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Abstract

Systematically tracking the tumor immunophenotype is
required to understand the mechanisms of cancer immunity
and improve clinical benefit of cancer immunotherapy. How-
ever, progress in current research is hindered by the lack of
comprehensive immune activity resources and easy-to-use
tools for biologists, clinicians, and researchers to conveniently
evaluate immune activity during the "cancer-immunity cycle."
We developed a user-friendly one-stop shop web tool called
TIP to comprehensively resolve tumor immunophenotype.
TIP has the capability to rapidly analyze and intuitively visu-
alize the activity of anticancer immunity and the extent of
tumor-infiltrating immune cells across the seven-step cancer-
immunity cycle. Also, we precalculated the pan-cancer

immunophenotype for 11,373 samples from 33 The Cancer
Genome Atlas human cancers that allow users to obtain
and compare immunophenotype of pan-cancer samples.
We expect TIP to be useful in a large number of emerging
cancer immunity studies and development of effective
immunotherapy biomarkers. TIP is freely available for use
at http://biocc.hrbmu.edu.cn/TIP/.

Significance: TIP is a one-stop shop platform that can help
biologists, clinicians, and researchers conveniently evaluate
anticancer immune activity with their own gene expression
data. Cancer Res; 78(23); 6575–80. �2018 AACR.

See related commentary by Hirano, p. 6536

Introduction
The emergence of cancer immunotherapy has revolutionized

cancer treatment, whose success highly depends on the immune
cell development and activation in the host microenvironment
(1, 2). Anticancer immune response can be conceptualized as a
series of stepwise events called the cancer-immunity cycle, includ-
ing release of cancer cell antigens (step 1), cancer antigen presen-
tation (step 2), priming and activation (step 3), trafficking of
immune cells to tumors (step 4), infiltration of immune cells into
tumors (step 5), recognition of cancer cells by T cells (step 6), and
killing of cancer cells (step 7; ref. 3). Activity status of these seven-
step anticancer immune responses and the extent of tumor-
infiltrating immune cells form the complex tumor immunophe-
notype underlying the tumor microenvironment. Therefore,
tracking tumor immunophenotypewill be essential for the under-

standing of the mechanisms of cancer immunity and the devel-
opment of biomarkers of response to immunotherapy.

Currently, there is a substantial lack of global character-
ization of the whole anticancer immunity, due to the lengthy
collection of typical signature through literature curation
and the requirement of additional expertise in computer
programming and statistical inference. Although somemeth-
ods were proposed for analyzing part of the cancer-immunity
cycle, they had the limitation of long execution time, when
dealing with a large sample size, and, generally, were short
of the intuitive display of results that may be important
for interpretation (4–7). Obviously, there is an urgent
demand for an easy-to-use and one-stop shop tool for com-
prehensively resolving the activity status of the whole
anticancer immunity.

To address this problem, we developed TIP (tracking tumor
immunophenotype), a user-friendly web-based tool focusing on
profiling the anticancer immune microenvironment based on the
seven-step cancer-immunity cycle. TIP provides a one-stop shop for
systematically tracking, analyzing, and visualizing of the activity
status of anticancer immunity and the extent of tumor-infiltrating
immune cells in user-defined samples (see Supplementary Video
S1). Even without additional computer and programming
expertise, biologists and clinicians can comprehensively investigate
the tumor immunophenotype easily and conveniently. We manu-
ally collected 23 confirmed signature sets involved in seven-step
anticancer immunity, allowing researchers to explore the immune
status without time consumption for lengthy literature curation
and data gathering (8, 9). In addition, we prebuilt the landscape of
The Cancer Genome Atlas (TCGA) tumor immunophenotype for
11,373patientsacross33TCGAhumancancertypes,sothatuserscan
analyze and compare the immune status across the tumor samples.
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Materials and Methods
Depict the status of anticancer immunity

To characterize the status of anticancer immunity, wemanually
collected 178 signature genes (including stimulatory and inhib-
itory genes, grouped into 23 sets) involved in the seven stepsof the
cancer-immunity cycle frompublished studies, with the keywords
such as "checkpoints," "cytotoxic factors," "chemokines," and
"MHC molecules." Then, the activity levels of these signature
gene sets were calculated using single-sample Gene Set Enrich-
ment Analysis (ssGSEA) based on gene expression of individual
samples (4). Notably, the stimulatory (positive) and inhibitory
(negative) gene sets in each step of the cancer-immunity cycle
were calculated, respectively (i.e., ESpositiveSet and ESnegativeSet). To
make ssGSEA scores comparable between different expression
platforms and different samples, the activity scores were normal-
ized according to the z-score method after 100 permutations (i.e.,
NESpositiveSet and NESnegativeSet). Finally, the activity score for each
signature set was produced by calculating the difference between
the normalized ssGSEA scores of positive set and negative set (i.e.,
NESpositiveSet � NESnegativeSet).

Depict the proportion of tumor-infiltrating immune cells
TIP is also designed to infer the proportion of various tumor-

infiltrating immune cells, such as T cells, B cells, dendritic cells
(DC), natural killer (NK) cells, macrophages, based on a widely
used gene-expression deconvolution algorithm, CIBERSORT (6).
CIBERSORT estimates the cell fractions using nu-support
vector regression (n-SVR) algorithm through considering a
gene-signature matrix, which describes the expression patterns
of different immune cell types. When users upload microarray
expression profiling, TIP will estimate the fractions of infiltrated
immune cell types for each sample by using the original leukocyte
gene signature matrix (LM22) derived from CIBERSORT, which
contains 547 genes that distinguish 22 human hematopoietic cell
types. To infer the cell proportion for RNA-seq bulk expression
data using CIBERSORT, we constructed a gene-signature expres-
sionmatrix (LM14, involving seven T-cell types, B cells, CD14 and
CD16 monocytes, DCs and plasmacytoid DC cells, plasma cells,
and NK cells; Supplementary Table S1A) based on single-cell
RNA-seq data (scRNA-seq), which is composed of 33,000 periph-
eral bloodmononuclear cells (PBMC), 2,000 CD4þ helper t cells,
and 2,000CD4þ/CD25þ regulatory T cells from the 10�Genomics
(https://support.10xgenomics.com/single-cell-gene-expression/
datasets, Supplementary Table S1B). In detail, we preprocessed
the raw count data of the scRNA-seq data by R package Seurat
(10). The count values were converted to TPM using BSEQsc
software (11). Moreover, we identified differentially expressed
genes for each cell type (vs. others) using SCde package (Sup-
plementary Table S1C; ref. 12). To generate an appropriate
signature gene set for LM14, we merged these differentially
expressed genes among the 14 cell types and signature genes
from the LM22. Finally, the LM14 gene signature matrix, which is
a TPM expression matrix of 973 signature genes (row) and 14
immune cell types (columns), was built to infer the proportion
of tumor-infiltrating immune cells using CIBERSORT when users
upload RNA-seq bulk expression data.

Software development
TIP computational functions were developed in R; Bootstrap

framework, Struts2, and JavaScript were used to communicate

between R and web interfaces; the web interfaces were
achieved using JavaScript, tabular results were generated by
DataTables, heat map, bar, pie, and scatter plots were gener-
ated by HighCharts, D3 provided power for line, box, radar,
and circle plots.

Source code: https://github.com/dengchunyu/TIP.

Input
In the general analysis, TIP accepts two types of bulk tumor

expression data (i.e., the whole tumor samples) as input. One is
RNA-seq expression data (raw count or TPM), and the other is
microarray expression data (log or non-log transformed). In the
pan-cancer analysis, TIP provides the precalculated immunophe-
notype for 33 TCGA cancer types.

Output
The output allows users to interactively inspect the results from

a global (Fig. 1) and individual perspective (Fig. 2). A detailed
helppage is provided to serve as a guide for users in understanding
the usage of TIP and interpreting the output data.

From a global perspective, TIP displays the 23 immune activity
scores reflecting the activity status of the seven-step cancer-immu-
nity cycle for all samples (Fig. 1A). Below the activity scores, the
relative proportion of tumor-infiltrating immune cells across all
samples are provided, in which users can select and focus on
immune cells of interest (Fig. 1B). The expression pattern and the
principal component analysis of 178 step-specific signature genes
are also presented (Fig. 1C). Note that an overall activity score for
each sample is shown on the right of Fig. 1D, allowing to
investigate immunophenotype from an individual perspective.
When the user clicks a sample, he is provided with the overall
information of immune activity, immune cell infiltration, and
signature gene expression of this single sample (Fig. 2A and B).
Importantly, TIP interactively displays the status of the seven-step
cancer-immunity cycle, within the context of the reference tumor
immunophenotype of the corresponding cancer type from TCGA
pan-cancer data, by circle plots (Fig. 2C), which can help to
evaluate the activity of anticancer immunity for this sample.
Additionally, the reference tumor immunophenotypes for
11,373 patients across 33 TCGA human cancers are provided in
PancancerAnalysis. All of the interactive images and the corre-
sponding data can be downloaded via Download button for
further analysis.

Results
Pan-cancer immunophenotype profiling

TIP provides the tumor immunophenotype profiling
of 11,373 patients across 33 TCGA human cancers in the
PancancerAnalysis tab, from which users can resolve anticancer
immune activity status and the extent of immune cell infiltra-
tion for all patients.

Taking the BRCA (breast invasive carcinoma with 1,256 sam-
ples) as an example, we found that the signature genes involved in
the cancer-immunity cycle showed distinct expression patterns
between tumor and normal samples (Fig. 1C). Even among the
tumor samples, an obvious difference was still observed. In the
single sample TCGA-A2-A0ST-01A-12R-A084-07 with the highest
overall activity, higher immune activity scores and more T-cell
infiltration were observed when compared with most of the
reference TCGA BRCA samples (Fig. 2C).
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Figure 1.

Global visualization of the immunophenotype across 1,256 BRCA samples from TCGA. A, The 23 normalized immune activity scores. B, The relative
proportion of tumor-infiltrating immune cells. C, Left, the expression pattern of 178 signature genes from the seven-step cancer-immunity cycle. Each row
represents a single gene, and each column represents one sample. Right, the principal component analysis (PCA) of signature genes expression
for all samples (red, tumor samples; green, normal samples). D, Overall activity scores of anticancer immunity (by summing up the 23 normalized scores) for
each sample.
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A case study for anti–PD-1 immunotherapy
RNA-seq data (Illumina HiSeq 2000, GSE78220) from Hugo

and colleagues (13), including 28 samples of melanoma follow-
ing anti–PD-1 immunotherapy (responding,n¼15; nonrespond-
ing, n ¼ 13), were uploaded to TIP, with TCGA SKCM (Skin
CutaneousMelanoma) as the reference cancer type (all the results
were available at JobID: 20180120084858Z4B95IHRQQZC1X).
From the global perspective, we found that the nonresponding
samples showed significantly higher activity scores of "Step1.

release of cancer cell antigens" (P ¼ 0.041, Mann–Whitney
U test) and "Step4.MDSC.recruiting" (P ¼ 0.046, Mann–
Whitney U test) than the responding samples (Supplementary
Fig. S1A).

From the individual perspective, we observed that the non-
responding patient Pt1 had substantial infiltration of T regulatory
cells, but lacked the infiltration of CD8 effector T cells that have
been found to be a predictor for anti–PD-1 therapy response
(Supplementary Fig. S1B; ref. 14), despite the higher activity
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Figure 2.

Visualization of immunophenotype for one specific BRCA sample, TCGA-A2-A0ST-01A-12R-A084-07. A, The line graph shows activity scores of anticancer
immunity in seven steps across the cancer-immunity cycle for this sample. The boxplot shows the expression distribution of signature genes from seven steps
of the cancer-immunity cycle. B, Relative proportions of tumor-infiltrating immune cells. Only cells with detectable proportions (>0) are shown. C, Six circular
plots show the comparison of activity scores of anticancer immunity for this specific sample (red pointer) with those for all tumor (green points in outer circle)
and normal (red points in inner circle) samples from TCGA BRCA data. Two radar plots show the activity scores of "Trafficking of immune cells to tumors"
and the relative proportions of tumor-infiltrating immune cells for different immune cell types in this sample (blue) and all tumor and normal samples
(overall sample mean; green, tumor; red, normal) from TCGA BRCA data.
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scores of "step1.release of cancer cell antigens" than all reference
TCGA SKCM samples.

Discussion
We have developed an open-access, user-friendly web-based

tool, TIP, which provides a one-stop shop to comprehensively
evaluate the tumor immunophenotype including activity status of
the seven-step cancer-immunity cycle and immune cell infiltra-
tion. TIP enhances the display of results bymultiple advanced and
interactive visualizations and computes five to ten times faster
than simple chaining together of ssGSEA (using R package
"GSVA") and CIBERSORT. For 50 samples, total execution time
would be reduced from more than 100 minutes to around 20
minutes, a saving of 80% (Supplementary Table S2). TIP man-
ually collected 23 confirmed signature sets for assessing anticancer
immune activity status and prebuilt TCGA tumor immunophe-
notype landscape for analysis and comparison across samples. In
summary, TIP substantially expands the available repertoire of
current softwares and facilitates tracking the tumor immunophe-
notype without lengthy literature curation, long execution time,
and additional expertise in computer programming.

As a key component of TIP, a detailed and biologically relevant
validation of immune cell fraction and anticancer immunity
activity status was performed. We assessed TIP analysis using
bulk microarray data set from SKCM tumor samples of TCGA
(n ¼ 328; ref. 15), 27 colon cancer primary tumors (GSE39582;
ref. 16), the RNA-seq data set of bulk PBMC samples from two
different donors (GSE64655; ref. 17), and microarray data set
fromPBMCs of 20 adult subjects (GSE65136; ref. 6), as well as the
corresponding relative proportion of immune cell types deter-
mined by immunostaining and flow cytometry analysis. All of the
above results suggested that TIP analysis was significantly con-
sistent with corresponding experimental measurements (Supple-
mentary Fig. S2A–S2D). In addition, to evaluate anticancer
immunity status in TIP analysis, we analyzed the bulk RNA-seq
data set of urothelial carcinoma samples from http://doi.org/
10.5281/zenodo.546110, which measured corresponding PD-L1
tumor-infiltrating immune cell status by IHC analysis (18). The
result demonstrated that the patients with the higher level of
PD-L1 tumor-infiltrating immune cell status showed significantly
lower anticancer immunity activity scores of "Step6. Recognition
of cancer cells by T cells." In general, the agreement of TIP
analysis and ground truth values indicated that the immune cell
fraction and the anticancer immunity activity status can be quan-
titatively exhibited directly using TIP (Supplementary Fig. S2E).

Recently, DNA methylation patterns were found to be highly
variable across different cell types and were able to precisely
characterize patient phenotype (19–21). Thus, DNAmethylation
profiling, such as transcriptome profiling, may also be used to
effectively resolve tumor immunophenotype. Indeed,DNAmeth-
ylation patterns have been harnessed by recent studies to estimate
proportions of infiltrating immune cell types. In a seminal paper,
Houseman and colleagues (22) used the DNA methylation mar-
kers that are highly discriminative of five principal components of
humanwhite blood cells to accurately infer relative proportions of

immune cell types in whole blood. Thismethodwas expanded by
additional reference differentially methylated regions of more
leukocyte subsets (23). Furthermore, focusing on the whole
population of leukocytes, Li and colleagues and Thorsson and
colleagues both identifiedDNAmethylation loci with the greatest
difference between pure leukocytes and normal tissues and then
investigated the leukocyte fractions of overall tumor tissues based
on different linear models (24, 25). Therefore, in the future, it is
necessary to incorporate DNA methylation-based analysis into
our platform to capturemore comprehensive immunophenotype
of patients. Also, we will combine the clinical phenotype
information (such as survival and response to immunotherapy)
and add tools for developing effective biomarkers. We expect
that TIP will continue to serve as a powerful platform for
assisting the anticancer immunity field and cancer immunother-
apy community.
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