TiInyRNG: A Cryptographic Random Number
Generator for Wireless Sensors Network Nodes

Aurélien Francillon, Claude Castelluccia

INRIA, Planéte team
655, avenue de 1'Europe, 38330 Montbonnot, France
{aurelien.francillon,claude.castelluccia}@inrialpkes

Abstract— Wireless Sensors Network (WSN) security is a There are typically two types of generators: hardware-thase
major concern and many new protocols are being designed. and software-based. The hardware-based generators texploi
Most of thgse tpmtocr?.'s IrDer cc’i” Firypéograﬁlhy' ;‘“d éherem{e’ the randomness which occurs in some physical phenomena.
require a Cryptographic Pseudo-Random Number Generator . "

(COILRNG). Hng\)/e\?er, pdesigning an efficient and secure CPRNG 1hey usually require some additional hardware and are there
for wireless sensor networks is not trivial since most of the fore, excluded in wireless sensor networks. The software-
common source of randomness used by standard CPRNGs arebased generators may be based on processes such as system
not present on a wireless sensor node. We present TinyRNG, clock, elapsed time between keystrokes, mouse movement,
a CPRNG for wireless sensor nodes. Our generator uses theuser input or operating system values such as system load

received bit errors as one of the sources of randomness. We d net K statisti 1A lI-desi d softw d
show that transmission bit errors on a wireless sensor network and NEWOrK statisics [71. well-designed soltware rando

are a very good source of randomness. We demonstrate that generator should utilize as many good sources of randomness
these errors are randomly distributed and uncorrelated from as are available, since some of them can be easily observed
one sensor to another. Furthermore, we show that these errsr or manipulated. Each source should be sampled, and the

are difficult to observe and manipulate by an attacker. sampled sequences should be combined using a randomness
I. TINYRNG OVERVIEW extractor, often a cryptographic hash function. The puepafs
o the extractor is to distill the true random bits from the sédp
A. Motivations sequences. Unfortunately, most of the usual sources afntr

Wireless Sensors Networks (WSN) are networked code not exist on a sensor (a sensor does not have a mouse,
strained devices using radio communication and providikgyboard, user interface and so on). Furthermore, network
sensing services such as surveillance of a restricted areaiming can easily be monitored on wireless channels and the
sensing of environment. They are envisioned to be used B®nsor clock being very slow, the timings are easy to predict
critical applications and/or in hostile environments {taily Values from the sensors of the node may be used, however,
applications, security control or natural risks prevemtio.) they are not always present and may provide insufficient leve
where WSN security is a major concern. Many new securitf randomness or low secrecy.
protocols are being designed. Most of them rely on cryptogra o
phy, therefore, often require a good random number gerrera% Contribution of our work
Random generators are, for example, used to generate secré&he contributions of this paper are twofold:
keys. Ideally, secret keys required in cryptographic atgors 1) We first show that transmission bit errors on wireless
and protocols should be generated with a true random number sensor network are a very good source of randomness.
generator. However, the generation of random numbers is an In fact, we demonstrate that these errors are randomly
inefficient procedure in most practical environments. lolsu distributed and uncorrelated from one sensor to another.
situations, the problem can be ameliorated by substituting Furthermore, we show that these errors are difficult to
a random number generator with a pseudorandom number observe and manipulate by an attacker.
generator. A pseudorandom number generator (PRNG) is @) We design and implement a practical random generator,
deterministic algorithm which, given a truly random binaer TinyRNG, for sensor networks, that uses transmission bit
guence of lengtlk, outputs a binary sequence of length > & errors as one source of randomness.
with “appears” to be random. The input to the PRNG is called .
the seed, while the output generator is called a pseudonandg: System Overview
bit sequence. Additionally, for cryptographic applicato the We designed and implemented a Cryptographic Pseudo-
generator must not be subject to observation or manipalatiBandom Number Generator that uses the received bit errors as
by an adversary. Random numbers generators based on natheaimain source of entropy. Since bit errors are unpredietab
sources of randomness are subject to influence by exteraat difficult to manipulate, we argue that they are a good
factors, and also to malfunction. source of randomness. The design of our generator was

inspired from the Fortuna system [10], but is tailored to the a) Radio eavesdropping: The attacker may try to pas-
specific characteristics of WSN nodes. sively eavesdrop the signal received by the victim. However
The erroneous bytes received by a node are added int@ sgemote attacker won't be able to gain accurate information
cryptographic entropy accumulatoiThis accumulator is built from a remote position. If the attacker has a directional
from a CBC-MAC function (see Fig. 1), which are recognizedntenna, it may point it to the source of the signal. This doul
as good randomness extractors [4]. The CBC-MAC functigerovide him the actual shape of the signal (such as the Error
is implemented in order to minimize the memory requiremeivector Magnitude [8] of the emitted signal). However, it viton
of our system by using the same block cipher as the CPRNi@& able to get an accurate estimate of the received errors.
When sufficient entropy is accumulated, the accumulator There exist models that predict the strength of the signainwvh
used to reseed the key of the Cryptographic Pseudo-Randdw@ position of the source and of the obstacles are known.
Number Generatér(CPRNG). However, there is no model that can accurately predict the
The CPRNG is a block cipher (in counter mode) thegrrors that will be received by a receiver. Furthermoreneve
encrypts a counter using the key provided at programmiffgsuch models would exist, they wouldn’t provide accurate
time and updated by re-seeding with the value generated fleypults, since modeling/estimating the various noise &
the accumulator. The output of this CPRNG (i.e. the enciyptépossibly coming from reflection, diffraction, other wiesk
counter) is then available to applications through thedsiesh hetworks ...) collected by the receiver is virtually impioges.

TinyOS Random interface. Such analysis seem unlikely.
Furthermore, as shown in Section IlI-A, even if the attacker
Il. SECURITY ANALYSIS is very close to its target, it won't be able to observe all
errors received by its victim. In fact, some errors are dhtua
A. Attacker Model generated by the networking hardware and are not predictabl
Due to the fact that, unlike traditional workstations onveer b) Packet injection: Since it is difficult to observe and

systems, WSN nodes are deeply embedded systems theyPtRslict the pseudo-random values generated by its victim,
not provide memory protection and separation of rights. AR attacker could try to manipulate the victim's source of
attacker who is able to run code on a sensor node can h&¥Bdomness by injecting packets. Its strategy would theto be

access to all its memory and therefore, to the random numiS§1d erroneous packets (i.e. packets with a wrong checksum)
generator’s internal state. Consequently, it is impossiiol AS @ result, the victim would use these packets to generate

protect the pseudo-random generator of a node that is dlyrrefS random seed. The attacker could then control the pseudo-
under full control of the attacker. random values generated by the victim, assuming he had

We therefore consider the following two types of attackerg.no"\’le‘jge of the pre\{|ous mternallstate of the generator.
However, our experiments (Section IlI-B) demonstrate that

- Remote attackers: The attacker did not compromise thqf the power of reception RSSI (Received Signal Strength In-

node. Its goal is to predict or manipulate the randomy.,ior or quality of reception Link Quality Indicator (LE?

numbe.rs generate_d by .the node by extgrngl means }'are under a certain threshold, unpredictable bit ervahts
observing or manipulating the communication chann W

¢ | ays happen. As a result, under these conditions, evée if t
or example). attacker sends fake erroneous packets, the receiver alives

- Invasive gttacker_s : _The attc_':lcker h_ave compromised th?hem with additional errors and the generated random values
node during a limited period of time, let’s say from cannot be predicted

to T. Itis able to read the memory of the compromised 2) Invasive attacks. Here we assume that the attacker has

node during this period buF cannot alter it (by add”.ﬁ'%ompromised the node for a limited period of time, let's
new code for example). This can be enforced by usi y flom T} to Ty. It was able read the memory of the

program integrity verification techniques [12]. The goa ompromised node during this period, but not modify it.

of the attacker is to predict the pseudo-random Values:Note that since, as shown in the next section, bit errors are

that were generated either b(_efdﬂe (forward secunty),_ unpredictable and cannot be easily manipulated, the @ftack
or after T, (backward security). If the node uses its . .)

dpes not have any information about the bit errors that happe
pseudo-random generator to generate secret keys

. L be%re T, and after7,. As a result, it won't be able to

encrypt its communication, the attacker should not be .

redict the pseudo-random values, and therefore, thetsecre

able to decrypt the packets that were encrypted befdre e

T or afterT. €ys generated by the victim befdfe — 6, and afterls + Jo,
1 2

where 6; and d, are dependent on the reseed period of the

)) generator.
B. Analysis of the possible Attacks

1) Remote attackers: 3 RSSI is a value provided by the CC2420 [3] wireless networkiage
which is an indicator of signal reception level. The LQI givan indication
of the quality of signal reception, and is computed from therage symbol

1As explained later, we actually use two accumulators correlation of the whole packet data, excluding the preambtestart of frame

2During a reseed the previous key is added to the accumulatbrtten delimiter. This gives a fairly precise indication of the chitisy of reception
output of the accumulator is then used as the new key. of the radio device.

2x

KEY

Input Reseed
5] CBC-MAC || ACCN

M 0 =

Entropy _/
Accumulator

CPRNG

Block Cipher 5 RNG Output

Fig. 1. TinyRNG Block diagram

IIl. ANALYSIS OF BIT ERRORS ON WIRELESS CHANNELS

The goal of this section is to experimentally show that the
bit errors received by a node are difficult to observe/ptedic
and to manipulate.

A. Errors cannot be predicted

In order to achieve this goal, we consider a very powerful
attacker. The attacker has physical access to the antertha of
victim node and is trying to predict the errors that are nesei
by the victim.

1) Experimental setup: Our experimental setup is the fol-
lowing: We connect two motes (the victim mote and the Fig. 2. Experimental Setup
attacker mote) to the same antenna. This is performed using
a 2-port power divider from Pulsar [13] as illustrated by .Fig
2. The divider attenuates the received signal by 2db. A thirdAs a result, if the attacker has access to the received bit
mote then sends0® packets at a rate of 4 packets per secon@Tors received by the victim during a period of time, it won’
All data received by the two motes are logged on a computBg able to predict the bit errors that will appear next. This i
Note that, in this experiment, all the packets sent by theithi@ very important result, since it shows that both forward and
node are identical and known to the receivers. Erroneoss B¥gckward security can be provided.
are detected by comparing the received data to the expecteffigure 3(b) displays the cross-correlations of erroneata d
one. received by the victim and the attacker. It shows that thersrr

2) Data Analysis: In order to analyse the collected datafeceived by the attacker mote are completely uncorrelated
we generated two Strings of bytes_ The first oﬁ‘elcontains from the errors received by the victim mote. The motes are
all the bytes that were received erroneously by the victifften getting errors in different positions. i.e. fort% of the
mote. The second string;, contains all the bytes that weresamples, the victim mote gets an erroneous packet while the
received erroneously by the attacker. We then computed @éacker received the packet correctly. Furthermore§. 2%
auto-correlation and cross-correlation of theand G strings. ©f the samples, the victim received the packet correctlylavhi

The correlation, at lag is defined as: the attacker didn't receive anything. This makes6% of
packet errors that are unique to the victim and that cannot
RawCorrelation(f,q); = Z fi* Givi be observed by the attacker. We believe that many of these
7 errors are actually due to the network device. These results

This value is then normalized such that the correlation 3f - gwdence th_a't Itis very dlffllcultlfo.r an at.tagker t‘.) iy
two identical sequences &tg — 0 is equal tol. 4 predict the receiving errors of its victim. This is an im@ort

: - . . result, since it shows that bit errors are a good sourceaét
Figure 3(a) displays the auto-correlation of the the BITorS Jomness
collected respectively by the victim and the attacker. €hes '

results show that the errors received by each node are undr-Bit errors cannot be manipulated

related. The goal of this section is to give evidence that bit errors
4To compute the correlation values we used the Matlab “xcauricfion cannot easily be manipulated. In order to demonstrate this
with option “coeff” for normalization. result, we measured and plotted the LQI of the packets tleat ar

Normalized Autocorrelation

normalized Correlation

-0.2

10000

1000 |

100 ¢

jloln

autocorrelations of errors received by receiver 1 and 2

Rutocarfelation of errors for Mated
Autocorrelation of errors for Motel

P S —

100000 150000 200000 250000 300000 350000 40000C
samples shiftslag

0 50000

(a) Auto-correlation

Cross Correlation of errors received on Mote 0 and Mote 1

utocarrelation af errors far Motdd used Far CrossCorrelation
Cross Correlation of errors received on Mote O and Mote 1 ——

0 50000 100000 150000 200000 250000 300000 35000¢

samples shift/Lag

(b) Cross-correlation

Good packets LEI and Length=4 and moteld=1

EerHDus packefs Laz and‘LEngth:4 énd mDﬁEI&:l —
Good packets LRI and Length=4 and moteld=l ——

0 20 40 60 80 100 120 140
(c) LQI measurement

Fig. 3. Analysis of Errors

received with errors and of packets that are received withou
errors. The results are displayed on Fig. 3(c). They show tha
packets that are received with an LQI smaller than 45 are
always erroneous. Note that our experimentations provide the
same result with RSSI: packets received with a raw RSSI
smaller than—50db are alsalways erroneous. These results
show that an attacker cannot control all the errors that are
on the channel. If these packets’ LQI is smaller than 45, the
generated errors cannot be controlled, and therefore dxer
by the attacker. TinyRNG makes use of this property. It uses
two accumulators. The first one uses the received packets
with wrong CRC. The second one uses the received packets
with error and with a LQI smaller than 45If the attacker
sends malicious packets with wrong CRC at a relatively high
signal level, they will be added to the first accumulator.
However, if the attacker tries to corrupt the second accatoul
with malicious packets, he will have to reduce the power of
emission under a level at which additional transmissioarsrr
will occur in the packets. The first accumulator will be filled
up more quickly and will therefore be used for reseed more
frequently. The second one is slower but provides a much
better security against active attacks.

V.
A. Internal state initialization

| MPLEMENTATION

The initial state of the random number generator is given
at programming time by an initial key for the block cipher.
This key is generated on the development computer, which is
assumed to have a good random number generator. This may
lead to problems with large scale code distribution systems
such as deluge [5]: all nodes will be remotely programmed
with the same initial state. Therefore, before deploymént o
such a large scale network, a seeding phase is performed with
a dedicated program image. This image contains a list ofsseed
S, S1, ..., S; for node0 to i. When the program executes on
nodei the seedS; is stored in the internal EEPROM [1] of
nodei. Note that if the nodes don't share an apriori secret
with the programmer, this step has to be performed in a
trusted environment. On the other hand, if nodes are sharing
a key with the programmer, the image can include per-node
encrypted seeds. This image is eventually overwritten ley th
actual program, removing all traces of the initial seedsoth
than the values in the EEPROM. When a node is booting, it
uses its unique node identifier as first reseed, then it saves a
few bytes of random numbers in the EEPROM, overwriting the
previous seed. This ensures that nodes won't be vulnerable t
reboot attacks, because the next reboot will use the new seed
value. In order to reflect the evolution of the entropy of the
internal state after a certain amount of time, a new seeddhou
be saved before shutdown of a node. The seed may also be
saved on a periodic basis to protect against unclean shatdow
such as watchdog timeouts or malicious reboots. Furthermor
it is computationally impossible to retrieve the previongial

5This value may need to be keep dynamically in order to adaptffereint
radio devices. Indeed, similar devices can have differenit lof reception.

Configuration | ROM memory usage (Bytes) RAM memory usage (Bytes)

MICA2, RandomLFSR 7686 302
MICA2, TinyRNG 11086 471
Overhead 3400 (44%) 169 (56%)
MICA2, TinySec, RandomLFSH 16382 559
MICA2, TinySec, TinyRNG 17774 732
Overhead 1392(8.5%) 161 (28%)
MICAz, RandomLFSR 6132 244
MICAz, TinyRNG 9832 416
Overhead 3700 (60%) 172 (70%)
Fig. 4. Main memory consumption Comparison TinyRNG vs TinySec

Component RAM memory usage (Bytes

Accumulators States 2*32

Cipher Context (CTR mode) 20

Precomputed random numbers (minimal size) 8

Counter 8

Keys 2*10

Total 120

Fig. 5. Main memory consumption sources in TinyRNG

state of the random number generator of the nodes, as thid) Initialization: When the node is booting, it reads the
would be equivalent to breaking the underlying block ciphepreviously stored seed from EEPROM, performs a reseed and
generates a new seed from the random number generator.
B. Memory usage This new seed is then written back to the internal EEP-
TinyRNG has been designed to minimize its memory usag@OM memory. This operation performs write access to the
In this section, we compare TinyRNG and RandomLFSRtmegal28 internal EEPROM [1], which comes at a higher
memory footprints, i.e. the number of ROM and RAM bytesnergy consumption cost than any other operation in TinyRNG
used by each of these programs. RandomLFSR is a simple riyi-two orders of magnitude485m.J). However, this is an
dom number generator for TinyOS. Note that RandomLFSRifrequent operation as its performed only at boot timesThi
not cryptographic and does not provide secure random nustiep may also be performed by a timer at a very low frequency
bers, the randomness of its outputs have also been discuse@rder to update the saved seed, such that further reboots
We also compare memory usage of TinyRNG with TinySec [@jre taking into account the evolution of the internal state
for MICA2 motes®. energy cost of this operation should be taken into account
To evaluate the memory footprint of TinyRNG we usetvhen selecting the timer period. The energy consumption of
a program which periodically uses random numbers. Fige accumulators and PRNG initialization is negligible hwit
ure 111-B shows the memory usages for various configuratiogspect to that of seed write. Another fact is that EEPROM
and outlines the overhead of TinyRNG. It shows that TinyRN@rite may be impossible if battery power is too low, which
ROM and RAM memory costs are respectively% and may lead to successfogboot attacks. If the mote boots under
56% higher than RandomLFSR memory footprints. Howevethose conditions TinyRNG will be functioning in a degraded
these cost overheads reducestd% and28% respectively, if mode until properly reseeded.
TinySec is also present in the mote, because TinyRNG reusef) Entropy Accumulation: During the entropy accumula-

many of its modules. tion phase, each erroneous received packet is used to update
) the accumulator state. This is done by adding the packetto th
C. Energy consumption incremental CBC-MAC state, which itself uses Skipjack. The

Energy consumption is a major concern for WSN nodesnergy consumed by this step is similar to the energy that
Figure IV-C details the main sources of energy consumptidiinySec [9] would spend to check the MAC of a correctly
in TinyRNG and their timings. The major operations areeceived packet.
the initialization, entropy accumulation, reseed and oamd 3) Reseed: For the reseed phase, the current key of the
numbers generation phase. CPRNG block cipher is fed back into the accumulator, and the

output of the accumulator is used as the new key. The accu-

SUnfortunately TinySec is not available for MICAz motes on utiwe mulators are eventually reinitialized. The energy COHEII'[mp
developed the TinyRNG module, our implementation on MICA2 matds

of this step is dominated by the energy consumption of the

an early state, however, final results should not be signifigalifferent than ;))) vES
the ones presented here block cipher encryption. Since this operation is not frague

Configuration | Process time | Energy Consumption |

Random numbers generation

RandomLFSR request 64 random bits 284 pus 0.7 wuJ
TinyRNG request 64 random bits 440 ps 114 puJ
Overhead (ratio) 15.5 15.2
Initialization

TinyRNG Initialization of CPRNG (with r/’w EEPROM operatisn 144 ms 4.85 mJ
TinyRNG Initialization of CPRNG (without EEPROM operat®n 2.15 ms 53.7 pJ
Accumulators Initialization 1.47 s 36.3 uJ
Periodic events

Reseed 1.13 ms 28 ud
TinyRNG entropy Accumulation 2.16 ms 56.3 pJ

Fig. 6. Energy consumption Comparison TinyRNG vs RandomLFSRIEDAz platform

its impact on the overall consumption is limited. time of algorithms due to the micro states in the central
4) Random number generation: Generation of random processing unit. However, this won’t produce much entrapy o
numbers is performed by using the block cipher in countsensor networks due to the low complexity of the processors
mode. One block operation is required for each 64 randoand the very limited processing activity on such devices, as
bits generation. This means that the energy consumptionwigll as the simplicity of the threading on these platforms.
proportional to the number of consumed random bits. Becaus@gally, the random number generators proposed for wiseles
this step is about 15.5 times slower than with a simple randaansor networks nodes like [14] or included in TinyOS are not
number generator such as TinyOS’s LFSR, it should be ussditable for cryptographic usage.
with care when timing sensitive operations such as intésrup
handlers or network drivers. However, some precalculation VI. CONCLUSION
random numbers may be possible if some memory pool iswe have presented TinyRNG, a new cryptographic pseudo-
available for buffering. This would ensure fast access todgorandom generator that is well adapted to wireless sensars. A
quality random numbers. If ever the amount of random nurimplementation have been made and evaluated, and will be
bers requested is too high and it would be energy prohibitiveade publicly available. Our generator uses the bit errbrs o
to use TinyRNG, or the precomputed random numbers pafk received packets as a source of randomness. We show that
is empty, fast access to random numbers can be provideddiyerrors are unpredictable and cannot be easily modified.
the LFSR initialized with a seed from the output of TinyRNG. Furthermore, we believe that because WSN networks are

However, this should not be used for keying material. often composed of cheap devices and are deployed in open and
harsh environments, bit errors, due either to the enviranime
V. RELATED WORK or the reception hardware, are frequent. Even in controlled

Gutmann [7] give advice on how to properly mix theand closed environments, bit errors happen in wirelesstran
entropy C0||ected in entropy pools and implementation wvimissions. ThIS was i”ustrated by our in'lab eXperimentS.
for random number generators in software with a systeltirthermore, since transmitting packets is the most energy
point of view. In [10] (extended in [6]) Kelsey, Ferguson ang§onsuming operation and since WSNs are dense, each node
Schneier give some advice on how to implement a randdgnds to minimize their transmission power and, therefore,
number generator resistant to state compromise attacks H{deases the number of erroneous bits.
incremental attacks. Our design is derived from this. [2]
presents a formal construction for random numbers gensrato
and formally defines forward and backward security. Barak etWe would like to thank Gérard Baille, Roger Pissard-
al. advocates for periodic reseed, with low period, or a vefyibollet and Jean-Frangois Cuniberto from the SED team at
conservative entropy estimate rather than trying to esémdNRIA as well as Maté Soos for their kind help.
entropy gathered from the point of view of the attacker, The work described in this paper is based on results of IST
which is unfeasable by a computer program. The constructibBP6 STREP UbiSec&Sens (http://www.ist-ubisecsens.org).
proposed is similar to that of [10]. Mutaf suggests [11] te udJbiSec&Sens receives research funding from the European
timing of radio link noise level variations. This approasmbt Community’s Sixth Framework Programme. Apart from this,
suitable for WSN nodes since there is no way to constantlye European Commission has no responsibility for the ciinte
get the accurate timing of the noise level changes effigientl of this paper. The information in this document is provided a
terms of power consumption (i.e. it needs constant samplingis and no guarantee or warranty is given that the information
the noise level as well as accurate timestamp). In [15] Sezrie fit for any particular purpose. The user thereof uses the
et al. propose to gather entropy from variation in executianformation at its sole risk and liability.

VIlI. ACKNOWLEDGMENTS

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]

REFERENCES

Atmel. Atmegal28(l) datasheet, doc2467: 8-bit microcolfer with
128k bytes in-system programmable flash.

B. Barak and S. Halevi. A model and architecture for pseratwlom
generation with applications to /dev/random. Cryptologyi@fArchive,
Report 2005/029, 2005.

Chipcon. Cc2420, 2.4ghz ieee 802.15.4 / zigbee-readsarfsceiver.
Y. Dodis, R. Gennaro, J. Hastad, H. Krawczyk, and T. RaBtandom-
ness extraction and key derivation using the CBC, Cascadd{dhAC
modes. LNCS 3152, 2004.

P. K. Dutta, J. W. Hui, D. C. Chu, and D. E. Culler. Securthg deluge
network programming system. IS\, pages 326-333, 2006.

N. Ferguson and B. SchneiePractical Cryptography. John Wiley &
Sons, Inc., New York, NY, USA, 2003.

P. Gutmann. Software generation of practically strongdm numbers.
In 7th USENIX Security Symposium, San Antonio, Texas.

IEEE. P802.15.4/d18 draft standard: Low rate wirelessspnal area
networks.

&l

(20]

(11]

(12]

(13]

(14]

(18]

C. Karlof, N. Sastry, and D. Wagner. Tinysec: A link laysecurity
architecture for wireless sensor networks.SmsSys, ACM Conference
on Embedded Networked Sensor Systems, 2004.

J. Kelsey, B. Schneier, and N. Ferguson. Yarrow-160teNlmon the
design and analysis of the yarrow cryptographic pseudamanaumber
generator. IrSelected Areas in Cryptography, number Generators, pages
13-33, 1999.

P. Mutaf. True random numbers from W-Fi background noise.
http://www.freewebs.com/pmutaf/iwrandom.html.

T. Park and K. G. Shin. Soft tamper-proofing via progrartegnity
verification in wireless sensor networkkEEE Transactions on Mobile
Computing, 2005.

Pulsar Microwave Corporation. Pulsar power divider3i2414.

D. Seetharam and S. Rhee. An effcient random number gemefior
low-power sensor networks.

A. Seznec and N. Sendrier. Havege: A user-level softweuristic
for generating empirically strong random numbek&M Trans. Model.
Comput. Smul., 13(4):334-346, 2003.

	I TinyRNG Overview
	I-A Motivations
	I-B Contribution of our work
	I-C System Overview

	II Security Analysis
	II-A Attacker Model
	II-B Analysis of the possible Attacks
	II-B.1 Remote attackers
	II-B.2 Invasive attacks

	III Analysis of bit errors on wireless channels
	III-A Errors cannot be predicted
	III-A.1 Experimental setup
	III-A.2 Data Analysis

	III-B Bit errors cannot be manipulated

	IV Implementation
	IV-A Internal state initialization
	IV-B Memory usage
	IV-C Energy consumption
	IV-C.1 Initialization
	IV-C.2 Entropy Accumulation
	IV-C.3 Reseed
	IV-C.4 Random number generation

	V Related Work
	VI Conclusion
	VII Acknowledgments
	References

