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Abstract 

We present a user interface paradigm for 

database management systems that is motivated 

by scientific visualization applications. Our 

graphical user interface includes a “boxes and ar- 

rows” notation for database access and a flight 

simulator model of movement through informa- 

tion space. We also provide means to specify a 

hierarchy of abstracts of data of different types 

and resolutions, so that a “zoom” capability can 

be supported. The underlying DI3MS support for 

this system is described and includes the com- 

pilation of query plans into megaplans, new al- 
gorithms for data buffering, and provisions for 

a guaranteed rate of data delivery. The cur- 

rent state of the Tioga implementation is also de- 

scribed. 
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1 Introduction 

Scientific visualization applications often deal 

with data objects of very large sizes. Exam- 

ples include large regular arrays such as those 

found in global atmosphere and ocean circulation 

models[l2] and in remote sensing applications[5]. 

Large data structures used to model roads, 

drainage networks, and vegetation patterns are 

represented as collections of arcs, polygons, or 

points. Popular visualization systems such as 

AVS, Explorer, or Khoros offer scientific users a 

visual programming environment and powerful vi- 

sualization tools to manipulate and display scien- 

tific data. Most existing systems, however, pro- 

vide only primitive data management support. In 

particular, they can only read or write data from 

files, and they are geared toward manipulating a 

fixed set of data types. 

We are building a next generation visualiza- 

tion .system, Tioga, which improves dramatically 

on current technology. Our architecture is moti- 

vated by the fact that many objects visualized by 

the scientific community are very large and com- 
plex and would be best managed by a database 

management system (DBMS). Scientific data are 

not well served by conventional relational DBMSs; 

however, the DBMS research community has con- 

structed a collection of next generation DBMSs 

which support such objects more effectively. Ex- 

ample data managers in this class are POST- 

GRES, IRIS, Starburst, and Orion. Our archi- 

tecture assumes the presence of a next generation 

DBMS, and we are building Tioga for the POST- 

GRES DBMS. 
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Two features of POSTGRES are important in 

the design of Tioga. First, POSTGRES sup- 
ports a facility through which a user can define 

new data types. Such types can either be new 
base types which augment the standard collection 
of integers, floating point numbers and charac- 
ter strings, or they can be composite data types. 

Second, POSTGRES allows users to register a 

previously written function. The user must spec- 

ify the number and types of the input arguments 

and the type of the function result as well as the 
location of the code for the function. Currently, 

POSTGRES supports functions written in C or 
in the query language POSTQUEL[13]. 

Although Tioga uses POSTGRES, our pro- 

posal can be readily adapted to any system 

that supports an extendible type system, user- 

defined functions, and a multi-dimensional access 

method, e.g. [7, 8, 11, 141. 

Tioga differs from other work on support- 

ing scientific users of database systems. Pre- 
vious efforts have tended to concentrate on 

broad requirements[4], representing scientific 

data[l5], and statistical computations on large 

databases[2]. Little attention has been addressed 

to the programming needs of the scientific user 

of a DBMS. Instead, work on programming lan- 

guage integration with DBMSs has focused on the 

seamless integration of general purpose languages, 

such as C++, with data base systems[l, 161. 

This paper is organized as follows. In Section 

2 we explain the “boxes and arrows” visual pro- 

gramming paradigm used by Tioga. Section 3 

discusses the way Tioga requires the DBMS to 

interact with user-space (client) code. This inter- 

face is a generalization of both traditional SQL 

cursors and database portals[20]. Section 4 in- 

dicates the run-time support provided by POST- 

GRES for execution of Tioga boxes and arrows 

diagrams. This includes the definition and opti- 

mization of extended query plans. In Section 5 

we describe how Tioga supports additional func- 

tionality in the areas of guaranteed data delivery, 

abstracts of data, browser synchronization, and 

visual updating of data. Lastly, in Section 6, we 

conclude with an update of our current status and 

a look at future issues. 

2 The Tioga Programming 

Paradigm 

Existing scientific programming systems allow 

the user to create visual programs by connecting 
modules, written in a conventional programming 
language, using an easy-to-use graphical user in- 
terface. The modules are depicted on the screen 

as boxes with connections for inputs and out- 

puts. The user connects the boxes with arrows 

to create a directed graph which represents the 
final program. One or more boxes in the dia- 
gram are input nodes which read data from named 

files. Executing a diagram entails running the 

read boxes and progressively running each box as 

its inputs are available. Normally, the final box 

in the graph is a rendering engine which displays 
the result of the computation on the screen. The 

user can interact dynamically with the diagram by 

changing the parameters of the boxes, and the di- 

agram is automatically rerun to produce the new 

rendered output. In this way, a user can itera- 

tively produce the desired visualization effect. 

Consider as an application example the detec- 

tion of wildfires using images from the Advanced 

Very High Resolution Radiometer (AVHRR) 

satellite. A fire in the mixed terrain of the Cal- 
ifornia Sierra is hard to identify because of the 

interspersion of forest and crop land. An earth 

scientist begins with a composite, cloud-free satel- 

lite image and a landuse map. The map is first 

processed to block out areas of crop cultivation, 

since harvested crops and wildfires both reduce 

the amount of vegetation evident in a satellite 

image. Then the altered landuse map is super- 

imposed on the satellite image to produce a new 

image with the crop areas eliminated. The earth 
scientist then calculates the “greenness” of a given 

pixel in the new image using two image bands, in 

order to locate the forest regions of interest. After 

cropping the image to just forest areas, wildfires 

are identified by comparing fall and late spring 

forest size. The earth scientist finally renders the 

resulting wildfire images onto the screen. Figure 

1 illustrates the complete diagram for this appli- 

cation. 

The Tioga architecture generalizes this boxes 
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and arrows user interface from commercial pack- 

ages. Specifically, Tioga supports the definition, 
manipulation and execution of boxes and arrows 

diagrams, which we term recipes. Individual 

boxes in a recipe are called ingredients. The 

term recipe is used because it that a collection of 
ingredients is “cooked” into a final visualization 
output. 

The cornerstone of the Tioga architecture is 

that each function registered with POSTGRES 

is automatically an ingredient, and is thereby in 

the menu of building blocks. Thus, the menu of 

building blocks can constructed by simply reading 

the catalog of POSTGRES registered functions. 

In a boxes and arrows diagram, a one-way con- 

nection between two boxes indicates that the re- 

sult of the first ingredient is to be passed as in- 

put to the second ingredient. In order for such 

a connection to be valid, the data type returned 

by the first function must be compatible with the 

type of one of the arguments of the second func- 

tion. Either the output type exactly matches an 

input type of the subsequent function, or the out- 

put type is a set of the input type of the second 

function. In this latter case the second function 

will have to be called multiple times, once per el- 

ement of the set. Types in the same inheritance 

hierarchy are also compatible. For example, if EMP 
is a subtype of PERSON, then outputs of type EMP 
can be passed as input to a function expecting an 

input of type PERSON. The details of this-coordi- 

nation and other aspects of recipe execution will 

be covered in Section 4. 

As a recipe is being constructed by the user, 

the editing program automatically performs ap- 

propriate type-checking, since the input and re- 

turn types of all functions are known. The user is 

told if a connection is invalid, so that he or she can 

correct it. Although not shown in Figure 1, the 

editor supports the use of optional icons to rep- 

resent types. We plan to encourage type creators 

to design icons which give visual clues concern- 

ing the relationship of the type to other types. 

For example, icons of types within the same in- 
heritance hierarchy might have similar graphical 

features. In this way, the user can be given vi- 

sual clues concerning the compatibility of types, 

Figure 1: Recipe Editor 

thereby allowing a kind of visual type checking. 

When the user finishes editing a diagram, the 

editor notes which function inputs are missing, 

i.e. not provided by an incident edge from some 
other function. Function inputs which are not 

connected are treated as run-time parameters. 

At recipe execution time, the user will be interac- 

tively prompted to supply the missing values. 

There are two semantically different kinds of 

recipe building blocks. The first are conventional 

POSTGRES functions as noted above. As will 

be explained in Section 4 the code for these func- 

tions is executed inside the POSTGRES DBMS 

when the recipe is run. The second kind of build- 

ing blocks are browsers. These visualization boxes 
render screen images and run as DBMS applica- 

tion programs. As such they adhere to the client- 

server communication protocol described in the 
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next section. Browsers produce an output which 

is the data type setof image. This output can be 

used as the input to subsequent boxes in a recipe, 

so that processing on screen images is supported. 

There can be an arbitrary number of browsers in 
a recipe. Sophisticated users can define new kinds 

of browsers to meet specific rendering needs. 

Using the diagram editor, the user constructs a 

recipe consisting of ingredients and browsers at- 
tached together into a directed graph. Such a 

recipe can be saved in the DBMS in two different 

ways. The recipe can be stored as a graph-like 

structure in a cookbook, a collection of recipes 

in the database. We provide a query tool to sup- 

port browsing the cookbook. This tool, RASQL, 

is described in a companion paper[3]. RASQL 

is integrated with the diagram editor, so a user 

can retrieve a recipe from the cookbook, modify 

it with the diagram editor, and then install his 
new recipe back into the cookbook. 

Alternately, a recipe can be encapsulated or 

canned into a new ingredient. In order for a 

recipe to become an ingredient, it must be a legal 

POSTGRES function, meaning it can only have a 

single output, and it cannot have a browser. Once 

the recipe is compiled into a single ingredient, its 
original structure is lost and it becomes opaque 

to the user. It is for this reason that ingredients 

may not contain browsers: browsers must be di- 

rectly manipulated by the user. Canned recipes 

are added to the collection of POSTGRES func- 

tions and hence, automatically augment the col- 

lection of ingredients for future recipes. 

If a user wishes to run a previously constructed 

recipe, he can do so from the diagram editor. In 

this case the appropriate ingredients are loaded, 

any missing input parameters are prompted for at 

run-time, and a window for each browser is gen- 

erated. To run the recipe, the browsers communi- 
cate with the DBMS using the protocol described 

in the next subsection. 

3 Browser-DBMS Protocol 

As noted in the previous section, a recipe con- 

sists of a collection of interconnected functions, 
and may contain one or more browsers. Each 

browser is run as a DBMS application program 

which interacts with the recipe engine. The en- 

gine manages the execution of the ingredients in 

the recipe. In this section we describe the pro- 

tocol for communication between a browser and 
the DBMS. The interaction between the human 
user and the browser is unconstrained; however, 
the protocol to be described is most natural for 

a flight simulator paradigm, in which the user 

has a joystick by which he can navigate in a data 

space. 

Although it is possible to support an interface 

between the browser and the DBMS which al- 

lows browsing of an arbitrary collection of DBMS 

types, we chose a different approach. Each ob- 

ject may be of an arbitrary type, but it must have 

associated with it a geometry. The geometry of 

an object describes its location in an application 
coordinate space. All objects in an application 

are located in this common N-dimensional coor- 
dinate system, whose dimensions are appropriate 

to the specific application. The geometry of an 

object may be either a polygon’ or a point. It 

is the job of the human recipe designer to ensure 

that the recipe produces the geometry representa- 

tion (polygon or point) expected by some browser. 

Failure to provide this will result in a type mis- 

match. 

To achieve a common polygon representation, 
we have defined a standard N-dimensional poly- 

gon, N-D-polygon. The generic tuple passed to 

the browser from a recipe will have the form: 

{value, type, location} 

The value can be an instance of a base type or a 

composite type, and its location is represented by 
the N-D-polygon as indicated. For example, the 

value might be a satellite image; its type might be 

AVHRR, and the location associated with it might 

be a rectangle representing one of the quadrants 
of a U.S. Geological Survey map. 

With these preliminaries, the protocol between 

the browser and the recipe execution engine con- 

sists of the following commands: 

‘In this document, “polygon” refers to a general N- 

dimensional polyhedron, not merely a two-dimensional 

polygon. 
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MARK (N-D-point) with identifier 

ERASE identifier 

MOVE to identifier 

MOVE to (N-D-point) 

MOVE along (A,, . . . . A,) until 
F(value) <operator> <constant> 

FETCH (number) 

FETCH (A,, . . . . A,) 

The browser can mark any position in N- 

dimensional space with an identifier, so that it 

can return to that point at a later time. This is 

useful in marking points of interest. Such marks 

can be permanent if they are defined as part of 
the data type of the object. Usually marks will 

be local to a specific browsing session. 

The browser has three ways to relocate its posi- 

tion in N-space: it can move to a previously des- 

ignated identifier, it can move to a specific N-D- 

point which it calculates in some fashion, or it can 

move in some direction, denoted by (Al, . . . . AN) 

until some condition 

F(value) <operator> <constant> 

is true. This third relocation command is use- 

ful, for example, if a user is browsing Hurricane 

Hugo, and wishes to fast-forward the hurricane, 

i.e. skip or skim through images sorted by time, 

until Hugo hits land. If landfall of the hurricane 

can be expressed as a predicate, then the appro- 

priate MOVE command would look like 

MOVE along (O,O,...,+l) until 

hits-land(Hurricane.hugo) = TRUE 

The +l means a movement along the positive time 
axis, assuming time is the last dimension in this 
coordinate system. Note that recipes may be fast- 

forwarded in this fashion in any dimension. 

There are two ways to fetch data: first, the 

browser can request a fixed number of instances; 

second, it can request all the instances within a 

specific N-dimensional rectangle. In the first case, 

the number of instances requested is returned by 

running the recipe forward from its current po- 
sition. Since the recipe determines the ordering 

of instances, it implicitly specifies what the “for- 

ward” direction of instance production is. In the 

second case, the rectangle is specified by a col- 

lection of offsets from the current position in the 

application coordinate system. 

As the user moves through N-space with a 

joystick-like interface, it is the responsibility of 
the browser module to issue the appropriate move 

and fetch commands to support the user. It is 

also the browser’s responsibility to display appro- 

priately the values which are returned from the 

recipe in a fashion similar to that of SDMS[S]. 

To assist the browser, each type implementor 

is expected to define a display function in POST- 

GRES of the form: 

display(object,location,screen-resource) 

The location of the object is an N-dimensional 

polygon. The screen-resource argument specifies 

the screen resources which are available for the 

display of this object such the dimensions in pix- 

els of the area and the number of bits of color 

available. Given these parameters, the display 

function returns to the browser a screen repre- 
sentation for a given data object. 

The display function can return either a ren- 

derable object or a set of sub-objects which 

individually need to be passed to display func- 

tions. The latter mechanism allows for a hier- 

archical decomposition of a complex object into 

simpler objects to be displayed. For example, a 

browser could display information about employ- 

ees by calling the display function with the ap- 

propriate instances and locations. This function 

would either be a generic one or one written by 

the designer of the EMP class. The display func- 

tion could return an image of the employee’s face, 
or the display function could return separate data 

objects which make up an EMP instance, such as 

the employee’s salary, department, name, and pic- 

ture. These can then be separately rendered by 

calling the display function again. 

The N-dimensional browser-DBMS interface is 

a generalization of the one-dimensional interface 

available for the traditional DBMS cursors found 

in SQL. SQL-:! and SQL-3 generalize this interface 
so that multiple records can be fetched in either a 

forward or reverse direction. In this way, they in- 
clude some of the constructs proposed in portals, 
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which allow an application program to retrieve 

multiple records in a variety of ways along a sin- 

gle dimension[20]. 0 ur browser-DBMS protocol 

generalizes portals to operate in an N-dimensional 

space. Recipes do not include explicit update 
commands; rather they rely on the browser to is- 

sue separate POSTQUEL commands for this pur- 

pose. Because a unique identifier is automatically 

returned with each object, the browser can easily 

perform a separate update if it desires. In this 

way, recipe management follows the lead of por- 
tals, which include the same capability. 

Our browser interface has points in common 

with previous user interface work. For exam- 

ple, Cattell and Rogers [17] describe an interface 

which uses an entity-relationship data model con- 

structed for a given data base. The user is given a 

browsing paradigm whereby he can navigate the 

E-R diagram by following “next” and “previous” 

links in an identified set of records as well as by 

following an E-R link to an associated record. In 

Tioga, one can decompose an E-R relationship 

into two functions and then browse a recipe con- 

taining something akin to an E-R diagram. On 

the other hand, Tioga is not bound to the E-R 

model but can implement many kinds of relation- 

ships between records. Also, multiple kinds of 

browsers can be included in our architecture. 

USD[lO] has a similar “boxes and arrows” di- 

agram notation, and each box can be a function 

as in our proposal. However, USD enforces a se- 

mantic net data model on the diagram, whereas 

we make no such restriction. Also, USD is not 
closely integrated with a DBMS and has none of 

the extensions covered in Section 5. In a sense, 

Tioga is a generalization of USD. 

4 Recipe Execution 

4.1 Introduction 

At first glance, Tioga may seem to be merely a 

convenient user interface for specifying views for 
a next generation system. Or, one might think 

of Tioga as a convenient query specification tool 

since each box of a recipe corresponds to a query 

for the DBMS. Compiling a reciRe entails convert- 

ing the graph into a series of queries on the DBMS, 

resulting in one or more query plans. This is sim- 

ilar to compiling the output of any other query 

tool. However, recipes differ from views or query 

plans in four crucial ways. 

First, when a recipe is inserted into a cook- 

book, the Tioga optimizer receives a directed 
graph of ingredients, each of which corresponds 

to a query. This should be contrasted with a tra- 
ditional DBMS which accepts a single query. 

In order to support Tioga recipe execution, we 

are extending the POSTGRES executor so it can 
run a megaplan, which is a directed graph of 

nodes, each of which is a query plan. Specifically, 

we have introduced a plan node which is a tee, or 

fork, that connects the output of one plan to the 

input of one or more other plans. Megaplans are 

query plans with tee nodes in them. 

When a recipe is inserted into a cookbook, 

each ingredient can be optimized by a traditional 

DBMS optimizer. The resulting megaplan is 

stored for subsequent execution by an extended 

execution engine. An optimization available on 

megaplans is to coalesce multiple query plans 

into a single composite query plan. Tioga will 

optimize by coalescing queries when coalescing is 

advantageous. 

Second, ingredients have run-time parameters 

which are changed frequently. For this reason, it 

is advantageous to buffer the output of some (or 

all) ingredients, so that changes in downstream 

parameters do not require recalculation of up- 

stream ingredients. Where to buffer is a second 

decision which must be optimized. Buffering and 
coalescing decisions are interrelated, because co- 

alescing two ingredients into a single query plan 

removes the opportunity to buffer at the output 

of the first ingredient. Hence, both kinds of opti- 

mization must be performed in a unified manner. 

Third, the browser interface allows re- 

requesting of information that has been previously 

retrieved. Hence, it is advantageous to buffer the 

output of the ingredient immediately preceding a 

browser. This output must be indexed using a 

multi-dimensional access method, such as an R- 

tree, in order to allow re-requested information to 
be located quickly. 

Fourth, Tioga is demand driven. A megaplan 
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can have several browsers attached to it, each in- 

dependently requesting records. Current query 
plans have a distinguished root node which out- 

puts records to an application. In Tioga, each 

browser requests one or more records from a node 

of a plan, which responds by requesting records 

from its descendent nodes. The process completes 
when a node in the plan can deliver records, which 

then flow up the plan to satisfy the outstanding 
request. 

When two browsers operate on a megaplan, 

then a tee must be present. If one browser re- 

quests records and the second one does not, then 

recipe execution will continue the evaluation of 

the megaplan to generate the records required by 

the first browser. The state of the tee junction 

will advance to that required by the first browser, 

and the second browser will thereby lose its place. 

Buffering at the tee will allow recipe execution to 

avoid the subsequent recomputation of the state 

of the second browser when it resumes requesting 

records. 

To optimize a megaplan, we therefore must de- 

cide when to coalesce two ingredients in a mega- 

plan and where to insert buffers: The remain- 

der of this section considers these two issues. We 

will first describe these two tactics separately, and 

then show how to combine them into a single over- 

all optimization strategy. 

4.2 Buffering 

A recipe may need to be re-executed in two 

different circumstances. First, when a user re- 
examines records which he has previously fetched, 

the browser must request them again. Second, 

the user may change run-time parameters for one 

or more functions and then re-run the recipe. 

In both cases, buffering the output of ingredient 

boxes can save recomputation. 

There are three possible locations for buffering 

in a recipe. 

1. At the output of an ingredient that connects 

to a browser. 

If the data required for the current fetch com- 
mand is in the buffer, then an indexed lookup 
can replace recipe execution. 

2. 

3. 

At the output of an ingredient directly up- 

stream from one with a run-time parameter. 
When the run-time parameter changes, 

then upstream ingredients need not be re- 

executed. 

.4t the output of an ingredient which goes to 

more than one node. 

This corresponds to a tee in a recipe plan. If 

more than one browser is connected to the 
recipe, then buffering at tees reduces the re- 

computation that would otherwise be trig- 

gered by downstream browsers requesting dif- 

ferent records. 

If space considerations preclude buffering in all 

possible locations, then the following algorithm 

can be used to decide which outputs to cache. 

This algorithm assumes that the following statis- 

tics are available for each ingredient, I, in a recipe. 

P(I) = the number of times a run-time 

parameter for this ingredient will be 

changed 

S(I) = the amount of storage needed to 
effectively buffer the output of I (in 

bytes) 

cm = the cost of running the recipe 

Our 

from the “nearest upstream” buffer 

to I(in seconds). This includes the 

cost of running I. In the case where I 

has multiple inputs, C(I) is the sum 

of the costs of executing portions of 

the recipe needed to produce each in- 

put. The cost corresponding to each 

input “branch” is the cost of running 

the recipe from the nearest upstream 

buffer along that branch. 

algorithm requires one additional com- 

puted statistic: 

N(I) = number of change requests from 

nodes downstream from I, calculated 

as follows: 

(1) if I is followed by the node J: 

N(‘) = 
P(J) if J is buffered 

P(J) + N(J) ifJ ’ 1s unbuffered 
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(2) if 1 is followed by a browser B: 

N(I) = P(B) 

where P(B) is the number of times 

the user of the browser causes a re- 
execution. 

(3) if I is followed by a tee, then calculate 

N(I) using method (1) and take the 
sum of nodes forked from the tee. 

These statistics are gathered over time from 

previous executions of the given recipe. Peri- 

odic reoptimization allows fresh statistics to in- 

fluence future megaplan execution. Our algorithm 

is based on statistics from a sequential execution 

model, i.e. the execution of ingredients is serial- 

ized. Optimization based on a parallel execution 

model remains a problem for future study. 

If the recipe manager is allocated a fixed 
amount of buffer space, SP, then we use following 

simple greedy algorithm. Find the ingredient, 11, 

which maximizes 

Allocate S(Ir) of buffer space to ingredient 11 

and reduce the overall buffer space, SP, by this 

amount. Recompute C(I) for each remaining in- 

gredient I by taking into account the buffer added 

after 11. Find the next ingredient 12 by again 

maximizing 

CV2) * W2) 

w21 

and continue this greedy algorithm until no addi- 

tional buffer space remains. 

Intuitively, C(I) * N(I) is the amount of time 

that is saved in recomputation by buffering the 

output of I. The formula maximized is thereby 
the time savings per unit of buffer space, and the 

algorithm is a hill climbing one on this metric. Al- 
though not optimal, we expect the algorithm will 

give good real-world performance. A simulation 

study is planned to test this hypothesis. 

4.3 Coalescing Ingredients 

The ingredients in a recipe can also be coalesced 

into a smaller number of queries. For example, 

sequences of POSTQUEL functions can be coa- 

lesced into a single POSTQUEL function using 
the query modification technique for view com- 

position discussed in [19). The new function has 
the inputs of the first function, the output of the 

last, and the run-time parameters of all functions 

in the sequence. The query plan for the com- 

bined POSTQUEL function may be more efficient 

than the query plans of the individual functions 

executed serially. As [19] notes, though, if any 

POSTQUEL function in the sequence includes ag- 

gregate functions, this technique fails. 

If a recipe ingredient is a C function and is 

opaque to POSTGRES, it can still be coalesced 

with a preceding POSTQUEL box. One simply 

brackets the C function around the target list 

of the previous POSTQUEL command; however, 

since C functions cannot be rewritten by POST- 

GRES, no performance benefit is gained from co- 

alescing them. 

When a function, written in POSTQUEL, 

has outgoing edges to two or more subsequent 

POSTQUEL boxes, then the first function can be 

coalesced into each of the subsequent functions 
using the above query modification rules. Since 

the first function will be executed as part of each 

coalesced function, it will be executed repeatedly. 

A function with more than one input can be 

combined with all its preceding functions by ap- 

plying the above technique, one function at a 

time. In this way it is possible to collapse any 

recipe diagram with no aggregates into a diagram 

with only one node per browser. 

Coalescing two functions has a significant dis- 
advantage. It is no longer possible to buffer the 

intermediate result of the first function because it 

has disappeared inside a single query plan. Hence, 

if the user changes a run-time parameter of the co- 
alesced function which came from the second in- 

gredient, the combined plan must be reexecuted. 
Uncoalesced plans with an intermediate buffer 

would have required only the second function to 

be re-executed. 
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The next subsection completes the Tioga opti- 

mization description by indicating how to choose 
between coalescing ingredients and buffering in- 

termediate results. 

4.4 Buffering and Coalescing Together 

When we construct a megaplan for a recipe, we 
must decide which functions will be coalesced and 

which outputs should be buffered to construct the 

most efficient plan. The following heuristic algo- 

rithm contains our first simple treatment of this 

problem. An optimal algorithm would need to 

take into account the complex interrelationship 

between coalescing and buffering benefits. It re- 
mains an area for future study. 

Our heuristic solution performs a coalescing 

step followed by a buffering step followed by a 

second coalescing step. The first step coalesces all 

pairs of ingredients where coalescing is more ben- 

eficial than buffering. The second step allocates 

available buffer space according to the greedy al- 

gorithm in the subsection 4.2. A final coalesc- 

ing step is necessary to combine ingredients which 

were not coalesced in the first step because buffer- 
ing would have been more advantageous in those 

cases. Step two may not have allocated buffers to 

all possible outputs because total space available 

for buffering may have been limited. Therefore, 

the final coalescing step is necessary to find all 

remaining ingredient pairs where coalescing is ad- 

vantageous. 

Consider the case of two adjacent POSTQUEL 

ingredients, A and B, where A outputs to B. We 

ignore cases involving coalescing ingredients im- 

plemented in the programming language C be- 
cause no performance benefit is gained from co- 

alescing ingredients implemented as C functions. 

In the first coalescing step there are three possi- 

bilities to consider: 

1. 

2. 

If B has no run-time parameter and A’s out- 

put goes only to B, always coalesce this se- 

quence. There is no gain in buffering be- 

tween these functions. Coalescing the func- 

tions may allow the query optimizer to pick 
a more efficient composite plan. 

If A’s output goes to other functions as well 

as B, never coalesce A and B. A would need 
to be coalesced into multiple ingredients, and 
substantial duplicate execution is inevitable. 

3. If A’s output goes only to B, and B has one or 

more run-time parameters, then compute the 

following formulas and coalesce if coalescing 
is more beneficial than buffering. 

Benefit of Buffering = C(A) *N(A) 

Benefit of Coalescing = 

(C(B) - WBN * (WA) + P(A)) 

Here, AB is the result of coalescing A and B. 

C(A), C(B), C(AB), N(A), and P(A) are statis- 
tics defined as in the subsection 4.2. The bene- 

fit of buffering is the cost that would be avoided 

if there is a buffer on the output of A. This 

is an optimistic estimation of buffering benefit 

because we are not considering the presence of 

other buffers. Other buffers upstream and down- 

stream of A would decrease C(A) and N(A), re- 
spectively. In addition, if ingredients were coa- 

lesced upstream of A, C(A) would also decrease. 

Intuitively, the C(B) - C(AB) term in the co- 

alescing formula is the benefit gained each time 

ingredient AB is executed instead of running A 

followed by running B. This benefit is gained for 

each change request from nodes downstream from 

A. In addition, this benefit is also gained for each 

expected change in run-time parameters for ingre- 

dient A, namely, P(A). The benefit from coalesc- 

ing is underestimated because coalescing accrues 

benefit every time re-execution of AB occurs, not 

just when the re-execution is caused by changes 

in requests downstream. Re-execution of AB can 

also occur as a result of changes in run-time pa- 

rameters of ingredients upstream of A. Since co- 

alescing benefit is underestimated and buffering 

benefit is overestimated, using the formulas above 

will result in ingredient pairs where coalescing is 

unequivocally better than buffering. 

In the case where ingredient B has multiple in- 

puts from ingredients Al to Ak, use the above 
algorithm to determine the best Ai to coalesce 

with B. After coalescing, ingredient B becomes 

ingredient AiB. Now repeat with all remaining 
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input branches and the new ingredient A;B until 

no more coalescing is possible. 

5 Extensions to Recipe Man- 

agement 

By using a DBMS to support the data needs of 

recipe management, we are able to provide ad- 

ditional functionality for Tioga. In the follow- 

ing subsections, we present the Tioga approach 

to guaranteed data delivery, abstracts, synchro- 

nization of browsers, and visual update of data. 

5.1 Guaranteed Data Delivery 

Many scientific visualization applications in- 

volve synchronized, interactive presentations of 

data which require input data at a predictable 

rate. For example, oceanographers need to view 

volume and surface data from the atmosphere and 
the sea surface simultaneously. Data from the 

two sources must be mapped to a common grid 

and displayed. Clearly the rate of arrival of data 

from both sources must be guaranteed so that it 

may be synchronized. The problem differs from 
standard real-time systems in several ways: the 

guarantee applies to a rate of data delivery, not a 

deadline for delivery; the visualization may start 

at an arbitrary time; the rate is determined by 

the scientist, not by the physical system; and the 

quantity of the data to be guaranteed is typically 

very high. 

Researchers have already attacked the prob- 

lem of how to provide guaranteed network perfor- 

mance. It is clear that overall data delivery guar- 

antees can only be met if all components of the 

system, from the I/O subsystem to the database 

to the network, agree to meet appropriate guar- 

antees. Otherwise, the component that has not 

agreed to the guarantee will become a perfor- 

mance bottleneck and prevent the overall delivery 
guarantees from being met. In order to support 
applications such as animation of scientific data, 

we propose to support guaranteed data delivery 

from the database so as to work in harmony with 

other delivery guarantees from other components 

of the system. 

We assume an architecture as shown in Figure 

2. In the diagram, the network boxes indicate ei- 

ther local or remote network connections. Local 
connections are assumed to be fast enough to meet 

delivery guarantees. The network manager is as- 

sumed to support delivery guarantees for remote 
connections using approaches such as [6]. Rates 

of data delivery will be specified via contractual 

protocols which each subsystem will follow. Since 

Visualization System 

I I 

4 

c 
Network 

% 

Data Manager 

I 
I Storage Subsystem 

Figure 2: Architecture for Guaranteed Data De- 

livery 

the ultimate performance requirements stem from 

interaction with the user, the visualization sys- 
tem must be responsible for initiating any perfor- 

mance demands. The visualization system begins 

by proposing a contract which specifies data de- 

livery rates in bytes per second. The contract is 

then propagated to all underlying systems. If the 

network, data manager, and operating system all 
agree to deliver on the contract then the contract 

is considered signed. In cases where the under- 

lying systems cannot deliver, they may respond 

with counter-offers and negotiations for a modi- 

fied contract may occur. 

Assuming that the network manager has agreed 

to deliver on the contract, we now consider how 

the DBMS can also provide a guarantee. Tra- 

ditionally, a DBMS query optimizer minimizes 

a weighted sum of I/O cost and CPU cost[l8]. 

Given the throughput and computing power of 
the actual hardware platform, each of these esti- 
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mates can be converted to expected elapsed time. 

In effect, the optimizer should optimize: 

CostTime = Txjo + Tcpu 

where Tllo and Tcpu are the elapsed time needed 

for I/O and CPU operations, respectively. This 
assumes the DBMS is allocated all of the ma- 

chine’s resources. During execution, the DBMS 

may receive less resources, and in most systems 

today, the allocation of I/O and CPU resources 

can vary unpredictably. 

In order to provide a service guarantee to the 
visualization system, the DBMS must obtain a 

guarantee for a certain fraction of total I/O and 

CPU resources, Fl,o and Fcpu, from the oper- 

ating system. Given such a guarantee, the query 
optimizer can then use the cost function: 

cOStT;me = 
G/O TCPU -- 

FI/O + FCPU 

Since the DBMS knows the expected number of 

records returned for a given query, it can estimate 

the number of bytes, iVB, that will be returned. If 

the operating system guarantees F~/o fraction of 

I/O time and Fcpu fraction of CPU time to the 

DBMS, then the DBMS must find query plans for 

which: 

NB 

b+g$ FI/O 

>x 

where X is the bytes per second required by the 
original contract. If a plan can be found that sat- 

isfies this equation, then the DBMS can agree to 

deliver on the contract. If more than one plan can 

be found, then the DBMS should choose the one 
with least total resource consumption, as in the 

Selinger model. 

If this equation cannot be satisfied, then the 

DBMS cannot meet the contract immediately; 

however, it may still be able to guarantee the con- 

tract delivery at a later time, by buffering query 

results in the meantime. If sufficient buffering ca- 
pacity is available and Bllo and Bcpu are the 

I/O and CPU costs in time associated with read- 

ing from or writing to the buffers, then the DBMS 

can execute the entire query into a buffer in time 

Tl where 

If the DBMS can then satisfy the constraint: 

NB 

&oh 
>x 

FI/O + FCPCJ 

then it can respond with a counter proposal con- 
taining an offset Tl from the current time at which 

to start delivery. 

If sufficient buffering capacity is unavailable for 

some reason, then the DBMS must respond nega- 

tively to the client since the desired data delivery 

rate can never be satisfied. 

In the above description, we have assumed that 

the DBMS can extract allocation guarantees from 

the operating system. This interaction is compli- 
cated by the time the DBMS must spend calculat- 

ing the optimal plan. This planning time causes a 

lag between the time resources are requested and 

the time resources are actually needed from the 

operating system. Thus, contracts between the 

database and the operating system should also 

have a “starting at time T” clause. This avoids 

the over-allocation of resources during query plan- 

ning. 

The discussion above has dealt with the com- 

pilation of plans at runtime when immediate re- 
source requests can be made. When query opti- 
mization occurs prior to execution, resource re- 

quests must be deferred until runtime. In this 

case we require the optimizer to construct a ta- 

ble of compiled query plans. Each entry in the 

table contains a plan and the I/O and CPU time 

for that plan, namely, Tllo and Tcpu. At run 
time, a resource allocation can be requested from 

the operating system and the best plan chosen 

according to the above formulas. 

At compile time, a plan can be rejected if both 

T~lo and Tcpu are higher than some entry in the 
table. Otherwise, enter the plan in the table. Fur- 

ther heuristics will be needed if this table becomes 
too large. 

35 



5.2 Abstracts 

A crucial capability of Tioga is user control over 

the resolution of the visualized information. For 

example, the user interface must allow the user to 

zoom in on recipe output to obtain more detail or 
to zoom out to coarser gknularity. To satisfy this 

requirement, the recipe execution system must be 
capable of producing recipe output at varying lev- 

els of detail. 

The zoom in/zoom out capability is reminiscent 

of SDMS[S], h w ere additional detail appeared au- 

tomatically and was hard-wired into the system. 

In Tioga we are implementing a much more flexi- 

ble scheme. We allow every recipe to have one or 

more children, which will be termed abstracts for 

the given recipe, since they contain less informa- 

tion. Conceptually, they are analogous to textual 

abstracts for a conventional document. Note that 

an abstract need not produce the same type of 

information as does its parent. For example, an 

abstract for an image of Hurricane Hugo could be 
a hurricane icon and an abstract for the icon could 

be the character string “hurricane”. 

We organize recipes into a directed graph of ab- 

stracts so that an edge from one node to another 

in this graph indicates “is abstracted by.” If there 

is an edge from P to C, then C is an abstract 

of P. P is also the parent of C, and P contains 

more information than C. Each edge in this di- 

rected graph is labeled with a notation concern- 

ing how the abstract loses information. Example 

notations include “lower resolution,” “lower pre- 

cision,” and “lower accuracy.” 

Each recipe in the graph of abstracts has a siz- 

ing function which returns the minimum and 

maximum size screen representation for objects 

which that particular recipe can generate. The 

browser begins at a specific node in the abstract 

graph and determines the minimum and maxi- 

mum size screen representations that a recipe can 

produce. If the user zooms between those lim- 

its, then the display function for this particular 

recipe is applicable. If the user zooms in beyond 

the level of detail provided by the maximum size 

screen representation, then one of the parents of 

the recipe must be run, because the parents of 

the recipe are presumably abstracts with greater 

detail. Similarly, if the user zooms out beyond 

the coarsest level of detail provided by the mini- 

mum size as returned by the sizing function, one 

of the children of the node in the abstract graph 
must be chosen to provide less detail. In this way, 
Tioga recipe management can be directed to move 
among the different nodes of the abstract graph 

by the user interface. 

When the recipe engine switches to a new 

recipe, it must save the old one, load the new 

one and then position it at the correct location. 

The browser can then perform a FETCH com- 

mand to refresh the screen with objects from the 

new recipe. This will be an overhead-intensive 

operation which will probably generate a pause in 
the zooming operation. To alleviate this “heavy- 

weight” recipe switch, Tioga allows a node in the 

abstract graph to be a function. In this case, 

the recipe execution engine will run the function 

on the existing data from its child node to pro- 

duce a more detailed representation. This reduces 

greatly the overhead of zooming. 

5.3 Synchronization of Browsers 

A traditional user interface has a single cursor 

through which the result of a query or a view can 

be delivered to an application program. A Tioga 

user, in contrast, might put several browsers in 

his diagram and then visualize the data at sev- 

eral points in the diagram simultaneously. Multi- 

ple browsers must be synchronized when a recipe 

switch occurs due to zooming and abstracting. 

To support such synchronization, we are using 

named browsers. If the user zooms in and ac- 

tivates a new recipe in the abstract graph, then 

his display should seamlessly change to the out- 
put of the correspondingly named browsers in the 

new recipe. 

The user may also wish to constrain multi- 

ple browsers in some manner. For example, he 

may wish to specify that two browsers be over- 

laid. This means that the data that they display 

should be superimposed in the same visual win- 
dow, rather than placed in separate windows. The 

user may also wish to specify that two browsers 

be synchronized so that one browser is a slave 
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to a second one. In this case, whenever a move 

or fetch operation is performed by the master 

browser, the same operation would be performed 

by the slave browser. 

Synchronizing a slave browser is accomplished 
by constraining the slave’s input controls to those 
of the master. In other words, the slave’s joy- 

sticks and input widgets, which allow the user to 

direct viewing, are controlled by the master. Any 

joystick commands given by the user to the mas- 

ter are identically dispatched to the slave browser. 

Thus, any move or fetch operation performed by 
the master browser would result in the same move 

or fetch operation in the slave browser. We also 

permit a translation function to be defined 

which translates the input controls of the master 

browser to the input controls of the slave browser. 

For example, a slave browser can be set up so that 

its controls are at a fixed offset away from the con- 

trols of the master browser. This may be useful, 

for example, if one wishes to view simultaneously 

two portions of a map, separated by a fixed dis- 

tance. 

5.4 Visual Update of Data 

We support visual updating of data if the cre- 
ator of a type has defined an update function asso- 

ciated with that type. The update function is, in 

effect, a type-specific on-screen editor. These edi- 

tors are invoked by the browser when the user se- 

lects a object on the screen to edit. Recall that the 

browser allocates screen resources to various dis- 

play functions. Therefore, the browser can deter- 

mine, from the user’s screen selection, which data 

object has been chosen. The browser then invokes 

the update function for that object. Users may 

register update functions of the following form 
with the DBMS: 

update(object,location,screen-resource) 

The update function will typically use the screen- 

area allotted to draw a dialog box for input from 

the user. The new value from the user is sent 
to the database via the portal through a normal 

database update command. The update function 

will also return the new value to the browser so 

that it may replace the current display of the ob- 

ject with the newly updated representation. 

6 Conclusion 

We have described a system for database sup- 
port of scientific visualization applications. Pro- 
viding a natural user interface for the scientist 

has motivated our work on multiple browsers for 

a recipe, intelligent buffering of computed data, 

and guaranteed delivery. At the current time, we 

have an N-dimensional browser, the diagram ed- 

itor and the recipe storage system working. We 
are beginning work on the optimizer and executor 

extensions discussed in Section 4, and expect to 

have a complete system within six months. 

Areas for further study include the simulation 

of buffering algorithms in the presence of limited 

disk space. In addition, we plan to work on the 

estimation and monitoring of the number of run- 

time parameter changes made by a user. Lastly, 

further tuning of our guaranteed delivery system 

is anticipated. 
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