
TinyTL: Reduce Memory, Not Parameters

for Efficient On-Device Learning

Han Cai1, Chuang Gan2, Ligeng Zhu1, Song Han1

1Massachusetts Institute of Technology, 2MIT-IBM Watson AI Lab
http://tinyml.mit.edu/

Abstract

On-device learning enables edge devices to continually adapt the AI models to new
data, which requires a small memory footprint to fit the tight memory constraint
of edge devices. Existing work solves this problem by reducing the number of
trainable parameters. However, this doesn’t directly translate to memory saving
since the major bottleneck is the activations, not parameters. In this work, we
present Tiny-Transfer-Learning (TinyTL) for memory-efficient on-device learning.
TinyTL freezes the weights while only learns the bias modules, thus no need
to store the intermediate activations. To maintain the adaptation capacity, we
introduce a new memory-efficient bias module, the lite residual module, to refine
the feature extractor by learning small residual feature maps adding only 3.8%
memory overhead. Extensive experiments show that TinyTL significantly saves
the memory (up to 6.5×) with little accuracy loss compared to fine-tuning the
full network. Compared to fine-tuning the last layer, TinyTL provides significant
accuracy improvements (up to 34.1%) with little memory overhead. Furthermore,
combined with feature extractor adaptation, TinyTL provides 7.3-12.9× memory
saving without sacrificing accuracy compared to fine-tuning the full Inception-V3.

1 Introduction

Intelligent edge devices with rich sensors (e.g., billions of mobile phones and IoT devices)1 have been
ubiquitous in our daily lives. These devices keep collecting new and sensitive data through the sensor
every day while being expected to provide high-quality and customized services without sacrificing
privacy2. These pose new challenges to efficient AI systems that could not only run inference but
also continually fine-tune the pre-trained models on newly collected data (i.e., on-device learning).

Though on-device learning can enable many appealing applications, it is an extremely challenging
problem. First, edge devices are memory-constrained. For example, a Raspberry Pi 1 Model A
only has 256MB of memory, which is sufficient for inference, but by far insufficient for training
(Figure 1 left), even using a lightweight neural network architecture (MobileNetV2 [1]). Furthermore,
the memory is shared by various on-device applications (e.g., other deep learning models) and the
operating system. A single application may only be allocated a small fraction of the total memory,
which makes this challenge more critical. Second, edge devices are energy-constrained. DRAM
access consumes two orders of magnitude more energy than on-chip SRAM access. The large
memory footprint of activations cannot fit into the limited on-chip SRAM, thus has to access DRAM.
For instance, the training memory of MobileNetV2, under batch size 16, is close to 1GB, which is by
far larger than the SRAM size of an AMD EPYC CPU3 (Figure 1 left), not to mention lower-end

1https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
2https://ec.europa.eu/info/law/law-topic/data-protection_en
3https://www.amd.com/en/products/cpu/amd-epyc-7302

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

http://tinyml.mit.edu/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://ec.europa.eu/info/law/law-topic/data-protection_en
https://www.amd.com/en/products/cpu/amd-epyc-7302

0

250

500

750

1000

AMD EPYC CPU SRAM (L3 Cache)

Raspberry Pi 1 DRAM

M
b

V
2

M
e

m
o

ry
 F

o
o

tp
ri
n

t
(M

B
)

Inference

Batch Size = 1

Training

Batch Size = 16

0

400

800

1200

1600

Param (MB) Activation (MB)

ResNet-50 MbV2-1.4

The main bottleneck does not improve much.

13.9x larger

Activation is the

main bottleneck,

not parameters.

4.3x

1.1x

Figure 1: Left: The memory footprint required by training is much larger than inference. Right:
Memory cost comparison between ResNet-50 and MobileNetV2-1.4 under batch size 16. Recent
advances in efficient model design only reduce the size of parameters, but the activation size, which
is the main bottleneck for training, does not improve much.

edge platforms. If the training memory can fit on-chip SRAM, it will drastically improve the speed
and energy efficiency.

There is plenty of efficient inference techniques that reduce the number of trainable parameters and
the computation FLOPs [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], however, parameter-efficient or FLOPs-efficient
techniques do not directly save the training memory. It is the activation that bottlenecks the training
memory, not the parameters. For example, Figure 1 (right) compares ResNet-50 and MobileNetV2-
1.4. In terms of parameter size, MobileNetV2-1.4 is 4.3× smaller than ResNet-50. However, for
training activation size, MobileNetV2-1.4 is almost the same as ResNet-50 (only 1.1× smaller),
leading to little memory reduction. It is essential to reduce the size of intermediate activations
required by back-propagation, which is the key memory bottleneck for efficient on-device training.

In this paper, we propose Tiny-Transfer-Learning (TinyTL) to address these challenges. By analyzing
the memory footprint during the backward pass, we notice that the intermediate activations (the
main bottleneck) are only needed when updating the weights, not the biases (Eq. 2). Inspired by
this finding, we propose to freeze the weights of the pre-trained feature extractor and only update
the biases to reduce the memory footprint (Figure 2b). To compensate for the capacity loss, we
introduce a memory-efficient bias module, called lite residual module, which improves the model
capacity by refining the intermediate feature maps of the feature extractor (Figure 2c). Meanwhile,
we aggressively shrink the resolution and width of the lite residual module to have a small memory
overhead (only 3.8%). Extensive experiments on 9 image classification datasets with the same
pre-trained model (ProxylessNAS-Mobile [11]) demonstrate the effectiveness of TinyTL compared to
previous transfer learning methods. Further, combined with a pre-trained once-for-all network [10],
TinyTL can select a specialized sub-network as the feature extractor for each transfer dataset (i.e.,
feature extractor adaptation): given a more difficult dataset, a larger sub-network is selected, and vice
versa. TinyTL achieves the same level of (or even higher) accuracy compared to fine-tuning the full
Inception-V3 while reducing the training memory footprint by up to 12.9×. Our contributions can be
summarized as follows:

• We propose TinyTL, a novel transfer learning method to reduce the training memory footprint by
an order of magnitude for efficient on-device learning. We systematically analyze the memory
of training and find the bottleneck comes from updating the weights, not biases (assume ReLU
activation).

• We also introduce the lite residual module, a memory-efficient bias module to improve the model
capacity with little memory overhead.

• Extensive experiments on transfer learning tasks show that our method is highly memory-efficient
and effective. It reduces the training memory footprint by up to 12.9× without sacrificing accuracy.

2 Related Work

Efficient Inference Techniques. Improving the inference efficiency of deep neural networks on
resource-constrained edge devices has recently drawn extensive attention. Starting from [4, 5, 12, 13,

2

14], one line of research focuses on compressing pre-trained neural networks, including i) network
pruning that removes less-important units [4, 15] or channels [16, 17]; ii) network quantization that
reduces the bitwidth of parameters [5, 18] or activations [19, 20]. However, these techniques cannot
handle the training phase, as they rely on a well-trained model on the target task as the starting point.

Another line of research focuses on lightweight neural architectures by either manual design [1, 2,
3, 21, 22] or neural architecture search [6, 8, 11, 23]. These lightweight neural networks provide
highly competitive accuracy [10, 24] while significantly improving inference efficiency. However,
concerning the training memory efficiency, key bottlenecks are not solved: the training memory is
dominated by activations, not parameters (Figure 1).

There are also some non-deep learning methods [25, 26, 27] that are designed for efficient inference
on edge devices. These methods are suitable for handling simple tasks like MNIST. However, for
more complicated tasks, we still need the representation capacity of deep neural networks.

Memory Footprint Reduction. Researchers have been seeking ways to reduce the training memory
footprint. One typical approach is to re-compute discarded activations during backward [28, 29].
This approach reduces memory usage at the cost of a large computation overhead. Thus it is not
preferred for edge devices. Layer-wise training [30] can also reduce the memory footprint compared
to end-to-end training. However, it cannot achieve the same level of accuracy as end-to-end training.
Another representative approach is through activation pruning [31], which builds a dynamic sparse
computation graph to prune activations during training. Similarly, [32] proposes to reduce the bitwidth
of training activations by introducing new reduced-precision floating-point formats. Besides reducing
the training memory cost, there are some techniques that focus on reducing the peak inference
memory cost, such as RNNPool [33] and MemNet [34]. Our method is orthogonal to these techniques
and can be combined to further reduce the memory footprint.

Transfer Learning. Neural networks pre-trained on large-scale datasets (e.g., ImageNet [35]) are
widely used as a fixed feature extractor for transfer learning, then only the last layer needs to be
fine-tuned [36, 37, 38, 39]. This approach does not require to store the intermediate activations of the
feature extractor, and thus is memory-efficient. However, the capacity of this approach is limited,
resulting in poor accuracy, especially on datasets [40, 41] whose distribution is far from ImageNet
(e.g., only 45.9% Aircraft top1 accuracy achieved by Inception-V3 [42]). Alternatively, fine-tuning
the full network can achieve better accuracy [43, 44]. But it requires a vast memory footprint and
hence is not friendly for training on edge devices. Recently, [45,46] propose to only update parameters
of the batch normalization (BN) [47] layers, which greatly reduces the number of trainable parameters.
Unfortunately, parameter-efficiency doesn’t translate to memory-efficiency. It still requires a
large amount of memory (e.g., 326MB under batch size 8) to store the input activations of the BN
layers (Table 3). Additionally, the accuracy of this approach is still much worse than fine-tuning
the full network (70.7% v.s. 85.5%; Table 3). People can also partially fine-tune some layers, but
how many layers to select is still ad hoc. This paper provides a systematic approach to save memory
without losing accuracy.

3 Tiny Transfer Learning

3.1 Understanding the Memory Footprint of Back-propagation

Without loss of generality, we consider a neural network M that consists of a sequence of layers:

M(·) = Fwn
(Fwn−1

(· · · Fw2
(Fw1

(·)) · · ·)), (1)

where wi denotes the parameters of the ith layer. Let ai and ai+1 be the input and output activations

of the ith layer, respectively, and L be the loss. In the backward pass, given ∂L
∂ai+1

, there are two

goals for the ith layer: computing ∂L
∂ai

and ∂L
∂wi

.

Assuming the ith layer is a linear layer whose forward process is given as: ai+1 = aiW + b, then
its backward process under batch size 1 is

∂L

∂ai
=

∂L

∂ai+1

∂ai+1

∂ai
=

∂L

∂ai+1
W

T ,
∂L

∂W
= a

T
i

∂L

∂ai+1
,

∂L

∂b
=

∂L

∂ai+1
. (2)

3

(a) Fine-tune the full network (Conventional)

(c) Lite residual learning

fmap in memory fmap not in memory

learnable params fixed params weight bias

 mobile inverted bottleneck blocki
th

UpsampleDownsample Group Conv 1x1 Conv

(b) Fine-tune bias only

R

R R

R

0.5R 0.5R

1x1 Conv1x1 Conv Depth-wise Conv

1x1 Conv1x1 Conv Depth-wise Conv

C 6C 6C C

C

Figure 2: TinyTL overview (“C” denotes the width and “R” denote the resolution). Conventional
transfer learning relies on fine-tuning the weights to adapt the model (Fig.a), which requires a large
amount of activation memory (in blue) for back-propagation. TinyTL reduces the memory usage by
fixing the weights (Fig.b) while only fine-tuning the bias. (Fig.c) exploit lite residual learning to
compensate for the capacity loss, using group convolution and avoiding inverted bottleneck to achieve
high arithmetic intensity and small memory footprint. The skip connection remains unchanged
(omitted for simplicity).

According to Eq. (2), the intermediate activations (i.e., {ai}) that dominate the memory footprint are

only required to compute the gradient of the weights (i.e., ∂L
∂W

), not the bias. If we only update the
bias, training memory can be greatly saved. This property is also applicable to convolution layers and
normalization layers (e.g., batch normalization [47], group normalization [48], etc) since they can be
considered as special types of linear layers.

Regarding non-linear activation layers (e.g., ReLU, sigmoid, h-swish), sigmoid and h-swish require

to store ai to compute ∂L
∂ai

(Table 1), hence they are not memory-efficient. Activation layers that

build upon them are also not memory-efficient consequently, such as tanh, swish [49], etc. In contrast,
ReLU and other ReLU-styled activation layers (e.g., LeakyReLU [50]) only requires to store a binary
mask representing whether the value is smaller than 0, which is 32× smaller than storing ai.

Table 1: Detailed forward and backward processes of non-linear activation layers. |ai| denotes the
number of elements of ai. “◦” denotes the element-wise product. (1ai≥0)j = 0 if (ai)j < 0 and
(1ai≥0)j = 1 otherwise. ReLU6(ai) = min(6,max(0,ai)).

Layer Type Forward Backward Memory Cost

ReLU ai+1 = max(0,ai)
∂L
∂ai

= ∂L
∂ai+1

◦ 1ai≥0 |ai| bits

sigmoid ai+1 = σ(ai) =
1

1+exp(−ai)
∂L
∂ai

= ∂L
∂ai+1

◦ σ(ai) ◦ (1− σ(ai)) 32 |ai| bits

h-swish [7] ai+1 = ai ◦
ReLU6(ai+3)

6
∂L
∂ai

= ∂L
∂ai+1

◦ (ReLU6(ai+3)
6 + ai ◦

1−3≤ai≤3

6) 32 |ai| bits

3.2 Lite Residual Learning

Based on the memory footprint analysis, one possible solution of reducing the memory cost is to freeze
the weights of the pre-trained feature extractor while only update the biases (Figure 2b). However,
only updating biases has limited adaptation capacity. Therefore, we introduce lite residual learning
that exploits a new class of generalized memory-efficient bias modules to refine the intermediate
feature maps (Figure 2c).

4

Formally, a layer with frozen weights and learnable biases can be represented as:

ai+1 = FW(ai) + b. (3)

To improve the model capacity while keeping a small memory footprint, we propose to add a lite
residual module that generates a residual feature map to refine the output:

ai+1 = FW(ai) + b+ Fwr
(a′i = reduce(ai)), (4)

where a
′
i = reduce(ai) is the reduced activation. According to Eq. (2), learning these lite residual

modules only requires to store the reduced activations {a′i} rather than the full activations {ai}.

Implementation (Figure 2c). We apply Eq. (4) to mobile inverted bottleneck blocks (MB-block)
[1]. The key principle is to keep the activation small. Following this principle, we explore two design
dimensions to reduce the activation size:

• Width. The widely-used inverted bottleneck requires a huge number of channels (6×) to com-
pensate for the small capacity of a depthwise convolution, which is parameter-efficient but highly
activation-inefficient. Even worse, converting 1× channels to 6× channels back and forth requires
two 1× 1 projection layers, which doubles the total activation to 12×. Depthwise convolution also
has a very low arithmetic intensity (its OPs/Byte is less than 4% of 1× 1 convolution’s OPs/Byte
if with 256 channels), thus highly memory in-efficient with little reuse. To solve these limitations,
our lite residual module employs the group convolution that has much higher arithmetic intensity
than depthwise convolution, providing a good trade-off between FLOPs and memory. That also
removes the 1×1 projection layer, reducing the total channel number by 6×2+1

1+1 = 6.5×.

• Resolution. The activation size grows quadratically with the resolution. Therefore, we shrink the
resolution in the lite residual module by employing a 2× 2 average pooling to downsample the
input feature map. The output of the lite residual module is then upsampled to match the size of
the main branch’s output feature map via bilinear upsampling. Combining resolution and width
optimizations, the activation of our lite residual module is roughly 22 × 6.5 = 26× smaller than
the inverted bottleneck.

3.3 Discussions

Normalization Layers. As discussed in Section 3.1, TinyTL flexibly supports different normal-
ization layers, including batch normalization (BN), group normalization (GN), layer normalization
(LN), and so on. In particular, BN is the most widely used one in vision tasks. However, BN requires
a large batch size to have accurate running statistics estimation during training, which is not suitable
for on-device learning where we want a small training batch size to reduce the memory footprint.
Moreover, the data may come in a streaming fashion in on-device learning, which requires a training
batch size of 1. In contrast to BN, GN can handle a small training batch size as the running statistics
in GN are computed independently for different inputs. In our experiments, GN with a small training
batch size (e.g., 8) performs slightly worse than BN with a large training batch size (e.g., 256).
However, as we target at on-device learning, we choose GN in our models.

Feature Extractor Adaptation. TinyTL can be applied to different backbone neural networks,
such as MobileNetV2 [1], ProxylessNASNets [11], EfficientNets [24], etc. However, since the
weights of the feature extractor are frozen in TinyTL, we find using the same backbone neural
network for all transfer tasks is sub-optimal. Therefore, we choose the backbone of TinyTL using
a pre-trained once-for-all network [10] to adaptively select the specialized feature extractor that
best fits the target transfer dataset. Specifically, a once-for-all network is a special kind of neural
network that is sparsely activated, from which many different sub-networks can be derived without
retraining by sparsely activating parts of the model according to the architecture configuration (i.e.,
depth, width, kernel size, resolution), while the weights are shared. This allows us to efficiently
evaluate the effectiveness of a backbone neural network on the target transfer dataset without the
expensive pre-training process. Further details of the feature extractor adaptation process are provided
in Appendix A.

5

Table 2: Comparison between TinyTL and conventional transfer learning methods (training memory
footprint is calculated assuming the batch size is 8 and the classifier head for Flowers is used).
For object classification datasets, we report the top1 accuracy (%) while for CelebA we report the
average top1 accuracy (%) over 40 facial attribute classification tasks. ‘B’ represents Bias while
‘L’ represents LiteResidual. FT-Last represents only the last layer is fine-tuned. FT-Norm+Last
represents normalization layers and the last layer are fine-tuned. FT-Full represents the full network is
fine-tuned. The backbone neural network is ProxylessNAS-Mobile, and the resolution is 224 except
for ‘TinyTL-L+B@320’ whose resolution is 320. TinyTL consistently outperforms FT-Last and
FT-Norm+Last by a large margin with a similar or lower training memory footprint. By increasing the
resolution to 320, TinyTL can reach the same level of accuracy as FT-Full while being 6× memory
efficient.

Method
Train.

Flowers Cars CUB Food Pets Aircraft CIFAR10 CIFAR100 CelebA
Mem.

FT-Last 31MB 90.1 50.9 73.3 68.7 91.3 44.9 85.9 68.8 88.7

TinyTL-B 32MB 93.5 73.4 75.3 75.5 92.1 63.2 93.7 78.8 90.4
TinyTL-L 37MB 95.3 84.2 76.8 79.2 91.7 76.4 96.1 80.9 91.2
TinyTL-L+B 37MB 95.5 85.0 77.1 79.7 91.8 75.4 95.9 81.4 91.2
TinyTL-L+B@320 65MB 96.8 88.8 81.0 82.9 92.9 82.3 96.1 81.5 -

FT-Norm+Last 192MB 94.3 77.9 76.3 77.0 92.2 68.1 94.8 80.2 90.4
FT-Full 391MB 96.8 90.2 81.0 84.6 93.0 86.0 97.1 84.1 91.4

4 Experiments

4.1 Setups

Datasets. Following the common practice [43, 44, 45], we use ImageNet [35] as the pre-training
dataset, and then transfer the models to 8 downstream object classification tasks, including Cars [41],
Flowers [51], Aircraft [40], CUB [52], Pets [53], Food [54], CIFAR10 [55], and CIFAR100 [55].
Besides object classification, we also evaluate our TinyTL on human facial attribute classification
tasks, where CelebA [56] is the transfer dataset and VGGFace2 [57] is the pre-training dataset.

Model Architecture. To justify the effectiveness of TinyTL, we first apply TinyTL and previous
transfer learning methods to the same backbone neural network, ProxylessNAS-Mobile [11]. For
each MB-block in ProxylessNAS-Mobile, we insert a lite residual module as described in Section 3.2
and Figure 2 (c). The group number is 2, and the kernel size is 5. We use the ReLU activation since it
is more memory-efficient according to Section 3.1. We replace all BN layers with GN layers to better
support small training batch sizes. We set the number of channels per group to 8 for all GN layers.
Following [58], we apply weight standardization [59] to convolution layers that are followed by GN.

For feature extractor adaptation, we build the once-for-all network using the MobileNetV2 design
space [10, 11] that contains five stages with a gradually decreased resolution, and each stage consists
of a sequence of MB-blocks. In the stage-level, it supports elastic depth (i.e., 2, 3, 4). In the
block-level, it supports elastic kernel size (i.e., 3, 5, 7) and elastic width expansion ratio (i.e., 3, 4,
6). Similarly, for each MB-block in the once-for-all network, we insert a lite residual module that
supports elastic group number (i.e., 2, 4) and elastic kernel size (i.e., 3, 5).

Training Details. We freeze the memory-heavy modules (weights of the feature extractor) and only
update memory-efficient modules (bias, lite residual, classifier head) during transfer learning. The
models are fine-tuned for 50 epochs using the Adam optimizer [60] with batch size 8 on a single GPU.
The initial learning rate is tuned for each dataset while cosine schedule [61] is adopted for learning
rate decay. We apply 8bits weight quantization [5] on the frozen weights to reduce the parameter
size, which causes a negligible accuracy drop in our experiments. For all compared methods, we also
assume the 8bits weight quantization is applied if eligible when calculating their training memory
footprint. Additionally, as PyTorch does not support explicit fine-grained memory management, we
use the theoretically calculated training memory footprint for comparison in our experiments. For
simplicity, we assume the batch size is 8 for all compared methods throughout the experiment section.

6

45

55

65

75

85

95

0 75 150 225 300

TinyTL (LiteResidual+Bias) TinyTL (Bias) FT-Norm+Last FT-Last FT-Full

Training Memory (MB)

C
a

rs

40

50

60

70

80

90

0 75 150 225 300

Training Memory (MB)

A
ir
c
ra

ft

88

90

92

94

96

98

0 100 200 300 400
Training Memory (MB)

F
lo

w
e

rs

70

72

74

76

78

80

82

0 100 200 300 400

Training Memory (MB)

C
U

B

65

69

73

77

81

85

0 100 200 300 400
Training Memory (MB)

F
o
o
d

88

89

90

91

92

93

94

0 100 200 300 400
Training Memory (MB)

P
e

ts

75

80

85

90

95

100

0 40 80 120 160
Training Memory (MB)

C
IF

A
R

1
0

55

61

67

73

79

85

0 40 80 120 160
Training Memory (MB)

C
IF

A
R

1
0

0

6.5x memory

saving 292MB45MB

209MB

45MB

4.6x memory

saving

292MB

45MB

6.5x memory

saving
292MB

65MB

4.5x memory

saving

391MB
65MB

6.0x memory

saving

209MB
54MB

3.9x memory

saving 87MB19MB

4.6x memory

saving 87MB19MB

4.6x memory

saving

Figure 3: Top1 accuracy results of different transfer learning methods under varied resolutions using
the same pre-trained neural network (ProxylessNAS-Mobile). With the same level of accuracy,
TinyTL achieves 3.9-6.5× memory saving compared to fine-tuning the full network.

4.2 Main Results

Effectiveness of TinyTL. Table 2 reports the comparison between TinyTL and previous transfer
learning methods including: i) fine-tuning the last linear layer [36, 37, 39] (referred to as FT-Last);
ii) fine-tuning the normalization layers (e.g., BN, GN) and the last linear layer [42] (referred to as
FT-Norm+Last) ; iii) fine-tuning the full network [43, 44] (referred to as FT-Full). We also study
several variants of TinyTL including: i) TinyTL-B that fine-tunes biases and the last linear layer;
ii) TinyTL-L that fine-tunes lite residual modules and the last linear layer; iii) TinyTL-L+B that
fine-tunes lite residual modules, biases, and the last linear layer. All compared methods use the same
pre-trained model but fine-tune different parts of the model as discussed above. We report the average
accuracy across five runs.

Compared to FT-Last, TinyTL maintains a similar training memory footprint while improving the top1
accuracy by a significant margin. In particular, TinyTL-L+B improves the top1 accuracy by 34.1% on
Cars, by 30.5% on Aircraft, by 12.6% on CIFAR100, by 11.0% on Food, etc. It shows the improved
adaptation capacity of our method over FT-Last. Compared to FT-Norm+Last, TinyTL-L+B improves
the training memory efficiency by 5.2× while providing up to 7.3% higher top1 accuracy, which
shows that our method is not only more memory-efficient but also more effective than FT-Norm+Last.
Compared to FT-Full, TinyTL-L+B@320 can achieve the same level of accuracy while providing
6.0× training memory saving.

Regarding the comparison between different variants of TinyTL, both TinyTL-L and TinyTL-L+B
have clearly better accuracy than TinyTL-B while incurring little memory overhead. It shows that the
lite residual modules are essential in TinyTL. Besides, we find that TinyTL-L+B is slightly better
than TinyTL-L on most of the datasets while maintaining the same memory footprint. Therefore, we
choose TinyTL-L+B as the default.

Figure 3 demonstrates the results under different input resolutions. We can observe that simply
reducing the input resolution will result in significant accuracy drops for FT-Full. In contrast,
TinyTL can reduce the memory footprint by 3.9-6.5× while having the same or even higher accuracy
compared to fine-tuning the full network.

Combining TinyTL and Feature Extractor Adaptation. Table 3 summarizes the results of
TinyTL and previously reported transfer learning results, where different backbone neural net-
works are used as the feature extractor. Combined with feature extractor adaptation, TinyTL achieves
7.5-12.9× memory saving compared to fine-tuning the full Inception-V3, reducing from 850MB
to 66-114MB while providing the same level of accuracy. Additionally, we try updating the last
two layers besides biases and lite residual modules (indicated by †), which results in 2MB of extra

7

Table 3: Comparison with previous transfer learning results under different backbone neural networks.
‘I-V3’ is Inception-V3; ‘N-A’ is NASNet-A Mobile; ‘M2-1.4’ is MobileNetV2-1.4; ‘R-50’ is ResNet-
50; ‘PM’ is ProxylessNAS-Mobile; ‘FA’ represents feature extractor adaptation. † indicates the last
two layers are updated besides biases and lite residual modules in TinyTL. TinyTL+FA reduces the
training memory by 7.5-12.9× without sacrificing accuracy compared to fine-tuning the widely used
Inception-V3.

Method Net
Train. Reduce

Flowers Cars CUB Food Pets Aircraft CIFAR10 CIFAR100
mem. ratio

FT-Full

I-V3 [44] 850MB 1.0× 96.3 91.3 82.8 88.7 - 85.5 - -
R-50 [43] 802MB 1.1× 97.5 91.7 - 87.8 92.5 86.6 96.8 84.5
M2-1.4 [43] 644MB 1.3× 97.5 91.8 - 87.7 91.0 86.8 96.1 82.5
N-A [43] 566MB 1.5× 96.8 88.5 - 85.5 89.4 72.8 96.8 83.9

FT-Norm+Last I-V3 [42] 326MB 2.6× 90.4 81.0 - - - 70.7 - -

FT-Last I-V3 [42] 94MB 9.0× 84.5 55.0 - - - 45.9 - -

TinyTL

PM@320 65MB 13.1× 96.8 88.8 81.0 82.9 92.9 82.3 96.1 81.5
FA@256 66MB 12.9× 96.8 89.6 80.8 83.4 93.0 82.4 96.8 82.7
FA@352 114MB 7.5× 97.4 90.7 82.4 85.0 93.4 84.8 - -

FA@352† 116MB 7.3× - 91.5 - 86.0 - 85.4 - -

75

80

85

90

95

100

0 225 450 675 900

TinyTL Activation Pruning (ResNet-50) Activation Pruning (MobileNetV2)

Training Memory (MB)

60

66

72

78

84

90

0 225 450 675 900

Training Memory (MB)

70

75

80

85

90

95

0 225 450 675 900

Training Memory (MB)

F
lo

w
e

rs
 T

o
p

1
 (

%
)

A
ir
c
ra

ft
 T

o
p

1
 (

%
)

C
a

rs
 T

o
p

1
 (

%
)

0%

pruning 50%

pruning
50%

0%0%

pruning 50%

0%

20%

pruning 60%

20%

20%

pruning
50%

pruning 60%

0%

pruning 50%

0%
20%

pruning 60%

20%

pruning
50%

20%

Figure 4: Compared with the dynamic activation pruning [31], TinyTL saves the memory more
effectively.

training memory footprint. This slightly improves the accuracy performances, from 90.7% to 91.5%
on Cars, from 85.0% to 86.0% on Food, and from 84.8% to 85.4% on Aircraft.

4.3 Ablation Studies and Discussions

Comparison with Dynamic Activation Pruning. The comparison between TinyTL and dynamic
activation pruning [31] is summarized in Figure 4. TinyTL is more effective because it re-designed
the transfer learning framework (lite residual module, feature extractor adaptation) rather than prune
an existing architecture. The transfer accuracy drops quickly when the pruning ratio increases beyond
50% (only 2× memory saving). In contrast, TinyTL can achieve much higher memory reduction
without loss of accuracy.

Initialization for Lite Residual Modules. By default, we use the pre-trained weights on the pre-
training dataset to initialize the lite residual modules. It requires to have lite residual modules during
both the pre-training phase and transfer learning phase. When applying TinyTL to existing pre-trained
neural networks that do not have lite residual modules during the pre-training phase, we need to use
another initialization strategy for the lite residual modules during transfer learning. To verify the
effectiveness of TinyTL under this setting, we also evaluate the performances of TinyTL when using
random weights [62] to initialize the lite residual modules except for the scaling parameter of the final
normalization layer in each lite residual module. These scaling parameters are initialized with zeros.

Table 4 reports the summarized results. We find using the pre-trained weights to initialize the lite
residual modules consistently outperforms using random weights. Besides, we also find that using
TinyTL-RandomL+B still provides highly competitive results on Cars, Food, Aircraft, CIFAR10,

8

Table 4: Results of TinyTL under different initialization strategies for lite residual modules. TinyTL-
L+B adds lite residual modules starting from the pre-training phase and uses the pre-trained weights
to initialize the lite residual modules during transfer learning. In contrast, TinyTL-RandomL+B uses
random weights to initialize the lite residual modules. Using random weights for initialization hurts
the performances of TinyTL. But on datasets whose distribution is far from the pre-training dataset,
TinyTL-RandomL+B still provides competitive results.

Method
Train.

Flowers Cars CUB Food Pets Aircraft CIFAR10 CIFAR100 CelebA
Mem.

FT-Last 31MB 90.1 50.9 73.3 68.7 91.3 44.9 85.9 68.8 88.7

TinyTL-RandomL+B 37MB 88.0 82.4 72.9 79.3 84.3 73.6 95.7 81.4 91.2
TinyTL-L+B 37MB 95.5 85.0 77.1 79.7 91.8 75.4 95.9 81.4 91.2

FT-Norm+Last 192MB 94.3 77.9 76.3 77.0 92.2 68.1 94.8 80.2 90.4
FT-Full 391MB 96.8 90.2 81.0 84.6 93.0 86.0 97.1 84.1 91.4

96.8 64.7 17.4

96.4 54.4 16.1

96.0 45.2 15.0

95.5 37.1 13.9

94.6 30.1 13.1

93.1 24.2 12.3

92

94

96

98

0 18 35 53 70

TinyTL (batch size 1) TinyTL (batch size 8)

Training Memory (MB)

82.3 64.7 17.4

80.8 54.4 16.1

78.9 45.2 15.0

75.4 37.1 13.9

74.9 30.1 13.1

70.4 24.2 12.3

60

66

72

78

84

90

0 18 35 53 70

Training Memory (MB)

64.7 17.4

54.4 16.1

45.2 15.0

37.1 13.9

30.1 13.1

24.2 12.3

75

79

83

87

91

95

0 18 35 53 70

Training Memory (MB)

F
lo

w
e

rs
 T

o
p

1
 (

%
)

A
ir
c
ra

ft
 T

o
p

1
 (

%
)

C
a

rs
 T

o
p

1
 (

%
)

16MB
Typical L3 Cache Size

16MB
Typical L3 Cache Size

16MB
Typical L3 Cache Size

Figure 5: Results of TinyTL when trained with batch size 1. It further reduces the training memory
footprint to around 16MB (typical L3 cache size), making it possible to train on the cache (SRAM)
instead of DRAM.

CIFAR100, and CelebA. Therefore, if having the budget, it is better to use pre-trained weights to
initialize the lite residual modules. If not, TinyTL can still be applied and provides competitive results
on datasets whose distribution is far from the pre-training dataset.

Results of TinyTL under Batch Size 1. Figure 5 demonstrates the results of TinyTL when using
a training batch size of 1. We tune the initial learning rate for each dataset while keeping the
other training settings unchanged. As our model employs group normalization rather than batch
normalization (Section 3.3), we observe little/no loss of accuracy than training with batch size 8.
Meanwhile, the training memory footprint is further reduced to around 16MB, a typical L3 cache
size. This makes it much easier to train on the cache (SRAM), which can greatly reduce energy
consumption than DRAM training.

5 Conclusion

We proposed Tiny-Transfer-Learning (TinyTL) for memory-efficient on-device learning that aims to
adapt pre-trained models to newly collected data on edge devices. Unlike previous methods that focus
on reducing the number of parameters or FLOPs, TinyTL directly optimizes the training memory
footprint by fixing the memory-heavy modules (i.e., weights) while learning memory-efficient bias
modules. We further introduce lite residual modules that significantly improve the adaptation capacity
of the model with little memory overhead. Extensive experiments on benchmark datasets consistently
show the effectiveness and memory-efficiency of TinyTL, paving the way for efficient on-device
machine learning.

9

Broader Impact

The proposed efficient on-device learning technique greatly reduces the training memory footprint
of deep neural networks, enabling adapting pre-trained models to new data locally on edge devices
without leaking them to the cloud. It can democratize AI to people in the rural areas where the
Internet is unavailable or the network condition is poor. They can not only inference but also fine-tune
AI models on their local devices without connections to the cloud servers. This can also benefit
privacy-sensitive AI applications, such as health care, smart home, and so on.

Acknowledgements

We thank MIT-IBM Watson AI Lab, NSF CAREER Award #1943349 and NSF Award #2028888 for
supporting this research. We thank MIT Satori cluster for providing the computation resource.

References

[1] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In CVPR, 2018. 1, 2, 3, 5

[2] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017. 2, 3

[3] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In CVPR, 2018. 2, 3

[4] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In NeurIPS, 2015. 2, 3

[5] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding. In ICLR, 2016. 2, 3, 6

[6] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In CVPR, 2019. 2,
3

[7] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan,
Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3.
In ICCV, 2019. 2, 4

[8] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong
Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet
design via differentiable neural architecture search. In CVPR, 2019. 2, 3

[9] Han Cai, Ji Lin, Yujun Lin, Zhijian Liu, Kuan Wang, Tianzhe Wang, Ligeng Zhu, and Song
Han. Automl for architecting efficient and specialized neural networks. IEEE Micro, 2019. 2

[10] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once for all: Train one
network and specialize it for efficient deployment. In ICLR, 2020. 2, 3, 5, 6

[11] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on target
task and hardware. In ICLR, 2019. 2, 3, 5, 6

[12] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional
networks using vector quantization. arXiv preprint arXiv:1412.6115, 2014. 2

[13] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting
linear structure within convolutional networks for efficient evaluation. In NeurIPS, 2014. 2

[14] Vincent Vanhoucke, Andrew Senior, and Mark Z Mao. Improving the speed of neural networks
on cpus. In NeurIPS Deep Learning and Unsupervised Feature Learning Workshop, 2011. 2

[15] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In ICLR, 2019. 3

[16] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang.
Learning efficient convolutional networks through network slimming. In ICCV, 2017. 3

10

[17] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural
networks. In ICCV, 2017. 3

[18] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep
neural networks with binary weights during propagations. In NeurIPS, 2015. 3

[19] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In CVPR, 2018. 3

[20] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware automated
quantization. In CVPR, 2019. 3

[21] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and
Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb
model size. arXiv preprint arXiv:1602.07360, 2016. 3

[22] Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kilian Q Weinberger. Condensenet: An
efficient densenet using learned group convolutions. In CVPR, 2018. 3

[23] Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. Efficient architecture search
by network transformation. In AAAI, 2018. 3

[24] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In ICML, 2019. 3, 5

[25] Ashish Kumar, Saurabh Goyal, and Manik Varma. Resource-efficient machine learning in 2 kb
ram for the internet of things. In ICML, 2017. 3

[26] Chirag Gupta, Arun Sai Suggala, Ankit Goyal, Harsha Vardhan Simhadri, Bhargavi Paranjape,
Ashish Kumar, Saurabh Goyal, Raghavendra Udupa, Manik Varma, and Prateek Jain. Protonn:
Compressed and accurate knn for resource-scarce devices. In ICML, 2017. 3

[27] Dennis, Don Kurian and Gaurkar, Yash and Gopinath, Sridhar and Goyal, Sachin and Gupta,
Chirag and Jain, Moksh and Kumar, Ashish and Kusupati, Aditya and Lovett, Chris and Patil,
Shishir G and Saha, Oindrila and Simhadri, Harsha Vardhan. EdgeML: Machine Learning for
resource-constrained edge devices. 3

[28] Audrunas Gruslys, Rémi Munos, Ivo Danihelka, Marc Lanctot, and Alex Graves. Memory-
efficient backpropagation through time. In NeurIPS, 2016. 3

[29] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016. 3

[30] Klaus Greff, Rupesh K Srivastava, and Jürgen Schmidhuber. Highway and residual networks
learn unrolled iterative estimation. arXiv preprint arXiv:1612.07771, 2016. 3

[31] Liu Liu, Lei Deng, Xing Hu, Maohua Zhu, Guoqi Li, Yufei Ding, and Yuan Xie. Dynamic
sparse graph for efficient deep learning. In ICLR, 2019. 3, 8

[32] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash Gopalakrishnan.
Training deep neural networks with 8-bit floating point numbers. In NeurIPS, 2018. 3

[33] Oindrila Saha, Aditya Kusupati, Harsha Vardhan Simhadri, Manik Varma, and Prateek
Jain. Rnnpool: Efficient non-linear pooling for ram constrained inference. arXiv preprint
arXiv:2002.11921, 2020. 3

[34] Peiye Liu, Bo Wu, Huadong Ma, Pavan Kumar Chundi, and Mingoo Seok. Memnet: Memory-
efficiency guided neural architecture search with augment-trim learning. arXiv preprint
arXiv:1907.09569, 2019. 3

[35] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009. 3, 6

[36] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Return of the devil
in the details: Delving deep into convolutional nets. In BMVC, 2014. 3, 7

[37] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor
Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In ICML,
2014. 3, 7

11

[38] Chuang Gan, Naiyan Wang, Yi Yang, Dit-Yan Yeung, and Alex G Hauptmann. Devnet: A
deep event network for multimedia event detection and evidence recounting. In CVPR, pages
2568–2577, 2015. 3

[39] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. Cnn features
off-the-shelf: an astounding baseline for recognition. In CVPR Workshops, 2014. 3, 7

[40] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-
grained visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013. 3, 6

[41] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-
grained categorization. In Proceedings of the IEEE International Conference on Computer
Vision Workshops, 2013. 3, 6

[42] Pramod Kaushik Mudrakarta, Mark Sandler, Andrey Zhmoginov, and Andrew Howard. K for
the price of 1: Parameter efficient multi-task and transfer learning. In ICLR, 2019. 3, 7, 8

[43] Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models transfer better?
In CVPR, 2019. 3, 6, 7, 8

[44] Yin Cui, Yang Song, Chen Sun, Andrew Howard, and Serge Belongie. Large scale fine-grained
categorization and domain-specific transfer learning. In CVPR, 2018. 3, 6, 7, 8

[45] Pramod Kaushik Mudrakarta, Mark Sandler, Andrey Zhmoginov, and Andrew Howard. K for
the price of 1: Parameter-efficient multi-task and transfer learning. In ICLR, 2019. 3, 6

[46] Jonathan Frankle, David J Schwab, and Ari S Morcos. Training batchnorm and only batchnorm:
On the expressive power of random features in cnns. arXiv preprint arXiv:2003.00152, 2020. 3

[47] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In ICML, 2015. 3, 4

[48] Yuxin Wu and Kaiming He. Group normalization. In ECCV, 2018. 4

[49] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. In ICLR
Workshop, 2018. 4

[50] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations
in convolutional network. arXiv preprint arXiv:1505.00853, 2015. 4

[51] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large num-
ber of classes. In Sixth Indian Conference on Computer Vision, Graphics & Image Processing,
2008. 6

[52] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The
caltech-ucsd birds-200-2011 dataset. 2011. 6

[53] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In
CVPR, 2012. 6

[54] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative
components with random forests. In ECCV, 2014. 6

[55] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009. 6

[56] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Large-scale celebfaces attributes
(celeba) dataset. Retrieved August, 2018. 6

[57] Qiong Cao, Li Shen, Weidi Xie, Omkar M Parkhi, and Andrew Zisserman. Vggface2: A dataset
for recognising faces across pose and age. In 2018 13th IEEE International Conference on
Automatic Face & Gesture Recognition (FG 2018), 2018. 6

[58] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain
Gelly, and Neil Houlsby. Big transfer (bit): General visual representation learning. arXiv
preprint arXiv:1912.11370, 2019. 6

[59] Siyuan Qiao, Huiyu Wang, Chenxi Liu, Wei Shen, and Alan Yuille. Weight standardization.
arXiv preprint arXiv:1903.10520, 2019. 6

[60] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 6

12

[61] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016. 6

[62] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016. 8

13

	Introduction
	Related Work
	Tiny Transfer Learning
	Understanding the Memory Footprint of Back-propagation
	Lite Residual Learning
	Discussions

	Experiments
	Setups
	Main Results
	Ablation Studies and Discussions

	Conclusion

