfulreboot attacks. If the mote boots under
those conditions TinyRNG will be functioning in a degraded
mode until properly reseeded.

2) Entropy Accumulation: During the entropy accumula-
tion phase, each erroneous received packet is used to update
the accumulator state. This is done by adding the packet to the
incremental CBC-MAC state, which itself uses Skipjack. The
energy consumed by this step is similar to the energy that
TinySec [9] would spend to check the MAC of a correctly
received packet.

3) Reseed: For the reseed phase, the current key of the
CPRNG block cipher is fed back into the accumulator, and the
output of the accumulator is used as the new key. The accu-
mulators are eventually reinitialized. The energy consumption
of this step is dominated by the energy consumption of the
block cipher encryption. Since this operation is not frequent,



Configuration Process time Energy Consumption

Random numbers generation
RandomLFSR request 64 random bits 28.4 µs 0.75 µJ

TinyRNG request 64 random bits 440 µs 11.4 µJ

Overhead (ratio) 15.5 15.2

Initialization
TinyRNG Initialization of CPRNG (with r/w EEPROM operations) 144 ms 4.85 mJ

TinyRNG Initialization of CPRNG (without EEPROM operations) 2.15 ms 53.7 µJ

Accumulators Initialization 1.47 µs 36.3 µJ

Periodic events
Reseed 1.13 ms 28 µJ

TinyRNG entropy Accumulation 2.16 ms 56.3 µJ

Fig. 6. Energy consumption Comparison TinyRNG vs RandomLFSR onMICAz platform

its impact on the overall consumption is limited.
4) Random number generation: Generation of random

numbers is performed by using the block cipher in counter
mode. One block operation is required for each 64 random
bits generation. This means that the energy consumption is
proportional to the number of consumed random bits. Because
this step is about 15.5 times slower than with a simple random
number generator such as TinyOS’s LFSR, it should be used
with care when timing sensitive operations such as interrupts
handlers or network drivers. However, some precalculationof
random numbers may be possible if some memory pool is
available for buffering. This would ensure fast access to good
quality random numbers. If ever the amount of random num-
bers requested is too high and it would be energy prohibitive
to use TinyRNG, or the precomputed random numbers pool
is empty, fast access to random numbers can be provided by
the LFSR initialized with a seed from the output of TinyRNG.
However, this should not be used for keying material.

V. RELATED WORK

Gutmann [7] give advice on how to properly mix the
entropy collected in entropy pools and implementation advice
for random number generators in software with a system
point of view. In [10] (extended in [6]) Kelsey, Ferguson and
Schneier give some advice on how to implement a random
number generator resistant to state compromise attacks and
incremental attacks. Our design is derived from this. [2]
presents a formal construction for random numbers generators
and formally defines forward and backward security. Barak et
al. advocates for periodic reseed, with low period, or a very
conservative entropy estimate rather than trying to estimate
entropy gathered from the point of view of the attacker,
which is unfeasable by a computer program. The construction
proposed is similar to that of [10]. Mutaf suggests [11] to use
timing of radio link noise level variations. This approach is not
suitable for WSN nodes since there is no way to constantly
get the accurate timing of the noise level changes efficiently in
terms of power consumption (i.e. it needs constant samplingof
the noise level as well as accurate timestamp). In [15] Seznec
et al. propose to gather entropy from variation in execution

time of algorithms due to the micro states in the central
processing unit. However, this won’t produce much entropy on
sensor networks due to the low complexity of the processors
and the very limited processing activity on such devices, as
well as the simplicity of the threading on these platforms.
Finally, the random number generators proposed for wireless
sensor networks nodes like [14] or included in TinyOS are not
suitable for cryptographic usage.

VI. CONCLUSION

We have presented TinyRNG, a new cryptographic pseudo-
random generator that is well adapted to wireless sensors. An
implementation have been made and evaluated, and will be
made publicly available. Our generator uses the bit errors of
the received packets as a source of randomness. We show that
bit errors are unpredictable and cannot be easily modified.

Furthermore, we believe that because WSN networks are
often composed of cheap devices and are deployed in open and
harsh environments, bit errors, due either to the environment
or the reception hardware, are frequent. Even in controlled
and closed environments, bit errors happen in wireless trans-
missions. This was illustrated by our in-lab experiments.
Furthermore, since transmitting packets is the most energy
consuming operation and since WSNs are dense, each node
tends to minimize their transmission power and, therefore,
increases the number of erroneous bits.
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