
Tioga: Providing Data Management Support for

Scientific Visualization Applications *

Michael Stonebraker, Jolly Chen, Nobuko Nathan, Caroline Paxson, Jiang Wu

Computer Science Division, EECS Department

University of California

Berkeley, CA 94720

Abstract

We present a user interface paradigm for

database management systems that is motivated

by scientific visualization applications. Our

graphical user interface includes a “boxes and ar-

rows” notation for database access and a flight

simulator model of movement through informa-

tion space. We also provide means to specify a

hierarchy of abstracts of data of different types

and resolutions, so that a “zoom” capability can

be supported. The underlying DI3MS support for

this system is described and includes the com-

pilation of query plans into megaplans, new al-
gorithms for data buffering, and provisions for

a guaranteed rate of data delivery. The cur-

rent state of the Tioga implementation is also de-

scribed.

*This research was sponsored by NSF Grant IRI-

9107455, AR0 Grant DAAL03-91-G-0183, DARPA Con-

tract DABT63-92-C-0007. Additional support was pro-
vided by the University of California and Digital Equip-

ment Corporation under Research Grant #1243.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed

for direct commercial advantage, the VLDB copyright no-
tice and the title of the publication and its date appear, and

notice is given that copying is by permission of the Very

Large Data Base Endowment. To copy otherwise, or to re-

publish, requires a fee and/or special permission from the

Endowment.

Proceedings of the 19th VLDB Conference

Dublin, Ireland, 1993.

1 Introduction

Scientific visualization applications often deal

with data objects of very large sizes. Exam-

ples include large regular arrays such as those

found in global atmosphere and ocean circulation

models[l2] and in remote sensing applications[5].

Large data structures used to model roads,

drainage networks, and vegetation patterns are

represented as collections of arcs, polygons, or

points. Popular visualization systems such as

AVS, Explorer, or Khoros offer scientific users a

visual programming environment and powerful vi-

sualization tools to manipulate and display scien-

tific data. Most existing systems, however, pro-

vide only primitive data management support. In

particular, they can only read or write data from

files, and they are geared toward manipulating a

fixed set of data types.

We are building a next generation visualiza-

tion .system, Tioga, which improves dramatically

on current technology. Our architecture is moti-

vated by the fact that many objects visualized by

the scientific community are very large and com-
plex and would be best managed by a database

management system (DBMS). Scientific data are

not well served by conventional relational DBMSs;

however, the DBMS research community has con-

structed a collection of next generation DBMSs

which support such objects more effectively. Ex-

ample data managers in this class are POST-

GRES, IRIS, Starburst, and Orion. Our archi-

tecture assumes the presence of a next generation

DBMS, and we are building Tioga for the POST-

GRES DBMS.

2.5

Two features of POSTGRES are important in

the design of Tioga. First, POSTGRES sup-
ports a facility through which a user can define

new data types. Such types can either be new
base types which augment the standard collection
of integers, floating point numbers and charac-
ter strings, or they can be composite data types.

Second, POSTGRES allows users to register a

previously written function. The user must spec-

ify the number and types of the input arguments

and the type of the function result as well as the
location of the code for the function. Currently,

POSTGRES supports functions written in C or
in the query language POSTQUEL[13].

Although Tioga uses POSTGRES, our pro-

posal can be readily adapted to any system

that supports an extendible type system, user-

defined functions, and a multi-dimensional access

method, e.g. [7, 8, 11, 141.

Tioga differs from other work on support-

ing scientific users of database systems. Pre-
vious efforts have tended to concentrate on

broad requirements[4], representing scientific

data[l5], and statistical computations on large

databases[2]. Little attention has been addressed

to the programming needs of the scientific user

of a DBMS. Instead, work on programming lan-

guage integration with DBMSs has focused on the

seamless integration of general purpose languages,

such as C++, with data base systems[l, 161.

This paper is organized as follows. In Section

2 we explain the “boxes and arrows” visual pro-

gramming paradigm used by Tioga. Section 3

discusses the way Tioga requires the DBMS to

interact with user-space (client) code. This inter-

face is a generalization of both traditional SQL

cursors and database portals[20]. Section 4 in-

dicates the run-time support provided by POST-

GRES for execution of Tioga boxes and arrows

diagrams. This includes the definition and opti-

mization of extended query plans. In Section 5

we describe how Tioga supports additional func-

tionality in the areas of guaranteed data delivery,

abstracts of data, browser synchronization, and

visual updating of data. Lastly, in Section 6, we

conclude with an update of our current status and

a look at future issues.

2 The Tioga Programming

Paradigm

Existing scientific programming systems allow

the user to create visual programs by connecting
modules, written in a conventional programming
language, using an easy-to-use graphical user in-
terface. The modules are depicted on the screen

as boxes with connections for inputs and out-

puts. The user connects the boxes with arrows

to create a directed graph which represents the
final program. One or more boxes in the dia-
gram are input nodes which read data from named

files. Executing a diagram entails running the

read boxes and progressively running each box as

its inputs are available. Normally, the final box

in the graph is a rendering engine which displays
the result of the computation on the screen. The

user can interact dynamically with the diagram by

changing the parameters of the boxes, and the di-

agram is automatically rerun to produce the new

rendered output. In this way, a user can itera-

tively produce the desired visualization effect.

Consider as an application example the detec-

tion of wildfires using images from the Advanced

Very High Resolution Radiometer (AVHRR)

satellite. A fire in the mixed terrain of the Cal-
ifornia Sierra is hard to identify because of the

interspersion of forest and crop land. An earth

scientist begins with a composite, cloud-free satel-

lite image and a landuse map. The map is first

processed to block out areas of crop cultivation,

since harvested crops and wildfires both reduce

the amount of vegetation evident in a satellite

image. Then the altered landuse map is super-

imposed on the satellite image to produce a new

image with the crop areas eliminated. The earth
scientist then calculates the “greenness” of a given

pixel in the new image using two image bands, in

order to locate the forest regions of interest. After

cropping the image to just forest areas, wildfires

are identified by comparing fall and late spring

forest size. The earth scientist finally renders the

resulting wildfire images onto the screen. Figure

1 illustrates the complete diagram for this appli-

cation.

The Tioga architecture generalizes this boxes

26

and arrows user interface from commercial pack-

ages. Specifically, Tioga supports the definition,
manipulation and execution of boxes and arrows

diagrams, which we term recipes. Individual

boxes in a recipe are called ingredients. The

term recipe is used because it that a collection of
ingredients is “cooked” into a final visualization
output.

The cornerstone of the Tioga architecture is

that each function registered with POSTGRES

is automatically an ingredient, and is thereby in

the menu of building blocks. Thus, the menu of

building blocks can constructed by simply reading

the catalog of POSTGRES registered functions.

In a boxes and arrows diagram, a one-way con-

nection between two boxes indicates that the re-

sult of the first ingredient is to be passed as in-

put to the second ingredient. In order for such

a connection to be valid, the data type returned

by the first function must be compatible with the

type of one of the arguments of the second func-

tion. Either the output type exactly matches an

input type of the subsequent function, or the out-

put type is a set of the input type of the second

function. In this latter case the second function

will have to be called multiple times, once per el-

ement of the set. Types in the same inheritance

hierarchy are also compatible. For example, if EMP
is a subtype of PERSON, then outputs of type EMP
can be passed as input to a function expecting an

input of type PERSON. The details of this-coordi-

nation and other aspects of recipe execution will

be covered in Section 4.

As a recipe is being constructed by the user,

the editing program automatically performs ap-

propriate type-checking, since the input and re-

turn types of all functions are known. The user is

told if a connection is invalid, so that he or she can

correct it. Although not shown in Figure 1, the

editor supports the use of optional icons to rep-

resent types. We plan to encourage type creators

to design icons which give visual clues concern-

ing the relationship of the type to other types.

For example, icons of types within the same in-
heritance hierarchy might have similar graphical

features. In this way, the user can be given vi-

sual clues concerning the compatibility of types,

Figure 1: Recipe Editor

thereby allowing a kind of visual type checking.

When the user finishes editing a diagram, the

editor notes which function inputs are missing,

i.e. not provided by an incident edge from some
other function. Function inputs which are not

connected are treated as run-time parameters.

At recipe execution time, the user will be interac-

tively prompted to supply the missing values.

There are two semantically different kinds of

recipe building blocks. The first are conventional

POSTGRES functions as noted above. As will

be explained in Section 4 the code for these func-

tions is executed inside the POSTGRES DBMS

when the recipe is run. The second kind of build-

ing blocks are browsers. These visualization boxes
render screen images and run as DBMS applica-

tion programs. As such they adhere to the client-

server communication protocol described in the

27

next section. Browsers produce an output which

is the data type setof image. This output can be

used as the input to subsequent boxes in a recipe,

so that processing on screen images is supported.

There can be an arbitrary number of browsers in
a recipe. Sophisticated users can define new kinds

of browsers to meet specific rendering needs.

Using the diagram editor, the user constructs a

recipe consisting of ingredients and browsers at-
tached together into a directed graph. Such a

recipe can be saved in the DBMS in two different

ways. The recipe can be stored as a graph-like

structure in a cookbook, a collection of recipes

in the database. We provide a query tool to sup-

port browsing the cookbook. This tool, RASQL,

is described in a companion paper[3]. RASQL

is integrated with the diagram editor, so a user

can retrieve a recipe from the cookbook, modify

it with the diagram editor, and then install his
new recipe back into the cookbook.

Alternately, a recipe can be encapsulated or

canned into a new ingredient. In order for a

recipe to become an ingredient, it must be a legal

POSTGRES function, meaning it can only have a

single output, and it cannot have a browser. Once

the recipe is compiled into a single ingredient, its
original structure is lost and it becomes opaque

to the user. It is for this reason that ingredients

may not contain browsers: browsers must be di-

rectly manipulated by the user. Canned recipes

are added to the collection of POSTGRES func-

tions and hence, automatically augment the col-

lection of ingredients for future recipes.

If a user wishes to run a previously constructed

recipe, he can do so from the diagram editor. In

this case the appropriate ingredients are loaded,

any missing input parameters are prompted for at

run-time, and a window for each browser is gen-

erated. To run the recipe, the browsers communi-
cate with the DBMS using the protocol described

in the next subsection.

3 Browser-DBMS Protocol

As noted in the previous section, a recipe con-

sists of a collection of interconnected functions,
and may contain one or more browsers. Each

browser is run as a DBMS application program

which interacts with the recipe engine. The en-

gine manages the execution of the ingredients in

the recipe. In this section we describe the pro-

tocol for communication between a browser and
the DBMS. The interaction between the human
user and the browser is unconstrained; however,
the protocol to be described is most natural for

a flight simulator paradigm, in which the user

has a joystick by which he can navigate in a data

space.

Although it is possible to support an interface

between the browser and the DBMS which al-

lows browsing of an arbitrary collection of DBMS

types, we chose a different approach. Each ob-

ject may be of an arbitrary type, but it must have

associated with it a geometry. The geometry of

an object describes its location in an application
coordinate space. All objects in an application

are located in this common N-dimensional coor-
dinate system, whose dimensions are appropriate

to the specific application. The geometry of an

object may be either a polygon’ or a point. It

is the job of the human recipe designer to ensure

that the recipe produces the geometry representa-

tion (polygon or point) expected by some browser.

Failure to provide this will result in a type mis-

match.

To achieve a common polygon representation,
we have defined a standard N-dimensional poly-

gon, N-D-polygon. The generic tuple passed to

the browser from a recipe will have the form:

{value, type, location}

The value can be an instance of a base type or a

composite type, and its location is represented by
the N-D-polygon as indicated. For example, the

value might be a satellite image; its type might be

AVHRR, and the location associated with it might

be a rectangle representing one of the quadrants
of a U.S. Geological Survey map.

With these preliminaries, the protocol between

the browser and the recipe execution engine con-

sists of the following commands:

‘In this document, “polygon” refers to a general N-

dimensional polyhedron, not merely a two-dimensional

polygon.

28

MARK (N-D-point) with identifier

ERASE identifier

MOVE to identifier

MOVE to (N-D-point)

MOVE along (A,, A,) until
F(value) <operator> <constant>

FETCH (number)

FETCH (A,, A,)

The browser can mark any position in N-

dimensional space with an identifier, so that it

can return to that point at a later time. This is

useful in marking points of interest. Such marks

can be permanent if they are defined as part of
the data type of the object. Usually marks will

be local to a specific browsing session.

The browser has three ways to relocate its posi-

tion in N-space: it can move to a previously des-

ignated identifier, it can move to a specific N-D-

point which it calculates in some fashion, or it can

move in some direction, denoted by (Al, AN)

until some condition

F(value) <operator> <constant>

is true. This third relocation command is use-

ful, for example, if a user is browsing Hurricane

Hugo, and wishes to fast-forward the hurricane,

i.e. skip or skim through images sorted by time,

until Hugo hits land. If landfall of the hurricane

can be expressed as a predicate, then the appro-

priate MOVE command would look like

MOVE along (O,O,...,+l) until

hits-land(Hurricane.hugo) = TRUE

The +l means a movement along the positive time
axis, assuming time is the last dimension in this
coordinate system. Note that recipes may be fast-

forwarded in this fashion in any dimension.

There are two ways to fetch data: first, the

browser can request a fixed number of instances;

second, it can request all the instances within a

specific N-dimensional rectangle. In the first case,

the number of instances requested is returned by

running the recipe forward from its current po-
sition. Since the recipe determines the ordering

of instances, it implicitly specifies what the “for-

ward” direction of instance production is. In the

second case, the rectangle is specified by a col-

lection of offsets from the current position in the

application coordinate system.

As the user moves through N-space with a

joystick-like interface, it is the responsibility of
the browser module to issue the appropriate move

and fetch commands to support the user. It is

also the browser’s responsibility to display appro-

priately the values which are returned from the

recipe in a fashion similar to that of SDMS[S].

To assist the browser, each type implementor

is expected to define a display function in POST-

GRES of the form:

display(object,location,screen-resource)

The location of the object is an N-dimensional

polygon. The screen-resource argument specifies

the screen resources which are available for the

display of this object such the dimensions in pix-

els of the area and the number of bits of color

available. Given these parameters, the display

function returns to the browser a screen repre-
sentation for a given data object.

The display function can return either a ren-

derable object or a set of sub-objects which

individually need to be passed to display func-

tions. The latter mechanism allows for a hier-

archical decomposition of a complex object into

simpler objects to be displayed. For example, a

browser could display information about employ-

ees by calling the display function with the ap-

propriate instances and locations. This function

would either be a generic one or one written by

the designer of the EMP class. The display func-

tion could return an image of the employee’s face,
or the display function could return separate data

objects which make up an EMP instance, such as

the employee’s salary, department, name, and pic-

ture. These can then be separately rendered by

calling the display function again.

The N-dimensional browser-DBMS interface is

a generalization of the one-dimensional interface

available for the traditional DBMS cursors found

in SQL. SQL-:! and SQL-3 generalize this interface
so that multiple records can be fetched in either a

forward or reverse direction. In this way, they in-
clude some of the constructs proposed in portals,

29

which allow an application program to retrieve

multiple records in a variety of ways along a sin-

gle dimension[20]. 0 ur browser-DBMS protocol

generalizes portals to operate in an N-dimensional

space. Recipes do not include explicit update
commands; rather they rely on the browser to is-

sue separate POSTQUEL commands for this pur-

pose. Because a unique identifier is automatically

returned with each object, the browser can easily

perform a separate update if it desires. In this

way, recipe management follows the lead of por-
tals, which include the same capability.

Our browser interface has points in common

with previous user interface work. For exam-

ple, Cattell and Rogers [17] describe an interface

which uses an entity-relationship data model con-

structed for a given data base. The user is given a

browsing paradigm whereby he can navigate the

E-R diagram by following “next” and “previous”

links in an identified set of records as well as by

following an E-R link to an associated record. In

Tioga, one can decompose an E-R relationship

into two functions and then browse a recipe con-

taining something akin to an E-R diagram. On

the other hand, Tioga is not bound to the E-R

model but can implement many kinds of relation-

ships between records. Also, multiple kinds of

browsers can be included in our architecture.

USD[lO] has a similar “boxes and arrows” di-

agram notation, and each box can be a function

as in our proposal. However, USD enforces a se-

mantic net data model on the diagram, whereas

we make no such restriction. Also, USD is not
closely integrated with a DBMS and has none of

the extensions covered in Section 5. In a sense,

Tioga is a generalization of USD.

4 Recipe Execution

4.1 Introduction

At first glance, Tioga may seem to be merely a

convenient user interface for specifying views for
a next generation system. Or, one might think

of Tioga as a convenient query specification tool

since each box of a recipe corresponds to a query

for the DBMS. Compiling a reciRe entails convert-

ing the graph into a series of queries on the DBMS,

resulting in one or more query plans. This is sim-

ilar to compiling the output of any other query

tool. However, recipes differ from views or query

plans in four crucial ways.

First, when a recipe is inserted into a cook-

book, the Tioga optimizer receives a directed
graph of ingredients, each of which corresponds

to a query. This should be contrasted with a tra-
ditional DBMS which accepts a single query.

In order to support Tioga recipe execution, we

are extending the POSTGRES executor so it can
run a megaplan, which is a directed graph of

nodes, each of which is a query plan. Specifically,

we have introduced a plan node which is a tee, or

fork, that connects the output of one plan to the

input of one or more other plans. Megaplans are

query plans with tee nodes in them.

When a recipe is inserted into a cookbook,

each ingredient can be optimized by a traditional

DBMS optimizer. The resulting megaplan is

stored for subsequent execution by an extended

execution engine. An optimization available on

megaplans is to coalesce multiple query plans

into a single composite query plan. Tioga will

optimize by coalescing queries when coalescing is

advantageous.

Second, ingredients have run-time parameters

which are changed frequently. For this reason, it

is advantageous to buffer the output of some (or

all) ingredients, so that changes in downstream

parameters do not require recalculation of up-

stream ingredients. Where to buffer is a second

decision which must be optimized. Buffering and
coalescing decisions are interrelated, because co-

alescing two ingredients into a single query plan

removes the opportunity to buffer at the output

of the first ingredient. Hence, both kinds of opti-

mization must be performed in a unified manner.

Third, the browser interface allows re-

requesting of information that has been previously

retrieved. Hence, it is advantageous to buffer the

output of the ingredient immediately preceding a

browser. This output must be indexed using a

multi-dimensional access method, such as an R-

tree, in order to allow re-requested information to
be located quickly.

Fourth, Tioga is demand driven. A megaplan

30

can have several browsers attached to it, each in-

dependently requesting records. Current query
plans have a distinguished root node which out-

puts records to an application. In Tioga, each

browser requests one or more records from a node

of a plan, which responds by requesting records

from its descendent nodes. The process completes
when a node in the plan can deliver records, which

then flow up the plan to satisfy the outstanding
request.

When two browsers operate on a megaplan,

then a tee must be present. If one browser re-

quests records and the second one does not, then

recipe execution will continue the evaluation of

the megaplan to generate the records required by

the first browser. The state of the tee junction

will advance to that required by the first browser,

and the second browser will thereby lose its place.

Buffering at the tee will allow recipe execution to

avoid the subsequent recomputation of the state

of the second browser when it resumes requesting

records.

To optimize a megaplan, we therefore must de-

cide when to coalesce two ingredients in a mega-

plan and where to insert buffers: The remain-

der of this section considers these two issues. We

will first describe these two tactics separately, and

then show how to combine them into a single over-

all optimization strategy.

4.2 Buffering

A recipe may need to be re-executed in two

different circumstances. First, when a user re-
examines records which he has previously fetched,

the browser must request them again. Second,

the user may change run-time parameters for one

or more functions and then re-run the recipe.

In both cases, buffering the output of ingredient

boxes can save recomputation.

There are three possible locations for buffering

in a recipe.

1. At the output of an ingredient that connects

to a browser.

If the data required for the current fetch com-
mand is in the buffer, then an indexed lookup
can replace recipe execution.

2.

3.

At the output of an ingredient directly up-

stream from one with a run-time parameter.
When the run-time parameter changes,

then upstream ingredients need not be re-

executed.

.4t the output of an ingredient which goes to

more than one node.

This corresponds to a tee in a recipe plan. If

more than one browser is connected to the
recipe, then buffering at tees reduces the re-

computation that would otherwise be trig-

gered by downstream browsers requesting dif-

ferent records.

If space considerations preclude buffering in all

possible locations, then the following algorithm

can be used to decide which outputs to cache.

This algorithm assumes that the following statis-

tics are available for each ingredient, I, in a recipe.

P(I) = the number of times a run-time

parameter for this ingredient will be

changed

S(I) = the amount of storage needed to
effectively buffer the output of I (in

bytes)

cm = the cost of running the recipe

Our

from the “nearest upstream” buffer

to I(in seconds). This includes the

cost of running I. In the case where I

has multiple inputs, C(I) is the sum

of the costs of executing portions of

the recipe needed to produce each in-

put. The cost corresponding to each

input “branch” is the cost of running

the recipe from the nearest upstream

buffer along that branch.

algorithm requires one additional com-

puted statistic:

N(I) = number of change requests from

nodes downstream from I, calculated

as follows:

(1) if I is followed by the node J:

N(‘) =
P(J) if J is buffered

P(J) + N(J) ifJ ’ 1s unbuffered

31

(2) if 1 is followed by a browser B:

N(I) = P(B)

where P(B) is the number of times

the user of the browser causes a re-
execution.

(3) if I is followed by a tee, then calculate

N(I) using method (1) and take the
sum of nodes forked from the tee.

These statistics are gathered over time from

previous executions of the given recipe. Peri-

odic reoptimization allows fresh statistics to in-

fluence future megaplan execution. Our algorithm

is based on statistics from a sequential execution

model, i.e. the execution of ingredients is serial-

ized. Optimization based on a parallel execution

model remains a problem for future study.

If the recipe manager is allocated a fixed
amount of buffer space, SP, then we use following

simple greedy algorithm. Find the ingredient, 11,

which maximizes

Allocate S(Ir) of buffer space to ingredient 11

and reduce the overall buffer space, SP, by this

amount. Recompute C(I) for each remaining in-

gredient I by taking into account the buffer added

after 11. Find the next ingredient 12 by again

maximizing

CV2) * W2)

w21

and continue this greedy algorithm until no addi-

tional buffer space remains.

Intuitively, C(I) * N(I) is the amount of time

that is saved in recomputation by buffering the

output of I. The formula maximized is thereby
the time savings per unit of buffer space, and the

algorithm is a hill climbing one on this metric. Al-
though not optimal, we expect the algorithm will

give good real-world performance. A simulation

study is planned to test this hypothesis.

4.3 Coalescing Ingredients

The ingredients in a recipe can also be coalesced

into a smaller number of queries. For example,

sequences of POSTQUEL functions can be coa-

lesced into a single POSTQUEL function using
the query modification technique for view com-

position discussed in [19). The new function has
the inputs of the first function, the output of the

last, and the run-time parameters of all functions

in the sequence. The query plan for the com-

bined POSTQUEL function may be more efficient

than the query plans of the individual functions

executed serially. As [19] notes, though, if any

POSTQUEL function in the sequence includes ag-

gregate functions, this technique fails.

If a recipe ingredient is a C function and is

opaque to POSTGRES, it can still be coalesced

with a preceding POSTQUEL box. One simply

brackets the C function around the target list

of the previous POSTQUEL command; however,

since C functions cannot be rewritten by POST-

GRES, no performance benefit is gained from co-

alescing them.

When a function, written in POSTQUEL,

has outgoing edges to two or more subsequent

POSTQUEL boxes, then the first function can be

coalesced into each of the subsequent functions
using the above query modification rules. Since

the first function will be executed as part of each

coalesced function, it will be executed repeatedly.

A function with more than one input can be

combined with all its preceding functions by ap-

plying the above technique, one function at a

time. In this way it is possible to collapse any

recipe diagram with no aggregates into a diagram

with only one node per browser.

Coalescing two functions has a significant dis-
advantage. It is no longer possible to buffer the

intermediate result of the first function because it

has disappeared inside a single query plan. Hence,

if the user changes a run-time parameter of the co-
alesced function which came from the second in-

gredient, the combined plan must be reexecuted.
Uncoalesced plans with an intermediate buffer

would have required only the second function to

be re-executed.

32

The next subsection completes the Tioga opti-

mization description by indicating how to choose
between coalescing ingredients and buffering in-

termediate results.

4.4 Buffering and Coalescing Together

When we construct a megaplan for a recipe, we
must decide which functions will be coalesced and

which outputs should be buffered to construct the

most efficient plan. The following heuristic algo-

rithm contains our first simple treatment of this

problem. An optimal algorithm would need to

take into account the complex interrelationship

between coalescing and buffering benefits. It re-
mains an area for future study.

Our heuristic solution performs a coalescing

step followed by a buffering step followed by a

second coalescing step. The first step coalesces all

pairs of ingredients where coalescing is more ben-

eficial than buffering. The second step allocates

available buffer space according to the greedy al-

gorithm in the subsection 4.2. A final coalesc-

ing step is necessary to combine ingredients which

were not coalesced in the first step because buffer-
ing would have been more advantageous in those

cases. Step two may not have allocated buffers to

all possible outputs because total space available

for buffering may have been limited. Therefore,

the final coalescing step is necessary to find all

remaining ingredient pairs where coalescing is ad-

vantageous.

Consider the case of two adjacent POSTQUEL

ingredients, A and B, where A outputs to B. We

ignore cases involving coalescing ingredients im-

plemented in the programming language C be-
cause no performance benefit is gained from co-

alescing ingredients implemented as C functions.

In the first coalescing step there are three possi-

bilities to consider:

1.

2.

If B has no run-time parameter and A’s out-

put goes only to B, always coalesce this se-

quence. There is no gain in buffering be-

tween these functions. Coalescing the func-

tions may allow the query optimizer to pick
a more efficient composite plan.

If A’s output goes to other functions as well

as B, never coalesce A and B. A would need
to be coalesced into multiple ingredients, and
substantial duplicate execution is inevitable.

3. If A’s output goes only to B, and B has one or

more run-time parameters, then compute the

following formulas and coalesce if coalescing
is more beneficial than buffering.

Benefit of Buffering = C(A) *N(A)

Benefit of Coalescing =

(C(B) - WBN * (WA) + P(A))

Here, AB is the result of coalescing A and B.

C(A), C(B), C(AB), N(A), and P(A) are statis-
tics defined as in the subsection 4.2. The bene-

fit of buffering is the cost that would be avoided

if there is a buffer on the output of A. This

is an optimistic estimation of buffering benefit

because we are not considering the presence of

other buffers. Other buffers upstream and down-

stream of A would decrease C(A) and N(A), re-
spectively. In addition, if ingredients were coa-

lesced upstream of A, C(A) would also decrease.

Intuitively, the C(B) - C(AB) term in the co-

alescing formula is the benefit gained each time

ingredient AB is executed instead of running A

followed by running B. This benefit is gained for

each change request from nodes downstream from

A. In addition, this benefit is also gained for each

expected change in run-time parameters for ingre-

dient A, namely, P(A). The benefit from coalesc-

ing is underestimated because coalescing accrues

benefit every time re-execution of AB occurs, not

just when the re-execution is caused by changes

in requests downstream. Re-execution of AB can

also occur as a result of changes in run-time pa-

rameters of ingredients upstream of A. Since co-

alescing benefit is underestimated and buffering

benefit is overestimated, using the formulas above

will result in ingredient pairs where coalescing is

unequivocally better than buffering.

In the case where ingredient B has multiple in-

puts from ingredients Al to Ak, use the above
algorithm to determine the best Ai to coalesce

with B. After coalescing, ingredient B becomes

ingredient AiB. Now repeat with all remaining

33

input branches and the new ingredient A;B until

no more coalescing is possible.

5 Extensions to Recipe Man-

agement

By using a DBMS to support the data needs of

recipe management, we are able to provide ad-

ditional functionality for Tioga. In the follow-

ing subsections, we present the Tioga approach

to guaranteed data delivery, abstracts, synchro-

nization of browsers, and visual update of data.

5.1 Guaranteed Data Delivery

Many scientific visualization applications in-

volve synchronized, interactive presentations of

data which require input data at a predictable

rate. For example, oceanographers need to view

volume and surface data from the atmosphere and
the sea surface simultaneously. Data from the

two sources must be mapped to a common grid

and displayed. Clearly the rate of arrival of data

from both sources must be guaranteed so that it

may be synchronized. The problem differs from
standard real-time systems in several ways: the

guarantee applies to a rate of data delivery, not a

deadline for delivery; the visualization may start

at an arbitrary time; the rate is determined by

the scientist, not by the physical system; and the

quantity of the data to be guaranteed is typically

very high.

Researchers have already attacked the prob-

lem of how to provide guaranteed network perfor-

mance. It is clear that overall data delivery guar-

antees can only be met if all components of the

system, from the I/O subsystem to the database

to the network, agree to meet appropriate guar-

antees. Otherwise, the component that has not

agreed to the guarantee will become a perfor-

mance bottleneck and prevent the overall delivery
guarantees from being met. In order to support
applications such as animation of scientific data,

we propose to support guaranteed data delivery

from the database so as to work in harmony with

other delivery guarantees from other components

of the system.

We assume an architecture as shown in Figure

2. In the diagram, the network boxes indicate ei-

ther local or remote network connections. Local
connections are assumed to be fast enough to meet

delivery guarantees. The network manager is as-

sumed to support delivery guarantees for remote
connections using approaches such as [6]. Rates

of data delivery will be specified via contractual

protocols which each subsystem will follow. Since

Visualization System

I I

4

c
Network

%

Data Manager

I
I Storage Subsystem

Figure 2: Architecture for Guaranteed Data De-

livery

the ultimate performance requirements stem from

interaction with the user, the visualization sys-
tem must be responsible for initiating any perfor-

mance demands. The visualization system begins

by proposing a contract which specifies data de-

livery rates in bytes per second. The contract is

then propagated to all underlying systems. If the

network, data manager, and operating system all
agree to deliver on the contract then the contract

is considered signed. In cases where the under-

lying systems cannot deliver, they may respond

with counter-offers and negotiations for a modi-

fied contract may occur.

Assuming that the network manager has agreed

to deliver on the contract, we now consider how

the DBMS can also provide a guarantee. Tra-

ditionally, a DBMS query optimizer minimizes

a weighted sum of I/O cost and CPU cost[l8].

Given the throughput and computing power of
the actual hardware platform, each of these esti-

34

mates can be converted to expected elapsed time.

In effect, the optimizer should optimize:

CostTime = Txjo + Tcpu

where Tllo and Tcpu are the elapsed time needed

for I/O and CPU operations, respectively. This
assumes the DBMS is allocated all of the ma-

chine’s resources. During execution, the DBMS

may receive less resources, and in most systems

today, the allocation of I/O and CPU resources

can vary unpredictably.

In order to provide a service guarantee to the
visualization system, the DBMS must obtain a

guarantee for a certain fraction of total I/O and

CPU resources, Fl,o and Fcpu, from the oper-

ating system. Given such a guarantee, the query
optimizer can then use the cost function:

cOStT;me =
G/O TCPU --

FI/O + FCPU

Since the DBMS knows the expected number of

records returned for a given query, it can estimate

the number of bytes, iVB, that will be returned. If

the operating system guarantees F~/o fraction of

I/O time and Fcpu fraction of CPU time to the

DBMS, then the DBMS must find query plans for

which:

NB

b+g$ FI/O

>x

where X is the bytes per second required by the
original contract. If a plan can be found that sat-

isfies this equation, then the DBMS can agree to

deliver on the contract. If more than one plan can

be found, then the DBMS should choose the one
with least total resource consumption, as in the

Selinger model.

If this equation cannot be satisfied, then the

DBMS cannot meet the contract immediately;

however, it may still be able to guarantee the con-

tract delivery at a later time, by buffering query

results in the meantime. If sufficient buffering ca-
pacity is available and Bllo and Bcpu are the

I/O and CPU costs in time associated with read-

ing from or writing to the buffers, then the DBMS

can execute the entire query into a buffer in time

Tl where

If the DBMS can then satisfy the constraint:

NB

&oh
>x

FI/O + FCPCJ

then it can respond with a counter proposal con-
taining an offset Tl from the current time at which

to start delivery.

If sufficient buffering capacity is unavailable for

some reason, then the DBMS must respond nega-

tively to the client since the desired data delivery

rate can never be satisfied.

In the above description, we have assumed that

the DBMS can extract allocation guarantees from

the operating system. This interaction is compli-
cated by the time the DBMS must spend calculat-

ing the optimal plan. This planning time causes a

lag between the time resources are requested and

the time resources are actually needed from the

operating system. Thus, contracts between the

database and the operating system should also

have a “starting at time T” clause. This avoids

the over-allocation of resources during query plan-

ning.

The discussion above has dealt with the com-

pilation of plans at runtime when immediate re-
source requests can be made. When query opti-
mization occurs prior to execution, resource re-

quests must be deferred until runtime. In this

case we require the optimizer to construct a ta-

ble of compiled query plans. Each entry in the

table contains a plan and the I/O and CPU time

for that plan, namely, Tllo and Tcpu. At run
time, a resource allocation can be requested from

the operating system and the best plan chosen

according to the above formulas.

At compile time, a plan can be rejected if both

T~lo and Tcpu are higher than some entry in the
table. Otherwise, enter the plan in the table. Fur-

ther heuristics will be needed if this table becomes
too large.

35

5.2 Abstracts

A crucial capability of Tioga is user control over

the resolution of the visualized information. For

example, the user interface must allow the user to

zoom in on recipe output to obtain more detail or
to zoom out to coarser gknularity. To satisfy this

requirement, the recipe execution system must be
capable of producing recipe output at varying lev-

els of detail.

The zoom in/zoom out capability is reminiscent

of SDMS[S], h w ere additional detail appeared au-

tomatically and was hard-wired into the system.

In Tioga we are implementing a much more flexi-

ble scheme. We allow every recipe to have one or

more children, which will be termed abstracts for

the given recipe, since they contain less informa-

tion. Conceptually, they are analogous to textual

abstracts for a conventional document. Note that

an abstract need not produce the same type of

information as does its parent. For example, an

abstract for an image of Hurricane Hugo could be
a hurricane icon and an abstract for the icon could

be the character string “hurricane”.

We organize recipes into a directed graph of ab-

stracts so that an edge from one node to another

in this graph indicates “is abstracted by.” If there

is an edge from P to C, then C is an abstract

of P. P is also the parent of C, and P contains

more information than C. Each edge in this di-

rected graph is labeled with a notation concern-

ing how the abstract loses information. Example

notations include “lower resolution,” “lower pre-

cision,” and “lower accuracy.”

Each recipe in the graph of abstracts has a siz-

ing function which returns the minimum and

maximum size screen representation for objects

which that particular recipe can generate. The

browser begins at a specific node in the abstract

graph and determines the minimum and maxi-

mum size screen representations that a recipe can

produce. If the user zooms between those lim-

its, then the display function for this particular

recipe is applicable. If the user zooms in beyond

the level of detail provided by the maximum size

screen representation, then one of the parents of

the recipe must be run, because the parents of

the recipe are presumably abstracts with greater

detail. Similarly, if the user zooms out beyond

the coarsest level of detail provided by the mini-

mum size as returned by the sizing function, one

of the children of the node in the abstract graph
must be chosen to provide less detail. In this way,
Tioga recipe management can be directed to move
among the different nodes of the abstract graph

by the user interface.

When the recipe engine switches to a new

recipe, it must save the old one, load the new

one and then position it at the correct location.

The browser can then perform a FETCH com-

mand to refresh the screen with objects from the

new recipe. This will be an overhead-intensive

operation which will probably generate a pause in
the zooming operation. To alleviate this “heavy-

weight” recipe switch, Tioga allows a node in the

abstract graph to be a function. In this case,

the recipe execution engine will run the function

on the existing data from its child node to pro-

duce a more detailed representation. This reduces

greatly the overhead of zooming.

5.3 Synchronization of Browsers

A traditional user interface has a single cursor

through which the result of a query or a view can

be delivered to an application program. A Tioga

user, in contrast, might put several browsers in

his diagram and then visualize the data at sev-

eral points in the diagram simultaneously. Multi-

ple browsers must be synchronized when a recipe

switch occurs due to zooming and abstracting.

To support such synchronization, we are using

named browsers. If the user zooms in and ac-

tivates a new recipe in the abstract graph, then

his display should seamlessly change to the out-
put of the correspondingly named browsers in the

new recipe.

The user may also wish to constrain multi-

ple browsers in some manner. For example, he

may wish to specify that two browsers be over-

laid. This means that the data that they display

should be superimposed in the same visual win-
dow, rather than placed in separate windows. The

user may also wish to specify that two browsers

be synchronized so that one browser is a slave

36

to a second one. In this case, whenever a move

or fetch operation is performed by the master

browser, the same operation would be performed

by the slave browser.

Synchronizing a slave browser is accomplished
by constraining the slave’s input controls to those
of the master. In other words, the slave’s joy-

sticks and input widgets, which allow the user to

direct viewing, are controlled by the master. Any

joystick commands given by the user to the mas-

ter are identically dispatched to the slave browser.

Thus, any move or fetch operation performed by
the master browser would result in the same move

or fetch operation in the slave browser. We also

permit a translation function to be defined

which translates the input controls of the master

browser to the input controls of the slave browser.

For example, a slave browser can be set up so that

its controls are at a fixed offset away from the con-

trols of the master browser. This may be useful,

for example, if one wishes to view simultaneously

two portions of a map, separated by a fixed dis-

tance.

5.4 Visual Update of Data

We support visual updating of data if the cre-
ator of a type has defined an update function asso-

ciated with that type. The update function is, in

effect, a type-specific on-screen editor. These edi-

tors are invoked by the browser when the user se-

lects a object on the screen to edit. Recall that the

browser allocates screen resources to various dis-

play functions. Therefore, the browser can deter-

mine, from the user’s screen selection, which data

object has been chosen. The browser then invokes

the update function for that object. Users may

register update functions of the following form
with the DBMS:

update(object,location,screen-resource)

The update function will typically use the screen-

area allotted to draw a dialog box for input from

the user. The new value from the user is sent
to the database via the portal through a normal

database update command. The update function

will also return the new value to the browser so

that it may replace the current display of the ob-

ject with the newly updated representation.

6 Conclusion

We have described a system for database sup-
port of scientific visualization applications. Pro-
viding a natural user interface for the scientist

has motivated our work on multiple browsers for

a recipe, intelligent buffering of computed data,

and guaranteed delivery. At the current time, we

have an N-dimensional browser, the diagram ed-

itor and the recipe storage system working. We
are beginning work on the optimizer and executor

extensions discussed in Section 4, and expect to

have a complete system within six months.

Areas for further study include the simulation

of buffering algorithms in the presence of limited

disk space. In addition, we plan to work on the

estimation and monitoring of the number of run-

time parameter changes made by a user. Lastly,

further tuning of our guaranteed delivery system

is anticipated.

References

PI

PI

PI

PI

PI

Agrawal, R. and Gehani, N., “ODE: The

Language and the Data Model,” Proc. 1989

ACM-SIGMOD Conference on Management

of Data, Portland, OR, May 1989.

Baru, C. and Su, S., “Performance Evalua-

tion of the Statistical Aggregation by Cate-

gorization in the SM3 System,” Proc. 1984

ACM-SIGMOD Conference on Management

of Data, Boston, MA, June 1984.

Chen, J. “RASQL: A Graphical Query Lan-

guage for Recipes,” (in preparation)

Dewitt, D. et. al., “A Framework for Re-

search in Database Management for Statisti-

cal Analysis,” Proc. 1982 SIGMOD Interna-

tional Conference on Management of Data,

Orlando, FL, June 1982.

Dozier, J., “Spectral Signature of Alpine
Snow Cover from the Landsat Thematic

Mapper,” Remote Sensing Environment,

March 1989.

37

[6] Ferrari, D., “Client Requirements for Real-

Time Communication Services,” IEEE Com-

munications Magazine, November 1990.

[7] Greene, D., “An Implementation and Perfor-
mance Analysis of Spatial Data Access Meth-
ods,” Proc. 1989 Data Engineering Confer-

ence, Los Angeles, CA, February 1989.

[8] Gutman, A., “R-trees: A Dynamic Index

Structure for Spatial Searching,” Proc. 1984
ACM-SIGMOD Conference on Management

of Data, Boston, MA, June 1984.

[9] Herot, Christopher F., “Spatial Management

of Data,” ACM Transactions on Database

Systems, December 1980.

[lo] Johnson, R.R. et. al., “USD - A Database

Management System for Scientific Research,”

Prwc. 1992 SIGMOD International Confer-

ence on Management of Data, San Diego,

CA, June 1992.

[ll] Kolovson, C. and Stonebraker, M., “Seg-

ment Indexes: Dynamic Indexing Techniques

for Multi-dimensional Interval Data,” Proc.

1991 ACM-SIGMOD Conference on Man-

agement of Data, Denver, CO.

[12] Mechoso, C. et. al., “Distribution of a Cou-

pled Atmosphere-Ocean General Circulation

Model Across High-Speed Networks,” Pro-

ceedings of the 4th International Symposium

on Computational Fluid Dynamics, 1991.

[13] Mosher, C. ed., “The POSTGRES Reference

Manual,” Electronics ‘Research Laboratory,

University of California, Berkeley, CA, Memo

91157, August 1991.

[14] Nievergelt, J. et. al., “The Grid File: An

Adaptable, Symmetric Multikey File Struc-

ture,” ACM Transactions on Database Sys-

tems, March 1984.

[15] Ozsoyoglu, G. et. al., “A Language and a

Physical Organization Technique for Sum-

mary Tables,” Proc. 1985 ACM-SIGMOD

Conference on Management of Data, Austin,

TX, May 1985.

[16] Richardson, J. and Carey, M., “Program-

ming Constructs for Database System Imple-

mentation in EXODUS,” Proc. 1987 ACM-
SIGMOD Conference on Management of

Data, San Francisco, CA, May 1987.

[17] Rogers, T.R., and Cattell, R.G.G., “Entity-
Relationship Database User Interfaces,” Pro-
ceedings of the ER Institute, Baton Rouge,

LA, 1987.

[18] Selinger, P. et. al., “Access Path Selection in
a Relational Data Base System,” Proc. 1979
ACM-SIGMOD Conference on Management

of Data, Boston, MA, June 1979.

[19] Stonebraker, M., “Implementation of In-

tegrity Constraints and Views by Query

Modification,” Proc. 1975 ACM-SIGMOD

Conference, San Jose, CA, May 1975.

[20] Stonebraker, M. and Rowe, L., “Database

Portals - A New Application Program Inter-

face,” Proceedings of the 10th International

Conference on Very Large Databases, Singa-

pore, August 1984.

38

